c

GluonCV and GluonNLP: Deep Learning in Computer Vision and Natural Language Processing

We present GluonCV and GluonNLP, the deep learning toolkits for computer vision and natural language processing based on Apache MXNet (incubating). These toolkits provide state-of-the-art pre-trained models, training scripts, and training logs, to facilitate rapid prototyping and promote reproducible research. We also provide modular APIs with flexible building blocks to enable efficient customization. Leveraging the MXNet ecosystem, the deep learning models in GluonCV and GluonNLP can be deployed onto a variety of platforms with different programming languages. The Apache 2.0 license has been adopted by GluonCV and GluonNLP to allow for software distribution, modification, and usage.




c

Distributed Feature Screening via Componentwise Debiasing

Feature screening is a powerful tool in processing high-dimensional data. When the sample size N and the number of features p are both large, the implementation of classic screening methods can be numerically challenging. In this paper, we propose a distributed screening framework for big data setup. In the spirit of 'divide-and-conquer', the proposed framework expresses a correlation measure as a function of several component parameters, each of which can be distributively estimated using a natural U-statistic from data segments. With the component estimates aggregated, we obtain a final correlation estimate that can be readily used for screening features. This framework enables distributed storage and parallel computing and thus is computationally attractive. Due to the unbiased distributive estimation of the component parameters, the final aggregated estimate achieves a high accuracy that is insensitive to the number of data segments m. Under mild conditions, we show that the aggregated correlation estimator is as efficient as the centralized estimator in terms of the probability convergence bound and the mean squared error rate; the corresponding screening procedure enjoys sure screening property for a wide range of correlation measures. The promising performances of the new method are supported by extensive numerical examples.




c

Lower Bounds for Testing Graphical Models: Colorings and Antiferromagnetic Ising Models

We study the identity testing problem in the context of spin systems or undirected graphical models, where it takes the following form: given the parameter specification of the model $M$ and a sampling oracle for the distribution $mu_{M^*}$ of an unknown model $M^*$, can we efficiently determine if the two models $M$ and $M^*$ are the same? We consider identity testing for both soft-constraint and hard-constraint systems. In particular, we prove hardness results in two prototypical cases, the Ising model and proper colorings, and explore whether identity testing is any easier than structure learning. For the ferromagnetic (attractive) Ising model, Daskalakis et al. (2018) presented a polynomial-time algorithm for identity testing. We prove hardness results in the antiferromagnetic (repulsive) setting in the same regime of parameters where structure learning is known to require a super-polynomial number of samples. Specifically, for $n$-vertex graphs of maximum degree $d$, we prove that if $|eta| d = omega(log{n})$ (where $eta$ is the inverse temperature parameter), then there is no polynomial running time identity testing algorithm unless $RP=NP$. In the hard-constraint setting, we present hardness results for identity testing for proper colorings. Our results are based on the presumed hardness of #BIS, the problem of (approximately) counting independent sets in bipartite graphs.




c

Targeted Fused Ridge Estimation of Inverse Covariance Matrices from Multiple High-Dimensional Data Classes

We consider the problem of jointly estimating multiple inverse covariance matrices from high-dimensional data consisting of distinct classes. An $ell_2$-penalized maximum likelihood approach is employed. The suggested approach is flexible and generic, incorporating several other $ell_2$-penalized estimators as special cases. In addition, the approach allows specification of target matrices through which prior knowledge may be incorporated and which can stabilize the estimation procedure in high-dimensional settings. The result is a targeted fused ridge estimator that is of use when the precision matrices of the constituent classes are believed to chiefly share the same structure while potentially differing in a number of locations of interest. It has many applications in (multi)factorial study designs. We focus on the graphical interpretation of precision matrices with the proposed estimator then serving as a basis for integrative or meta-analytic Gaussian graphical modeling. Situations are considered in which the classes are defined by data sets and subtypes of diseases. The performance of the proposed estimator in the graphical modeling setting is assessed through extensive simulation experiments. Its practical usability is illustrated by the differential network modeling of 12 large-scale gene expression data sets of diffuse large B-cell lymphoma subtypes. The estimator and its related procedures are incorporated into the R-package rags2ridges.




c

A New Class of Time Dependent Latent Factor Models with Applications

In many applications, observed data are influenced by some combination of latent causes. For example, suppose sensors are placed inside a building to record responses such as temperature, humidity, power consumption and noise levels. These random, observed responses are typically affected by many unobserved, latent factors (or features) within the building such as the number of individuals, the turning on and off of electrical devices, power surges, etc. These latent factors are usually present for a contiguous period of time before disappearing; further, multiple factors could be present at a time. This paper develops new probabilistic methodology and inference methods for random object generation influenced by latent features exhibiting temporal persistence. Every datum is associated with subsets of a potentially infinite number of hidden, persistent features that account for temporal dynamics in an observation. The ensuing class of dynamic models constructed by adapting the Indian Buffet Process — a probability measure on the space of random, unbounded binary matrices — finds use in a variety of applications arising in operations, signal processing, biomedicine, marketing, image analysis, etc. Illustrations using synthetic and real data are provided.




c

On the consistency of graph-based Bayesian semi-supervised learning and the scalability of sampling algorithms

This paper considers a Bayesian approach to graph-based semi-supervised learning. We show that if the graph parameters are suitably scaled, the graph-posteriors converge to a continuum limit as the size of the unlabeled data set grows. This consistency result has profound algorithmic implications: we prove that when consistency holds, carefully designed Markov chain Monte Carlo algorithms have a uniform spectral gap, independent of the number of unlabeled inputs. Numerical experiments illustrate and complement the theory.




c

The Maximum Separation Subspace in Sufficient Dimension Reduction with Categorical Response

