pro

Distinct and Overlapping Sets of SUMO-1 and SUMO-2 Target Proteins Revealed by Quantitative Proteomics

Alfred C. O. Vertegaal
Dec 1, 2006; 5:2298-2310
Research




pro

Extending the Limits of Quantitative Proteome Profiling with Data-Independent Acquisition and Application to Acetaminophen-Treated Three-Dimensional Liver Microtissues

Roland Bruderer
May 1, 2015; 14:1400-1410
Research




pro

Parallel Reaction Monitoring for High Resolution and High Mass Accuracy Quantitative, Targeted Proteomics

Amelia C. Peterson
Nov 1, 2012; 11:1475-1488
Technological Innovation and Resources




pro

Lysine Propionylation and Butyrylation Are Novel Post-translational Modifications in Histones

Yue Chen
May 1, 2007; 6:812-819
Research




pro

Phosphoproteome Analysis of E. coli Reveals Evolutionary Conservation of Bacterial Ser/Thr/Tyr Phosphorylation

Boris Macek
Feb 1, 2008; 7:299-307
Research




pro

High Resolution Clear Native Electrophoresis for In-gel Functional Assays and Fluorescence Studies of Membrane Protein Complexes

Ilka Wittig
Jul 1, 2007; 6:1215-1225
Research




pro

Fluorescent Proteins as Proteomic Probes

Ileana M. Cristea
Dec 1, 2005; 4:1933-1941
Research




pro

PaxDb, a Database of Protein Abundance Averages Across All Three Domains of Life

M. Wang
Aug 1, 2012; 11:492-500
Technological Innovation and Resources




pro

Quantitative, Multiplexed Assays for Low Abundance Proteins in Plasma by Targeted Mass Spectrometry and Stable Isotope Dilution

Hasmik Keshishian
Dec 1, 2007; 6:2212-2229
Research




pro

The Proteome of the Mouse Photoreceptor Sensory Cilium Complex

Qin Liu
Aug 1, 2007; 6:1299-1317
Research




pro

Comparative Proteomic Analysis of Eleven Common Cell Lines Reveals Ubiquitous but Varying Expression of Most Proteins

Tamar Geiger
Mar 1, 2012; 11:M111.014050-M111.014050
Special Issue: Prospects in Space and Time




pro

Complementary Profiling of Gene Expression at the Transcriptome and Proteome Levels in Saccharomyces cerevisiae

Timothy J. Griffin
Apr 1, 2002; 1:323-333
Research




pro

A Proteomic Analysis of Human Cilia: Identification of Novel Components

Lawrence E. Ostrowski
Jun 1, 2002; 1:451-465
Research




pro

A Proteome-wide, Quantitative Survey of In Vivo Ubiquitylation Sites Reveals Widespread Regulatory Roles

Sebastian A. Wagner
Oct 1, 2011; 10:M111.013284-M111.013284
Research




pro

A Tandem Affinity Tag for Two-step Purification under Fully Denaturing Conditions: Application in Ubiquitin Profiling and Protein Complex Identification Combined with in vivoCross-Linking

Christian Tagwerker
Apr 1, 2006; 5:737-748
Research




pro

Quantitative Phosphoproteomics of Early Elicitor Signaling in Arabidopsis

Joris J. Benschop
Jul 1, 2007; 6:1198-1214
Research




pro

Discordant Protein and mRNA Expression in Lung Adenocarcinomas

Guoan Chen
Apr 1, 2002; 1:304-313
Research




pro

Integrated Genomic and Proteomic Analyses of Gene Expression in Mammalian Cells

Qiang Tian
Oct 1, 2004; 3:960-969
Research




pro

Interpretation of Shotgun Proteomic Data: The Protein Inference Problem

Alexey I. Nesvizhskii
Oct 1, 2005; 4:1419-1440
Tutorial




pro

Targeted Data Extraction of the MS/MS Spectra Generated by Data-independent Acquisition: A New Concept for Consistent and Accurate Proteome Analysis

Ludovic C. Gillet
Jun 1, 2012; 11:O111.016717-O111.016717
Research




pro

A Multidimensional Chromatography Technology for In-depth Phosphoproteome Analysis

