si How to identify old Orcad Schematic entry version By community.cadence.com Published On :: Fri, 19 Jan 2024 10:49:20 GMT Good morning,I dug up an old project from 2005 and I should open the schematic to check some things.This is the schematic of a XILINX XC95108-pq160 CPLD which the XILINX ISE 6.1 software then translated and compiled, to generate a JEDEC file to burn CPLD.My problem is that I can't open schematics with the versions of Orcad Schematic Entry that I have.Can anyone help me understand which version of Orcad Schematic Entry I need to install to see these files?I shared the files on:drive.google.com/.../viewThank you very much Full Article
si copy paste circuit from one schematic design to another By community.cadence.com Published On :: Tue, 30 Jan 2024 08:59:20 GMT Hi, have two designs and would like to copy paste one area of circuit from the old design to the new design, best way/approach and guidance please.. Full Article
si Regarding the loading of waveform signals in the waveform windown using the tcl command By community.cadence.com Published On :: Mon, 26 Feb 2024 09:26:52 GMT Hello, I am trying to load some of the signals of the design saved in the signals.svwf to the waveform windown via the tcl file, I am using the following commands but nothing works, Can you please help -submit waveform loadsignals -using "Waveform 2" FB1.svwf but it gives me the below error -submit waveform new -reuse -name Waveforms Full Article
si Want to use Transmission Gate in my design? By community.cadence.com Published On :: Fri, 21 Jun 2024 16:19:26 GMT I want to use a transmission gate in my design, but it is not available as a standard cell for Genus RTL synthesis. How can I perform an analysis of area, power, and critical path delay that includes the transmission gate alongside standard cells? Could you provide guidance or a methodology for integrating custom cells, like the transmission gate, into the synthesis flow for accurate analysis? Full Article
si which tools support Linting for early stages of Digital Design flow? By community.cadence.com Published On :: Thu, 03 Oct 2024 19:08:53 GMT I am trying to understand the Linting process. I know that mainly JasperGold is the tool for this purpose. Though I think JasperGold is more suited for later stages of the design. As a RTL Design Engineer, I want to make sure that if another tool has the capability of doing Linting earlier in the flow. for example, does Xcelium, Genus or Confomal support linting. I have seen some contradicting information online regarding this topic, though I can't find anything related to Linting on any of these tools. Thanks Full Article
si 5X “Time Warp” in Your Next Verification Cycle Using Xcelium Machine Learning By community.cadence.com Published On :: Wed, 22 Jun 2022 05:19:00 GMT Artificial intelligence (AI) is everywhere. Machine learning (ML) and its associated inference abilities promise to revolutionize everything from driving your car to making your breakfast. Verification is never truly complete; it is over when you run...(read more) Full Article xcelium ml machine learning xcelium simulation
si Xcelium PowerPlayBack App and Dynamic Power Analysis By community.cadence.com Published On :: Mon, 18 Jul 2022 10:00:00 GMT Learn how Xcelium PowerPlayback App enables the massively parallel Xcelium replay of waveforms for glitch-accurate power estimation of multi-billion gate SoC designs.(read more) Full Article Dynamic Power Analysis xcelium power
si Moving Beyond EDA: The Intelligent System Design Strategy By community.cadence.com Published On :: Thu, 22 Sep 2022 09:20:00 GMT The rising customer expectations, intermingling fields and high performance needs can be satisfied with the system based design. An intelligent Systems Design strategy can offer a quicker route to an optimum design and helps to increase designers' productivity and analyzes efficiency by providing the ability to explore the entire design space. Cadence Intelligent System Strategy enables a system design revolution and reduces project schedules with optimized continuous integration.(read more) Full Article optimality artificial intelligence intelligent system design
si BoardSurfers: Optimizing RF Routing and Impedance Using Allegro X PCB Editor By community.cadence.com Published On :: Thu, 18 Jul 2024 21:15:00 GMT Achieving optimal power transfer in RF PCBs hinges on meticulously routed traces that meet specific impedance requirements. Impedance matching is essential to ensure that traces have the same impedance to prevent signal reflection and inefficient pow...(read more) Full Article RF PCB Routing Allegro X PCB Editor BoardSurfers RF design PCB design shapes allegro x
si BoardSurfers: Some Wisdom from Designing for a High-Volume Production OEM By community.cadence.com Published On :: Wed, 21 Aug 2024 05:19:00 GMT At what stage in the design cycle do you start to think about the PCB material costs? What about the costs to assemble the PCB? Once a design becomes successful, should you then redesign it to achieve a scalable product? Placing components and routi...(read more) Full Article Allegro X PCB Editor BoardSurfers Allegro X Advanced Package Designer SPB PCB Editor PCB design allegro x Allegro
si OrCAD X – The Anytime Anywhere PCB Design Platform By community.cadence.com Published On :: Mon, 26 Aug 2024 10:08:00 GMT OrCAD X is the next-generation integrated PCB design platform. It brings to you a powerful cloud-enabled design solution that includes design and library data management integrated with the proven PCB design and analysis product portfolio of Cad...(read more) Full Article PCB OrCAD X Capture innovation PSpiceA/D PSPICE Layout PCB design OrCAD X Presto OrCAD X Constraints simulation Schematic
si The Mechanical Side of Multiphysics System Simulation By community.cadence.com Published On :: Tue, 03 Sep 2024 22:45:00 GMT Introduction Multiphysics is an integral part of the concepts around digital twins. In this post, I want to discuss the mechanical aspects of multiphysics in system simulations, which are critical for 3D-IC, multi-die, and chiplet design. The physical world in which we live is growing ever more electrified. Think of the transformation that the cell phone has brought into our lives, as has the present-day migration to electronic vehicles (EVs). These products are not only feats of electronic engineering but of mechanical as well, as the electronics find themselves in new and novel forms such as foldable phones and flying cars (eVOTLs). Here, engineering domains must co-exist and collaborate to bring about the best end products possible. Start with the electronics—chips, chiplets, IC packaging, PCB, and modules. But now put these into a new form factor that can be dropped or submerged in water or accelerated along a highway. What about drop testing, aerodynamics, and aeroacoustics? These largely computational fluid dynamics (CFD) and/or mechanical multiphysics phenomena must also be accounted for. And then how does the drop testing impact the electrical performance? The world of electronics and its vast array of end products is pushing us beyond pure electrical engineering to be more broadly minded and develop not only heterogeneous products but heterogeneous engineering teams as well. Cadence's Unique Expertise It's at this crossroad of complexity and electronic proliferation that Cadence shines. Let's take, for example, the latest push for higher-performing high-bandwidth memory (HBM) devices and AI data center expansion. These technologies are growing from several layers to 12, and I can't emphasize enough the importance of teamwork and integrated solutions in tackling the challenges of advanced packaging technologies and how collaboration is shaping the future of semiconductor innovation and paving the way for cutting-edge developments in the industry. These layered electronics are powered, and power creates heat. Heat needs to be understood, and thus, the thermal integrity issues uncovered along the way must be addressed. However, electronic thermal issues are just the first domino in a chain of interdependencies. What about the thermal stress and warpage that can be caused by the powering of these stacked devices? How does that then lend to mechanical stress and even material fatigue as the temperature cycles from high to low and back through the use of the electronic device? This is just one example in a long list of many... Cadence Multiphysics Analysis Offerings The confluence of electrical, mechanical, and CFD is exactly why Cadence expanded into multiphysics at a significant rate starting in 2019 with the announcement of the Clarity 3D Solver and Celsius Thermal Solver products for electromagnetic (EM) and thermal multiphysics system simulations. Recent acquisitions of Numeca, Pointwise, and Cascade (now branded within Cadence as the Fidelity CFD Platform) as well as Future Facilities (now the Cadence Reality Digital Twin product line) are all adding CFD expertise. The recent addition of Beta CAE brings mechanical multiphysics to the suite of solutions available from Cadence. The full breadth of these multiphysics system analyses, spanning EM, thermal, signal integrity/power integrity (SI/PI), CFD, and now mechanical, creates a platform for digital twinning across a wide array of applications. You can learn more by viewing Cadence's Reality Digital Twin platform launch on the keynote stage at NVIDIA's GTC in March, as well as this Designed with Cadence video: NV5, NVIDIA, and Cadence Collaboration Optimizes Data Centers. Conclusion Ever more sophisticated electronic designs are in demand to fulfill the needs of tomorrow's technologies, driving a convergence of electrical and mechanical aspects of multiphysics in system simulations. To successfully produce the exciting new products of the future, both domains must be able to collaborate effectively and efficiently. Cadence is fully committed to developing and providing our customers with the software products they need to enable this electrical/mechanical evolution. From EM, to thermal, to SI/PI, CFD, and mechanical, Cadence is enabling digital twinning across a wide array of applications that are forging pathways to the future. For more information on Cadence's multiphysics system analysis offerings, visit our webpage and download our brochure. Full Article EM Analysis data center system simulation Thermal Analysis multiphysics
si DesignCon Best Paper 2024: Addressing Challenges in PDN Design By community.cadence.com Published On :: Tue, 17 Sep 2024 19:40:00 GMT Explore Impacts of Finite Interconnect Impedance on PDN Characterization Over the past few decades, many details have been worked out in the power distribution network (PDN) in the frequency and time domains. We have simulation tools that can analyze the physical structure from DC to very high frequencies, including spatial variations of the behavior. We also have frequency- and time-domain test methods to measure the steady-state and transient behavior of the built-up systems. All of these pieces in our current toolbox have their own assumptions, limitations, and artifacts, and they constantly raise the challenging question that designers need to answer: How to select the design process, simulation, measurement tools, and processes so that we get reasonable answers within a reasonable time frame with a reasonable budget. Read this award-winning DesignCon 2024 paper titled “Impact of Finite Interconnect Impedance Including Spatial and Domain Comparison of PDN Characterization.” Led by Samtec’s Istvan Novak and written with a team of nine authors from Cadence, Amazon, and Samtec, the paper discusses a series of continually evolving challenges with PDN requirements for cutting-edge designs. Read the full paper now: “Impact of Finite Interconnect Impedance Including Spatial and Domain Comparison of PDN Characterization.” Full Article featured DesignCon PDN signal integrity analysis Signal Integrity PDN Analysis Sigrity
si Using Voltus IC Power Integrity to Overcome 3D-IC Design Challenges By community.cadence.com Published On :: Tue, 08 Oct 2024 06:12:00 GMT Power network design and analysis of 3D-ICs is a major challenge due to the complex nature and large size of the power network. In addition, designers must deal with the complexity of routing power through the interposer, multiple dies, through-silicon vias (TSVs), and through-dielectric vias (TDVs). Cadence’s Integrity 3D-IC Platform and Voltus IC Power Integrity Solution provide a fully integrated solution for early planning and analysis of 3D-IC power networks, 3D-IC chip-centric power integrity signoff, and hierarchical methods that significantly improve capacity and performance of power integrity (PI) signoff while maintaining a very high level of accuracy at signoff. This blog summarizes the typical design challenges faced by today’s 3D-IC designers, as discussed in our recent webinar, “Addressing 3D-IC Power Integrity Design Challenges.” Please click here to view the full webinar. Major Trends in Advanced Chip Design From chips to chiplets, stacked die, 3D-ICs, and more, three major trends are impacting advanced semiconductor packaging design. The first is heterogenous integration, which we define as a disaggregated approach to designing systems on chip (SoCs) from multiple chiplets. This approach is similar to system-in-package (SiP) design, except that instead of integrating multiple bare die – including 3D stacking – on a single substrate, multiple IPs are integrated in the form of chiplets on a single substrate. The second major trend is around new silicon manufacturing techniques that leverage silicon vias (TSVs) and high-density fanout RDL. These advancements mean that silicon is becoming a more attractive material for packaging, especially when high bandwidth and form factor become key attributes in the end design. This brings new design and verification challenges to most packaging engineers who typically work with organic and ceramic substrate materials. Finally, on the ecosystem side, all the large semiconductor foundries now offer their own versions of advanced packaging. This brings new ways of supporting design teams with technologies like reference flows and PDKs, concepts that have typically been lacking in the packaging community. Cadence has worked with many of the leading foundries and outsourced semiconductor assembly and test facilities (OSATs) to develop multi-chip(let) packaging reference flows and package assembly design kits. The downside is that, with the time restrictions designers are under today, there isn’t enough time to simulate the details of these flows and PDKs further. For those who must make the best electro/thermal/physical decisions to achieve the best power/performance/area/cost (PPAC), factors can include accurate die size estimations, thermal feasibility, die-to-die interconnect planning, interposer planning (silicon/organic), front-to-front and front-to-back (F2F/F2B) planning, layer stack and electromigration/ IR drop (EMIR)/TSV planning, IO bandwidth feasibility, and system-level architecture selection. 