Sufficient dimension reduction (SDR) is a very useful concept for exploratory analysis and data visualization in regression, especially when the number of covariates is large. Many SDR methods have been proposed for regression with a continuous response, where the central subspace (CS) is the target of estimation. Various conditions, such as the linearity condition and the constant covariance condition, are imposed so that these methods can estimate at least a portion of the CS. In this paper we study SDR for regression and discriminant analysis with categorical response. Motivated by the exploratory analysis and data visualization aspects of SDR, we propose a new geometric framework to reformulate the SDR problem in terms of manifold optimization and introduce a new concept called Maximum Separation Subspace (MASES). The MASES naturally preserves the “sufficiency” in SDR without imposing additional conditions on the predictor distribution, and directly inspires a semi-parametric estimator. Numerical studies show MASES exhibits superior performance as compared with competing SDR methods in specific settings.




c

Tensor Train Decomposition on TensorFlow (T3F)

Tensor Train decomposition is used across many branches of machine learning. We present T3F—a library for Tensor Train decomposition based on TensorFlow. T3F supports GPU execution, batch processing, automatic differentiation, and versatile functionality for the Riemannian optimization framework, which takes into account the underlying manifold structure to construct efficient optimization methods. The library makes it easier to implement machine learning papers that rely on the Tensor Train decomposition. T3F includes documentation, examples and 94% test coverage.




c

Generalized Nonbacktracking Bounds on the Influence

This paper develops deterministic upper and lower bounds on the influence measure in a network, more precisely, the expected number of nodes that a seed set can influence in the independent cascade model. In particular, our bounds exploit r-nonbacktracking walks and Fortuin-Kasteleyn-Ginibre (FKG) type inequalities, and are computed by message passing algorithms. Further, we provide parameterized versions of the bounds that control the trade-off between efficiency and accuracy. Finally, the tightness of the bounds is illustrated on various network models.




c

Provably robust estimation of modulo 1 samples of a smooth function with applications to phase unwrapping

Consider an unknown smooth function $f: [0,1]^d ightarrow mathbb{R}$, and assume we are given $n$ noisy mod 1 samples of $f$, i.e., $y_i = (f(x_i) + eta_i) mod 1$, for $x_i in [0,1]^d$, where $eta_i$ denotes the noise. Given the samples $(x_i,y_i)_{i=1}^{n}$, our goal is to recover smooth, robust estimates of the clean samples $f(x_i) mod 1$. We formulate a natural approach for solving this problem, which works with angular embeddings of the noisy mod 1 samples over the unit circle, inspired by the angular synchronization framework. This amounts to solving a smoothness regularized least-squares problem -- a quadratically constrained quadratic program (QCQP) -- where the variables are constrained to lie on the unit circle. Our proposed approach is based on solving its relaxation, which is a trust-region sub-problem and hence solvable efficiently. We provide theoretical guarantees demonstrating its robustness to noise for adversarial, as well as random Gaussian and Bernoulli noise models. To the best of our knowledge, these are the first such theoretical results for this problem. We demonstrate the robustness and efficiency of our proposed approach via extensive numerical simulations on synthetic data, along with a simple least-squares based solution for the unwrapping stage, that recovers the original samples of $f$ (up to a global shift). It is shown to perform well at high levels of noise, when taking as input the denoised modulo $1$ samples. Finally, we also consider two other approaches for denoising the modulo 1 samples that leverage tools from Riemannian optimization on manifolds, including a Burer-Monteiro approach for a semidefinite programming relaxation of our formulation. For the two-dimensional version of the problem, which has applications in synthetic aperture radar interferometry (InSAR), we are able to solve instances of real-world data with a million sample points in under 10 seconds, on a personal laptop.




c

On the Complexity Analysis of the Primal Solutions for the Accelerated Randomized Dual Coordinate Ascent

Dual first-order methods are essential techniques for large-scale constrained convex optimization. However, when recovering the primal solutions, we need $T(epsilon^{-2})$ iterations to achieve an $epsilon$-optimal primal solution when we apply an algorithm to the non-strongly convex dual problem with $T(epsilon^{-1})$ iterations to achieve an $epsilon$-optimal dual solution, where $T(x)$ can be $x$ or $sqrt{x}$. In this paper, we prove that the iteration complexity of the primal solutions and dual solutions have the same $Oleft(frac{1}{sqrt{epsilon}} ight)$ order of magnitude for the accelerated randomized dual coordinate ascent. When the dual function further satisfies the quadratic functional growth condition, by restarting the algorithm at any period, we establish the linear iteration complexity for both the primal solutions and dual solutions even if the condition number is unknown. When applied to the regularized empirical risk minimization problem, we prove the iteration complexity of $Oleft(nlog n+sqrt{frac{n}{epsilon}} ight)$ in both primal space and dual space, where $n$ is the number of samples. Our result takes out the $left(log frac{1}{epsilon} ight)$ factor compared with the methods based on smoothing/regularization or Catalyst reduction. As far as we know, this is the first time that the optimal $Oleft(sqrt{frac{n}{epsilon}} ight)$ iteration complexity in the primal space is established for the dual coordinate ascent based stochastic algorithms. We also establish the accelerated linear complexity for some problems with nonsmooth loss, e.g., the least absolute deviation and SVM.




c

Graph-Dependent Implicit Regularisation for Distributed Stochastic Subgradient Descent

We propose graph-dependent implicit regularisation strategies for synchronised distributed stochastic subgradient descent (Distributed SGD) for convex problems in multi-agent learning. Under the standard assumptions of convexity, Lipschitz continuity, and smoothness, we establish statistical learning rates that retain, up to logarithmic terms, single-machine serial statistical guarantees through implicit regularisation (step size tuning and early stopping) with appropriate dependence on the graph topology. Our approach avoids the need for explicit regularisation in decentralised learning problems, such as adding constraints to the empirical risk minimisation rule. Particularly for distributed methods, the use of implicit regularisation allows the algorithm to remain simple, without projections or dual methods. To prove our results, we establish graph-independent generalisation bounds for Distributed SGD that match the single-machine serial SGD setting (using algorithmic stability), and we establish graph-dependent optimisation bounds that are of independent interest. We present numerical experiments to show that the qualitative nature of the upper bounds we derive can be representative of real behaviours.