Claudio P. Albuquerque
Jul 1, 2008; 7:1389-1396
Research




pro

A Human Protein Atlas for Normal and Cancer Tissues Based on Antibody Proteomics

Mathias Uhlén
Dec 1, 2005; 4:1920-1932
Research




pro

Comparison of Label-free Methods for Quantifying Human Proteins by Shotgun Proteomics

William M. Old
Oct 1, 2005; 4:1487-1502
Research




pro

Quantitative Mass Spectrometric Multiple Reaction Monitoring Assays for Major Plasma Proteins

Leigh Anderson
Apr 1, 2006; 5:573-588
Research




pro

The Paragon Algorithm, a Next Generation Search Engine That Uses Sequence Temperature Values and Feature Probabilities to Identify Peptides from Tandem Mass Spectra

Ignat V. Shilov
Sep 1, 2007; 6:1638-1655
Technology




pro

Quantitative Phosphoproteomics Applied to the Yeast Pheromone Signaling Pathway

Albrecht Gruhler
Mar 1, 2005; 4:310-327
Research




pro

Absolute Quantification of Proteins by LCMSE: A Virtue of Parallel ms Acquisition

Jeffrey C. Silva
Jan 1, 2006; 5:144-156
Research




pro

The Human Plasma Proteome: History, Character, and Diagnostic Prospects

N. Leigh Anderson
Nov 1, 2002; 1:845-867
Reviews/Perspectives




pro

Analysis of the Human Tissue-specific Expression by Genome-wide Integration of Transcriptomics and Antibody-based Proteomics

Linn Fagerberg
Feb 1, 2014; 13:397-406
Research




pro

A Versatile Nanotrap for Biochemical and Functional Studies with Fluorescent Fusion Proteins

Ulrich Rothbauer
Feb 1, 2008; 7:282-289
Research




pro

Exponentially Modified Protein Abundance Index (emPAI) for Estimation of Absolute Protein Amount in Proteomics by the Number of Sequenced Peptides per Protein

Yasushi Ishihama
Sep 1, 2005; 4:1265-1272
Research




pro

Phosphate-binding Tag, a New Tool to Visualize Phosphorylated Proteins

Eiji Kinoshita
Apr 1, 2006; 5:749-757
Technology




pro

Multiplexed Protein Quantitation in Saccharomyces cerevisiae Using Amine-reactive Isobaric Tagging Reagents

Philip L. Ross
Dec 1, 2004; 3:1154-1169
Research




pro

Accurate Proteome-wide Label-free Quantification by Delayed Normalization and Maximal Peptide Ratio Extraction, Termed MaxLFQ

Jürgen Cox
Sep 1, 2014; 13:2513-2526
Technological Innovation and Resources




pro

Stable Isotope Labeling by Amino Acids in Cell Culture, SILAC, as a Simple and Accurate Approach to Expression Proteomics

Shao-En Ong
May 1, 2002; 1:376-386
Research




pro

The hibernating 100S complex is a target of ribosome-recycling factor and elongation factor G in Staphylococcus aureus [Protein Synthesis and Degradation]

The formation of translationally inactive 70S dimers (called 100S ribosomes) by hibernation-promoting factor is a widespread survival strategy among bacteria. Ribosome dimerization is thought to be reversible, with the dissociation of the 100S complexes enabling ribosome recycling for participation in new rounds of translation. The precise pathway of 100S ribosome recycling has been unclear. We previously found that the heat-shock GTPase HflX in the human pathogen Staphylococcus aureus is a minor disassembly factor. Cells lacking hflX do not accumulate 100S ribosomes unless they are subjected to heat exposure, suggesting the existence of an alternative pathway during nonstressed conditions. Here, we provide biochemical and genetic evidence that two essential translation factors, ribosome-recycling factor (RRF) and GTPase elongation factor G (EF-G), synergistically split 100S ribosomes in a GTP-dependent but tRNA translocation-independent manner. We found that although HflX and the RRF/EF-G pair are functionally interchangeable, HflX is expressed at low levels and is dispensable under normal growth conditions. The bacterial RRF/EF-G pair was previously known to target only the post-termination 70S complexes; our results reveal a new role in the reversal of ribosome hibernation that is intimately linked to bacterial pathogenesis, persister formation, stress responses, and ribosome integrity.




pro

The cytochrome P450 enzyme CYP24A1 increases proliferation of mutant KRAS-dependent lung adenocarcinoma independent of its catalytic activity [Cell Biology]