3D-IC Power Network Design and Analysis The key to success in 3D-IC design is early power integrity planning and analysis. Cadence’s Integrity 3D-IC platform is a high-capacity 3D-IC platform that enables 3D design planning, implementation, and system analysis in a single, unified cockpit. Cadence’s Voltus IC Power Integrity Solution is a comprehensive full chip electromigration, IR drop, and power analysis solution. With its fully distributed architecture and hierarchical analysis capabilities, Voltus provides very fast analysis and has the capacity to handle the largest designs in the industry. Typically, 3D-IC PDN design and analysis is performed in four phases, as shown in Figure 1. Phase 1 - Perform early power delivery network (PDN) exploration with each fabric’s PDN cascaded in system PI with early circuit models. Phase 2 – Plan 3D-IC PDNs in Cadence’s Integrity 3D-IC platform, including micro bumps, TSVs, and through dielectric vias (TDVs), power grid synthesis for dies, and early rail analysis and optimization. Phase 3 – Perform full chip-centric signoff in Voltus with detailed die, interposer, and package models, including chip die models, while keeping some dies flat. Phase 4 – Perform full system-level signoff with Cadence’s Sigrity SystemPI using detailed extracted package models from Sigrity XtractIM, board models from Sigrity PowerSI or Clarity 3D Solver, interposer models from XtractIM or Voltus, and chip power models from Voltus. Figure 1. 3D-IC PDN design and analysis phases 3D-IC Chip-Centric Signoff The integration of Integrity 3D-IC and Voltus enables chip-centric early analysis and signoff. Figure 2 and Figure 3 highlight the chip centric early PI optimization and signoff flows. In early analysis, the on-chip power networks are synthesized, and the micro bumps and TSVs can be placed and optimized. In the signoff stage, all the detailed design data is used for power analysis, and detailed models are extracted and used for package, interposer, and on-die power networks. Figure 2. Early chip-centric PI analysis and optimization flow Figure 3. Chip-centric 3D-IC PI signoff Hierarchical 3D-IC PI Analysis To improve the capacity and performance of 3D-IC PI analysis, Voltus enables hierarchical analysis using chiplet models. Chiplet models can be reduced chip models in spice format or more accurate xPGV models which are highly accurate proprietary models generated by Voltus. With xPGV models, the hierarchical PI analysis has almost the same accuracy as flat analysis but offers 10X or higher benefit in runtime and memory requirements. Conclusion This blog has highlighted the major design trends enabled by advanced 3D packaging and the design challenges arising from these advancements. The design of power delivery networks is one of these major challenges. We have discussed Cadence solutions to overcome this PI challenge. To learn more, view our recent webinar, "Addressing 3D-IC Power Integrity Design Challenges" and visit the Voltus web page. Full Article PDN 3D-IC Integrity Power Integrity in-design analysis Sigrity Clarity 3D Solver
si BoardSurfers: Optimizing Designs with PCB Editor-Topology Workbench Flow By community.cadence.com Published On :: Wed, 09 Oct 2024 09:12:00 GMT When it comes to system integration, PCB designers need to collaborate with the signal analysis or integrity team to run pre-route or post-route analysis and modify constraints, floorplan, or topology based on the results. Allegro PCB Edito...(read more) Full Article Allegro X PCB Editor BoardSurfers Topology Workbench Allegro X Advanced Package Designer SPB PCB Editor PCB design Allegro PCB Editor system integration allegro x Allegro
si Modern Thermal Analysis Overcomes Complex Design Issues By community.cadence.com Published On :: Wed, 16 Oct 2024 04:20:00 GMT Melika Roshandell, Cadence product marketing director for the Celsius Thermal Solver, recently published an article in Designing Electronics discussing how the use of modern thermal analysis techniques can help engineers meet the challenges of today’s complex electronic designs, which require ever more functionality and performance to meet consumer demand. Today’s modern electronic designs require ever more functionality and performance to meet consumer demand. These requirements make scaling traditional, flat, 2D-ICs very challenging. With the recent introduction of 3D-ICs into the electronic design industry, IC vendors need to optimize the performance and cost of their devices while also taking advantage of the ability to combine heterogeneous technologies and nodes into a single package. While this greatly advances IC technology, 3D-IC design brings about its own unique challenges and complexities, a major one of which is thermal management. To overcome thermal management issues, a thermal solution that can handle the complexity of the entire design efficiently and without any simplification is necessary. However, because of the nature of 3D-ICs, the typical point tool approach that dissects the design space into subsections cannot adequately address this need. This approach also creates a longer turnaround time, which can impact critical decision-making to optimize design performance. A more effective solution is to utilize a solver that not only can import the entire package, PCB, and chiplets but also offers high performance to run the entire analysis in a timely manner. Celsius Thermal Management Solutions Cadence offers the Celsius Thermal Solver, a unique technology integrated with both IC and package design tools such as the Cadence Innovus Implementation System, Allegro PCB Designer, and Voltus IC Power Integrity Solution. The Celsius Thermal Solver is the first complete electrothermal co-simulation solution for the full hierarchy of electronic systems from ICs to physical enclosures. Based on a production-proven, massively parallel architecture, the Celsius Thermal Solver also provides end-to-end capabilities for both in-design and signoff methodologies and delivers up to 10X faster performance than legacy solutions without sacrificing accuracy. By combining finite element analysis (FEA) for solid structures with computational fluid dynamics (CFD) for fluids (both liquid and gas, as well as airflow), designers can perform complete system analysis in a single tool. For PCB and IC packaging, engineering teams can combine electrical and thermal analysis and simulate the flow of both current and heat for a more accurate system-level thermal simulation than can be achieved using legacy tools. In addition, both static (steady-state) and dynamic (transient) electrical-thermal co-simulations can be performed based on the actual flow of electrical power in advanced 3D structures, providing visibility into real-world system behavior. Designers are already co-simulating the Celsius Thermal Solver with Celsius EC Solver (formerly Future Facilities’ 6SigmaET electronics thermal simulation software), which provides state-of-the-art intelligence, automation, and accuracy. The combined workflow that ties Celsius FEA thermal analysis with Celsius EC Solver CFD results in even higher-accuracy models of electronics equipment, allowing engineers to test their designs through thermal simulations and mitigate thermal design risks. Conclusion As systems become more densely populated with heat-dissipating electronics, the operating temperatures of those devices impact reliability (device lifetime) and performance. Thermal analysis gives designers an understanding of device operating temperatures related to power dissipation, and that temperature information can be introduced into an electrothermal model to predict the impact on device performance. The robust capabilities in modern thermal management software enable new system analyses and design insights. This empowers electrical design teams to detect and mitigate thermal issues early in the design process—reducing electronic system development iterations and costs and shortening time to market. To learn more about Cadence thermal analysis products, visit the Celsius Thermal Solver product page and download the Cadence Multiphysics Systems Analysis Product Portfolio. Full Article Celsius Thermal Solver thermal management 3D-IC Celsius EC Solver Thermal Analysis
si Allegro X APD: SPB 23.1 release —Your freedom to design boldly! By community.cadence.com Published On :: Thu, 16 Nov 2023 11:33:14 GMT Cadence is super excited to announce SPB 23.1 release —Your freedom to design boldly! These tools help engineers build better PCBs faster with the new 3D engine and optimized interface. We have been hard at work to bring you this release and believe that it will help you take control of the PCB design process with the powerful new features in Allegro X APD like: Packaging Support in 3DX Canvas 3DX Wire DRCs Aligning Components by Offset Text Wizard Enhancements Device File Reuse for Existing Components for Netlist and Logic Import Watch this space to know all about What’s New in SPB 23.1. Regards Team PCBTech Cadence Design System For individuals, small businesses, or teams, START YOUR FREE TRIAL. Full Article
si Relative delay analysis is impacted by pbar By community.cadence.com Published On :: Thu, 23 Nov 2023 21:32:03 GMT Does anyone know how to not include a pbar in a constraint manager analysis? I have some relative delay constraints applied on a group of differential nets. When I analyze the design these all show an error. If I delete the plating bar from the design they are all passing. The plating bar gets generated on the Substrate Geometry / Plating_Bar class. I understand that I could just delete the plating bar to verify the constraint but the issue is when I archive this design I would like it to be clean meaning it is in the final state for manufacturing AND passing all constraints according to design reviews. Anyone have an idea? Thank you! Full Article
si Aligning Components using Offset Mode in Allegro X APD By community.cadence.com Published On :: Tue, 28 Nov 2023 12:49:16 GMT Starting SPB 23.1, in Allegro X PCB Editor and Allegro X Advanced Package Designer, you can align components by using offset mode. Earlier only spacing mode was available. Follow these steps to Align Components using Offset Mode: Set Application Mode to Placement Edit. Drag the components that need to be aligned and right-click and choose Align Components. Now, in the Options tab, you will notice Spacing Section with Equal Offset. You can equally and individually offset the components by using the +/- buttons for increment or decrement. Full Article
si What is Allegro X Advanced Package Designer and why do I not see Allegro Package Designer Plus (APD+) in 23.1? By community.cadence.com Published On :: Fri, 01 Dec 2023 09:46:22 GMT Starting SPB 23.1, Allegro Package Designer Plus (APD+) has been rebranded as Allegro X Advanced Package Designer (Allegro X APD). The splash screen for Allegro X APD will appear as shown below, instead of showing APD+ 2023: For the Windows Start menu in 23.1, it will display as Allegro X APD 2023 instead of APD+ 2023, as shown below 23.1 Start menu In the Product Choices window for 23.1, you will see Allegro X Advanced Package Designer in the place of Allegro Package Designer +, as shown below: 23.1 product title Full Article
si Introducing new 3DX Canvas in Allegro X Advanced Package Designer By community.cadence.com Published On :: Tue, 05 Dec 2023 12:50:25 GMT Have you heard that starting SPB 23.1, Allegro Package Designer Plus (APD+) will be renamed as Allegro X Advanced Package Designer (Allegro X APD)? Allegro X APD offers multiple new features and enhancements on topics like Via Structures, Wirebond, Etchback, Text Wizards, 3D Canvas, and more. This post presents the new 3DX Canvas introduced in SPB 23.1. This can be invoked from Allegro X APD (from the menu item View > 3DX Canvas). Some of the key benefits of the new canvas: This canvas addresses the scale and complexity in large modern package designs. It provides highly efficient visual representation and implementation of packages. The new architecture enables high-performance 3D incremental updates by utilizing GPU for fast rendering. Real-time 3D incremental updates are supported, which means that the 3D view is in sync with all changes to the database. The new canvas provides 3D visualization support for packaging objects such as wire bonds, ball, die bump/pillar geometries, die stacks, etch back, and plating bar. This release also introduces the interactive measurement tool for a 3D view of packages. Once you open 3DX Canvas, press the Alt key and you can select the objects you want to measure. 3DX Canvas provides new 3D DRC Bond Wire Clearances with Real 3D DRC Checks. True 3D DRC in Constraint Manager has been introduced. If you open Constraint Manager, there will be a new worksheet added. Following DRC checks are supported: Wire to Wire Wire to Finger Wire to Shape Wire to Cline Wire to Component Full Article
