or

SUBGROUPS: a computer tool at the Bilbao Crystallographic Server for the study of pseudo-symmetric or distorted structures

SUBGROUPS is a free online program at the Bilbao Crystallographic Server (https://www.cryst.ehu.es/). It permits the exploration of all possible symmetries resulting from the distortion of a higher-symmetry parent structure, provided that the relation between the lattices of the distorted and parent structures is known. The program calculates all the subgroups of the parent space group which comply with this relation. The required minimal input is the space-group information of the parent structure and the relation of the unit cell of the distorted or pseudo-symmetric structure with that of the parent structure. Alternatively, the wavevector(s) observed in the diffraction data characterizing the distortion can be introduced. Additional conditions can be added, including filters related to space-group representations. The program provides very detailed information on all the subgroups, including group–subgroup hierarchy graphs. If a Crystallographic Information Framework (CIF) file of the parent high-symmetry structure is uploaded, the program generates CIF files of the parent structure described under each of the chosen lower symmetries. These CIF files may then be used as starting points for the refinement of the distorted structure under these possible symmetries. They can also be used for density functional theory calculations or for any other type of analysis. The power and efficiency of the program are illustrated with a few examples.




or

Twinning and homo-epitaxy cooperation in the already rich growth morphology of CaCO3 polymorphs. II. Calcite

The two most abundant CaCO3 polymorphs, calcite and aragonite, are universally recognized for the richness of their morphology to which different twins make relevant contributions. The epitaxial transformation calcite ↔ aragonite has long been debated. While the twinning has been thoroughly treated, the homo-epitaxy occurring within each of these minerals has, inexplicably, been overlooked to date, both experimentally and theoretically. Twinning can be deceptive to the point where it can be mistaken for homo-epitaxy, thus making the proposed growth mechanism in the crystal aggregate wrong. Within the present work, the first aim is a theoretical investigation of the homo-epitaxies among the three {10.4}-cleavage, {01.2}-steep and {01.8}-flat rhombohedra of calcite. Accordingly, the specific adhesion energies were calculated between facing crystal forms, unequivocally showing that the {01.2}/{01.8} homo-epitaxy competes with the generation of both {01.2} and {01.8} contact twins. Secondly, the calculation of the specific adhesion energy was extended to consider homo-epitaxy for the {10.4} rhombohedron. The two-dimensional geometric lattice coincidence has been tried for the {00.1} pinacoidal form as well.




or

Link between b.c.c.–f.c.c. orientation relationship and austenite morphology in CF8M stainless steel

Slow-cooled CF8M duplex stainless steel is used for critical parts of the primary coolant pipes of nuclear reactors. This steel can endure severe service conditions, but it tends to become more brittle upon very long-term aging (tens of years). Therefore, it is essential to understand its specific microstructure and temporal evolution. As revealed by electron backscatter diffraction (EBSD) analyses, the microstructure consists of millimetre-scale ferritic grains within which austenite lath packets have grown with preferred crystallographic orientations concerning the parent ferritic phase far from the ferrite grain boundaries. In these lath packets where the austenite phase is nucleated, the lath morphology and crystal orientation accommodate the two ferrite orientations. Globally, the Pitsch orientation relationship appears to display the best agreement with the experimental data compared with other classical relationships. The austenite lath packets are parallel plate-shaped laths, characterized by their normal n. A novel methodology is introduced to elucidate the expected relationship between n and the crystallographic orientation given the coarse interfaces, even though n is only partly known from the observation surface, in contrast to the 3D crystal orientations measured by EBSD. The distribution of retrieved normals n is shown to be concentrated over a set of discrete orientations. Assuming that the ferrite and austenite obey the Pitsch orientation relationship, the determined lath normals are close to an invariant direction of the parent phase given by the same orientation relationship.




or

Pinhole small-angle neutron scattering based approach for desmearing slit ultra-small-angle neutron scattering data