We previously reported that overexpression of cytochrome P450 family 24 subfamily A member 1 (CYP24A1) increases lung cancer cell proliferation by activating RAS signaling and that CYP24A1 knockdown inhibits tumor growth. However, the mechanism of CYP24A1-mediated cancer cell proliferation remains unclear. Here, we conducted cell synchronization and biochemical experiments in lung adenocarcinoma cells, revealing a link between CYP24A1 and anaphase-promoting complex (APC), a key cell cycle regulator. We demonstrate that CYP24A1 expression is cell cycle–dependent; it was higher in the G2-M phase and diminished upon G1 entry. CYP24A1 has a functional destruction box (D-box) motif that allows binding with two APC adaptors, CDC20-homologue 1 (CDH1) and cell division cycle 20 (CDC20). Unlike other APC substrates, however, CYP24A1 acted as a pseudo-substrate, inhibiting CDH1 activity and promoting mitotic progression. Conversely, overexpression of a CYP24A1 D-box mutant compromised CDH1 binding, allowing CDH1 hyperactivation, thereby hastening degradation of its substrates cyclin B1 and CDC20, and accumulation of the CDC20 substrate p21, prolonging mitotic exit. These activities also occurred with a CYP24A1 isoform 2 lacking the catalytic cysteine (Cys-462), suggesting that CYP24A1's oncogenic potential is independent of its catalytic activity. CYP24A1 degradation reduced clonogenic survival of mutant KRAS-driven lung cancer cells, and calcitriol treatment increased CYP24A1 levels and tumor burden in Lsl-KRASG12D mice. These results disclose a catalytic activity-independent growth-promoting role of CYP24A1 in mutant KRAS-driven lung cancer. This suggests that CYP24A1 could be therapeutically targeted in lung cancers in which its expression is high.




pro

SUMOylation of the transcription factor ZFHX3 at Lys-2806 requires SAE1, UBC9, and PIAS2 and enhances its stability and function in cell proliferation [Protein Synthesis and Degradation]

SUMOylation is a posttranslational modification (PTM) at a lysine residue and is crucial for the proper functions of many proteins, particularly of transcription factors, in various biological processes. Zinc finger homeobox 3 (ZFHX3), also known as AT motif-binding factor 1 (ATBF1), is a large transcription factor that is active in multiple pathological processes, including atrial fibrillation and carcinogenesis, and in circadian regulation and development. We have previously demonstrated that ZFHX3 is SUMOylated at three or more lysine residues. Here, we investigated which enzymes regulate ZFHX3 SUMOylation and whether SUMOylation modulates ZFHX3 stability and function. We found that SUMO1, SUMO2, and SUMO3 each are conjugated to ZFHX3. Multiple lysine residues in ZFHX3 were SUMOylated, but Lys-2806 was the major SUMOylation site, and we also found that it is highly conserved among ZFHX3 orthologs from different animal species. Using molecular analyses, we identified the enzymes that mediate ZFHX3 SUMOylation; these included SUMO1-activating enzyme subunit 1 (SAE1), an E1-activating enzyme; SUMO-conjugating enzyme UBC9 (UBC9), an E2-conjugating enzyme; and protein inhibitor of activated STAT2 (PIAS2), an E3 ligase. Multiple analyses established that both SUMO-specific peptidase 1 (SENP1) and SENP2 deSUMOylate ZFHX3. SUMOylation at Lys-2806 enhanced ZFHX3 stability by interfering with its ubiquitination and proteasomal degradation. Functionally, Lys-2806 SUMOylation enabled ZFHX3-mediated cell proliferation and xenograft tumor growth of the MDA-MB-231 breast cancer cell line. These findings reveal the enzymes involved in, and the functional consequences of, ZFHX3 SUMOylation, insights that may help shed light on ZFHX3's roles in various cellular and pathophysiological processes.




pro

Heterotrimeric Gq proteins as therapeutic targets? [Molecular Bases of Disease]

