a

Nanomotor Propulsion

Self-propelling, programmable nanoscopic motors capable of harvesting energy from absorbed photons and undergoing subsequent photoeletrochemical (PEC) reactions are provided. A nanomotor can have a three-dimensional Janus configuration and can sense the direction of a light source. By controlling the zeta potential of different parts of the nanomotor with chemical modifications, the nanomotor can be programmed to show either positive phototaxis or negative phototaxis.




a

ELECTROPHORETIC TISSUE CLEARING CHAMBER AND USES THEREOF

The present document describes an electrophoretic tissue clearing chamber comprising an electrophoresis channel, configured to receive a clarification fluid therethrough; a first clarification fluid inlet, in fluid communication with the electrophoresis channel, configured to be connected to a source of the clarification fluid; a tissue sample holder in fluid communication with the electrophoresis channel, configured to receive a tissue sample to be clarified, and pressurize and homogenously apply the clarification fluid onto the tissue sample; a clarification fluid outlet, in fluid communication with the tissue sample holder, for exit of the clarification fluid from the electrophoretic tissue clearing chamber; and first and a second electrode, opposite one another in the electrophoresis channel, for transmission of an electric field therethrough.




a

METHOD AND DEVICE FOR PRODUCING A REFERENCE ELECTRODE

The present disclosure relates to a method for producing a reference electrode, wherein an internal space of the reference electrode is delimited by an outer wall and wherein the internal space contains a reference electrolyte up to a specified height, wherein the reference electrode is introduced into a pressurization chamber, wherein a defined overpressure is applied to the pressurization chamber and, via an opening that is located above the specified height in the outer wall of the reference electrode to the internal space of the reference electrode, and wherein the opening in the outer wall of the reference electrode is closed at the defined overpressure . The present disclosure further relates to a device for carrying out the method.




a

METHOD FOR MEASURING TEMPERATURE OF BIOLOGICAL SAMPLE, MEASURING DEVICE, AND BIOSENSOR SYSTEM

The concentration measurement method includes: introducing a predetermined amount of the biological sample into the capillary; measuring a temperature of the biological sample by applying a first voltage to the electrode unit when the temperature of the biological sample is measured, the first voltage allowing the temperature measurement to be less affected by increase and reduction in an amount of the analyte contained in the biological sample; measuring the concentration of the analyte contained in the biological sample by applying a second voltage to the electrode unit; measuring an environmental temperature in a surrounding of the biological sample; and correcting the concentration of the measured analyte based on the measured temperature of the biological sample and the measured environmental temperature.




a

LIGHT-ADDRESSABLE POTENTIOMETRIC SENSING UNITS

Light-addressable potentiometric sensing units are provided. A light-addressable potentiometric sensing unit comprises a conductive substrate, a metal oxide semiconductor layer, and a sensing layer. The metal oxide semiconductor layer is made of indium gallium zinc oxide, indium gallium oxide, indium zinc oxide, indium oxide co-doped with tin and zinc, tin oxide, or zinc oxide. The wide-band gap characteristic of the metal oxide semiconductor layer enables the light-addressable potentiometric sensing unit to resist the interference from visible light. The light-addressable potentiometric sensing unit therefore exhibits a more stable performance.




a

DEVICES AND METHODS FOR CONTAINING MOLECULES

The present invention generally relates to devices and methods for containing molecules. In some embodiments, the device comprises a nanopore, a pore, and a cavity capable of entropically containing (e.g., trapping) a molecule (e.g., a biomolecule), e.g., for minutes, hours, or days. In certain embodiments, the method comprises urging a molecule into a cavity of a device by application of an electric field, and/or by deposition of fluids having different ionic strengths. The molecule may comprise, in some cases, nucleic acids (e.g., DNA). The molecule, when present in the cavity and/or the nanopore, may be capable of being analyzed, determined, or chemically modified. In some instances, a second molecule (e.g., a second molecule which interacts the first molecule) may also be urged into the cavity. In some embodiments, the interaction of the second molecule with the first molecule (e.g., the second molecule binding to or chemically modifying the first molecule) may be determined by, for example, a change in voltage measured across the device.