Presented here is an effective approach to desmearing slit ultra-small-angle neutron scattering (USANS) data, based on complementary small-angle neutron scattering (SANS) measurements, leading to a seamless merging of these data sets. The study focuses on the methodological aspects of desmearing USANS data, which can then be presented in the conventional manner of SANS, enabling a broader pool of data analysis methods. The key innovation lies in the use of smeared SANS data for extrapolating slit USANS, offering a self-consistent integrand function for desmearing with Lake's iterative method. The proposed approach is validated through experimental data on porous anodized aluminium oxide membranes, showcasing its applicability and benefits. The findings emphasize the importance of accurate desmearing for merging USANS and SANS data in the crossover q region, which is particularly crucial for complex scattering patterns.




or

Electronic angle focusing for neutron time-of-flight powder diffractometers

A neutron time-of-flight (TOF) powder diffractometer with a continuous wide-angle array of detectors can be electronically focused to make a single pseudo-constant wavelength diffraction pattern, thus facilitating angle-dependent intensity corrections. The resulting powder diffraction peak profiles are affected by the neutron source emission profile and resemble the function currently used for TOF diffraction.




or

Five-analyzer Johann spectrometer for hard X-ray photon-in/photon-out spectroscopy at the Inner Shell Spectroscopy beamline at NSLS-II: design, alignment and data acquisition

Here, a recently commissioned five-analyzer Johann spectrometer at the Inner Shell Spectroscopy beamline (8-ID) at the National Synchrotron Light Source II (NSLS-II) is presented. Designed for hard X-ray photon-in/photon-out spectroscopy, the spectrometer achieves a resolution in the 0.5–2 eV range, depending on the element and/or emission line, providing detailed insights into the local electronic and geometric structure of materials. It serves a diverse user community, including fields such as physical, chemical, biological, environmental and materials sciences. This article details the mechanical design, alignment procedures and data-acquisition scheme of the spectrometer, with a particular focus on the continuous asynchronous data-acquisition approach that significantly enhances experimental efficiency.




or

Upgraded front ends for SLS 2.0 with next-generation high-power diaphragms and slits

The upgrade of the Swiss Light Source, called SLS 2.0, necessitates comprehensive updates to all 18 user front ends. This upgrade is driven by the increased power of the synchrotron beam, reduced floor space, changing source points, new safety regulations and enhanced beam properties, including a brightness increase by up to a factor of 40. While some existing front-end components are being thoroughly refurbished and upgraded for safety reasons, other components, especially those designed to tailor the new synchrotron beam, are being completely rebuilt. These new designs feature innovative and enhanced cooling systems to manage the high-power load and meet new requirements such as mechanical stability and compact footprints.




or

Thermal analysis of a reflection mirror by fluid and solid heat transfer method

High-repetition-rate free-electron lasers impose stringent requirements on the thermal deformation of beamline optics. The Shanghai HIgh-repetition-rate XFEL aNd Extreme light facility (SHINE) experiences high average thermal power and demands wavefront preservation. To deeply study the thermal field of the first reflection mirror M1 at the FEL-II beamline of SHINE, thermal analysis under a photon energy of 400 eV was executed by fluid and solid heat transfer method. According to the thermal analysis results and the reference cooling water temperature of 30 °C, the temperature of the cooling water at the flow outlet is raised by 0.15 °C, and the wall temperature of the cooling tube increases by a maximum of 0.5 °C. The maximum temperature position of the footprint centerline in the meridian direction deviates away from the central position, and this asymmetrical temperature distribution will directly affect the thermal deformation of the mirror and indirectly affect the focus spot of the beam at the sample.




or

In situ/operando method for energy stability measurement of synchrotron radiation

A novel in situ/operando method is introduced to measure the photon beam stability of synchrotron radiation based on orthogonal diffraction imaging of a Laue crystal/analyzer, which can decouple the energy/wavelength and Bragg angle of the photon beam using the dispersion effect in the diffraction process. The method was used to measure the energy jitter and drift of the photon beam on BL09B and BL16U at the Shanghai Synchrotron Radiation Facility. The experimental results show that this method can provide a fast way to measure the beam stability of different light sources including bending magnet and undulator with meV-level energy resolution and ms-level time response.




or

Correlative X-ray micro-nanotomography with scanning electron microscopy at the Advanced Light Source