Heterotrimeric G proteins are the core upstream elements that transduce and amplify the cellular signals from G protein–coupled receptors (GPCRs) to intracellular effectors. GPCRs are the largest family of membrane proteins encoded in the human genome and are the targets of about one-third of prescription medicines. However, to date, no single therapeutic agent exerts its effects via perturbing heterotrimeric G protein function, despite a plethora of evidence linking G protein malfunction to human disease. Several recent studies have brought to light that the Gq family–specific inhibitor FR900359 (FR) is unexpectedly efficacious in silencing the signaling of Gq oncoproteins, mutant Gq variants that mostly exist in the active state. These data not only raise the hope that researchers working in drug discovery may be able to potentially strike Gq oncoproteins from the list of undruggable targets, but also raise questions as to how FR achieves its therapeutic effect. Here, we place emphasis on these recent studies and explain why they expand our pharmacological armamentarium for targeting Gq protein oncogenes as well as broaden our mechanistic understanding of Gq protein oncogene function. We also highlight how this novel insight impacts the significance and utility of using G(q) proteins as targets in drug discovery efforts.




pro

Reduction of protein phosphatase 2A (PP2A) complexity reveals cellular functions and dephosphorylation motifs of the PP2A/B'{delta} holoenzyme [Enzymology]

Protein phosphatase 2A (PP2A) is a large enzyme family responsible for most cellular Ser/Thr dephosphorylation events. PP2A substrate specificity, localization, and regulation by second messengers rely on more than a dozen regulatory subunits (including B/R2, B'/R5, and B″/R3), which form the PP2A heterotrimeric holoenzyme by associating with a dimer comprising scaffolding (A) and catalytic (C) subunits. Because of partial redundancy and high endogenous expression of PP2A holoenzymes, traditional approaches of overexpressing, knocking down, or knocking out PP2A regulatory subunits have yielded only limited insights into their biological roles and substrates. To this end, here we sought to reduce the complexity of cellular PP2A holoenzymes. We used tetracycline-inducible expression of pairs of scaffolding and regulatory subunits with complementary charge-reversal substitutions in their interaction interfaces. For each of the three regulatory subunit families, we engineered A/B charge–swap variants that could bind to one another, but not to endogenous A and B subunits. Because endogenous Aα was targeted by a co-induced shRNA, endogenous B subunits were rapidly degraded, resulting in expression of predominantly a single PP2A heterotrimer composed of the A/B charge–swap pair and the endogenous catalytic subunit. Using B'δ/PPP2R5D, we show that PP2A complexity reduction, but not PP2A overexpression, reveals a role of this holoenzyme in suppression of extracellular signal–regulated kinase signaling and protein kinase A substrate dephosphorylation. When combined with global phosphoproteomics, the PP2A/B'δ reduction approach identified consensus dephosphorylation motifs in its substrates and suggested that residues surrounding the phosphorylation site play roles in PP2A substrate specificity.




pro

Mechanistic insights explain the transforming potential of the T507K substitution in the protein-tyrosine phosphatase SHP2 [Signal Transduction]

The protein-tyrosine phosphatase SHP2 is an allosteric enzyme critical for cellular events downstream of growth factor receptors. Mutations in the SHP2 gene have been linked to many different types of human diseases, including developmental disorders, leukemia, and solid tumors. Unlike most SHP2-activating mutations, the T507K substitution in SHP2 is unique in that it exhibits oncogenic Ras-like transforming activity. However, the biochemical basis of how the SHP2/T507K variant elicits transformation remains unclear. By combining kinetic and biophysical methods, X-ray crystallography, and molecular modeling, as well as using cell biology approaches, here we uncovered that the T507K substitution alters both SHP2 substrate specificity and its allosteric regulatory mechanism. We found that although SHP2/T507K exists in the closed, autoinhibited conformation similar to the WT enzyme, the interactions between its N-SH2 and protein-tyrosine phosphatase domains are weakened such that SHP2/T507K possesses a higher affinity for the scaffolding protein Grb2-associated binding protein 1 (Gab1). We also discovered that the T507K substitution alters the structure of the SHP2 active site, resulting in a change in SHP2 substrate preference for Sprouty1, a known negative regulator of Ras signaling and a potential tumor suppressor. Our results suggest that SHP2/T507K's shift in substrate specificity coupled with its preferential association of SHP2/T507K with Gab1 enable the mutant SHP2 to more efficiently dephosphorylate Sprouty1 at pTyr-53. This dephosphorylation hyperactivates Ras signaling, which is likely responsible for SHP2/T507K's Ras-like transforming activity.