a

Apparatuses, Systems and Methods for Sequencing Using Capillary Electrophoresis

In one aspect, a biological sequencing device comprising a cartridge configured to be removed from the instrument is disclosed. In various embodiments the cartridge can include one or more capillaries suitable for capillary electrophoresis, a reservoir and a pump. In various embodiments the reservoir can contain a separation matrix. In various embodiments the pump can load a capillary with separation matrix. In another aspect the biological sequencing device can include one or more capillaries and an integrated valve assembly. In various embodiments the integrated valve assembly can provide a polymer to the one or more capillaries.




a

Capillary Array Cartridge for Capillary Electrophoresis Systems

The present disclosure relates, in some embodiments, to an apparatus for conducting a capillary electrophoresis assay. The apparatus can comprise a capillary array comprising an anode end and a cathode end, the capillary array provided in a housing further comprising a reservoir configured to house a separation medium and an anode buffer. The system can also comprise an injection mechanism configured to deliver sample to the cathode end of the capillary array, and a temperature control zone, wherein the temperature control zone is configured to control the temperature of the interior of the housing.




a

INSULATOR TARGET

There is provided an insulator target which, when mounted on a sputtering apparatus and supplied with AC power, is capable of preventing the discharging from occurring in a clearance between a shield and the target. The insulator target for the sputtering apparatus according to this invention, around which is disposed a shield at the time of assembling the insulator target on the sputtering apparatus, is made up of: a plate-shaped target material to be enclosed by the shield; and, suppose that one surface of the target material is defined as a sputtering surface to be subjected to sputtering, an annular supporting material coupled to an outer peripheral portion of the opposite surface of the target material. The supporting material has an extended portion which is extended outward from a peripheral surface of the target material and which keeps a predetermined clearance to the shield.




a

Cu-Ga ALLOY SPUTTERING TARGET AND METHOD FOR MANUFACTURING SAME

A Cu—Ga alloy sputtering target includes, as a component composition, Ga: 0.1 to 40.0 at % and a balance including Cu and inevitable impurities, in which a porosity is 3.0% or lower, an average diameter of circumscribed circles of pores is 150 μm or less, and an average crystal grain size of Cu—Ga alloy particles is 50 μm or less.




a

METHODS AND APPARATUS FOR PROCESSING A SUBSTRATE

Methods and apparatus for processing a substrate are disclosed herein. In some embodiments, a process chamber includes: a chamber body defining an interior volume; a substrate support to support a substrate within the interior volume; a plurality of cathodes coupled to the chamber body and having a corresponding plurality of targets to be sputtered onto the substrate; and a shield rotatably coupled to an upper portion of the chamber body and having at least one hole to expose at least one of the plurality of targets to be sputtered and at least one pocket disposed in a backside of the shield to accommodate and cover at least another one of the plurality of targets not to be sputtered, wherein the shield is configured to rotate about and linearly move along a central axis of the process chamber.




a

Electrically and Magnetically Enhanced Ionized Physical Vapor Deposition Unbalanced Sputtering Source

An electrically and magnetically enhanced ionized physical vapor deposition (I-PVD) magnetron apparatus and method is provided for sputtering material from a cathode target on a substrate, and in particular, for sputtering ceramic and diamond-like coatings. The electrically and magnetically enhanced magnetron sputtering source has unbalanced magnetic fields that couple the cathode target and additional electrode together. The additional electrode is electrically isolated from ground and connected to a power supply that can generate positive, negative, or bipolar high frequency voltages, and is preferably a radio frequency (RF) power supply. RF discharge near the additional electrode increases plasma density and a degree of ionization of sputtered material atoms.




a

Sputtering System And Method Including An Arc Detection

A sputtering system that includes a sputtering chamber having a target material serving as a cathode, and an anode and a work piece. A direct current (DC) power supply supplies electrical power to the anode and the cathode sufficient to generate a plasma within the sputtering chamber. A detection module detects the occurrence of an arc in the sputtering chamber by monitoring an electrical characteristic of the plasma. In one embodiment the electrical characteristic monitored is the impedance of the plasma. In another embodiment the electrical characteristic is the conductance of the plasma.




a

PLASMA EMITTING METHOD AND PLASMA EMITTING DEVICE

Water is flowed inside main body section formed from an insulating material such that a specified space remains inside the main body section. Electrodes and are arranged along the outer walls of the main body section and voltage is applied to the electrodes. Processing gas present inside the main body section is plasmarized and plasma is emitted to the water flowing inside the main body section.