si How to allow DRCs to the surrounding objects using Etch Back option By community.cadence.com Published On :: Thu, 14 Dec 2023 11:58:54 GMT Starting from SPB23.1, a new option, Allow DRCs to surrounding metal, has been added in the Etch-Back form to allow DRCs to the surrounding objects. form to allow DRCs to the surrounding objects. The Allow DRCs to surrounding metal option lets you see and adjust objects instead of the current behavior, which sacrifices the width of the mask for the trace. When this option is turned off, it maintains the EB mask to another object clearance. When this option is enabled, it keeps the EB mask to the EM trace edge clearance and shows a DRC if the EB mask to another object spacing is out of rule. Full Article
si How to access the Transmission Line Calculator in Allegro X APD By community.cadence.com Published On :: Tue, 02 Jan 2024 17:05:21 GMT Have you ever thought of a handy utility to specify all necessary transmission line parameters to decide upon the stackup? Starting SPB 23.1, a handy feature Transmission Line Calculator, is built into Allegro X Advanced Package Designer (Allegro X APD). This feature will require either an SiP Layout license or can be accessed through SiP Layout Bundle. From the Analyze dropdown menu in the 23.1 Allegro X APD toolbar, you can choose Transmission Line Calculator. You can use this calculator to help decide constraints and stackup for laminate-based PCB or Packages. You can calculate the correct stackup material and width/spacing to meet any requirements that may be later entered in a constraint. This is truly a calculated number and not a true field solver. The different types of calculations that the Transmission Line Calculator can provide are Microstrip, Embedded microstrip, Stripline, CPW (Coplanar), FGCPW (frequency-dependent Coplanar), Asymmetric stripline, Coupled microstrip (Differential Pair), Coupled stripline (Differential Pair), and Dual striplines. This feature is important for customers relying on fabricators/spreadsheets to provide this information or need to test a quick spacing/width as per the impedance value. Let us know your comments on this new feature in 23.1 Allegro X APD. Full Article
si Find Routing problem (Route Vision) and quickly to fix these problems By community.cadence.com Published On :: Mon, 18 Mar 2024 03:45:55 GMT The vision manager is good tool for routing check. but no quickly or effective tool to fix or optimize this problems to be optimized. For example, parallel Gap less than preferred, min seg/Arc length,uncoupled diff-pair segs,and so on. I only know use spread between voids to fix the non-optimized segs. in fact it is inefficient. the parallel gap less than preferred is only to slice evry trace, its inefficient. If i set the paraller gap less than 50um, Is there any tool to quickly fix these problems(gap less than 50um)? For other problems,i can use tool to quickly fix the min seg/Arc length,uncoupled diff pair segs,accoding to select by polygon or select by windows. Full Article
si How to avoid adding degassing holes to a particular shape By community.cadence.com Published On :: Wed, 10 Apr 2024 11:47:20 GMT In a package design, designers often need to perform degassing. This is typically done at the end of the design process before sending the design to the manufacturer. Degassing is a process where you perforate power planes, voltage planes, and filled shapes in your design. Degassing holes let the gas escape from beneath the metal during manufacturing of the substrate. The perforations or holes for degassing are generally small, having a specified size and shape, and are spaced regularly across the surface of the plane. If the degassing process is not done, it may result in the formation of gas bubbles under the metal, which may cause the surface of the metal to become uneven. After you degas the design, it is recommended to perform electrical verification. Allegro X APD has degassing features that allow users to automate the process and place holes in the entire shape. In today’s topic, we will talk about how to avoid adding degassing holes on a particular shape. Sometimes, a designer may need to avoid adding degassing holes to a particular shape on a layer. All other shapes on the layer can have degassing holes but not this shape. Using the Layer Based Degassing Parameters option, the designer can set the degassing parameters for all shapes on the layer. Now, the designer would like to defer adding degassing holes for this particular shape. You may wonder if there is an easy way to achieve this. We will now see how this can be done with the tool. Once the degassing parameters are set, performing Display > Element on any of the shapes on that layer will show the degassing parameters set. You can apply the Degas_Not_Allowed property to a shape to specify that degassing should not be performed on this shape, even if the degassing requirements are met. Select the shape and add the property as shown below. Switch to Shape Edit application mode (Setup > Application mode > Shape Edit) and window-select all shapes on the layer. Then, right-click and select Deferred Degassing > All Off. Now, all shapes on the layer will have degassing holes except for the shape which has the Degas_Not_Allowed property attached to it. Full Article
si Creating Power and Ground rings in Allegro X Package Designer Plus By community.cadence.com Published On :: Fri, 31 May 2024 13:19:12 GMT Power and Ground rings are exposed rings of metal surrounding a die that supply power/ground to the die and create a low-impedance path for the current flow. These rings ensure stable power distribution and reduce noise. Allegro X Package Designer Plus has a utility called Power/Ground Ring Generator which lets you define and place one or more shapes in the form of a ring around a die. To run the PWR/GND Generator Wizard, go to Route > Power/Ground Ring Generator or type "pring wizard" in the APD command window to invoke the Wizard. This Wizard lets you define and place one or more shapes in the form of a ring around a die. The Power/Ground Ring Wizard creates up to 12 rings (shapes) at a time. If you require more rings, you can run the Power/Ground Ring Wizard as many times as needed. This command displays a wizard in which you can specify: The number of rings to be generated The creation of the first ring as a die flag (Die flag is the boundary of the die like the power ring.) If you create a die flag and the first ring is the same net as the flag, you can enter a negative distance to overlap the ring and the die flag. Multiple options for placement of the rings with respect to: Origination point Distance from the edge of the die Distance from the nearest die pin on each die side The reference designator of the die with which the rings will be used The distance between rings The width of each ring The corner types on each ring (arc, chamfer, and right-angle) An assigned net name for each ring A label for each ring The rings are basic in nature. For other shape geometries or split rings, choose Shape > Polygon or Shape > Compose/Decompose Shape from the menu in the design window. Depending on the options selected, the Power/Ground Ring Wizard UI changes, representing how the rings will be created. Verify the Wizard settings to ensure that the rings are created as intended. When the Power/Ground Ring Wizard appears, set the number of rings to 2, accept the other defaults, and click Next. You can set Create first ring as die flag to create a basic die flag. 2. Define Ring 1 and the net associated with it. a) Browse and choose Vss in the Net Names dialog box. b) Click OK. c) Specify the label as VSS. d) Click Next. The first ring should appear in your design. It is associated with the proper net; in this case, VSS. For the second ring, choose the net as Vdd and specify the label as VDD. Click Next. Click Finish in the Result Verification screen to complete the process. The completed rings appear as shown below. Now, when you click on Power and Ground Die Pin and add wirebonds, you will see that the wirebonds are placed directly on the Power and Ground rings. Full Article
si Package Design Integrity Checks By community.cadence.com Published On :: Fri, 09 Aug 2024 10:02:59 GMT When things go wrong with your package design flow, it can sometimes be difficult to understand the cause of the issue. This can be something like a die component is wrongly identified as a BGA, a via stack has an alignment issue, or there are duplicate bondwires. These are just a few examples of issues; there can be many more. When interactive messages and log files do not help determine the problem, the Package Design Integrity Check tool becomes very handy. This feature lets you run integrity checks, which ensures that the database is configured correctly. To invoke the command from Allegro X Advanced Package Designer, use the Tools > Package Design Integrity menu. Or type package integrity at the Command prompt. The Package Design Integrity Checks dialog box includes all categories and checks currently registered for the currently running product. You can enable all these categories and checks or only the one that you want to run. This utility can fix errors automatically (where possible). Errors and warnings are written to the “package_design_check.log” file. The utility can also be extended with your own custom rules based on your specific flows and needs. Full Article
si How to transfer etch/conductor delays from Allegro Package Designer (APD) to pin delays in Allegro PCB Editor By community.cadence.com Published On :: Sun, 10 Nov 2024 23:39:10 GMT The packaging group has finished their design in Allegro Package Designer (APD) and I want to use the etch/conductor delay information from the mcm file in the board design in Allegro PCB Designer. Is there a method to do this? This can be done by exporting the etch/conductor data from APD and importing it as PIN_DELAY information into Allegro PCB Editor. If you are generating a length report for use in Allegro Pin Delay, you should consider changing the APD units to Mils and uncheck the Time Delay Report. In Allegro Package Designer: Select File > Export > Board Level Component. Select HDL for the Output format and select OK. 3. Choose a padstack for use when generating the component and select OK. This will create a file, package_pin_delay.rpt, in the component subdirectory of the current working directory. This file will contain the etch/conductor delay information that can be imported into Allegro. In Allegro PCB Editor: Make sure that the device you want to import delays to is placed in your board design and is visible. Select File > Import > Pin delay. Browse to the component directory and select package_pin_delay.rpt. The browser defaults to look for *.csv files so you will need to change the Files of type to *.* to select the file. You may be prompted with an error message stating that the component cannot be found and you should select one. If so, select the appropriate component. Select Import. Once the import is completed, select Close. Note: It is important that all non-trace shapes have a VOLTAGE property so they will not be processed by the the 2D field solver. You should run Reports > Net Delay Report in APD prior to generating the board-level component. This will display the net name of each net as it is processed. If you miss a VOLTAGE property on a net, the net name will show in the report processing window, and you will know which net needs the property. Full Article
si Maximizing Display Performance with Display Stream Compression (DSC) By community.cadence.com Published On :: Wed, 11 Sep 2024 12:50:00 GMT Display Stream Compression (DSC) is a lossless or near-lossless image compression standard developed by the Video Electronics Standards Association (VESA) for reducing the bandwidth required to transmit high-resolution video and images. DSC compresses video streams in real-time, allowing for higher resolutions, refresh rates, and color depths while minimizing the data load on transmission interfaces such as DisplayPort, HDMI, and embedded display interfaces. Why Is DSC Needed? In the ever-evolving landscape of display technology, the pursuit of higher resolutions and better visual quality is relentless. As display capabilities advance, so do the challenges of managing the immense amounts of data required to drive these high-performance screens. This is where DSC steps in. DSC is designed to address the challenges of transmitting ultra-high-definition content without sacrificing quality or performance. As displays grow in resolution and capability, the amount of data they need to transmit increases exponentially. DSC addresses these issues by compressing video streams in real-time, significantly reducing the bandwidth needed while preserving image quality. DSC Use in End-to-end System DSC Key Features Encoding tools: Modified Median-Adaptive Prediction (MMAP) Block Prediction (BP) Midpoint Prediction (MPP) Indexed color history (ICH) Entropy coding using delta size unit-variable length coding (DSU-VLC) The DSC bitstream and decoding process are designed to facilitate the decoding of 3 pixels/clock in practical hardware decoder implementations. Hardware encoder implementations are possible at 1 pixel/clock. DSC uses an intra-frame, line-based coding algorithm, which results in very low latency for encoding and decoding. DSC encoding algorithm Compression can be done to a fractional bpp. The compressed bits per pixel ranges from 6 to 63.9375. For validation/compliance certification of DSC compression and decompression engines, cyclic redundancy checks (CRCs) are used to verify the correctness of the bitstream and the reconstructed image. DSC supports more color bit depths, including 8, 10, 12, 14, and 16 bpc. DSC supports RGB and YCbCr input format, supporting 4:4:4, 4:2:2, and 4:2:0 sampling. Maximum decompressor-supported bits/pixel values are as listed in the Maximum Allowed Bit Rate column in the table below DP DSC Source device shall program the bit rate within the range of Minimum Allowed Bit Rate column in the table: Summary Display Stream Compression (DSC) is a technology used in DisplayPort to enable higher resolutions and refresh rates while maintaining high image quality. It works by compressing the video data transmitted from the source to the display, effectively reducing the bandwidth required. DSC uses a visually lossless algorithm, meaning that the compression is designed to be imperceptible to the human eye, preserving the fidelity of the image. This technology allows for smoother, more detailed visuals at higher resolutions, such as 4K or 8K, without requiring a significant increase in data bandwidth. More Information Cadence has a very mature Verification IP solution. Verification over many different configurations can be used with DisplayPort 2.1 and DisplayPort 1.4 designs, so you can choose the best version for your specific needs. The DisplayPort VIP provides a full-stack solution for Sink and Source devices with a comprehensive coverage model, protocol checkers, and an extensive test suite. More details are available on the DisplayPort Verification IP product page, Simulation VIP pages. If you have any queries, feel free to contact us at talk_to_vip_expert@cadence.com Full Article resolution DisplayPort Display Stream Compression lossless