Geological samples are inherently multi-scale. Understanding their bulk physical and chemical properties requires characterization down to the nano-scale. A powerful technique to study the three-dimensional microstructure is X-ray tomography, but it lacks information about the chemistry of samples. To develop a methodology for measuring the multi-scale 3D microstructure of geological samples, correlative X-ray micro- and nanotomography were performed on two rocks followed by scanning electron microscopy with energy-dispersive spectroscopy (SEM-EDS) analysis. The study was performed in five steps: (i) micro X-ray tomography was performed on rock sample cores, (ii) samples for nanotomography were prepared using laser milling, (iii) nanotomography was performed on the milled sub-samples, (iv) samples were mounted and polished for SEM analysis and (v) SEM imaging and compositional mapping was performed on micro and nanotomography samples for complimentary information. Correlative study performed on samples of serpentine and basalt revealed multiscale 3D structures involving both solid mineral phases and pore networks. Significant differences in the volume fraction of pores and mineral phases were also observed dependent on the imaging spatial resolution employed. This highlights the necessity for the application of such a multiscale approach for the characterization of complex aggregates such as rocks. Information acquired from the chemical mapping of different phases was also helpful in segmentation of phases that did not exhibit significant contrast in X-ray imaging. Adoption of the protocol used in this study can be broadly applied to 3D imaging studies being performed at the Advanced Light Source and other user facilities.




or

Development of crystal optics for X-ray multi-projection imaging for synchrotron and XFEL sources

X-ray multi-projection imaging (XMPI) is an emerging experimental technique for the acquisition of rotation-free, time-resolved, volumetric information on stochastic processes. The technique is developed for high-brilliance light-source facilities, aiming to address known limitations of state-of-the-art imaging methods in the acquisition of 4D sample information, linked to their need for sample rotation. XMPI relies on a beam-splitting scheme, that illuminates a sample from multiple, angularly spaced viewpoints, and employs fast, indirect, X-ray imaging detectors for the collection of the data. This approach enables studies of previously inaccessible phenomena of industrial and societal relevance such as fractures in solids, propagation of shock waves, laser-based 3D printing, or even fast processes in the biological domain. In this work, we discuss in detail the beam-splitting scheme of XMPI. More specifically, we explore the relevant properties of X-ray splitter optics for their use in XMPI schemes, both at synchrotron insertion devices and XFEL facilities. Furthermore, we describe two distinct XMPI schemes, designed to faciliate large samples and complex sample environments. Finally, we present experimental proof of the feasibility of MHz-rate XMPI at the European XFEL. This detailed overview aims to state the challenges and the potential of XMPI and act as a stepping stone for future development of the technique.




or

distect: automatic sample-position tracking for X-ray experiments using computer vision algorithms

Soft X-ray spectroscopy is an important technique for measuring the fundamental properties of materials. However, for measurements of samples in the sub-millimetre range, many experimental setups show limitations. Position drifts on the order of hundreds of micrometres during thermal stabilization of the system can last for hours of expensive beam time. To compensate for drifts, sample tracking and feedback systems must be used. However, in complex sample environments where sample access is very limited, many existing solutions cannot be applied. In this work, we apply a robust computer vision algorithm to automatically track and readjust the sample position in the dozens of micrometres range. Our approach is applied in a complex sample environment, where the sample is in an ultra-high vacuum chamber, surrounded by cooled thermal shields to reach sample temperatures down to 2.5 K and in the center of a superconducting split coil. Our implementation allows sample-position tracking and adjustment in the vertical direction since this is the dimension where drifts occur during sample temperature change in our setup. The approach can be easily extended to 2D. The algorithm enables a factor of ten improvement in the overlap of a series of X-ray absorption spectra in a sample with a vertical size down to 70 µm. This solution can be used in a variety of experimental stations, where optical access is available and sample access by other means is reduced.




or

High-transmission spectrometer for rapid resonant inelastic soft X-ray scattering (rRIXS) maps

The design and first results of a high-transmission soft X-ray spectrometer operated at the X-SPEC double-undulator beamline of the KIT Light Source are presented. As a unique feature, particular emphasis was placed on optimizing the spectrometer transmission by maximizing the solid angle and the efficiencies of spectrometer gratings and detector. A CMOS detector, optimized for soft X-rays, allows for quantum efficiencies of 90% or above over the full energy range of the spectrometer, while simultaneously offering short readout times. Combining an optimized control system at the X-SPEC beamline with continuous energy scans (as opposed to step scans), the high transmission of the spectrometer, and the fast readout of the CMOS camera, enable the collection of entire rapid resonant inelastic soft X-ray scattering maps in less than 1 min. Series of spectra at a fixed energy can be taken with a frequency of up to 5 Hz. Furthermore, the use of higher-order reflections allows a very wide energy range (45 to 2000 eV) to be covered with only two blazed gratings, while keeping the efficiency high and the resolving power E/ΔE above 1500 and 3000 with low- and high-energy gratings, respectively.




