l

Generative Feature Replay with Orthogonal Weight Modification for Continual Learning. (arXiv:2005.03490v1 [cs.LG])

The ability of intelligent agents to learn and remember multiple tasks sequentially is crucial to achieving artificial general intelligence. Many continual learning (CL) methods have been proposed to overcome catastrophic forgetting. Catastrophic forgetting notoriously impedes the sequential learning of neural networks as the data of previous tasks are unavailable. In this paper we focus on class incremental learning, a challenging CL scenario, in which classes of each task are disjoint and task identity is unknown during test. For this scenario, generative replay is an effective strategy which generates and replays pseudo data for previous tasks to alleviate catastrophic forgetting. However, it is not trivial to learn a generative model continually for relatively complex data. Based on recently proposed orthogonal weight modification (OWM) algorithm which can keep previously learned input-output mappings invariant approximately when learning new tasks, we propose to directly generate and replay feature. Empirical results on image and text datasets show our method can improve OWM consistently by a significant margin while conventional generative replay always results in a negative effect. Our method also beats a state-of-the-art generative replay method and is competitive with a strong baseline based on real data storage.




l

A stochastic user-operator assignment game for microtransit service evaluation: A case study of Kussbus in Luxembourg. (arXiv:2005.03465v1 [physics.soc-ph])

This paper proposes a stochastic variant of the stable matching model from Rasulkhani and Chow [1] which allows microtransit operators to evaluate their operation policy and resource allocations. The proposed model takes into account the stochastic nature of users' travel utility perception, resulting in a probabilistic stable operation cost allocation outcome to design ticket price and ridership forecasting. We applied the model for the operation policy evaluation of a microtransit service in Luxembourg and its border area. The methodology for the model parameters estimation and calibration is developed. The results provide useful insights for the operator and the government to improve the ridership of the service.




l

Transfer Learning for sEMG-based Hand Gesture Classification using Deep Learning in a Master-Slave Architecture. (arXiv:2005.03460v1 [eess.SP])

Recent advancements in diagnostic learning and development of gesture-based human machine interfaces have driven surface electromyography (sEMG) towards significant importance. Analysis of hand gestures requires an accurate assessment of sEMG signals. The proposed work presents a novel sequential master-slave architecture consisting of deep neural networks (DNNs) for classification of signs from the Indian sign language using signals recorded from multiple sEMG channels. The performance of the master-slave network is augmented by leveraging additional synthetic feature data generated by long short term memory networks. Performance of the proposed network is compared to that of a conventional DNN prior to and after the addition of synthetic data. Up to 14% improvement is observed in the conventional DNN and up to 9% improvement in master-slave network on addition of synthetic data with an average accuracy value of 93.5% asserting the suitability of the proposed approach.




l

Deep learning of physical laws from scarce data. (arXiv:2005.03448v1 [cs.LG])

Harnessing data to discover the underlying governing laws or equations that describe the behavior of complex physical systems can significantly advance our modeling, simulation and understanding of such systems in various science and engineering disciplines. Recent advances in sparse identification show encouraging success in distilling closed-form governing equations from data for a wide range of nonlinear dynamical systems. However, the fundamental bottleneck of this approach lies in the robustness and scalability with respect to data scarcity and noise. This work introduces a novel physics-informed deep learning framework to discover governing partial differential equations (PDEs) from scarce and noisy data for nonlinear spatiotemporal systems. In particular, this approach seamlessly integrates the strengths of deep neural networks for rich representation learning, automatic differentiation and sparse regression to approximate the solution of system variables, compute essential derivatives, as well as identify the key derivative terms and parameters that form the structure and explicit expression of the PDEs. The efficacy and robustness of this method are demonstrated on discovering a variety of PDE systems with different levels of data scarcity and noise. The resulting computational framework shows the potential for closed-form model discovery in practical applications where large and accurate datasets are intractable to capture.




l

Feature Selection Methods for Uplift Modeling. (arXiv:2005.03447v1 [cs.LG])