c

Learning with Fenchel-Young losses

Over the past decades, numerous loss functions have been been proposed for a variety of supervised learning tasks, including regression, classification, ranking, and more generally structured prediction. Understanding the core principles and theoretical properties underpinning these losses is key to choose the right loss for the right problem, as well as to create new losses which combine their strengths. In this paper, we introduce Fenchel-Young losses, a generic way to construct a convex loss function for a regularized prediction function. We provide an in-depth study of their properties in a very broad setting, covering all the aforementioned supervised learning tasks, and revealing new connections between sparsity, generalized entropies, and separation margins. We show that Fenchel-Young losses unify many well-known loss functions and allow to create useful new ones easily. Finally, we derive efficient predictive and training algorithms, making Fenchel-Young losses appealing both in theory and practice.




c

Noise Accumulation in High Dimensional Classification and Total Signal Index

Great attention has been paid to Big Data in recent years. Such data hold promise for scientific discoveries but also pose challenges to analyses. One potential challenge is noise accumulation. In this paper, we explore noise accumulation in high dimensional two-group classification. First, we revisit a previous assessment of noise accumulation with principal component analyses, which yields a different threshold for discriminative ability than originally identified. Then we extend our scope to its impact on classifiers developed with three common machine learning approaches---random forest, support vector machine, and boosted classification trees. We simulate four scenarios with differing amounts of signal strength to evaluate each method. After determining noise accumulation may affect the performance of these classifiers, we assess factors that impact it. We conduct simulations by varying sample size, signal strength, signal strength proportional to the number predictors, and signal magnitude with random forest classifiers. These simulations suggest that noise accumulation affects the discriminative ability of high-dimensional classifiers developed using common machine learning methods, which can be modified by sample size, signal strength, and signal magnitude. We developed the measure total signal index (TSI) to track the trends of total signal and noise accumulation.




c

Causal Discovery Toolbox: Uncovering causal relationships in Python

This paper presents a new open source Python framework for causal discovery from observational data and domain background knowledge, aimed at causal graph and causal mechanism modeling. The cdt package implements an end-to-end approach, recovering the direct dependencies (the skeleton of the causal graph) and the causal relationships between variables. It includes algorithms from the `Bnlearn' and `Pcalg' packages, together with algorithms for pairwise causal discovery such as ANM.




c

Latent Simplex Position Model: High Dimensional Multi-view Clustering with Uncertainty Quantification

High dimensional data often contain multiple facets, and several clustering patterns can co-exist under different variable subspaces, also known as the views. While multi-view clustering algorithms were proposed, the uncertainty quantification remains difficult --- a particular challenge is in the high complexity of estimating the cluster assignment probability under each view, and sharing information among views. In this article, we propose an approximate Bayes approach --- treating the similarity matrices generated over the views as rough first-stage estimates for the co-assignment probabilities; in its Kullback-Leibler neighborhood, we obtain a refined low-rank matrix, formed by the pairwise product of simplex coordinates. Interestingly, each simplex coordinate directly encodes the cluster assignment uncertainty. For multi-view clustering, we let each view draw a parameterization from a few candidates, leading to dimension reduction. With high model flexibility, the estimation can be efficiently carried out as a continuous optimization problem, hence enjoys gradient-based computation. The theory establishes the connection of this model to a random partition distribution under multiple views. Compared to single-view clustering approaches, substantially more interpretable results are obtained when clustering brains from a human traumatic brain injury study, using high-dimensional gene expression data.




c

Learning Linear Non-Gaussian Causal Models in the Presence of Latent Variables

We consider the problem of learning causal models from observational data generated by linear non-Gaussian acyclic causal models with latent variables. Without considering the effect of latent variables, the inferred causal relationships among the observed variables are often wrong. Under faithfulness assumption, we propose a method to check whether there exists a causal path between any two observed variables. From this information, we can obtain the causal order among the observed variables. The next question is whether the causal effects can be uniquely identified as well. We show that causal effects among observed variables cannot be identified uniquely under mere assumptions of faithfulness and non-Gaussianity of exogenous noises. However, we are able to propose an efficient method that identifies the set of all possible causal effects that are compatible with the observational data. We present additional structural conditions on the causal graph under which causal effects among observed variables can be determined uniquely. Furthermore, we provide necessary and sufficient graphical conditions for unique identification of the number of variables in the system. Experiments on synthetic data and real-world data show the effectiveness of our proposed algorithm for learning causal models.




c

Optimal Bipartite Network Clustering

We study bipartite community detection in networks, or more generally the network biclustering problem. We present a fast two-stage procedure based on spectral initialization followed by the application of a pseudo-likelihood classifier twice. Under mild regularity conditions, we establish the weak consistency of the procedure (i.e., the convergence of the misclassification rate to zero) under a general bipartite stochastic block model. We show that the procedure is optimal in the sense that it achieves the optimal convergence rate that is achievable by a biclustering oracle, adaptively over the whole class, up to constants. This is further formalized by deriving a minimax lower bound over a class of biclustering problems. The optimal rate we obtain sharpens some of the existing results and generalizes others to a wide regime of average degree growth, from sparse networks with average degrees growing arbitrarily slowly to fairly dense networks with average degrees of order $sqrt{n}$. As a special case, we recover the known exact recovery threshold in the $log n$ regime of sparsity. To obtain the consistency result, as part of the provable version of the algorithm, we introduce a sub-block partitioning scheme that is also computationally attractive, allowing for distributed implementation of the algorithm without sacrificing optimality. The provable algorithm is derived from a general class of pseudo-likelihood biclustering algorithms that employ simple EM type updates. We show the effectiveness of this general class by numerical simulations.




c

Switching Regression Models and Causal Inference in the Presence of Discrete Latent Variables

Given a response $Y$ and a vector $X = (X^1, dots, X^d)$ of $d$ predictors, we investigate the problem of inferring direct causes of $Y$ among the vector $X$. Models for $Y$ that use all of its causal covariates as predictors enjoy the property of being invariant across different environments or interventional settings. Given data from such environments, this property has been exploited for causal discovery. Here, we extend this inference principle to situations in which some (discrete-valued) direct causes of $ Y $ are unobserved. Such cases naturally give rise to switching regression models. We provide sufficient conditions for the existence, consistency and asymptotic normality of the MLE in linear switching regression models with Gaussian noise, and construct a test for the equality of such models. These results allow us to prove that the proposed causal discovery method obtains asymptotic false discovery control under mild conditions. We provide an algorithm, make available code, and test our method on simulated data. It is robust against model violations and outperforms state-of-the-art approaches. We further apply our method to a real data set, where we show that it does not only output causal predictors, but also a process-based clustering of data points, which could be of additional interest to practitioners.