si Use Verisium SimAI to Accelerate Verification Closure with Big Compute Savings By community.cadence.com Published On :: Fri, 13 Sep 2024 07:30:00 GMT Verisium SimAI App harnesses the power of machine learning technology with the Cadence Xcelium Logic Simulator - the ultimate breakthrough in accelerating verification closure. It builds models from regressions run in the Xcelium simulator, enabling the generation of new regressions with specific targets. The Verisium SimAI app also features cousin bug hunting, a unique capability that uses information from difficult-to-hit failures to expose cousin bugs. With these advanced machine learning techniques, Verisium SimAI offers the potential for a significant boost in productivity, promising an exciting future for our users. Figure 1: Regression compression and coverage maximization with Verisium SimAI What can I do with Verisium SimAI? You can exercise different use cases with Verisium SimAI as per your requirements. For some users, the goal might be regression compression and improving coverage regain. Coverage maximization and hitting new bins could be another goal. Other users may be interested in exposing hard-to-hit failures, bug hunting for difficult to find issues. Verisium SimAI allows users to take on any of these challenges to achieve the desired results. Let's go into some more details of these use cases and scenarios where using SimAI can have a big positive impact. Using SimAI for Regression Compression and Coverage Regain Unlock up to 10X compute savings with SimAI! Verisium SimAI can be used to compress regressions and regain coverage. This flow involves setting up your regression environment for SimAI, running your random regressions with coverage and randomization data followed by training, and finally, synthesizing and running the SimAI-generated compressed regressions. The synthesized regression may prune tests that do not help meet the goal and add more runs for the most relevant tests, as well as add run-specific constraints. This flow can also be used to target specific areas like areas involving a high code churn or high complexity. You can check out the details of this flow with illustrative examples in the following Rapid Adoption Kits (RAK) available on the Cadence Learning and Support Portal (Cadence customer credentials needed): Using SimAI with vManager (For Regression Compression and Coverage Regain) (RAK) Using SimAI with a Generic Runner (For Regression Compression and Coverage Regain) (RAK) Using SimAI for Coverage Maximization and Targeting coverage holes Reduce your Functional Coverage Holes by up to 40% using SimAI! Verisium SimAI can be used for iterative coverage maximization. This is most effective when regressions are largely saturated, and SimAI will explicitly try to hit uncovered bins, which may be hard-to-hit (but not impossible) coverage holes. This is achieved using iterative learning technology where with each iteration, SimAI does some exploration and determines how well it performed. This technique can also be used for bug hunting by using holes as targets of interest. See more details on the Cadence Learning and Support Portal: Using SimAI for Coverage Maximization - vManager flow (RAK) Using SimAI for Coverage Maximization - Generic Runner Flow (RAK) Using SimAI for Bug Hunting Discover and fix bugs faster using SimAI! Verisium SimAI has a new bug hunting flow which can be used to target the goal of exposing hard-to-hit failure conditions. This is achieved using an iterative framework and by targeting failures or rare bins. The goal to target failures is best exercised when the overall failure rate is typically low (below 5%). Iterative learning can be used to improve the ability to target specific areas. Use the SimAI bug hunting use case to target rare events, low hit coverage bins, and low hit failure signatures. See more details on the Cadence Learning and Support Portal: Using SimAI for Bug Hunting with vManager (RAK) Using SimAI for Bug Hunting – Generic runner flow (RAK) Unlock compute savings, reduce your functional coverage holes, and discover and fix bugs faster with the power of machine learning technology now enabled by Verisium SimAI! Please keep visiting https://support.cadence.com/raks to download new RAKs as they become available. Please note that you will need the Cadence customer credentials to log on to the Cadence Online Support https://support.cadence.com/, your 24/7 partner for getting help in resolving issues related to Cadence software or learning Cadence tools and technologies. Happy Learning! Full Article Functional Verification verisium machine learning SimAI AI
si Training Insights – Palladium Emulation Course for Beginner and Advanced Users By community.cadence.com Published On :: Fri, 13 Sep 2024 23:00:00 GMT The Cadence Palladium Emulation Platform is a hardware system that implements the design, accelerating its execution and verification. Itoffers the highest performance and fastest bring-up times for pre-silicon validation of billion-gate designs, using a custom processor built by Cadence. This Palladium Introduction course is based on the Palladium 23.03 ISR4 version and covers the following modules: Introduction Palladium flow Running a design on the Palladium system This course starts with an “Introduction” module that explains Palladium and other verification platforms to show its place in the big picture. It also compares Palladium with Protium and simulation and discusses its usage and limitations. The “Palladium Flow” module includes two stages at a high level, which are Compile and Run. Then, it covers these stages in detail. First, it covers the ICE compile flow and IXCOM compile flow steps in detail. Then it explains Run, which is common for both ICE and IXCOM modes. The third module, “Running Design on the Palladium System,” covers all the items required for running your design on the Palladium system, including: Software stack requirements Basic concepts required to understand the flow Compute machine requirements In addition, this course contains labs for both the ICE and IXCOM flows with detailed steps to exercise the features provided by the Palladium system. The lab explains a practical example of multiple counters and exercising their signals for force, monitor, and deposit features, along with frequency calculation using a real-time clock. The course is available on the Cadence support page: There is also a Digital Badge available. You will find the Badge exam opportunity when you enroll in the Online training or after you have taken the training as "live" training. For questions and inquiries, or issues with registration, reach out to us at Cadence Training. Want to stay up to date on webinars and courses? Subscribe to Cadence Training emails. To view our complete training offerings, visit the Cadence Training website. Related Training Bytes Palladium: What Are Verification Platforms Palladium: What Is Processor Based Emulation Palladium: Comparing Emulation (Z2) and Prototyping (X2) Palladium: What Are ICE and IXCOM Compile Flow Palladium: How to Process a Design to Run on Palladium Palladium: XCOM Compile Flow (TB+RTL to Palladium Database) Palladium: ICE Compile Flow (RTL to Palladium Database) Palladium: Legacy ICE Compile Flow Palladium: Cadence Software Releases for Palladium and Protium Flow Palladium: Setting of PATHs for Using Palladium Palladium: Z2 Hardware Structure (Blade and Boards) Palladium: What Is Sourceless and Loadless nets Palladium: Design Clocks Palladium: Step Count and Step Clock Palladium: Steps for Running the Design on Palladium Z2 Related Courses Verilog Language and Application Training SystemVerilog for Design and Verification Xcelium Simulator Related Blogs Training Insights – A New Free Online Course on the Protium System for Beginner and Advanced Users It’s the Digital Era; Why Not Showcase Your Brand Through a Digital Badge! Training Insights - Free Online Courses on Cadence Learning and Support Portal Full Article digital badge live training blended training Palladium Training Insights online training
si Cadence Verisium Debug Introduces Verisium Debug App Store By community.cadence.com Published On :: Mon, 14 Oct 2024 05:58:00 GMT Verisium Debug, the Cadence unified debug platform, offers a variety of debugging capabilities, including RTL debug, UVM testbench debug, UPF debug, and DMS debug. From IP to SoC level debug, the user can take the benefits of the rich debugging features to reduce the time for debug. Not only the common and advanced debug features, Verisium Debug also provides Python-based interface API, which enables capabilities allowing users to customize functions with Verisium Debug Python API to access from design, waveform databases and add functions to Verisium Debug’s GUI for visualization purposes. With Verisium Debug’s Python API, users can turn repetitive works into automatic programs or reduce efforts to create in-house utilities with well-established infrastructure from Verisium Debug. Here is an example of how the user uses Python API to create a customized function. Users can write a Python program to extract signals in a specific design scope and report the values of the extracted signals. From Fig 1., you can understand the procedure of the traversal steps. Import Python library in Verisium Debug package. Setup the database for traversal. Search the scope with the hierarchy information in the design DB. Query the signal list and the values of the signals. Print out the results. Fig 1. Procedure of Verisium Debug Python Program The result from the Verisium Debug Python App can be used for post-process design checking or fed into other utilities in the design flow. The concept is very straightforward. With Verisium Debug and the Python API environment enabled, you can easily query any information that is stored in the databases of Verisium Debug. The result can be outputted in text format, or you can also use the API to display the results back to Verisium Debug’s GUI. The Verisium Debug Python API is an important capability and resource for Verisium Debug users. To make Verisium Debug Python API easier to access, from Verisium Debug 24.10 release, Verisium Debug introduced the new Verisium Debug Python App Store. Fig 2. Verisium Debug App Store The Python App Store includes ready-to-use Python App examples with the availabilities of original source code documents, which help the user to understand how to start writing an app that fits their use case. Fig 3. Example apps in Verisium Debug App Store The Verisium Debug Python App Store can also be used by a team as an app management system. App creators can share the developed apps across teams within their companies. The in-house created apps will become easy to manage, and engineers can easily access the apps from the central location, which makes it possible for users to see the updated available Verisium Debug Apps from the Verisium Debug App Store. Check the following videos for more information about Verisium Debug Python API: Customize Verisium Debug with Python API Verisium Debug Customized Apps with Python API Full Article Python debug customize Verisium Debug