a

OZONE GENERATING SYSTEM AND OPERATION METHOD THEREOF

In an ozone generating system which performs intermittent operation, that is, an operation in an ozone generating operation period in which ozone is generated by discharging gas including oxygen at a discharge electrode part and an operation in an ozone generating operation standby period in which ozone is not generated by stopping discharge are alternately repeated, a gas circulating device which circulates gas in the ozone generating apparatus and removes at least nitric acid from the gas which is circulated is connected to the ozone generating apparatus.




a

METHODS AND APPARATUS FOR STABLE SUBSTRATE PROCESSING WITH MULTIPLE RF POWER SUPPLIES

Methods and apparatus for processing substrates are provided herein. In some embodiments, a physical vapor deposition chamber includes a first RF power supply having a first base frequency and coupled to one of a target or a substrate support; and a second RF power supply having a second base frequency and coupled to one of the target or the substrate support, wherein the first and second base frequencies are integral multiples of each other, wherein the second base frequency is modified to an offset second base frequency that is not an integral multiple of the first base frequency.




a

FILM FORMATION APPARATUS AND FILM-FORMED WORKPIECE MANUFACTURING METHOD

A film formation apparatus and a film-formed workpiece manufacturing method which are capable of forming a film with a uniform thickness on a workpiece like a three-dimensional object that includes a plurality of surfaces by a simple structure are provided. A film formation apparatus includes a target 21 that is a film formation material including a plane SU3, a power supply unit 3 applying power to the target 21, a rotating unit 4 rotating a workpiece W that is a film formation object around a rotation axis AX1, and a revolving unit 5 revolving the rotating unit 4 around a revolution axis AX2 separate from the rotation axis AX1 to repeatedly make the workpiece W to come close to and move apart from the target 21.




a

PHOTOCATALYST ELECTRODE FOR WATER DECOMPOSITION

The present invention is to provide a photocatalyst electrode for water decomposition exhibiting a high photocurrent density and having reduced dark current. The photocatalyst electrode for water decomposition of the present invention has a photocatalyst layer and a current collector layer that is formed by a vapor deposition method and is disposed on the photocatalyst layer.




a

ELECTRODE, MEMBRANE ELECTRODE ASSEMBLY, ELECTROCHEMICAL CELL, AND STACK

An electrode of an embodiment includes a base material, and a catalyst layer provided on the base material and having a porous structure. When a sum of heights of all peaks belonging to Ir oxide is I0, the height of a peak of IrO2 (110) is T1, and the height of a peak of IrO2 (211) is I2, a ratio of (I1+I2)/I0, which is a ratio of spectra obtained by X-ray diffraction measurements using Kα rays of Cu in the catalyst layer, is 50% or more and 100% or less in a range of a diffraction angle of 20 degrees or more and 70 degrees or less.




a

SENSOR ARRAY

In one illustrative embodiment, a test strip with a first planar substrate has coplanar electrodes on a first planar surface and a second planar substrate (which opposes the first surface of the first planar substrate) has coplanar electrodes on a second planar surface. The first planar surface of the first planar substrate having a first sensing area electrically connected to a first electrical contact. The second planar surface of the second planar substrate having a second electrical contact electrically connected to the first electrical contact via a conductive element, the conductive element extending between the first surface of the first planar substrate and the second surface of the second planar substrate without passing through the first planar substrate, the second planar substrate, or any intermediate layers.




a

NICKEL ALLOYS FOR BIOSENSORS

The present disclosure relates to metal alloys for biosensors. An electrode is made from the metal alloy, which more specifically can be a nickel-based alloy. The alloy provides physical and electrical property advantages when compared with existing pure metal electrodes.




a

CONDUCTING POLYMERS FOR DIRECT SENSING OF METAL IONS

The present invention provides an ion selective electrode comprising an electrode having a coating deposited on the electrode, wherein the coating comprises one or more aroyl-thiourea ionophores incorporated into a polymer matrix to selectively interact with one or more ions. The aroylthiourea ionophores may be poly-5, poly-6, poly-7, poly-7a, poly-7b, poly-8a, poly-8b or a combination thereof, e.g., a bis(furoylthiourea)benzene derivative, a 2,2'-bith-iophenyl derivative that selectively senses Pb2+ ions. The polymer matrix may be a polyaniline, a polythiophene or the polymer matrix may be an aroylthiourea ionophore inserted into polyvinyl-chloride for Pb2+ and Hg2+ ion sensing.