c

Branch and Bound for Piecewise Linear Neural Network Verification

The success of Deep Learning and its potential use in many safety-critical applicationshas motivated research on formal verification of Neural Network (NN) models. In thiscontext, verification involves proving or disproving that an NN model satisfies certaininput-output properties. Despite the reputation of learned NN models as black boxes,and the theoretical hardness of proving useful properties about them, researchers havebeen successful in verifying some classes of models by exploiting their piecewise linearstructure and taking insights from formal methods such as Satisifiability Modulo Theory.However, these methods are still far from scaling to realistic neural networks. To facilitateprogress on this crucial area, we exploit the Mixed Integer Linear Programming (MIP) formulation of verification to propose a family of algorithms based on Branch-and-Bound (BaB). We show that our family contains previous verification methods as special cases.With the help of the BaB framework, we make three key contributions. Firstly, we identifynew methods that combine the strengths of multiple existing approaches, accomplishingsignificant performance improvements over previous state of the art. Secondly, we introducean effective branching strategy on ReLU non-linearities. This branching strategy allows usto efficiently and successfully deal with high input dimensional problems with convolutionalnetwork architecture, on which previous methods fail frequently. Finally, we proposecomprehensive test data sets and benchmarks which includes a collection of previouslyreleased testcases. We use the data sets to conduct a thorough experimental comparison ofexisting and new algorithms and to provide an inclusive analysis of the factors impactingthe hardness of verification problems.




c

Greedy Attack and Gumbel Attack: Generating Adversarial Examples for Discrete Data

We present a probabilistic framework for studying adversarial attacks on discrete data. Based on this framework, we derive a perturbation-based method, Greedy Attack, and a scalable learning-based method, Gumbel Attack, that illustrate various tradeoffs in the design of attacks. We demonstrate the effectiveness of these methods using both quantitative metrics and human evaluation on various state-of-the-art models for text classification, including a word-based CNN, a character-based CNN and an LSTM. As an example of our results, we show that the accuracy of character-based convolutional networks drops to the level of random selection by modifying only five characters through Greedy Attack.




c

Dynamical Systems as Temporal Feature Spaces

Parametrised state space models in the form of recurrent networks are often used in machine learning to learn from data streams exhibiting temporal dependencies. To break the black box nature of such models it is important to understand the dynamical features of the input-driving time series that are formed in the state space. We propose a framework for rigorous analysis of such state representations in vanishing memory state space models such as echo state networks (ESN). In particular, we consider the state space a temporal feature space and the readout mapping from the state space a kernel machine operating in that feature space. We show that: (1) The usual ESN strategy of randomly generating input-to-state, as well as state coupling leads to shallow memory time series representations, corresponding to cross-correlation operator with fast exponentially decaying coefficients; (2) Imposing symmetry on dynamic coupling yields a constrained dynamic kernel matching the input time series with straightforward exponentially decaying motifs or exponentially decaying motifs of the highest frequency; (3) Simple ring (cycle) high-dimensional reservoir topology specified only through two free parameters can implement deep memory dynamic kernels with a rich variety of matching motifs. We quantify richness of feature representations imposed by dynamic kernels and demonstrate that for dynamic kernel associated with cycle reservoir topology, the kernel richness undergoes a phase transition close to the edge of stability.




c

A Convex Parametrization of a New Class of Universal Kernel Functions

The accuracy and complexity of kernel learning algorithms is determined by the set of kernels over which it is able to optimize. An ideal set of kernels should: admit a linear parameterization (tractability); be dense in the set of all kernels (accuracy); and every member should be universal so that the hypothesis space is infinite-dimensional (scalability). Currently, there is no class of kernel that meets all three criteria - e.g. Gaussians are not tractable or accurate; polynomials are not scalable. We propose a new class that meet all three criteria - the Tessellated Kernel (TK) class. Specifically, the TK class: admits a linear parameterization using positive matrices; is dense in all kernels; and every element in the class is universal. This implies that the use of TK kernels for learning the kernel can obviate the need for selecting candidate kernels in algorithms such as SimpleMKL and parameters such as the bandwidth. Numerical testing on soft margin Support Vector Machine (SVM) problems show that algorithms using TK kernels outperform other kernel learning algorithms and neural networks. Furthermore, our results show that when the ratio of the number of training data to features is high, the improvement of TK over MKL increases significantly.




c

pyts: A Python Package for Time Series Classification

pyts is an open-source Python package for time series classification. This versatile toolbox provides implementations of many algorithms published in the literature, preprocessing functionalities, and data set loading utilities. pyts relies on the standard scientific Python packages numpy, scipy, scikit-learn, joblib, and numba, and is distributed under the BSD-3-Clause license. Documentation contains installation instructions, a detailed user guide, a full API description, and concrete self-contained examples.




c

Ancestral Gumbel-Top-k Sampling for Sampling Without Replacement

We develop ancestral Gumbel-Top-$k$ sampling: a generic and efficient method for sampling without replacement from discrete-valued Bayesian networks, which includes multivariate discrete distributions, Markov chains and sequence models. The method uses an extension of the Gumbel-Max trick to sample without replacement by finding the top $k$ of perturbed log-probabilities among all possible configurations of a Bayesian network. Despite the exponentially large domain, the algorithm has a complexity linear in the number of variables and sample size $k$. Our algorithm allows to set the number of parallel processors $m$, to trade off the number of iterations versus the total cost (iterations times $m$) of running the algorithm. For $m = 1$ the algorithm has minimum total cost, whereas for $m = k$ the number of iterations is minimized, and the resulting algorithm is known as Stochastic Beam Search. We provide extensions of the algorithm and discuss a number of related algorithms. We analyze the properties of ancestral Gumbel-Top-$k$ sampling and compare against alternatives on randomly generated Bayesian networks with different levels of connectivity. In the context of (deep) sequence models, we show its use as a method to generate diverse but high-quality translations and statistical estimates of translation quality and entropy.