si Unveiling the Capabilities of Verisium Manager for Optimized Operations By community.cadence.com Published On :: Thu, 17 Oct 2024 06:13:06 GMT In SoC development, the verification cycle is a crucial phase that ensures products meet their specifications and function correctly. However, the complexity of modern SoC projects, with their constant data flow, multiple validation teams working in parallel, and tight schedules, presents significant challenges. This article explores these challenges and introduces Verisium Manager as a solution that embodies the 'One Tool Fits All' concept. This means that Verisium Manager is designed to handle all aspects of the verification process for SoC development, from planning to coverage analysis to regression testing, thereby addressing the complex needs of SoC verification. The Hurdles in Traditional Validation Cycles A typical validation process involves planning, coverage analysis, and regression testing. This complexity is compounded by using separate tools for each activity, leading to multiple control environments, APIs, and databases, not to mention the array of tool owners. Such fragmentation results in constant data transfer and translation between systems, from the planning tool to the coverage analysis tool and then to the regression testing tool. This continuous movement of data causes delays, system instability, poor user experiences, and, ultimately, a dip in the quality of the validation process. The use of multiple platforms leads to inefficiency and reduced productivity. What's needed is a unified system that can streamline the workflow, simplify the verification process, and enhance its effectiveness. Envisioning the Ideal Solution: Verisium Manager The cornerstone of an efficient validation cycle is integration and simplicity. The ideal solution is a singular platform that consolidates planning, coverage analysis, and regression management into one smooth, unified process. Verisium Manager emerges as this much-needed solution, encompassing all the functionalities necessary to streamline the validation process. Its comprehensive nature instills confidence in its ability to handle all aspects of the verification cycle. It can be fully customized to address and enforce any validation methodology and can facilitate smooth integration into any customer environment. Features that stand out in Verisium Manager include: Unified Workflow: It acts as a single cockpit from which all activities are orchestrated, ensuring the validation teams' work is uninterrupted and seamlessly integrated. Customization and Integration: Verisium Manager supports customizing test-plan structures and mapping results per project, ensuring a perfect fit for various project requirements. Its ability to smoothly integrate into the project's environment and compute platforms is unparalleled. Support for Continuous Updates and Migration: The tool accommodates constant updates to project data and supports the migration of legacy data, ensuring that no historical data is lost in the transition to a new system. Addressing Project-Specific Needs Verisium Manager recognizes diversity in different projects and offers project-specific solutions, including: Enforcing Project Test-Plan Structures and Attributes: It supports and enforces each project's unique test-plan structure and mapping guidelines. Unified Data Views and Measurements: Verisium Manager promotes a unified view of data across all teams and enforces unified measurements, ensuring consistency and clarity in the validation process. Enabling Project-Specific Actions and Integrations: The tool is designed to support project-specific actions directly from its graphical user interface and allows for smooth integration with in-house databases, dashboards, and the project execution stack. Verisium Manager is the epitome of efficiency in software/hardware validation. Its differentiating features, such as support for customization, unified data view, and comprehensive coverage and regression requirements, make it an indispensable tool for any validation team looking to elevate their workflow. Full Article validation vPlan verisium Verisium Manager vManager verification
si Training Webinar: Protium X2: Using Save/Restart for Debugging By community.cadence.com Published On :: Wed, 23 Oct 2024 07:19:00 GMT Cadence Protium prototyping platforms rapidly bring up an SoC or system prototype and provide a pre-silicon platform for early software development, SoC verification, system validation, and hardware regressions. In this Training W ebinar, we will explore debugging using Save/Restart on Protium X2 . This feature saves execution time and lets you focus on actual debugging. The system state can be saved before the bug appears and restartS directly from there without spending time in initial execution. We’ll cover key concepts and applications, explore Save/Restart performance metrics, and provide examples to help you understand the concepts. Agenda: The key concepts of debugging using save/restart Capabilities, limitations, and performance metrics Some examples to enable and use save/restart on the Protium X2 system Date and Time Thursday, November 7, 2024 07:00 PST San Jose / 10:00 EST New York / 15:00 GMT London / 16:00 CET Munich / 17:00 IST Jerusalem / 20:30 IST Bangalore / 23:00 CST Beijing REGISTER To register for this webinar, sign in with your Cadence Support account (email ID and password) to log in to the Learning and Support System*. Then select Enrol to register for the session. Once registered, you’ll receive a confirmation email containing all login details. A quick reminder: If you haven’t received a registration confirmation within 1 hour of registering, please check your spam folder and ensure your pop-up blockers are off and cookies are enabled. For issues with registration or other inquiries, reach out to eur_training_webinars@cadence.com . Want to See More Webinars? You can find recordings of all past webinars here Like This Topic? Take this opportunity and register for the free online course related to this webinar topic: Protium Introduction Training The course includes slides with audio and downloadable lab exercises designed to emphasize the topics covered in the lecture. There is also a Digital Badge available for the training. Want to share this and other great Cadence learning opportunities with someone else? Tell them to subscribe . Hungry for Training? Choose the Cadence Training Menu that’s right for you. To view our complete training offerings, visit the Cadence Training website . Related Courses Protium Introduction Training Course | Cadence Palladium Introduction Training Course | Cadence Related Blogs Training Insights – A New Free Online Course on the Protium System for Beginner and Advanced Users Training Insights – Palladium Emulation Course for Beginner and Advanced Users Related Training Bytes Protium Flow Steps for Running Design on Protium System ICE and IXCOM mode comparison ICE compile flow IXCOM compile flow PATH settings for using Protium System Please see the course learning maps for a visual representation of courses and course relationships. Regional course catalogs may be viewed here Full Article
si Sigrity and Systems Analysis 2024.1 Release Now Available By community.cadence.com Published On :: Wed, 23 Oct 2024 11:16:00 GMT The Sigrity and Systems Analysis (SIGRITY/SYSANLS) 2024.1 release is now available for download at Cadence Downloads . For the list of CCRs fixed in this release, see the README.txt file in the installation hierarchy. SIGRITY/SYSANLS 2024.1 Here is a list of some of the key updates in the SIGRITY/SYSANLS 2024.1 release: For more details about these and all the other new and enhanced features introduced in this release , refer to the following document: Sigrity Release Overview and Common Tools What's New . Supported Platforms and Operating Systems Platform and Architecture X86_64 (lnx86) Windows (64 bit) Development OS RHEL 8.4 Windows Server 2022 Supported OS RHEL 8.4 and above RHEL 9 SLES 15 (SP3 and above) Windows 10 Windows 11 Windows Server 2019 Windows Server 2022 Systems Analysis 2024.1 Clarity 3D Solver Clarity 3D Layout Structure Optimization Workflow : A new workflow, Clarity 3D Layout Structure Optimization Workflow, has been added to Clarity 3D Layout. This workflow integrates Allegro PCB Designer with Clarity 3D Layout for high-speed structure optimization. Component Geometry Model Editor : The new Clarity 3D Layout editor lets you set up ports, solder bumps/balls/extrusions, and two-terminal and multi-terminal circuits using a single GUI. Coaxial Open Port Option Added to Port Setup Wizard : The Coaxial Open Port option lets you create ports for each target net pin and reference net pin in Clarity 3D Layout. The nearby reference net pins are then used as a reference for each target net pin, reducing the number of ports needed. In addition, the ports of unused reference net pins are shorted to the ground. Parametric Import Option Added : Two new options, Parametric Import and Default Import , have been added to the Tools – Launch Clarity3DWorkbench menu. The Parametric Import option lets you import the design along with its parameters into Clarity 3D Workbench. The Default Import option lets you ignore the parameters when importing the design into Clarity 3D Workbench. Component Library Added to Generate 3D Components : Clarity 3D Workbench now includes a new component library that lets you use predefined 3D component templates or add existing 3D components to create 3D designs and simulation models. AI-Powered Content Search Capability : Clarity 3D Workbench and Clarity 3D Transient Solver now support an AI-powered capability for searching the content and displaying relevant information. Expression Parser to Handle Undefined Parameters : Clarity 3D Workbench and Clarity 3D Transient Solver support writing expressions or equations containing undefined parameters in the Property window to describe a simulation variable. The improved expression parser automatically detects any undefined parameter in an expression and prompts users to specify their values. This capability lets you define a model or a simulation variable as a function instead of specifying static values. For detailed information, refer to Clarity 3D Layout User Guide and Clarity 3D Workbench User Guide on the Cadence Support portal. Clarity 3D Transient Solver Mesh Processing Improved to Simulate Large Use Cases : Clarity 3D Transient Solver leverages a new meshing algorithm that enhances overall mesh processing, specifically for large designs and use cases. The new algorithm dramatically improves the mesh quality, minimum mesh size, number of mesh key points, total mesh number, and memory usage. Advanced Material Processing Engine : The material processing capability has been enhanced to handle thin outer metal, which previously resulted in open and short issues in some designs. In addition, the material processing engine offers improved mode extraction for particular use cases, including waveguide and coaxial designs. Characteristic Impedance Calculation Improved : The solver engine now uses a new analytical calculation method to calculate the characteristic impedance of coaxial designs with improved accuracy. For detailed information, refer to Clarity 3D Transient Solver User Guide on the Cadence Support portal. Celsius Studio Celsius Interchange Model Introduced : Celsius Studio now supports Celsius Interchange Model generation, which is a 3D model derived from detailed physical designs for multi-physics and multi-scale analysis. This Celsius Interchange Model file ( .cim ) serves as a design information carrier across Celsius Studio tools, enabling a variety of simulation and analysis tasks . Celsius 3DIC Thermal Workflow Improvements : The Thermal Simulation workflows in Celsius 3DIC have been significantly enhanced. Key improvements include: Advanced Power Setup with Transient Power Function and Multi Mode options Enhanced GUI for the Mesh Control and Simulation Control tabs Improved meshing capabilities Celsius Interchange Model ( .cim ) generation Material library support for block and connections Import of Heat Transfer Coefficients (HTCs) from a CFD file Bump creation through the Bump Array Wizard Layer Stackup CSV file generation Celsius 3DIC Warpage and Stress Workflow Enhancements : The Warpage and Stress workflow in Celsius 3DIC has undergone significant improvements, such as: Improved multi-stage warpage simulation flow for 3DIC packaging process Enhanced GUI for the Mesh Control , Simulation Control , and Stress Boundary Conditions tabs Support for large deformations and temperature profiles Bump creation through the Bump Array Wizard New constraint types Enhanced meshing capabilities Geometric Nonlinearity Support in Warpage and Stress Analysis : Large deformation analysis is now supported in warpage and stress studies. This study uses the Total Lagrangian approach to model geometric nonlinearities in simulation, which allows accurate prediction of final deformations. Thermal Network Extraction and Simulation : In the solid extraction flow in Celsius 3D Workbench, you can now import area-based power map files to create terminals. For designs with multiple blocks, this capability allows automatic terminal creation, eliminating the need to manually create and set up 2D sheets individually. Additionally, thermal throttling feature is now supported in Celsius Thermal Network. This makes it ideal for preliminary analyses or when a quick estimation is required. It runs significantly faster than 3D models, allowing for quicker iterations and more efficient decision-making. For detailed information, refer to the Celsius 3DIC User Guide , Celsius Layout User Guide and Celsius 3D Workbench User Guide on the Cadence Support portal. Sigrity 2024.1 Layout Workbench Improved Graphical User Interface : A new option, Use Improved User Interface , has been added in the Themes page of the Options dialog box in the Layout Workbench GUI. In the new GUI, the toolbar icons and menu options have been enhanced and rearranged. For detailed information, refer to Layout Workbench User Guide on the Cadence Support portal. Broadband SPICE Python Script Integration with Command Line for Simulation Tasks : Broadband SPICE lets you run Python scripts directly from the command line for performing simulation and analysis. The new -py and *.py options make it easier to integrate Python scripts with the command-line operations. This update streamlines the process of automating and customizing simulations from the command line, which makes your simulation tasks faster and easier. For detailed information, refer to Broadband SPICE User Guide on the Cadence Support portal. Celsius PowerDC Block Power Assignment (BPA) File Format Support : PowerDC now supports the BPA file format. Similar to the Pin Location (PLOC) file, the BPA file is a current assignment file that defines the total current of a power grid cell, which is then equally distributed across the power pins within the cell. This provides better control over the power distribution. Ability to Run Multiple IR Drop Cases Sequentially : You can now select multiple result sinks from the Current-Limited IR Drop flow and run IR Drop analysis for them sequentially. PowerDC automatically runs the simulations in sequence after you select multiple result sinks. This saves time by automating the process. Enhanced Support for Mixed Conversion Devices : PowerDC now supports mixing different conversion devices, such as switching regulators and linear regulators within a single DC-DC/LDO instance. This enhancement offers added flexibility by letting you configure each instance in your design according to your specific needs. For detailed information, refer to PowerDC User Guide on the Cadence Support portal. PowerSI Monte Carlo Method Added : A new option, Monte