a

CONTROL DEVICE FOR GAS SENSOR

An SCU as a control device for the gas sensor (first and second NOx sensors) includes an applied voltage switching unit for switching an applied voltage of a pump cell when a deterioration detecting function is performed, and a deterioration rate calculation unit for calculating a deterioration rate of a sensor cell based on a slope during a transient change in an output of the sensor cell according to a switching of the applied voltage by the applied voltage switching unit.




a

POTENTIOSTAT/GALVANOSTAT WITH DIGITAL INTERFACE

A potentiostat/galvanostat employs a controller for providing digital control signals to a digital-to-analog converter (DAC) that generates an analog output signal in response to digital control signals. A high current driver produces a high current output in response to the analog output signal from the DAC. A high current monitor monitors the output from the high current driver to produce a feedback signal for the high current driver to control the current produced by the high current driver and to produce an output dependent on the current supplied from the high current driver for monitoring by the controller. A counter electrode contact for a counter electrode is connected with the output of the high current monitor. A working electrode contact for a working electrode is electrically connected with a fixed stable voltage potential to enable electrochemical analysis of material between the counter electrode and the working electrode. A low current driver produces a low current range output in response to an analog output signal from the DAC. A low current monitor monitors the working electrode contact to detect current at the working electrode contact to supply an output dependent on the current detected for monitoring by the controller and for providing a feedback signal to the low current driver in order to control the output of the low current driver to control current between the counter electrode contact and the working electrode contact.




a

ISOTACHOPHORETIC DEVICE AND METHODS

The present disclosure relates to devices and methods for performing isotachophoretic concentration of analytes using a porous matrix, for example, for use in diagnostic assays such as lateral flow assays. For example, the disclosure provides a method of concentrating an analyte in a sample. The method includes providing a device comprising a porous matrix having a first fluid pathway having a first end and extending to a second end, a first electrode, and a second electrode; introducing to the first pathway a first fluid comprising a trailing electrolyte, a second fluid comprising a leading electrolyte and the analyte; and applying a voltage across the first electrode and the second electrode for a time sufficient to provide an ITP plug. As described herein, the devices and methods described herein can be used in conjunction with lateral flow assay techniques to detect and quantify a variety of biochemical and biological analytes, such as nucleic acids, proteins, cells and metabolites.




a

CONTINUOUS CELL DETECTION BY ISOTACHOPHORESIS

The present invention provides a system including: a protein having a domain that binds a membranal component; an inlet for sample flow, an Isotachophoresis (ITP) system and a flow generating means connected or coupled to the aqueous parts of the ITP. The invention also provides a method for detecting and or sorting cells with this system.




a

OPERATION OF DIAGNOSTIC DEVICES INVOLVING MICROCHANNELS AND ELECTRODES

An assembly is provided for interfacing with a microfluidic chip having at least one microscopic channel configured to receive a liquid sample for analysis. The assembly includes a chip carrier, an electronics module, an optical module, and a mechanical module. The chip carrier includes a base and a cover defining a cavity to receive the microfluidic chip. The electronics module includes a signal generator which applies at least one electrokinetic signal electrode(s) of the chip. The optical module includes an excitation radiation source which causes excitation radiation to impinge on the sample, and an emission radiation detector which detects radiation emitted from the sample. The mechanical module includes a chip-carrier receiving structure, relatable with respect to the optical module for focus and at least one degree of translational freedom.




a

CONTOURED TARGET FOR SPUTTERING

Provided herein is an apparatus that includes a body with a top surface and a recess in the top surface. The top surface, excluding the recess, is substantially planar. The recess is confined to an area that is defined by an inner diameter of the top surface of the body.




a

SYSTEM AND METHOD FOR OPTOGENETIC THERAPY

One embodiment is directed to a method for controllably managing pain in the afferent nervous system of a patient having a targeted tissue structure that has been genetically modified to have light sensitive protein, comprising: providing a light delivery element configured to direct radiation to at least a portion of a targeted tissue structure, a light source configured to provide light to the light delivery element, and a controller operatively coupled to light source, wherein the targeted tissue structure comprises a sensory neuron of the patient; and automatically operating the controller to illuminate the targeted tissue structure with radiation such that a membrane potential of cells comprising the targeted tissue structure is modulated at least in part due to exposure of the light sensitive protein to the radiation.