c

Skill Rating for Multiplayer Games. Introducing Hypernode Graphs and their Spectral Theory

We consider the skill rating problem for multiplayer games, that is how to infer player skills from game outcomes in multiplayer games. We formulate the problem as a minimization problem $arg min_{s} s^T Delta s$ where $Delta$ is a positive semidefinite matrix and $s$ a real-valued function, of which some entries are the skill values to be inferred and other entries are constrained by the game outcomes. We leverage graph-based semi-supervised learning (SSL) algorithms for this problem. We apply our algorithms on several data sets of multiplayer games and obtain very promising results compared to Elo Duelling (see Elo, 1978) and TrueSkill (see Herbrich et al., 2006).. As we leverage graph-based SSL algorithms and because games can be seen as relations between sets of players, we then generalize the approach. For this aim, we introduce a new finite model, called hypernode graph, defined to be a set of weighted binary relations between sets of nodes. We define Laplacians of hypernode graphs. Then, we show that the skill rating problem for multiplayer games can be formulated as $arg min_{s} s^T Delta s$ where $Delta$ is the Laplacian of a hypernode graph constructed from a set of games. From a fundamental perspective, we show that hypernode graph Laplacians are symmetric positive semidefinite matrices with constant functions in their null space. We show that problems on hypernode graphs can not be solved with graph constructions and graph kernels. We relate hypernode graphs to signed graphs showing that positive relations between groups can lead to negative relations between individuals.




c

Sparse and low-rank multivariate Hawkes processes

We consider the problem of unveiling the implicit network structure of node interactions (such as user interactions in a social network), based only on high-frequency timestamps. Our inference is based on the minimization of the least-squares loss associated with a multivariate Hawkes model, penalized by $ell_1$ and trace norm of the interaction tensor. We provide a first theoretical analysis for this problem, that includes sparsity and low-rank inducing penalizations. This result involves a new data-driven concentration inequality for matrix martingales in continuous time with observable variance, which is a result of independent interest and a broad range of possible applications since it extends to matrix martingales former results restricted to the scalar case. A consequence of our analysis is the construction of sharply tuned $ell_1$ and trace-norm penalizations, that leads to a data-driven scaling of the variability of information available for each users. Numerical experiments illustrate the significant improvements achieved by the use of such data-driven penalizations.




c

Learning Causal Networks via Additive Faithfulness

In this paper we introduce a statistical model, called additively faithful directed acyclic graph (AFDAG), for causal learning from observational data. Our approach is based on additive conditional independence (ACI), a recently proposed three-way statistical relation that shares many similarities with conditional independence but without resorting to multi-dimensional kernels. This distinct feature strikes a balance between a parametric model and a fully nonparametric model, which makes the proposed model attractive for handling large networks. We develop an estimator for AFDAG based on a linear operator that characterizes ACI, and establish the consistency and convergence rates of this estimator, as well as the uniform consistency of the estimated DAG. Moreover, we introduce a modified PC-algorithm to implement the estimating procedure efficiently, so that its complexity is determined by the level of sparseness rather than the dimension of the network. Through simulation studies we show that our method outperforms existing methods when commonly assumed conditions such as Gaussian or Gaussian copula distributions do not hold. Finally, the usefulness of AFDAG formulation is demonstrated through an application to a proteomics data set.




c

Expected Policy Gradients for Reinforcement Learning

We propose expected policy gradients (EPG), which unify stochastic policy gradients (SPG) and deterministic policy gradients (DPG) for reinforcement learning. Inspired by expected sarsa, EPG integrates (or sums) across actions when estimating the gradient, instead of relying only on the action in the sampled trajectory. For continuous action spaces, we first derive a practical result for Gaussian policies and quadratic critics and then extend it to a universal analytical method, covering a broad class of actors and critics, including Gaussian, exponential families, and policies with bounded support. For Gaussian policies, we introduce an exploration method that uses covariance proportional to the matrix exponential of the scaled Hessian of the critic with respect to the actions. For discrete action spaces, we derive a variant of EPG based on softmax policies. We also establish a new general policy gradient theorem, of which the stochastic and deterministic policy gradient theorems are special cases. Furthermore, we prove that EPG reduces the variance of the gradient estimates without requiring deterministic policies and with little computational overhead. Finally, we provide an extensive experimental evaluation of EPG and show that it outperforms existing approaches on multiple challenging control domains.




c

High-Dimensional Inference for Cluster-Based Graphical Models

Motivated by modern applications in which one constructs graphical models based on a very large number of features, this paper introduces a new class of cluster-based graphical models, in which variable clustering is applied as an initial step for reducing the dimension of the feature space. We employ model assisted clustering, in which the clusters contain features that are similar to the same unobserved latent variable. Two different cluster-based Gaussian graphical models are considered: the latent variable graph, corresponding to the graphical model associated with the unobserved latent variables, and the cluster-average graph, corresponding to the vector of features averaged over clusters. Our study reveals that likelihood based inference for the latent graph, not analyzed previously, is analytically intractable. Our main contribution is the development and analysis of alternative estimation and inference strategies, for the precision matrix of an unobservable latent vector Z. We replace the likelihood of the data by an appropriate class of empirical risk functions, that can be specialized to the latent graphical model and to the simpler, but under-analyzed, cluster-average graphical model. The estimators thus derived can be used for inference on the graph structure, for instance on edge strength or pattern recovery. Inference is based on the asymptotic limits of the entry-wise estimates of the precision matrices associated with the conditional independence graphs under consideration. While taking the uncertainty induced by the clustering step into account, we establish Berry-Esseen central limit theorems for the proposed estimators. It is noteworthy that, although the clusters are estimated adaptively from the data, the central limit theorems regarding the entries of the estimated graphs are proved under the same conditions one would use if the clusters were known in advance. As an illustration of the usage of these newly developed inferential tools, we show that they can be reliably used for recovery of the sparsity pattern of the graphs we study, under FDR control, which is verified via simulation studies and an fMRI data analysis. These experimental results confirm the theoretically established difference between the two graph structures. Furthermore, the data analysis suggests that the latent variable graph, corresponding to the unobserved cluster centers, can help provide more insight into the understanding of the brain connectivity networks relative to the simpler, average-based, graph.