or

Formulation of perfect-crystal diffraction from Takagi–Taupin equations: numerical implementation in the crystalpy library

The Takagi–Taupin equations are solved in their simplest form (zero deformation) to obtain the Bragg-diffracted and transmitted complex amplitudes. The case of plane-parallel crystal plates is discussed using a matrix model. The equations are implemented in an open-source Python library crystalpy adapted for numerical applications such as crystal reflectivity calculations and ray tracing.




or

Mirror-centered representation of a focusing hyperbolic mirror for X-ray beamlines

Conic sections are commonly used in reflective X-ray optics. Hyperbolic mirrors can focus a converging light source and are frequently paired with elliptical or parabolic mirrors in Wolter type configurations. This paper derives the closed-form expression for a mirror-centered hyperbolic shape, with zero-slope at the origin. Combined with the slope and curvature, such an expression facilitates metrology, manufacturing and mirror-bending calculations. Previous works consider ellipses, parabolas, magnifying hyperbolas or employ lengthy approximations. Here, the exact shape function is given in terms of the mirror incidence angle and the source and image distances.




or

A study of structural effects on the focusing and imaging performance of hard X-rays with 20–30 nm zone plates

Hard X-ray microscopes with 20–30 nm spatial resolution ranges are an advanced tool for the inspection of materials at the nanoscale. However, the limited efficiency of the focusing optics, for example, a Fresnel zone plate (ZP) lens, can significantly reduce the power of a nanoprobe. Despite several reports on ZP lenses that focus hard X-rays with 20 nm resolution – mainly constructed by zone-doubling techniques – a systematic investigation into the limiting factors has not been reported. We report the structural effects on the focusing and imaging efficiency of 20–30 nm-resolution ZPs, employing a modified beam-propagation method. The zone width and the duty cycle (zone width/ring pitch) were optimized to achieve maximum efficiency, and a comparative analysis of the zone materials was conducted. The optimized zone structures were used in the fabrication of Pt-hydrogen silsesquioxane (HSQ) ZPs. The highest focusing efficiency of the Pt-HSQ-ZP with a resolution of 30 nm was 10% at 7 keV and >5% in the range 6–10 keV, whereas the highest efficiency of the Pt-HSQ-ZP with a resolution of 20 nm was realized at 7 keV with an efficiency of 7.6%. Optical characterization conducted at X-ray beamlines demonstrated significant enhancement of the focusing and imaging efficiency in a broader range of hard X-rays from 5 keV to 10 keV, demonstrating the potential application in hard X-ray focusing and imaging.




or

A general Bayesian algorithm for the autonomous alignment of beamlines

Autonomous methods to align beamlines can decrease the amount of time spent on diagnostics, and also uncover better global optima leading to better beam quality. The alignment of these beamlines is a high-dimensional expensive-to-sample optimization problem involving the simultaneous treatment of many optical elements with correlated and nonlinear dynamics. Bayesian optimization is a strategy of efficient global optimization that has proved successful in similar regimes in a wide variety of beamline alignment applications, though it has typically been implemented for particular beamlines and optimization tasks. In this paper, we present a basic formulation of Bayesian inference and Gaussian process models as they relate to multi-objective Bayesian optimization, as well as the practical challenges presented by beamline alignment. We show that the same general implementation of Bayesian optimization with special consideration for beamline alignment can quickly learn the dynamics of particular beamlines in an online fashion through hyperparameter fitting with no prior information. We present the implementation of a concise software framework for beamline alignment and test it on four different optimization problems for experiments on X-ray beamlines at the National Synchrotron Light Source II and the Advanced Light Source, and an electron beam at the Accelerator Test Facility, along with benchmarking on a simulated digital twin. We discuss new applications of the framework, and the potential for a unified approach to beamline alignment at synchrotron facilities.