Carlo Method, has been added in the Optimality dialog box. This option lets you create multiple random samples to depict variations in the input parameters and assess the output. Channel Check Optimization Added : The S-Parameter Assessment workflow in PowerSI now supports Channel Check Optimization . It uses the AI-driven Multidisciplinary Analysis and Optimization (MDAO) technology that lets you optimize your design quickly and efficiently with no accuracy loss. For detailed information, refer to PowerSI User Guide on the Cadence Support portal. SPEEDEM Multi-threaded Matrix Solver Support Added : The Enable Multi-threaded Matrix Solver check box has been added that lets you accelerate the simulation speed for high-performance computing. This check box provides two options, Automatic and Always, to include the -lhpc4 or -lhpc5 parameter, respectively, in the SPEEDEM Simulator (SPDSIM) before running the simulation. For detailed information, refer to the SPEEDEM User Guide on the Cadence Support portal. XtractIM Options to Skip or Calculate Special DC-R Simulation Results : The Skip DC_R of Each Path and Only DC_R of Each Path options have been added to the Setup menu. Skip DC_R of Each Path : This option lets you skip the calculation of the DC-R result during the simulation. Other results, such as SPICE T-model , RL_C of Each Path , Coupling of Each Path , etc., are still calculated. Only DC_R of Each Path : This option lets you calculate the DC-R result only during the simulation. Other results, such as SPICE T-model , RL_C of Each Path , Coupling of Each Path , etc., are not calculated. Color Assignment for Pin Matching : The MCP Auto Connection window includes the Display Color Editor , which lets you assign a color for pin matching. It helps you easily identify the matching pins in the left and right sections of the MCP Auto Connection window . Ability to Save Simulations Individually : The Save each simulation individually check box has been added to the Tools - Options - Edit Options - Simulation (Basic) - General form. Select this check box and run the simulation to generate a simulation results folder containing files and logs with a timestamp for each simulation. Reuse of SPD File Settings : The XtractIM setup check box lets you import an existing package setup to reuse the configurations and settings from one .spd file to another. For detailed information, refer to XtractIM User Guide on the Cadence Support portal. Documentation Enhancements Cloud-Based Help System Upgraded The cloud-based help system, Doc Assistant, has been upgraded to version 24.10, which contains several new features and enhancements over the previous 2.03 version. Sigrity Release Team Please send your questions and feedback to sigrity_rmt@cadence.com . Full Article
si Ascent: Training Insights: DE-HDL Libraries in Allegro X System Capture By community.cadence.com Published On :: Thu, 24 Oct 2024 05:46:00 GMT Allegro X System Capture offers a complete ecosystem for library development. This post introduces the latest DE-HDL Library Development using System Capture course in which you learn how to create different library objects. As a librarian, you often work with numerous libraries. Your tasks include creating or modifying symbols for libraries. To use Allegro X System Capture to create a library, you can follow the steps in the following flowchart: Let’s go through each step in detail. Setting the CDS_SITE Variable Before you start library development for a new project, set the CDS_SITE system environment variable. This step is required to access libraries and other configuration files. Creating a Project in Allegro X System Capture The next step is to create a project in Allegro X System Capture. Adding a Library to the Project Symbol development consists of creating symbol graphics, electrical data, and properties used by different tools in the PCB design flow. To add a library to a project, first create a library in the Libraries pane of the Project e xplorer. Creating Library Symbols The library development process supports the creation of various types of symbols. Creating a Symbol with Multiple Views You can generate multiple views of the same symbol using the Duplicate command. For example, a discrete symbol, such as a resistor, can have multiple views, as shown in the following image: Creating a Split Symbol For advanced designs, you often need to create library symbols and break them into multiple sections to support the design process. When a symbol shows all the logical pins in the physical package, it is called a single-section or flat symbol. Many large ICs have several pins and the symbols need to fit on a single schematic page. One workaround is to use vector pin names on a symbol to reduce its size, although manufacturers prefer schematics that show each pin. You can divide these high-pin count devices into smaller pieces, where each piece is a separate version of the part. Such parts are referred to as split parts or multi-section symbols. For multi-section symbols, you can create two types of split parts—symmetrical and asymmetrical. Symmetrical Split Symbols A symmetrical split symbol has only one symbol graphic, which holds two or more identical logic symbols, each with its own unique physical pin numbers. You can create a symmetrical split symbol using the Duplicate Section icon in the canvas window. Each symbol section contains the same set of pins but different pin numbers, as shown in the following image: Asymmetrical Split Symbols An asymmetrical split symbol is a symbol whose physical package contains one or more unique schematic symbols. You can create an asymmetrical split symbol by clicking the New Section icon in the canvas window. Asymmetrical symbols have a unique set of logical pins, as shown in the following image: Creating Symbols Using the Spreadsheet Interface To simplify the development of large symbols, Allegro X System Capture has a Spreadsheet Interface . You can copy from a spreadsheet into the interface. This saves time and helps minimize errors introduced by manual entry. In conclusion, the DE-HDL library development using Allegro X System Capture course involves several critical steps and supports various symbol creation techniques. This course helps librarians create and modify symbols effortlessly and deepens their understanding of library development within Allegro X System Capture. To learn more about this topic, enroll in the DE-HDL Library Development using Allegro X System Capture course on the Cadence Support portal . Click the training byte link now or visit Cadence Support and search for training bytes under Video Library. If you find the post useful and want to delve deeper into training details, enroll in the following online training course for lab instructions and a downloadable design: DE-HDL Library Development using Allegro X System Capture (Online). You can become Cadence Certified once you complete the course. Cadence Training Services now offers free Digital Badges for all popular online training courses. These badges indicate proficiency in a certain technology or skill and give you a way to validate your expertise to managers and potential employers. You can add the digital badge to your email signature or any social media channels, such as Facebook or LinkedIn, to highlight your expertise. To find out more, see the blog post Take a Cadence Masterclass and Get a Badge . You might also be interested in the training Learning Map that guides you through recommended course flows as well as tool experience and knowledge-level training modules. To find information on how to get an account on the Cadence Learning and Support portal, see here . SUBSCRIBE to the Cadence training newsletter to be updated about upcoming training, webinars, and much more. If you have any questions about courses, schedules, online training, blended/virtual live training, or public, or onsite live training, reach out to us at Cadence Training . Full Article
si Training Webinar: Fast Track RTL Debug with the Verisium Debug Python App Store By community.cadence.com Published On :: Thu, 24 Oct 2024 09:55:00 GMT As a verification engineer, you’re surely looking for ways to automate the debugging process. Have you developed your own scripts to ease specific debugging steps that tools don’t offer? Working with scripts locally and manually is challenging—so is reusing and organizing them. What if there was a way to create your own app with the required functionality and register it with the tool? The answer to that question is “Yes!” The Verisium Debug Python App Store lets you instantly add additional features and capabilities to your Verisium Debug Application using Python Apps that interact with Verisium Debug via the Python API. Join me, Principal Education Application Engineer Bhairava Prasad, for this Training Webinar and discover the Verisium Debug Python App Store. The app store allows you to search for existing apps, learn about them, install or uninstall them, and even customize existing apps. Date and Time Wednesday, November 20, 2024 07:00 PST San Jose / 10:00 EST New York / 15:00 GMT London / 16:00 CET Munich / 17:00 IST Jerusalem / 20:30 IST Bangalore / 23:00 CST Beijing REGISTER To register for this webinar, sign in with your Cadence Support account (email ID and password) to log in to the Learning and Support System*. Then select Enroll to register for the session. Once registered, you’ll receive a confirmation email containing all login details. A quick reminder: If you haven’t received a registration confirmation within one hour of registering, please check your spam folder and ensure your pop-up blockers are off and cookies are enabled. For issues with registration or other inquiries, reach out to eur_training_webinars@cadence.com . Like this topic? Take this opportunity and register for the free online course related to this webinar topic: Verisium Debug Training To view our complete training offerings, visit the Cadence Training website Want to share this and other great Cadence learning opportunities with someone else? Tell them to subscribe . Hungry for Training? Choose the Cadence Training Menu that’s right for you. Related Courses Xcelium Simulator Training Course | Cadence Related Blogs Unveiling the Capabilities of Verisium Manager for Optimized Operations - Verification - Cadence Blogs - Cadence Community Verisium SimAI: SoC Verification with Unprecedented Coverage Maximization - Corporate News - Cadence Blogs - Cadence Community Verisium SimAI: Maximizing Coverage, Minimizing Bugs, Unlocking Peak Throughput - Verification - Cadence Blogs - Cadence Community Related Training Bytes Introducing Verisium Debug (Video) (cadence.com) Introduction to UVM Debug of Verisium Debug (Video) (cadence.com) Verisium Debug Customized Apps with Python API Please see course learning maps a visual representation of courses and course relationships. Regional course catalogs may be viewed here . *If you don’t have a Cadence Support account, go to Cadence User Registration and complete the requested information. Or visit Registration Help . Full Article
si Women in CFD with Vassiliki Moschou By community.cadence.com Published On :: Tue, 29 Oct 2024 00:00:00 GMT In this edition of the Women in CFD series, we feature Vassiliki Moschou, aka Vicky, senior supervisor at BETA CAE, now part of Cadence. Her career journey serves as an inspiration for anyone who believes that studying in one field and working in another is less desirable. Vicky demonstrates how knowledge gained in one discipline can be effectively applied in another, often providing fresh and intriguing insights. Join us in this conversation to learn more about Vicky, her career path, and her advice for those considering a career in a field different from their studies. Tell us something about yourself. I've lived all my 41 years in the vibrant city of Thessaloniki, Greece. I’m married to my high school sweetheart, and together we're raising two incredible daughters who are 11 and almost 8 years old. These girls are absolutely the center of my world, and every day with them feels like a gift. My entire life, including where I have built my career and family, is deeply rooted in Thessaloniki. It's not just where I am from; it's a big part of who I am. Could you share your educational background and how you first became interested in computational fluid dynamics (CFD)? In 2001, I started my academic journey at the Computer Science Department of Aristotle University of Thessaloniki , where I focused on studying signal processing and artificial intelligence. This field fascinated me, and I pursued a master’s degree in the same area to further my expertise. Concurrently, I was involved in European research programs on signal/audio processing and machine learning methodologies. It became evident early on that my career would revolve around software engineering, a path I was fully prepared to pursue. However, everything took a turn when I joined BETA CAE in 2008. It was there that I was introduced to the field of CFD, which was completely unfamiliar to me at the time. This presented a new challenge that I eagerly accepted. I received support from all my colleagues, but I was primarily mentored by two brilliant and dedicated engineers, Michael Giannakidis and Vangelis Skaperdas , who introduced me to the world of CFD. Over time, what was once an unknown territory for me has become my passion. My journey through CFD has been a significant part of my professional growth. In my 30s, I pursued and completed a PhD in systems physiology in collaboration with the Medical and Computer Science Departments of Aristotle University of Thessaloniki. Our research focused on examining the EGF-activated MAPK pathway (often associated with cancer) from the perspective of complex self-organizing systems. Using graph theory, signal processing, and machine learning, we extracted information from the signals observed in this dynamic, distributed biological system to target novel drug development. What are the different positions you have held within the company, and what