pro

DHHC7-mediated palmitoylation of the accessory protein barttin critically regulates the functions of ClC-K chloride channels [Cell Biology]

Barttin is the accessory subunit of the human ClC-K chloride channels, which are expressed in both the kidney and inner ear. Barttin promotes trafficking of the complex it forms with ClC-K to the plasma membrane and is involved in activating this channel. Barttin undergoes post-translational palmitoylation that is essential for its functions, but the enzyme(s) catalyzing this post-translational modification is unknown. Here, we identified zinc finger DHHC-type containing 7 (DHHC7) protein as an important barttin palmitoyl acyltransferase, whose depletion affected barttin palmitoylation and ClC-K-barttin channel activation. We investigated the functional role of barttin palmitoylation in vivo in Zdhhc7−/− mice. Although palmitoylation of barttin in kidneys of Zdhhc7−/− animals was significantly decreased, it did not pathologically alter kidney structure and functions under physiological conditions. However, when Zdhhc7−/− mice were fed a low-salt diet, they developed hyponatremia and mild metabolic alkalosis, symptoms characteristic of human Bartter syndrome (BS) type IV. Of note, we also observed decreased palmitoylation of the disease-causing R8L barttin variant associated with human BS type IV. Our results indicate that dysregulated DHHC7-mediated barttin palmitoylation appears to play an important role in chloride channel dysfunction in certain BS variants, suggesting that targeting DHHC7 activity may offer a potential therapeutic strategy for reducing hypertension.




pro

The focal adhesion protein kindlin-2 controls mitotic spindle assembly by inhibiting histone deacetylase 6 and maintaining {alpha}-tubulin acetylation [Signal Transduction]

Kindlins are focal adhesion proteins that regulate integrin activation and outside-in signaling. The kindlin family consists of three members, kindlin-1, -2, and -3. Kindlin-2 is widely expressed in multiple cell types, except those from the hematopoietic lineage. A previous study has reported that the Drosophila Fit1 protein (an ortholog of kindlin-2) prevents abnormal spindle assembly; however, the mechanism remains unknown. Here, we show that kindlin-2 maintains spindle integrity in mitotic human cells. The human neuroblastoma SH-SY5Y cell line expresses only kindlin-2, and we found that when SH-SY5Y cells are depleted of kindlin-2, they exhibit pronounced spindle abnormalities and delayed mitosis. Of note, acetylation of α-tubulin, which maintains microtubule flexibility and stability, was diminished in the kindlin-2–depleted cells. Mechanistically, we found that kindlin-2 maintains α-tubulin acetylation by inhibiting the microtubule-associated deacetylase histone deacetylase 6 (HDAC6) via a signaling pathway involving AKT Ser/Thr kinase (AKT)/glycogen synthase kinase 3β (GSK3β) or paxillin. We also provide evidence that prolonged hypoxia down-regulates kindlin-2 expression, leading to spindle abnormalities not only in the SH-SY5Y cell line, but also cell lines derived from colon and breast tissues. The findings of our study highlight that kindlin-2 regulates mitotic spindle assembly and that this process is perturbed in cancer cells in a hypoxic environment.




pro

Polarization of protease-activated receptor 2 (PAR-2) signaling is altered during airway epithelial remodeling and deciliation [Immunology]

Protease-activated receptor 2 (PAR-2) is activated by secreted proteases from immune cells or fungi. PAR-2 is normally expressed basolaterally in differentiated nasal ciliated cells. We hypothesized that epithelial remodeling during diseases characterized by cilial loss and squamous metaplasia may alter PAR-2 polarization. Here, using a fluorescent arrestin assay, we confirmed that the common fungal airway pathogen Aspergillus fumigatus activates heterologously-expressed PAR-2. Endogenous PAR-2 activation in submerged airway RPMI 2650 or NCI–H520 squamous cells increased intracellular calcium levels and granulocyte macrophage–colony-stimulating factor, tumor necrosis factor α, and interleukin (IL)-6 secretion. RPMI 2650 cells cultured at an air–liquid interface (ALI) responded to apically or basolaterally applied PAR-2 agonists. However, well-differentiated primary nasal epithelial ALIs responded only to basolateral PAR-2 stimulation, indicated by calcium elevation, increased cilia beat frequency, and increased fluid and cytokine secretion. We exposed primary cells to disease-related modifiers that alter epithelial morphology, including IL-13, cigarette smoke condensate, and retinoic acid deficiency, at concentrations and times that altered epithelial morphology without causing breakdown of the epithelial barrier to model early disease states. These altered primary cultures responded to both apical and basolateral PAR-2 stimulation. Imaging nasal polyps and control middle turbinate explants, we found that nasal polyps, but not turbinates, exhibit apical calcium responses to PAR-2 stimulation. However, isolated ciliated cells from both polyps and turbinates maintained basolateral PAR-2 polarization, suggesting that the calcium responses originated from nonciliated cells. Altered PAR-2 polarization in disease-remodeled epithelia may enhance apical responses and increase sensitivity to inhaled proteases.