c

Conjugate Gradients for Kernel Machines

Regularized least-squares (kernel-ridge / Gaussian process) regression is a fundamental algorithm of statistics and machine learning. Because generic algorithms for the exact solution have cubic complexity in the number of datapoints, large datasets require to resort to approximations. In this work, the computation of the least-squares prediction is itself treated as a probabilistic inference problem. We propose a structured Gaussian regression model on the kernel function that uses projections of the kernel matrix to obtain a low-rank approximation of the kernel and the matrix. A central result is an enhanced way to use the method of conjugate gradients for the specific setting of least-squares regression as encountered in machine learning.




c

Fast Rates for General Unbounded Loss Functions: From ERM to Generalized Bayes

We present new excess risk bounds for general unbounded loss functions including log loss and squared loss, where the distribution of the losses may be heavy-tailed. The bounds hold for general estimators, but they are optimized when applied to $eta$-generalized Bayesian, MDL, and empirical risk minimization estimators. In the case of log loss, the bounds imply convergence rates for generalized Bayesian inference under misspecification in terms of a generalization of the Hellinger metric as long as the learning rate $eta$ is set correctly. For general loss functions, our bounds rely on two separate conditions: the $v$-GRIP (generalized reversed information projection) conditions, which control the lower tail of the excess loss; and the newly introduced witness condition, which controls the upper tail. The parameter $v$ in the $v$-GRIP conditions determines the achievable rate and is akin to the exponent in the Tsybakov margin condition and the Bernstein condition for bounded losses, which the $v$-GRIP conditions generalize; favorable $v$ in combination with small model complexity leads to $ ilde{O}(1/n)$ rates. The witness condition allows us to connect the excess risk to an 'annealed' version thereof, by which we generalize several previous results connecting Hellinger and Rényi divergence to KL divergence.




c

Self-paced Multi-view Co-training

Co-training is a well-known semi-supervised learning approach which trains classifiers on two or more different views and exchanges pseudo labels of unlabeled instances in an iterative way. During the co-training process, pseudo labels of unlabeled instances are very likely to be false especially in the initial training, while the standard co-training algorithm adopts a 'draw without replacement' strategy and does not remove these wrongly labeled instances from training stages. Besides, most of the traditional co-training approaches are implemented for two-view cases, and their extensions in multi-view scenarios are not intuitive. These issues not only degenerate their performance as well as available application range but also hamper their fundamental theory. Moreover, there is no optimization model to explain the objective a co-training process manages to optimize. To address these issues, in this study we design a unified self-paced multi-view co-training (SPamCo) framework which draws unlabeled instances with replacement. Two specified co-regularization terms are formulated to develop different strategies for selecting pseudo-labeled instances during training. Both forms share the same optimization strategy which is consistent with the iteration process in co-training and can be naturally extended to multi-view scenarios. A distributed optimization strategy is also introduced to train the classifier of each view in parallel to further improve the efficiency of the algorithm. Furthermore, the SPamCo algorithm is proved to be PAC learnable, supporting its theoretical soundness. Experiments conducted on synthetic, text categorization, person re-identification, image recognition and object detection data sets substantiate the superiority of the proposed method.




c

Robust Asynchronous Stochastic Gradient-Push: Asymptotically Optimal and Network-Independent Performance for Strongly Convex Functions

We consider the standard model of distributed optimization of a sum of functions $F(mathbf z) = sum_{i=1}^n f_i(mathbf z)$, where node $i$ in a network holds the function $f_i(mathbf z)$. We allow for a harsh network model characterized by asynchronous updates, message delays, unpredictable message losses, and directed communication among nodes. In this setting, we analyze a modification of the Gradient-Push method for distributed optimization, assuming that (i) node $i$ is capable of generating gradients of its function $f_i(mathbf z)$ corrupted by zero-mean bounded-support additive noise at each step, (ii) $F(mathbf z)$ is strongly convex, and (iii) each $f_i(mathbf z)$ has Lipschitz gradients. We show that our proposed method asymptotically performs as well as the best bounds on centralized gradient descent that takes steps in the direction of the sum of the noisy gradients of all the functions $f_1(mathbf z), ldots, f_n(mathbf z)$ at each step.




c

Exact Guarantees on the Absence of Spurious Local Minima for Non-negative Rank-1 Robust Principal Component Analysis

This work is concerned with the non-negative rank-1 robust principal component analysis (RPCA), where the goal is to recover the dominant non-negative principal components of a data matrix precisely, where a number of measurements could be grossly corrupted with sparse and arbitrary large noise. Most of the known techniques for solving the RPCA rely on convex relaxation methods by lifting the problem to a higher dimension, which significantly increase the number of variables. As an alternative, the well-known Burer-Monteiro approach can be used to cast the RPCA as a non-convex and non-smooth $ell_1$ optimization problem with a significantly smaller number of variables. In this work, we show that the low-dimensional formulation of the symmetric and asymmetric positive rank-1 RPCA based on the Burer-Monteiro approach has benign landscape, i.e., 1) it does not have any spurious local solution, 2) has a unique global solution, and 3) its unique global solution coincides with the true components. An implication of this result is that simple local search algorithms are guaranteed to achieve a zero global optimality gap when directly applied to the low-dimensional formulation. Furthermore, we provide strong deterministic and probabilistic guarantees for the exact recovery of the true principal components. In particular, it is shown that a constant fraction of the measurements could be grossly corrupted and yet they would not create any spurious local solution.




c

Kymatio: Scattering Transforms in Python

The wavelet scattering transform is an invariant and stable signal representation suitable for many signal processing and machine learning applications. We present the Kymatio software package, an easy-to-use, high-performance Python implementation of the scattering transform in 1D, 2D, and 3D that is compatible with modern deep learning frameworks, including PyTorch and TensorFlow/Keras. The transforms are implemented on both CPUs and GPUs, the latter offering a significant speedup over the former. The package also has a small memory footprint. Source code, documentation, and examples are available under a BSD license at https://www.kymat.io.