responsibilities do you currently hold? I started my career as a junior engineer at BETA CAE (now Cadence). It was a role that plunged me deep into the fascinating worlds of software and CFD, a crucial time of my career filled with learning and growth. My hard work and dedication didn't go unnoticed, and after a few years, I was promoted. That promotion was the first step on a career ladder that I've been ascending ever since. Now, I'm in the position of a senior supervisor. Though my job now involves a wide range of managerial tasks, I'm still deeply passionate about the technical side of things. I love writing code and working through the complexities of our projects, merging my leadership responsibilities with my enthusiasm for the technical facets of our work. What would you be doing if not working in CFD? Had my career taken a different trajectory, I envision myself in a role deeply embedded in human connections—perhaps as the owner of a quaint bakery or a cozy hotel, a teacher, or even venturing into human resources. There's a certain allure in careers that foster direct engagement with people, creating experiences and memories. In fact, I have an inherent desire to connect and communicate with people, aspects that are fundamentally different yet equally fulfilling as my current career. What are some of your favorite pastimes and hobbies? Family is at the center of my leisure time. We love taking short trips to the village, hanging out with our friends, and connecting. Our activities range from solving puzzles in escape rooms to passionately cheering at basketball games, especially since my older daughter has taken up the sport. But beyond these activities, being a mother is my most cherished pastime. The moments I share with my daughters, the lessons we learn together, and the joy we find in everyday adventures are what I hold dear. What are your thoughts on women in technical fields? The landscape for women in technical fields is gradually transforming, a change I observe with optimism and hope. In Greece, the increasing presence of women in engineering is a positive sign. In Cadence specifically, the representation of women is high compared to other tech companies. As a mother to two daughters, I am acutely aware of the importance of being a role model to them. It's crucial to demonstrate that aspirations should not be limited by gender and that the technical field is as much a place for women as it is for men. Encouraging this mindset is vital for the progress of our society and for the empowerment of the next generation of women in technology. Advice from Vicky for those considering a career in a field different from their studies: Learning is a lifelong journey. Embrace every challenge as an opportunity to grow and learn something new. Stay curious and adaptable to navigate the ever-evolving landscape of technology. Being labeled an 'expert' is less important than the willingness to learn and adapt. Finding happiness in your work can lead to natural success. In the epoch of artificial intelligence, train the most powerful neural network: your brain. At Cadence, our commitment is towards establishing an inclusive workspace where women feel empowered to achieve their professional best. Anchored by our One Cadence—One Team ethos, we take pride in fostering a community where our driven, devoted, and skilled women employees excel, making exceptional contributions to our customers, communities, and one another. Are you just like Vicky, venturing beyond your academic background, and considering a career in a different domain while being surrounded by an encouraging and uplifting atmosphere? Then, you won't want to miss exploring career opportunities at Cadence—celebrated as 'A Great Place for Women to Work'! Click the button below to discover your next adventure! Learn more about Cadence Fem.AI Alliance, which aims to lead the gender equity revolution in the AI workforce. Full Article
si Simulating Multiple Cadence DSPs as Multiple x86 Processes By community.cadence.com Published On :: Thu, 31 Oct 2024 21:00:00 GMT An increasing number of embedded designs are multi-core systems. At the pre-silicon stage, customers use a simulation platform for architectural exploration and software development. Architects want to quantify the impact of the number of cores, local memory size, system memory latency, and interconnect bandwidth. Software teams wish to have a practical development platform that is not excruciatingly slow. This blog shares a recipe for simulating Cadence DSPs in a multi-core design as separate x86 processes. The purpose is to reduce simulation time for customers with simple multi-core models where cores interact only through shared memory. It uses a Vision Q8 multi-core design to share details of the XTSC (Xtensa SystemC) model, software application, commands, and debugging. Note the details shared are for a simulation run on an Ubuntu Linux machine, Xtensa tools version RI-2023.11, and core configuration XRC_Vision_Q8_AODP. Complex vs. Simple Model A complex model (Figure 1) is one in which one core accesses another core's local memory, or there are inter-core interrupts. Simulation runs as a single x86 process. Figure 1 A simple model (Figure 2) is one in which cores interact only through shared memory. Shared memory is a file on the Linux host. Figure 2 Multiple x86 Process – Simple Model As depicted in Figure 3, each core is simulated using a separate x86 process. Cores use barriers and locks placed in shared memory for synchronization and data sharing. Locks are placed in un-cached memory that support exclusive subordinate access. The XTSC memory component, xtsc_memory , supports exclusive subordinate access. Cadence software tools provide a way to define memory regions as cached or uncached. For more details, please refer to Cadence's Linker Support Packages (LSP) Reference Manual for Xtensa SDK . Figure 3 Demo Application A demo application performs a 128x128 matrix multiplication. Work is divided so that each of the 32 cores computes four rows of the 128x128 result matrix. Cores use barriers to synchronize. Cadence tools provide APIs for synchronization and locking. Please refer to Cadence's System Software Reference Manual for more details. Note without a higher-level lock, prints from all cores will get mixed up. Therefore, in the demo application, only core#0 prints. SystemC Simulation The following sample command runs the 32-core simulation in such a way that each core is a separate x86 process. It runs a matrix multiplication application in cycle-accurate mode with logging off. >>for (( N=0; N >xtsc-run -define=NumCores=32 -define=N=0 -define=LOGGING=0 -define=TURBO=0 --xxdebug=sync -i=coreNN.inc -sc_main=sc_main.cpp -no_sim Modify the sc_main.cpp generated for core#0 to create a generic sc_main.cpp to build a single simulation executable for all cores. The Xtensa SDK includes Makefile targets to build custom simulations. By default, the simulation runs in cycle-accurate mode. Fast functional (Turbo) mode provides additional improvement over cycle-accurate mode. Note that the fast functional mode has an initialization phase, so gains are visible only when running an application with longer run times. Simulation Wall Time The table captures simulation wall time improvements. Note that these are illustrative wall time numbers. Actual wall time numbers and improvements will depend on your host machine's performance and your application. Simulation Type Wall Time Comments Single process cycle accurate mode 17500 seconds Multiple x86 processes cycle accurate mode 1385 seconds 12X faster than single process Multiple x86 processes turbo mode 415 seconds 3X faster than cycle accurate mode Debugging Attaching a debugger to each of the individual x86 core simulation processes is possible. Synchronous stop/resume and core-specific breakpoints are also supported. Configure the Xplorer launch configuration and attach it to the running simulation processes as follows (Figure 5) Figure 5 Figure 6 shows 32 debug contexts. Figure 6 As shown, using Xtensa SDK, you can create a multi-core simulation that functions as a practical software development platform. Please visit the Cadence support site for information on building and simulating multi-core Xtensa systems. Full Article
si Randomization considerations for PCIe Integrity and Data Encryption Verification Challenges By community.cadence.com Published On :: Fri, 08 Nov 2024 05:00:00 GMT Peripheral Component Interconnect Express (PCIe) is a high-speed interface standard widely used for connecting processors, memory, and peripherals. With the increasing reliance on PCIe to handle sensitive data and critical high-speed data transfer, ensuring data integrity and encryption during verification is the most essential goal. As we know, in the field of verification, randomization is a key technique that drives robust PCIe verification. It introduces unpredictability to simulate real-world conditions and uncover hidden bugs from the design. This blog examines the significance of randomization in PCIe IDE verification, focusing on how it ensures data integrity and encryption reliability, while also highlighting the unique challenges it presents. For more relevant details and understanding on PCIe IDE you can refer to Introducing PCIe's Integrity and Data Encryption Feature . The Importance of Data Integrity and Data Encryption in PCIe Devices Data Integrity : Ensures that the transmitted data arrives unchanged from source to destination. Even minor corruption in data packets can compromise system reliability, making integrity a critical aspect of PCIe verification. Data Encryption : Protects sensitive data from unauthorized access during transmission. Encryption in PCIe follows a standard to secure information while operating at high speeds. Maintaining both data integrity and data encryption at PCIe’s high-speed data transfer rate of 64GT/s in PCIe 6.0 and 128GT/s in PCIe 7.0 is essential for all end point devices. However, validating these mechanisms requires comprehensive testing and verification methodologies, which is where randomization plays a very crucial role. You can refer to Why IDE Security Technology for PCIe and CXL? for more details on this. Randomization in PCIe Verification Randomization refers to the generation of test scenarios with unpredictable inputs and conditions to expose corner cases. In PCIe verification, this technique helps us to ensure that all possible behaviors are tested, including rare or unexpected situations that could cause data corruption or encryption failures that may cause serious hindrances later. So, for PCIe IDE verification, we are considering the randomization that helps us verify behavior more efficiently. Randomization for Data Integrity Verification Here are some approaches of randomized verifications that mimic real-world traffic conditions, uncovering subtle integrity issues that might not surface in normal verification methods. 1. Randomized Packet Injection: This technique randomized data packets and injected into the communication stream between devices. Here we Inject random, malformed, or out-of-sequence packets into the PCIe link and mix valid and invalid IDE-encrypted packets to check the system’s ability to detect and reject unauthorized or invalid packets. Checking if encryption/decryption occurs correctly across packets. On verifying, we check if the system logs proper errors or alerts when encountering invalid packets. It ensures coverage of different data paths and robust protocol check. This technique helps assess the resilience of the IDE feature in PCIe in below terms: (i) Data corruption: Detecting if the system can maintain data integrity. (ii) Encryption failures: Testing the robustness of the encryption under random data injection. (iii) Packet ordering errors: Ensuring reordering does not affect data delivery. 2. Random Errors and Fault Injection: It involves simulating random bit flips, PCRC errors, or protocol violations to help validate the robustness of error detection and correction mechanisms of PCIe. These techniques help assess how well the PCIe IDE implementation: (i) Detects and responds to unexpected errors. (ii) Maintains secure communication under stress. (iii) Follows the PCIe error recovery and reporting mechanisms (AER – Advanced Error Reporting). (iv) Ensures encryption and decryption states stay synchronized across endpoints. 3. Traffic Pattern Randomization: Randomizing the sequence, size, and timing of data packets helps test how the device maintains data integrity under heavy, unpredictable traffic loads. Randomization for Data Encryption Verification Encryption adds complexity to verification, as encrypted data streams are not readable for traditional checks. Randomization becomes essential to test how encryption behaves under different scenarios. Randomization in data encryption verification ensures that vulnerabilities, such as key reuse or predictable patterns, are identified and mitigated. 1. Random Encryption Keys and Payloads: Randomly varying keys and payloads help validate the correctness of encryption without hardcoding assumptions. This ensures that encryption logic behaves correctly across all possible inputs. 