pro

Phosphoproteomic characterization of the signaling network resulting from activation of the chemokine receptor CCR2 [Genomics and Proteomics]

Leukocyte recruitment is a universal feature of tissue inflammation and regulated by the interactions of chemokines with their G protein–coupled receptors. Activation of CC chemokine receptor 2 (CCR2) by its cognate chemokine ligands, including CC chemokine ligand 2 (CCL2), plays a central role in recruitment of monocytes in several inflammatory diseases. In this study, we used phosphoproteomics to conduct an unbiased characterization of the signaling network resulting from CCL2 activation of CCR2. Using data-independent acquisition MS analysis, we quantified both the proteome and phosphoproteome in FlpIn-HEK293T cells stably expressing CCR2 at six time points after activation with CCL2. Differential expression analysis identified 699 significantly regulated phosphorylation sites on 441 proteins. As expected, many of these proteins are known to participate in canonical signal transduction pathways and in the regulation of actin cytoskeleton dynamics, including numerous guanine nucleotide exchange factors and GTPase-activating proteins. Moreover, we identified regulated phosphorylation sites in numerous proteins that function in the nucleus, including several constituents of the nuclear pore complex. The results of this study provide an unprecedented level of detail of CCR2 signaling and identify potential targets for regulation of CCR2 function.




pro

EU Security Ambitions Are Hostage to the Brexit Process

25 June 2019

Professor Richard G Whitman

Associate Fellow, Europe Programme
The EU faces a fundamental contradiction in its goals to become more strategically autonomous in defence matters.

2019-06-20-Eurocorps.jpg

Soldiers of a Eurocorps detachment raise the EU flag at the European Parliament in Strasbourg. Photo: Getty Images.

Three years ago, as the UK was holding its referendum on Brexit, the EU was rolling out its Global Strategy for a more cohesive and effective security and defence policy. Since then, EU member states have set impressive goals and, as significantly, taken important practical steps to make an EU defence capability a tangible proposition, despite differing collective defence commitments, traditions of neutrality among some member states and very different strategic cultures.

All of these developments have taken place with the UK as reluctant observer. The UK has been traditionally hostile to a deepening of defence collaboration within the EU (and consistent of the view that Europe’s military security was best provided through NATO). But the Brexit referendum vote has placed the UK as a bystander as EU security and defence initiatives have been pursued which have overridden the past red lines of British governments.

There is, however, a Brexit-related paradox in all these developments.

A central goal of the security and defence-related aspects of the EU Global Strategy is for the EU to have the capacity to act independently of the United States and, through indigenous defence industries, the ability to produce the means to make that possible.

With the UK outside the EU, and its opposition absent, it is easier to create a political consensus to push for more defence integration. But without the UK there are diminished collective defence capabilities which would make European strategic autonomy much harder to achieve.  

The May government has been an enthusiast for preserving close security and defence cooperation with the EU. The Withdrawal Agreement and the Political Declaration both seek to provide for a close EU–UK relationship post-Brexit.

However, the Article 50 negotiations have made clear that the EU’s institutions are hostile to special treatment for the UK beyond that normally accorded to a third country. Disagreements over the terms of the UK’s continuing participation in the Gailleo dual-use satellite system, which has a significant security and defence utility, have signalled that there is a strong lobby in Brussels and some national capitals seeking to significantly circumscribe collaboration with Britain.

The scale and capabilities of the UK’s military, its defence expenditure (notably on defence research and development) and its defence industrial base make any British decoupling from the EU’s security and defence a major issue. Disconnecting the UK from EU developments entirely would be a costly political choice for both sides.