a

COMPOSITIONS AND METHODS FOR SCAFFOLD FORMATION

The present invention relates to scaffolds composed of a protein backbone cross-linked by a synthetic polymer. Specifically, the present invention provides PEGylated-thiolated collagen scaffolds and PEGylated albumin scaffolds and methods of generating and using same for treating disorders requiring tissue engineering.




a

Method and Device for Simultaneously Documenting and Treating Tension Pneumothorax and/or Hemothorax

A method and device are provided for simultaneously or near-simultaneously diagnosing and treating tension pneumothorax and/or hemothoraxA Veress-type needle portion includes a hollow needle for puncturing the chest wall over a blunt hollow probe biased by one or more springs to extend distally into the pleural cavity. Openings in the blunt hollow probe connect via a pathway to an automatic check valve, which permits the flow of air and/or fluid only in a proximal direction. Pressure from within the pleural cavity is transmitted to the interior surface of a pressure documenter. If pressure greater than atmospheric pressure is present in the pleural cavity, the pressure documenter will be automatically urged proximally to simultaneously allow air and/or fluid to escape from the pleural space through the device, thus treating the tension pneumothorax and/or hemothorax, as well as providing a stable indicator to positively document the diagnosis of increased pressure.




a

System and Methods for Treatment of Wounds With Negative Pressure and Peroxy Pyruvic Acid

In one example embodiment, a system for treating a tissue site is disclosed comprising a dressing adapted to contact the tissue site and provide a fluid seal between a therapeutic environment and a local external environment, and a solution source fluidly coupled to the dressing and adapted to deliver an antimicrobial solution comprising a peroxy α-keto carboxylic acid, such as peroxy pyruvic acid, to the tissue interface. The system may further comprise a negative-pressure source fluidly coupled to the dressing and adapted to provide negative pressure to the therapeutic environment after delivery of the antimicrobial fluid to the therapeutic environment. In another example embodiment, a method for treating a tissue site is disclosed comprising positioning a tissue interface to contact the tissue site, covering the tissue interface and the tissue site with a drape to provide a fluid seal between the therapeutic environment and the local external environment, and delivering an antimicrobial solution comprising peroxy α-keto carboxylic acid to the therapeutic environment before providing negative pressure to the therapeutic environment.




a

BREAST PUMP

The present invention relates to a breast pump (10) for extracting milk (30) from a human breast, comprising:—a first breast receiving funnel (16) for receiving a first breast (28) of a user;—a vacuum pump (20) for generating an underpressure within the first breast receiving funnel (16); and—a control unit (22) for controlling the vacuum pump (20); wherein the control unit (22) is configured to operate the vacuum pump (20) in at least two different modes, an attachment mode (48) and a milk extraction mode (50); wherein in the attachment mode (48) the control unit (22) is configured to control the vacuum pump (20) to generate a constant underpressure within the first breast receiving funnel (16) allowing the user to attach the first breast receiving funnel (16) to the first breast (28); and wherein in the milk extraction mode (50) the control unit (22) is configured to control the vacuum pump (20) to generate a time-variable underpressure profile within the first breast receiving funnel (16) for extracting milk (30) from the first breast (28).




a

THERAPY PREDICTION AND OPTIMIZATION FOR RENAL FAILURE BLOOD THERAPY, ESPECIALLY HOME HEMODIALYSIS

A renal failure blood therapy system includes a renal failure blood therapy machine, concentration levels for each of a plurality of solutes removed from a patient's blood at each of the multiple times, a display device configured to display for selection at least one removed blood solute from the plurality of removed blood solutes, and a device programmed to (i) estimate at least one renal failure blood therapy patient parameter using the determined concentration levels for the at least one selected removed blood solute, (ii) determine a plurality of acceptable renal failure blood therapy treatments that meet a predetermined removed blood solute clearance for the at least one selected removed blood solute using the at least one renal failure blood therapy patient parameter, and (iii) enable selection of at least one of the plurality of acceptable renal failure blood therapy treatments for operation at the renal failure blood therapy machine.




a

Peritoneal Dialysis Systems, Devices, and Methods

An automated peritoneal dialysis system provides various features including prescription-driven dialysis fluid preparation, an integrated disposable fluid circuit, and sensor capabilities that allow accurate filing and draining control with high safety margins. Features include a peritoneal fluid circuit with a pressure sensor at either end and methods and devices for using the pressure signals. Other features and embodiments are disclosed.