2. Randomized Initialization Vectors (IVs): Many encryption protocols require a unique IV for each transaction. Randomized IVs ensure that encryption does not repeat patterns. To understand the IDE Key management flow, we can follow the below diagram that illustrates a detailed example key programming flow using the IDE_KM protocol. Figure 1: IDE_KM Example As Figure 1 shows, the functionality of the IDE_KM protocol involves Start of IDE_KM Session, Device Capability Discovery, Key Request from the Host, Key Programming to PCIe Device, and Key Acknowledgment. First, the Host starts the IDE_KM session by detecting the presence of the PCIe devices; if the device supports the IDE protocol, the system continues with the key programming process. Then a query occurs to discover the device’s encryption capabilities; it ensures whether the device supports dynamic key updates or static keys. Then the host sends a request to the Key Management Entity to obtain a key suitable for the devices. Once the key is obtained, the host programs the key into the IDE Controller on the PCIe endpoint. Both the host and the device now share the same key to encrypt and authenticate traffic. The device acknowledges that it has received and successfully installed the encryption key and the acknowledgment message is sent back to the host. Once both the host and the PCIe endpoint are configured with the key, a secure communication channel is established. From this point, all data transmitted over the PCIe link is encrypted to maintain confidentiality and integrity. IDE_KM plays a crucial role in distributing keys in a secure manner and maintaining encryption and integrity for PCIe transactions. This key programming flow ensures that a secure communication channel is established between the host and the PCIe device. Hence, the Randomized key approach ensures that the encryption does not repeat patterns. 3. Randomization PHE: Partial Header Encryption (PHE) is an additional mechanism added to Integrity and Data Encryption (IDE) in PCIe 6.0. PHE validation using a variety of traffic; incorporating randomization in APIs provided for validating PHE feature can add more robust Encryption to the data. Partial Header Encryption in Integrity and Data Encryption for PCIe has more detailed information on this. Figure 2: High-Level Flow for Partial Header Encryption 4. Randomization on IDE Address Association Register values: IDE Address Association Register 1/2/3 are supposed to be configured considering the memory address range of IDE partner ports. The fields of IDE address registers are split multiple values such as Memory Base Lower, Memory Limit Lower, Memory Base Upper, and Memory Limit Upper. IDE implementation can have multiple register blocks considering addresses with 32 or 64, different registers sizes, 0-255 selective streams, 0-15 address blocks, etc. This Randomization verification can help verify all the corner cases. Please refer to Figure 2. Figure 3: IDE Address Association Register 5. Random Faults During Encryption: Injecting random faults (e.g., dropped packets or timing mismatches) ensures the system can handle disruptions and prevent data leakage. Challenges of IDE Randomization and its Solution Randomization introduces a vast number of scenarios, making it computationally intensive to simulate every possibility. Constrained randomization limits random inputs to valid ranges while still covering edge cases. Again, using coverage-driven verification to ensure critical scenarios are tested without excessive redundancy. Verifying encrypted data with random inputs increases complexity. Encryption masks data, making it hard to verify outputs without compromising security. Here we can implement various IDE checks on the IDE callback to analyze encrypted traffic without decrypting it. Randomization can trigger unexpected failures, which are often difficult to reproduce. By using seed-based randomization, a specific seed generates a repeatable random sequence. This helps in reproducing and analyzing the behavior more precisely. Conclusion Randomization is a powerful technique in PCIe verification, ensuring robust validation of both data integrity and data encryption. It helps us to uncover subtle bugs and edge cases that a non-randomized testing might miss. In Cadence PCIe VIP, we support full-fledged IDE Verification with rigorous randomized verification that ensures data integrity. Robust and reliable encryption mechanisms ensure secure and efficient data communication. However, randomization also brings various challenges, and to overcome them we adopt a combination of constrained randomization, seed-based testing, and coverage-driven verification. As PCIe continues to evolve with higher speeds and focuses on high security demands, our Cadence PCIe VIP ensures it is in line with industry demand and verify high-performance systems that safeguard data in real-world environments with excellence. For more information, you can refer to Verification of Integrity and Data Encryption(IDE) for PCIe Devices and Industry's First Adopted VIP for PCIe 7.0 . More Information: For more info on how Cadence PCIe Verification IP and TripleCheck VIP enables users to confidently verify IDE, see our VIP for PCI Express , VIP for Compute Express Link for and TripleCheck for PCI Express For more information on PCIe in general, and on the various PCI standards, see the PCI-SIG website . Full Article
si Using troubles about LT4417 By community.cadence.com Published On :: Mon, 26 Jun 2017 09:07:10 GMT Hello~ As the following circuit shows, VCC+5V_USB is the 4th power source, connecting the output of power management of diode.There are 3 5V input in the input port of LTC4417. It’s normal when VCC+5V_USB prodive power with other circuit. However, if I cup VCC+5V_FIRST,VCC+5V_SECOND,VCC+5V_THIRD, 5V voltage will occurred in the VCC+5V_FIRST,VCC+5V_SECOND,VCC+5V_THIRD. The LTC4417 PDF Is this phenomance normal ? Please kindly give me some advice ! Thanks. Full Article
si Using oscillograph waveform file CSV as the Pspice simulation signal source By community.cadence.com Published On :: Tue, 20 Nov 2018 06:28:04 GMT hi, I save the waveform file of the oscilloscope as CSV file format. Now, I need to use this waveform file as the source of the low-pass filter . I searched and read the PSPICE help documents, and did not find any methods. How to realize it? Are there any reference documents or examples? Thanks! Full Article
si Matlab cannot open Pspice, to prompt orCEFSimpleUI.exe that it has stopped working! By community.cadence.com Published On :: Thu, 09 Apr 2020 12:08:58 GMT Cadence_SPB_17.4-2019 + Matlab R2019a 请参考本文档中的步骤进行操作 1,打开BJT_AMP.opj 2,设置Matlab路径 3,打开BJT_AMP_SLPS.slx 4,打开后,设置PSpiceBlock,出现或CEFSimpleUI.exe停止工作 5,添加模块 6,相同 7,打开pspsim.slx 8,相同 9,打开C: Cadence Cadence_SPB_17.4-2019 tools bin orCEFSimpleUI.exe和orCEFSimple.exe 10,相同 我想问一下如何解决,非常感谢! Full Article
si How to design enhancement mode eGaN (EPC8002) switch in cadence By community.cadence.com Published On :: Tue, 06 Aug 2024 08:44:04 GMT Hi, I need to design EPC8002 eGaN switch in cadence. Can someone provide me step by step guide on hoe to add EPC8002 into my cadence. I am working on BCD180. Thank you Ihsan Full Article
si Can't request Tensilica SDK - Error 500 By community.cadence.com Published On :: Tue, 22 Oct 2024 14:25:12 GMT Hi, I'm looking to download Tensilica SDK for evaluation, but I can't get past the registration form: Full Article
si Virtuoso Studio: Simplified Review of Operating Point Parameter Values By community.cadence.com Published On :: Wed, 29 May 2024 06:23:00 GMT Read on to know about the Operating Point Parameters Summary window that gives you a one-stop view of the categorized and tabulated details on all operating point parameters in your design. This window improves your review cycle with its many benefits.(read more) Full Article Analog Design Environment Operating point summary window Virtuoso Studio Operating Point Information Virtuoso Analog Design Environment Custom IC Design Virtuoso ADE Explorer Virtuoso ADE Assembler IC23.1
si How Do You Ensure the Reliability of Your Design in Virtuoso Studio? By community.cadence.com Published On :: Mon, 03 Jun 2024 06:56:00 GMT Designers have long recognized the need to analyze the reliability of ICs. Two commonly used approaches for performing reliability analysis include calculating the change in device degradation and relying on safe operating checks in circuit simulators. With the advent of the ever-increasing use of ICs in mission-critical applications, the need for reliable reliability analysis has become of paramount importance. Over the years, you have been using reliability analysis in Virtuoso ADE Assembler and Virtuoso ADE Explorer to measure and review aging effects, such as device characteristic degradations, model parameter changes, self-heating effects, and so on. Reliability analysis can be performed using two modes: Spectre native and RelXpert. The reliability analysis analyzes the effect of time on circuit performance drift and predicts the reliability of designs in terms of performance. In ADE Assembler, you can run the reliability simulation for fresh test (when time is zero), stress test (to generate degradation data), and aged test (at specific intervals, such as one year, three years, or 10 years). In the stress test, extreme environmental conditions are used to stress devices before aging analysis. The following figure shows the reliability simulation flow. The Reliability Options form has the following four tabs: Basic: Enables you to specify analysis type, aging options, start and stop time of reliability simulation, and options related to device masking, degradation ratio, and lifetime calculation. Modeling: Enables you to choose the modeling type you want to use during reliability simulation. Degradation: Enables you to specify the options to print device and subcircuit degradation information into a .bt0 file. Output: Enables you to specify the degradation reports to be generated and methods to filter degradation results in the reports. While the Basic and the Output tabs are used by design engineers, the Modeling and the Degradation tabs are primarily used by model developers. Reviewing degradation reports in text or XML formats can be a tiresome exercise because degradation data can be large and can contain a large number of instances due to advanced technology nodes and post-layout simulations. For you to work effectively and interactively with these reports, the new reliability report is based on the SQLite database, which adds the benefit of improved performance and capabilities of sorting and filtering reliability data using SQLite operators. As they say, watching this in action might help you more than reading about it, so please take a look at our Training Bytes video channel, which offers many helpful videos on how to run Reliability Analysis in Virtuoso Studio. All the related videos are linked together in a channel so that you can easily access and watch as many as you like. Reliability Analysis in Virtuoso Studio Want to Learn More? For lab instructions and a downloadable design, enroll for the online training courses of your interest on Reliability Analysis in Virtuoso Studio vIC23.1 (Online) Training is also available as "Blended" or "live" class. Digital Badge Available You can become Cadence Certified once you complete the course (s) and share your knowledge and certifications on social media channels. Go straight to the course exam at the Learning and Support Portal. Note: Some of the above links are accessible only to Cadence customers who have a valid login ID for the Cadence Learning and Support Portal. Do You Have Access to the Cadence Support Portal? If not, follow the steps below to create your account. On the Cadence Support portal, select Register Now and provide the requested information on the Registration page. You will need an email address and host ID in order to sign up. If you need help with registration, contact support@cadence.com. To stay up-to-date with the latest news and information about Cadence training and webinars, subscribe to the Cadence Training emails. If you have questions about courses, schedules, online, public, or live onsite training, reach out to us at Cadence Training. Related Resources Training Bytes (Videos) Virtuoso ADE Explorer Graphical User Interface What is the need for Reliability Analysis? (Video) Blogs Come Join Us and Learn from the Cadence Training Offerings It’s the Digital Era; Why Not Showcase Your Brand Through a Digital Badge! Online Course Reliability Analysis in Virtuoso Studio vIC23.1 (Online) About Knowledge Booster Training Bytes Knowledge Booster Training Bytes is an online journal that relays information about Cadence Training videos, online courses, and upcoming webinars that are available in the Learning section of the Cadence Learning and Support portal. This blog category brings you direct links to these videos, courses, and other related material on a regular basis. Niyati Singh On behalf of the Cadence Training team Full Article blended blended training relxpert Reliability Report learning training reliability options Cadence training digital badges training bytes Virtuoso Cadence certified Virtuoso Video Diary reliability analysis Custom IC Design online training Custom IC reliability
si Start Your Engines: Optimizing Mixed-Signal Simulation Efficiency By community.cadence.com Published On :: Wed, 05 Jun 2024 20:18:00 GMT During a mixed-signal simulation, the analog engine usually dominates the simulation time and resources. If you need to run only the analog engine in several windows, or if you would like to to run multiple tests of the same circuit with different stimuli or test pattern, then you need to run the simulation multiple times. View this blog to know more about the the two advanced technologies that Spectre AMS Designer provides to help you improve the efficiency of your mixed-signal designs and to increase the simulation speed.(read more) Full Article AMS mixed-signal methodology AMS Designer Start Your Engines AMS simulation
si Virtuoso Studio: How Do You Name Simulation Histories in Virtuoso ADE Assembler? By community.cadence.com Published On :: Fri, 07 Jun 2024 12:16:00 GMT This blog describes an efficient way to name the histories saved by the simulation runs in Virtuoso ADE Assembler.(read more) Full Article Virtuoso Analog Design Environment Custom IC Virtuoso ADE Assembler ADE Assembler IC23.1 Virtuoso IC23.1
si Start Your Engines: Create and Insert Connect Modules for Mixed-Signal Verification By community.cadence.com Published On :: Tue, 11 Jun 2024 16:17:00 GMT Read this blog to know how you can easily create and insert connect modules using Spectre AMS Designer with the Verilog-AMS standard language defined by Accellera. (read more) Full Article AMS AMS Designer Mixed-Signal AMS simulation mixed-signal design AMS Verification mixed-signal verification