And excluding the UK from new initiatives in defence R&D and new defence procurement arrangements would be suboptimal in delivering a stronger European defence, technological and industrial base. Duplicating existing UK capabilities, especially strategic enablers such as strategic airlift, target acquisition and intelligence, surveillance and reconnaissance capabilities, would be an unnecessary squandering of already hard-pressed European defence budgets.

At present the common procurement and defence industry plans driven by the EU Global Strategy are embryonic. And significant defence capability decisions are taking place detached from the EU’s plans, which could reinforce a divide between the UK and other member states.

As illustrative, the formal agreement this week between France, Germany and Spain on the Future Combat Air System (FCAS) to develop a next-generation stealth fighter is competing with the UK-supported Tempest project that shares the same objective. The 20-year timescales for the delivery of the FCAS and Tempest projects are a reminder that defence procurement decisions are of multi-decade significance.

As the EU’s ambitions are nascent, it is too early to fully assess what might be the impact of any decision by the EU and the UK to keep each other at an arms-length in security and defence cooperation. With a more detached relationship, the UK will have significant concerns if it sees the EU’s common procurement arrangements develop in a manner that actively discriminates against the UK defence industry.

Outside of procurement and defence issues there may be other areas of future concern for the UK – for example, the extent to which the EU might deepen and broaden cooperation with NATO in a manner that makes the collective influence of EU member states within NATO more apparent, or to which the footprint of future EU conflict and security activities in third countries starts to overshadow the activities of the UK.

As the UK has been grappling with Brexit domestically, the EU has been evolving its security and defence policy ambitions. These are developments that will impact on the UK and in which, therefore, it has a stake but as a departing member state it has a weakening ability to shape.

Any aspect of future EU–UK cooperation is hostage to the vagaries of how the Brexit endgame concludes.




pro

The heme-regulatory motifs of heme oxygenase-2 contribute to the transfer of heme to the catalytic site for degradation [Protein Structure and Folding]

Heme-regulatory motifs (HRMs) are present in many proteins that are involved in diverse biological functions. The C-terminal tail region of human heme oxygenase-2 (HO2) contains two HRMs whose cysteine residues form a disulfide bond; when reduced, these cysteines are available to bind Fe3+-heme. Heme binding to the HRMs occurs independently of the HO2 catalytic active site in the core of the protein, where heme binds with high affinity and is degraded to biliverdin. Here, we describe the reversible, protein-mediated transfer of heme between the HRMs and the HO2 core. Using hydrogen-deuterium exchange (HDX)-MS to monitor the dynamics of HO2 with and without Fe3+-heme bound to the HRMs and to the core, we detected conformational changes in the catalytic core only in one state of the catalytic cycle—when Fe3+-heme is bound to the HRMs and the core is in the apo state. These conformational changes were consistent with transfer of heme between binding sites. Indeed, we observed that HRM-bound Fe3+-heme is transferred to the apo-core either upon independent expression of the core and of a construct spanning the HRM-containing tail or after a single turnover of heme at the core. Moreover, we observed transfer of heme from the core to the HRMs and equilibration of heme between the core and HRMs. We therefore propose an Fe3+-heme transfer model in which HRM-bound heme is readily transferred to the catalytic site for degradation to facilitate turnover but can also equilibrate between the sites to maintain heme homeostasis.




pro

An enzyme-based protocol for cell-free synthesis of nature-identical capsular oligosaccharides from Actinobacillus pleuropneumoniae serotype 1 [Enzymology]

Actinobacillus pleuropneumoniae (App) is the etiological agent of acute porcine pneumonia and responsible for severe economic losses worldwide. The capsule polymer of App serotype 1 (App1) consists of [4)-GlcNAc-β(1,6)-Gal-α-1-(PO4-] repeating units that are O-acetylated at O-6 of the GlcNAc. It is a major virulence factor and was used in previous studies in the successful generation of an experimental glycoconjugate vaccine. However, the application of glycoconjugate vaccines in the animal health sector is limited, presumably because of the high costs associated with harvesting the polymer from pathogen culture. Consequently, here we exploited the capsule polymerase Cps1B of App1 as an in vitro synthesis tool and an alternative for capsule polymer provision. Cps1B consists of two catalytic domains, as well as a domain rich in tetratricopeptide repeats (TPRs). We compared the elongation mechanism of Cps1B with that of a ΔTPR truncation (Cps1B-ΔTPR). Interestingly, the product profiles displayed by Cps1B suggested processive elongation of the nascent polymer, whereas Cps1B-ΔTPR appeared to work in a more distributive manner. The dispersity of the synthesized products could be reduced by generating single-action transferases and immobilizing them on individual columns, separating the two catalytic activities. Furthermore, we identified the O-acetyltransferase Cps1D of App1 and used it to modify the polymers produced by Cps1B. Two-dimensional NMR analyses of the products revealed O-acetylation levels identical to those of polymer harvested from App1 culture supernatants. In conclusion, we have established a protocol for the pathogen-free in vitro synthesis of tailored, nature-identical App1 capsule polymers.