a

INSERT FOR CATHETER SYSTEM

An insert for a catheter system can include an insert housing which defines a portion of a fluid pathway of the catheter system, a cartridge positioned within the insert housing in a manner to allow fluid flow along the fluid pathway such that fluid contacts the insert during the fluid flow, and an active agent associated with the cartridge. The active agent and the cartridge can be adapted to release active agent from the cartridge during the fluid flow.




a

Wearable Automatic Injection Device and Related Methods of Use

Exemplary embodiments provide wearable automatic injection devices for providing an injection of a therapeutic agent into a patient. The wearable automatic injection device includes a housing having a patient contact portion securable to the patient, an injection needle for insertion into the patient, and a prefilled syringe assembly for holding the therapeutic agent. The prefilled syringe assembly includes a distal stopper and a proximal stopper penetrated by a penetrating needle. The penetrating needle is in fluid communication with the patient injection needle.




a

VALVES, VALVED FLUID TRANSFER DEVICES AND AMBULATORY INFUSION DEVICES INCLUDING THE SAME

Valves, valved fluid transfer devices and ambulatory infusion devices including the same.




a

VALVES, VALVED FLUID TRANSFER DEVICES AND AMBULATORY INFUSION DEVICES INCLUDING THE SAME

Valves, valved fluid transfer devices and ambulatory infusion devices including the same.




a

SENSOR SUBSTRATE, ANALYSIS ELEMENT, GLUCOSE MEASUREMENT DEVICE, AND INSULIN SUPPLY DEVICE

A detection section is used in such a manner that it is inserted into a living body by being guided by an insertion needle to be stuck and inserted into the living body. The detection section includes a first region, a second region, and a third region. The first region is provided in a tip end portion of the detection section and includes an electrode layer (detection electrode). The third region includes a wiring section and has a smaller width than the width of a slit of the insertion needle. The second region is provided between the first region and the third region and has the same width as the width of the third region by gradually decreasing from the width of the first region.




a

SYSTEM AND METHOD FOR SWITCHING BETWEEN CLOSED LOOP AND OPEN LOOP CONTROL OF AN AMBULATORY INFUSION PUMP

An infusion pump system providing therapy to a patient in a closed-loop or semi-closed loop mode can safely automatically revert to open-loop therapy. The system stores a default open-loop basal rate profile in memory. The system also continually tracks the insulin on board for the patient over a plurality of closed-loop therapy intervals. When an error or event occurs requiring reversion to open-loop therapy, the system automatically provides therapy according to the open-loop basal rate profile and the tracked insulin on board amount.




a

METHODS AND DEVICES FOR AUTOFLUSH SYRINGES

Described herein are syringe devices, systems and methods. In general, the syringe may include a first chamber and a cartridge movable within the first chamber. The cartridge may include a cartridge chamber and a valve in fluid communication with the cartridge chamber and the first chamber and having an open configuration and a closed configuration. The valve may allow movement of a liquid out of the cartridge chamber while in a open configuration. The cartridge may also include a second end, movable within the cartridge chamber, and a locking mechanism having a locked configuration and an unlocked configuration, the locking mechanism preventing movement of the second end within the cartridge chamber while in the locked configuration.




a

Arrangement and Method for Determining a Stopper Position

The invention relates to an arrangement for determining a position (x) of a stopper relative to a container in a drug delivery device, comprising an acoustic source configured to emit an acoustic signal and an acoustic sensor configured to detect an acoustic signal, a processing unit for controlling the acoustic source and processing the detected acoustic signal for determining characteristics of the acoustic signal correlated with the position (x) of the stopper. Furthermore, the invention relates to a method for determining a position (x) of a stopper relative to a container in a drug delivery device, the method comprising the steps of emitting an acoustic signal from an acoustic source, detecting an acoustic signal caused by the emitted acoustic signal by means of an acoustic sensor, and processing the detected acoustic signal for determining characteristics of the acoustic signal correlated with the position (x) of the stopper by means of a processing unit.




a

AUTOINJECTOR WITH SHOCK REDUCING ELEMENTS

An injection device, method, and system for drug delivery includes a primary container for storing a drug, the container having a stopper movably disposed in the container for expelling the drug, an injection drive mechanism comprising a plunger for acting on the stopper and an energy source for exerting a force on the plunger to cause the plunger to act on the stopper to expel the drug, the force causing the plunger to accelerate to a velocity prior to acting on the stopper, and a damping mechanism for reducing the velocity of the plunger prior to acting on the stopper. The damping mechanism can include a dashpot or an energy absorbing material associated with the plunger. Alternatively or additionally, the damping mechanisms can include absorbing material disposed between support members of an outer casing of the injection device and the primary container.