or

Synchrotron CT dosimetry for wiggler operation at reduced magnetic field and spatial modulation with bow tie filters

The Australian Synchrotron Imaging and Medical Beamline (IMBL) uses a superconducting multipole wiggler (SCMPW) source, dual crystal Laue monochromator and 135 m propagation distance to enable imaging and computed tomography (CT) studies of large samples with mono-energetic radiation. This study aimed to quantify two methods for CT dose reduction: wiggler source operation at reduced magnetic field strength, and beam modulation with spatial filters placed upstream from the sample. Transmission measurements with copper were used to indirectly quantify the influence of third harmonic radiation. Operation at lower wiggler magnetic field strength reduces dose rates by an order of magnitude, and suppresses the influence of harmonic radiation, which is of significance near 30 keV. Beam shaping filters modulate the incident beam profile for near constant transmitted signal, and offer protection to radio-sensitive surface organs: the eye lens, thyroid and female breast. Their effect is to reduce the peripheral dose and the dose to the scanned volume by about 10% for biological samples of 35–50 mm diameter and by 20–30% for samples of up to 160 mm diameter. CT dosimetry results are presented as in-air measurements that are specific to the IMBL, and as ratios to in-air measurements that may be applied to other beamlines. As CT dose calculators for small animals are yet to be developed, results presented here and in a previous study may be used to estimate absorbed dose to organs near the surface and the isocentre.




or

Foreword to the special virtual issue on X-ray spectroscopy to understand functional materials: instrumentation, applications, data analysis




or

Foreword to the special virtual issue dedicated to the proceedings of the PhotonMEADOW2023 Joint Workshop




or

Celebrating JSR's 30th anniversary: reminiscences of a Main Editor




or

ADIB safely tests fractional Sukuks offering for retail investors

Abu Dhabi Islamic Bank (ADIB) has announced that...




or

PayPoint and Share Energy partner in order to optimise customer payment solutions

PayPoint has announced its partnership with



or

Paymentology partners with Zand Bank to support fintech growth in UAE

Paymentology has entered into a referral partnership with...




or

Careem Pay introduces instant transfers for customers in Europe

Digital wallet and fintech platform Careem Pay has launched...




or

Tide expands platform with acquisition of UK payroll solution Onfolk

Tide, a UK-based business...




or

The Global Payments and Fintech Trends Report 2024

The inaugural edition of the Global Payments and Fintech Trends Report offers a comprehensive overview of the key trends in fintech and payments for the year 2024 and beyond.




or

Emerging Technologies and Trends in Identity Verification, KYC, and KYB Report 2024

The inaugural edition of the Emerging Technologies and Trends in Identity Verification (IDV), KYC, and KYB Report 2024 offers a comprehensive overview of the key technology trends and best practices in digital onboarding for consumers and businesses in 2024.




or

Fintech for Marketplaces and Platforms Report 2024

The 1st edition of the Fintech for Marketplaces and Platforms Report covers essential ecommerce trends and future perspectives.




or

Unlocking the Potential of A2A Payments Report 2024

The first edition of the Unlocking the Potential of A2A Payments Report 2024 provides the latest insights into the A2A space.




or

Embedded Finance and Banking-as-a-Service Report 2024

Unlock unparalleled insights into the transformative world of Embedded Finance and Banking-as-a-Service (BaaS) with The Paypers' latest report. Dive deep into essential business models, key players, and the latest trends reshaping industries with our comprehensive guide, curated by industry experts and leading companies.




or

Fraud Prevention in Ecommerce Report 2024-2025

The 6th edition of the Fraud Prevention in Ecommerce Report provides a thorough overview of the global fraud ecosystem.




or

Towards Seamless Payment Interoperability – Thunes Report

 ‘The Road Ahead: Towards Seamless Payments Interoperability’, an eBook from Thunes, Visa, and The Paypers, explores how payments interoperability is reshaping the future of cross-border transactions.




or

Next-Gen Tech to Detect Fraud and Financial Crime Report 2024

The Next-Gen Technologies to Detect Fraud and Financial Crime Report 2024 highlights how banks, fintechs, and PSPs leverage AI and emerging tech to detect and combat advanced fraud.





or

Shein partners with Stori to launch a credit card in Mexico

Chinese fast-fashion retailer Shein has introduced its first...




or

FilmWeek: ‘The Courier,’ ‘Zack Snyder’s Justice League,’ ‘City Of Lies’ And More

Benedict Cumberbatch in “The Courier”; Credit: LIAM DANIEL / LIONSGATE / ROADSIDE ATTRACTIONS

FilmWeek Marquee

Larry Mantle and KPCC film critics Tim Cogshell, Lael Loewenstein and Andy Klein review this weekend’s new movie releases.