pro

Detailed analyses of the crucial functions of Zn transporter proteins in alkaline phosphatase activation [Enzymology]

Numerous zinc ectoenzymes are metalated by zinc and activated in the compartments of the early secretory pathway before reaching their destination. Zn transporter (ZNT) proteins located in these compartments are essential for ectoenzyme activation. We have previously reported that ZNT proteins, specifically ZNT5–ZNT6 heterodimers and ZNT7 homodimers, play critical roles in the activation of zinc ectoenzymes, such as alkaline phosphatases (ALPs), by mobilizing cytosolic zinc into these compartments. However, this process remains incompletely understood. Here, using genetically-engineered chicken DT40 cells, we first determined that Zrt/Irt-like protein (ZIP) transporters that are localized to the compartments of the early secretory pathway play only a minor role in the ALP activation process. These transporters included ZIP7, ZIP9, and ZIP13, performing pivotal functions in maintaining cellular homeostasis by effluxing zinc out of the compartments. Next, using purified ALP proteins, we showed that zinc metalation on ALP produced in DT40 cells lacking ZNT5–ZNT6 heterodimers and ZNT7 homodimers is impaired. Finally, by genetically disrupting both ZNT5 and ZNT7 in human HAP1 cells, we directly demonstrated that the tissue-nonspecific ALP-activating functions of both ZNT complexes are conserved in human cells. Furthermore, using mutant HAP1 cells, we uncovered a previously-unrecognized and unique spatial regulation of ZNT5–ZNT6 heterodimer formation, wherein ZNT5 recruits ZNT6 to the Golgi apparatus to form the heterodimeric complex. These findings fill in major gaps in our understanding of the molecular mechanisms underlying zinc ectoenzyme activation in the compartments of the early secretory pathway.




pro

Reduction of protein phosphatase 2A (PP2A) complexity reveals cellular functions and dephosphorylation motifs of the PP2A/B'{delta} holoenzyme [Enzymology]

Protein phosphatase 2A (PP2A) is a large enzyme family responsible for most cellular Ser/Thr dephosphorylation events. PP2A substrate specificity, localization, and regulation by second messengers rely on more than a dozen regulatory subunits (including B/R2, B'/R5, and B″/R3), which form the PP2A heterotrimeric holoenzyme by associating with a dimer comprising scaffolding (A) and catalytic (C) subunits. Because of partial redundancy and high endogenous expression of PP2A holoenzymes, traditional approaches of overexpressing, knocking down, or knocking out PP2A regulatory subunits have yielded only limited insights into their biological roles and substrates. To this end, here we sought to reduce the complexity of cellular PP2A holoenzymes. We used tetracycline-inducible expression of pairs of scaffolding and regulatory subunits with complementary charge-reversal substitutions in their interaction interfaces. For each of the three regulatory subunit families, we engineered A/B charge–swap variants that could bind to one another, but not to endogenous A and B subunits. Because endogenous Aα was targeted by a co-induced shRNA, endogenous B subunits were rapidly degraded, resulting in expression of predominantly a single PP2A heterotrimer composed of the A/B charge–swap pair and the endogenous catalytic subunit. Using B'δ/PPP2R5D, we show that PP2A complexity reduction, but not PP2A overexpression, reveals a role of this holoenzyme in suppression of extracellular signal–regulated kinase signaling and protein kinase A substrate dephosphorylation. When combined with global phosphoproteomics, the PP2A/B'δ reduction approach identified consensus dephosphorylation motifs in its substrates and suggested that residues surrounding the phosphorylation site play roles in PP2A substrate specificity.