a

Expanding Plunger Rods for Syringes

An expanding plunger rod for a syringe is configured to transition from a packaged configuration to an expanded configuration for operation. The rod includes a substantially cylindrical outer sleeve having a closed-off bottom end and an open upper end, and an inner rod having a lower end and an upper end. The inner rod is slidably disposed coaxially within the outer sleeve. In the packaged configuration, the inner rod is nested within the outer sleeve. In the expanded configuration, the inner rod is disposed substantially axially above the outer sleeve, and the inner rod locks axially in place to prevent transition from the expanded to the packaged configuration.




a

Assembly for a Drug Delivery Device and Drug Delivery Device

An assembly for a drug delivery device (1) is proposed, comprising a housing (13) having a proximal end and a distal end, a dose member (23) which is displaceable in the proximal direction with respect to the housing for setting of a dose of a drug, a clutch member (28) which is displaced in the proximal direction with respect to the housing when setting the dose, and a stop member (30) configured to define a clutch stop position for the proximal displacement of the clutch member with respect to the housing, with the clutch member, when in the clutch stop position, being prevented from further displacement in the proximal direction with respect to the housing, wherein the clutch member and the dose member are configured to mechanically cooperate with one another when the clutch member is in the clutch stop position, thereby preventing further displacement of the dose member in the proximal direction with respect to the housing during setting of the dose. Furthermore, a drug delivery device (1) is proposed.




a

DOSE INDICATING MECHANISM FOR A DRUG DELIVERY DEVICE AND DRUG DELIVERY DEVICE

The invention is directed to a dose indicating mechanism for drug delivery device (1) configured for the delivery of a medicament contained in single medicament cartridge (2), the medicament comprising at least one first drug and one second drug, wherein the dose indicating mechanism comprises a body (3), a dose dial component (7) configured to move relative to the body (3) during dose setting and first dose indicator means (10) configured to display a set dose of the medicament and/or of first drug in dependence of the displacement of dose dial component (7) during dose setting. In order to provide the user with further information, a second dose indicator means (15) is provided that is configured to display a set dose of the second drug during dose setting. The invention is also directed to a respective drug delivery device.




a

ADJUNCT DEVICE AND SYSTEM FOR AN INJECTOR FOR MONITORING INJECTED AMOUNTS

In some embodiments, an adjunct device for tracks time and/or dosage of a medicine. The device may include a connector for mounting the device to a deposable pen injector. The device may be configured to allow use of the native controls and injectors of the injector. For example the device may include a view port for viewing a dose indicator of the injector. The device may include one or more vibration sensors. A processor may be configured to differentiate increasing a dose, decreasing a dose and/or discharging the medicine based on the output of the sensors. Optionally a display of the device may be positioned for simultaneous viewing with the dosage indicator of the injector. For example a user may verify the accuracy of the adjunct device before performing a discharge.




a

PEN NEEDLE WITH SAFETY SHIELD SYSTEM

A needle tip for an injection device includes a body having a front portion, a back portion configured to be removably connected to the pre-loaded injection device, and a wall separating the front and back portions. A hollow needle has a first piercing portion projecting back from the separating wall and a second piercing portion projecting forward from the separating wall. A safety shield that is axially movable relative to the body at least between an initial position, a retracted position, and a post use locking position. This Abstract is not intended to define the invention disclosed in the specification, nor intended to limit the scope of the invention in any way.




a

Needle Protection Device With Gauge Specific Color Coding and Method for Manufacturing Thereof

To enable a user to readily determine the gauge of the needle of a needle assembly that has a base and a needle protective housing pivotably attached thereto, the needle assembly is injection molded from a color coded molding material which color was preassigned to correspond to the gauge of the needle. As a result, both the base and the protective housing of the needle assembly have—the same specific color, and reflect or provide an indication of the given gauge of the needle. The needle sheath that covers the needle prior to use may be made of a plastics material that may be clear, or have the same or a different color than that of the needle assembly. The gauge of the needle of a fixed needle syringe could also be ascertained by its color coded needle protective housing. Color coded markings that correspond to the gauge of the needle may also be printed onto the syringe barrel of the fixed needle syringe.