c

Multiparameter Persistence Landscapes

An important problem in the field of Topological Data Analysis is defining topological summaries which can be combined with traditional data analytic tools. In recent work Bubenik introduced the persistence landscape, a stable representation of persistence diagrams amenable to statistical analysis and machine learning tools. In this paper we generalise the persistence landscape to multiparameter persistence modules providing a stable representation of the rank invariant. We show that multiparameter landscapes are stable with respect to the interleaving distance and persistence weighted Wasserstein distance, and that the collection of multiparameter landscapes faithfully represents the rank invariant. Finally we provide example calculations and statistical tests to demonstrate a range of potential applications and how one can interpret the landscapes associated to a multiparameter module.




c

Generalized Optimal Matching Methods for Causal Inference

We develop an encompassing framework for matching, covariate balancing, and doubly-robust methods for causal inference from observational data called generalized optimal matching (GOM). The framework is given by generalizing a new functional-analytical formulation of optimal matching, giving rise to the class of GOM methods, for which we provide a single unified theory to analyze tractability and consistency. Many commonly used existing methods are included in GOM and, using their GOM interpretation, can be extended to optimally and automatically trade off balance for variance and outperform their standard counterparts. As a subclass, GOM gives rise to kernel optimal matching (KOM), which, as supported by new theoretical and empirical results, is notable for combining many of the positive properties of other methods in one. KOM, which is solved as a linearly-constrained convex-quadratic optimization problem, inherits both the interpretability and model-free consistency of matching but can also achieve the $sqrt{n}$-consistency of well-specified regression and the bias reduction and robustness of doubly robust methods. In settings of limited overlap, KOM enables a very transparent method for interval estimation for partial identification and robust coverage. We demonstrate this in examples with both synthetic and real data.




c

Unique Sharp Local Minimum in L1-minimization Complete Dictionary Learning

We study the problem of globally recovering a dictionary from a set of signals via $ell_1$-minimization. We assume that the signals are generated as i.i.d. random linear combinations of the $K$ atoms from a complete reference dictionary $D^*in mathbb R^{K imes K}$, where the linear combination coefficients are from either a Bernoulli type model or exact sparse model. First, we obtain a necessary and sufficient norm condition for the reference dictionary $D^*$ to be a sharp local minimum of the expected $ell_1$ objective function. Our result substantially extends that of Wu and Yu (2015) and allows the combination coefficient to be non-negative. Secondly, we obtain an explicit bound on the region within which the objective value of the reference dictionary is minimal. Thirdly, we show that the reference dictionary is the unique sharp local minimum, thus establishing the first known global property of $ell_1$-minimization dictionary learning. Motivated by the theoretical results, we introduce a perturbation based test to determine whether a dictionary is a sharp local minimum of the objective function. In addition, we also propose a new dictionary learning algorithm based on Block Coordinate Descent, called DL-BCD, which is guaranteed to decrease the obective function monotonically. Simulation studies show that DL-BCD has competitive performance in terms of recovery rate compared to other state-of-the-art dictionary learning algorithms when the reference dictionary is generated from random Gaussian matrices.




c

Community-Based Group Graphical Lasso

A new strategy for probabilistic graphical modeling is developed that draws parallels to community detection analysis. The method jointly estimates an undirected graph and homogeneous communities of nodes. The structure of the communities is taken into account when estimating the graph and at the same time, the structure of the graph is accounted for when estimating communities of nodes. The procedure uses a joint group graphical lasso approach with community detection-based grouping, such that some groups of edges co-occur in the estimated graph. The grouping structure is unknown and is estimated based on community detection algorithms. Theoretical derivations regarding graph convergence and sparsistency, as well as accuracy of community recovery are included, while the method's empirical performance is illustrated in an fMRI context, as well as with simulated examples.




c

Smoothed Nonparametric Derivative Estimation using Weighted Difference Quotients

Derivatives play an important role in bandwidth selection methods (e.g., plug-ins), data analysis and bias-corrected confidence intervals. Therefore, obtaining accurate derivative information is crucial. Although many derivative estimation methods exist, the majority require a fixed design assumption. In this paper, we propose an effective and fully data-driven framework to estimate the first and second order derivative in random design. We establish the asymptotic properties of the proposed derivative estimator, and also propose a fast selection method for the tuning parameters. The performance and flexibility of the method is illustrated via an extensive simulation study.




c

The weight function in the subtree kernel is decisive

Tree data are ubiquitous because they model a large variety of situations, e.g., the architecture of plants, the secondary structure of RNA, or the hierarchy of XML files. Nevertheless, the analysis of these non-Euclidean data is difficult per se. In this paper, we focus on the subtree kernel that is a convolution kernel for tree data introduced by Vishwanathan and Smola in the early 2000's. More precisely, we investigate the influence of the weight function from a theoretical perspective and in real data applications. We establish on a 2-classes stochastic model that the performance of the subtree kernel is improved when the weight of leaves vanishes, which motivates the definition of a new weight function, learned from the data and not fixed by the user as usually done. To this end, we define a unified framework for computing the subtree kernel from ordered or unordered trees, that is particularly suitable for tuning parameters. We show through eight real data classification problems the great efficiency of our approach, in particular for small data sets, which also states the high importance of the weight function. Finally, a visualization tool of the significant features is derived.




c

On Stationary-Point Hitting Time and Ergodicity of Stochastic Gradient Langevin Dynamics

Stochastic gradient Langevin dynamics (SGLD) is a fundamental algorithm in stochastic optimization. Recent work by Zhang et al. (2017) presents an analysis for the hitting time of SGLD for the first and second order stationary points. The proof in Zhang et al. (2017) is a two-stage procedure through bounding the Cheeger's constant, which is rather complicated and leads to loose bounds. In this paper, using intuitions from stochastic differential equations, we provide a direct analysis for the hitting times of SGLD to the first and second order stationary points. Our analysis is straightforward. It only relies on basic linear algebra and probability theory tools. Our direct analysis also leads to tighter bounds comparing to Zhang et al. (2017) and shows the explicit dependence of the hitting time on different factors, including dimensionality, smoothness, noise strength, and step size effects. Under suitable conditions, we show that the hitting time of SGLD to first-order stationary points can be dimension-independent. Moreover, we apply our analysis to study several important online estimation problems in machine learning, including linear regression, matrix factorization, and online PCA.