This content is from Southern California Public Radio. View the original story at SCPR.org.





or

FilmWeek: ‘Godzilla Vs. Kong,’ ‘The Outside Story,’ ‘Shiva Baby’ And More

Still from "Godzilla vs. Kong"; Credit: Courtesy of Warner Bros. Entertainment Inc. All Rights Reserved.

FilmWeek Marquee

Larry Mantle and KPCC film critics Amy Nicholson, Angie Han and Charles Solomon review this weekend’s new movie releases.

This content is from Southern California Public Radio. View the original story at SCPR.org.






or

FilmWeek: ‘Demon Slayer the Movie: Mugen Train,’ Street Gang: How We Got to Sesame Street,’ ‘Together Together’ And More

Archival still from the documentary "Street Gang: How We Got to Sesame Street"; Credit: HBO

FilmWeek Marquee

Larry Mantle and KPCC film critics Claudia Puig and Charles Solomon review this weekend’s new movie releases.

This content is from Southern California Public Radio. View the original story at SCPR.org.








or

FilmWeek: ‘A Quiet Place Part II,’ ‘Cruella,’ ‘Moby Doc’ And More

Millicent Simmonds, Noah Jupe and Emily Blunt return in “A Quiet Place, Part II.”; Credit: Paramount Pictures

FilmWeek Marquee

Larry Mantle and KPCC film critics Lael Loewenstein, Christy Lemire and Charles Solomon review this weekend’s new movie releases on streaming and on demand platforms.

This content is from Southern California Public Radio. View the original story at SCPR.org.




or

FilmWeek: ‘The Conjuring: The Devil Made Me Do It,’ ‘Spirit Untamed,’ ‘Edge Of The World’ And More

Vera Farmiga and Patrick Wilson in "The Conjuring: The Devil Made Me Do It"; Credit: Warner Bros. Pictures

FilmWeek Marquee

Larry Mantle and KPCC film critics Amy Nicholson, Wade Major and Charles Solomon review this weekend’s new movie releases on streaming and on demand platforms.

This content is from Southern California Public Radio. View the original story at SCPR.org.




or

FilmWeek: ‘In The Heights,’ ‘Holler,’ ‘Wish Dragon’ And More

ANTHONY RAMOS as Usnavi and MELISSA BARRERA as Vanessa in “IN THE HEIGHTS.”; Credit: Macall Polay/Warner Bros. Pictures’

FilmWeek Marquee

Larry Mantle and KPCC film critics Angie Han, Andy Klein, Tim Cogshell and Charles Solomon review this weekend’s new movie releases on streaming and on demand platforms.

This content is from Southern California Public Radio. View the original story at SCPR.org.




or

FilmWeek: ‘Rita Moreno: Just A Girl Who Decided To Go For It,’ ‘Les Nôtres,’ ‘Luca’ And More

Still of Rita Moreno in the documentary “Rita Moreno: Just a Girl Who Decided to Go for It.”; Credit: Roadside Attractions

FilmWeek Marquee

Guest host John Horn and KPCC film critics Claudia Puig, Peter Rainer, Lael Loewenstein and Charles Solomon review this weekend’s new movie releases on streaming and on demand platforms.

This content is from Southern California Public Radio. View the original story at SCPR.org.




or

FilmWeek: ‘F9:The Fast Saga,’ ‘Summer Of Soul,’ ‘Zola’ And More

Sung Kang (L) and Vin Diesel (R) in the film “F9: The Fast Saga"; Credit: Giles Keyte/Universal Pictures

FilmWeek Marquee

Larry Mantle and KPCC film critics Amy Nicholson and Christy Lemire review this weekend’s new movie releases on streaming and on-demand platforms.

This content is from Southern California Public Radio. View the original story at SCPR.org.