c

Union of Low-Rank Tensor Spaces: Clustering and Completion

We consider the problem of clustering and completing a set of tensors with missing data that are drawn from a union of low-rank tensor spaces. In the clustering problem, given a partially sampled tensor data that is composed of a number of subtensors, each chosen from one of a certain number of unknown tensor spaces, we need to group the subtensors that belong to the same tensor space. We provide a geometrical analysis on the sampling pattern and subsequently derive the sampling rate that guarantees the correct clustering under some assumptions with high probability. Moreover, we investigate the fundamental conditions for finite/unique completability for the union of tensor spaces completion problem. Both deterministic and probabilistic conditions on the sampling pattern to ensure finite/unique completability are obtained. For both the clustering and completion problems, our tensor analysis provides significantly better bound than the bound given by the matrix analysis applied to any unfolding of the tensor data.




c

Representation Learning for Dynamic Graphs: A Survey

Graphs arise naturally in many real-world applications including social networks, recommender systems, ontologies, biology, and computational finance. Traditionally, machine learning models for graphs have been mostly designed for static graphs. However, many applications involve evolving graphs. This introduces important challenges for learning and inference since nodes, attributes, and edges change over time. In this survey, we review the recent advances in representation learning for dynamic graphs, including dynamic knowledge graphs. We describe existing models from an encoder-decoder perspective, categorize these encoders and decoders based on the techniques they employ, and analyze the approaches in each category. We also review several prominent applications and widely used datasets and highlight directions for future research.




c

Estimation of a Low-rank Topic-Based Model for Information Cascades

We consider the problem of estimating the latent structure of a social network based on the observed information diffusion events, or cascades, where the observations for a given cascade consist of only the timestamps of infection for infected nodes but not the source of the infection. Most of the existing work on this problem has focused on estimating a diffusion matrix without any structural assumptions on it. In this paper, we propose a novel model based on the intuition that an information is more likely to propagate among two nodes if they are interested in similar topics which are also prominent in the information content. In particular, our model endows each node with an influence vector (which measures how authoritative the node is on each topic) and a receptivity vector (which measures how susceptible the node is for each topic). We show how this node-topic structure can be estimated from the observed cascades, and prove the consistency of the estimator. Experiments on synthetic and real data demonstrate the improved performance and better interpretability of our model compared to existing state-of-the-art methods.




c

(1 + epsilon)-class Classification: an Anomaly Detection Method for Highly Imbalanced or Incomplete Data Sets

Anomaly detection is not an easy problem since distribution of anomalous samples is unknown a priori. We explore a novel method that gives a trade-off possibility between one-class and two-class approaches, and leads to a better performance on anomaly detection problems with small or non-representative anomalous samples. The method is evaluated using several data sets and compared to a set of conventional one-class and two-class approaches.




c

Scalable Approximate MCMC Algorithms for the Horseshoe Prior

The horseshoe prior is frequently employed in Bayesian analysis of high-dimensional models, and has been shown to achieve minimax optimal risk properties when the truth is sparse. While optimization-based algorithms for the extremely popular Lasso and elastic net procedures can scale to dimension in the hundreds of thousands, algorithms for the horseshoe that use Markov chain Monte Carlo (MCMC) for computation are limited to problems an order of magnitude smaller. This is due to high computational cost per step and growth of the variance of time-averaging estimators as a function of dimension. We propose two new MCMC algorithms for computation in these models that have significantly improved performance compared to existing alternatives. One of the algorithms also approximates an expensive matrix product to give orders of magnitude speedup in high-dimensional applications. We prove guarantees for the accuracy of the approximate algorithm, and show that gradually decreasing the approximation error as the chain extends results in an exact algorithm. The scalability of the algorithm is illustrated in simulations with problem size as large as $N=5,000$ observations and $p=50,000$ predictors, and an application to a genome-wide association study with $N=2,267$ and $p=98,385$. The empirical results also show that the new algorithm yields estimates with lower mean squared error, intervals with better coverage, and elucidates features of the posterior that were often missed by previous algorithms in high dimensions, including bimodality of posterior marginals indicating uncertainty about which covariates belong in the model.




c

High-dimensional Gaussian graphical models on network-linked data

Graphical models are commonly used to represent conditional dependence relationships between variables. There are multiple methods available for exploring them from high-dimensional data, but almost all of them rely on the assumption that the observations are independent and identically distributed. At the same time, observations connected by a network are becoming increasingly common, and tend to violate these assumptions. Here we develop a Gaussian graphical model for observations connected by a network with potentially different mean vectors, varying smoothly over the network. We propose an efficient estimation algorithm and demonstrate its effectiveness on both simulated and real data, obtaining meaningful and interpretable results on a statistics coauthorship network. We also prove that our method estimates both the inverse covariance matrix and the corresponding graph structure correctly under the assumption of network “cohesion”, which refers to the empirically observed phenomenon of network neighbors sharing similar traits.




c

Identifiability of Additive Noise Models Using Conditional Variances

This paper considers a new identifiability condition for additive noise models (ANMs) in which each variable is determined by an arbitrary Borel measurable function of its parents plus an independent error. It has been shown that ANMs are fully recoverable under some identifiability conditions, such as when all error variances are equal. However, this identifiable condition could be restrictive, and hence, this paper focuses on a relaxed identifiability condition that involves not only error variances, but also the influence of parents. This new class of identifiable ANMs does not put any constraints on the form of dependencies, or distributions of errors, and allows different error variances. It further provides a statistically consistent and computationally feasible structure learning algorithm for the identifiable ANMs based on the new identifiability condition. The proposed algorithm assumes that all relevant variables are observed, while it does not assume faithfulness or a sparse graph. Demonstrated through extensive simulated and real multivariate data is that the proposed algorithm successfully recovers directed acyclic graphs.