Uplift modeling is a predictive modeling technique that estimates the user-level incremental effect of a treatment using machine learning models. It is often used for targeting promotions and advertisements, as well as for the personalization of product offerings. In these applications, there are often hundreds of features available to build such models. Keeping all the features in a model can be costly and inefficient. Feature selection is an essential step in the modeling process for multiple reasons: improving the estimation accuracy by eliminating irrelevant features, accelerating model training and prediction speed, reducing the monitoring and maintenance workload for feature data pipeline, and providing better model interpretation and diagnostics capability. However, feature selection methods for uplift modeling have been rarely discussed in the literature. Although there are various feature selection methods for standard machine learning models, we will demonstrate that those methods are sub-optimal for solving the feature selection problem for uplift modeling. To address this problem, we introduce a set of feature selection methods designed specifically for uplift modeling, including both filter methods and embedded methods. To evaluate the effectiveness of the proposed feature selection methods, we use different uplift models and measure the accuracy of each model with a different number of selected features. We use both synthetic and real data to conduct these experiments. We also implemented the proposed filter methods in an open source Python package (CausalML).




l

Interpreting Deep Models through the Lens of Data. (arXiv:2005.03442v1 [cs.LG])

Identification of input data points relevant for the classifier (i.e. serve as the support vector) has recently spurred the interest of researchers for both interpretability as well as dataset debugging. This paper presents an in-depth analysis of the methods which attempt to identify the influence of these data points on the resulting classifier. To quantify the quality of the influence, we curated a set of experiments where we debugged and pruned the dataset based on the influence information obtained from different methods. To do so, we provided the classifier with mislabeled examples that hampered the overall performance. Since the classifier is a combination of both the data and the model, therefore, it is essential to also analyze these influences for the interpretability of deep learning models. Analysis of the results shows that some interpretability methods can detect mislabels better than using a random approach, however, contrary to the claim of these methods, the sample selection based on the training loss showed a superior performance.




l

Curious Hierarchical Actor-Critic Reinforcement Learning. (arXiv:2005.03420v1 [cs.LG])

Hierarchical abstraction and curiosity-driven exploration are two common paradigms in current reinforcement learning approaches to break down difficult problems into a sequence of simpler ones and to overcome reward sparsity. However, there is a lack of approaches that combine these paradigms, and it is currently unknown whether curiosity also helps to perform the hierarchical abstraction. As a novelty and scientific contribution, we tackle this issue and develop a method that combines hierarchical reinforcement learning with curiosity. Herein, we extend a contemporary hierarchical actor-critic approach with a forward model to develop a hierarchical notion of curiosity. We demonstrate in several continuous-space environments that curiosity approximately doubles the learning performance and success rates for most of the investigated benchmarking problems.




l

Relevance Vector Machine with Weakly Informative Hyperprior and Extended Predictive Information Criterion. (arXiv:2005.03419v1 [stat.ML])

In the variational relevance vector machine, the gamma distribution is representative as a hyperprior over the noise precision of automatic relevance determination prior. Instead of the gamma hyperprior, we propose to use the inverse gamma hyperprior with a shape parameter close to zero and a scale parameter not necessary close to zero. This hyperprior is associated with the concept of a weakly informative prior. The effect of this hyperprior is investigated through regression to non-homogeneous data. Because it is difficult to capture the structure of such data with a single kernel function, we apply the multiple kernel method, in which multiple kernel functions with different widths are arranged for input data. We confirm that the degrees of freedom in a model is controlled by adjusting the scale parameter and keeping the shape parameter close to zero. A candidate for selecting the scale parameter is the predictive information criterion. However the estimated model using this criterion seems to cause over-fitting. This is because the multiple kernel method makes the model a situation where the dimension of the model is larger than the data size. To select an appropriate scale parameter even in such a situation, we also propose an extended prediction information criterion. It is confirmed that a multiple kernel relevance vector regression model with good predictive accuracy can be obtained by selecting the scale parameter minimizing extended prediction information criterion.




l

SmartExchange: Trading Higher-cost Memory Storage/Access for Lower-cost Computation. (arXiv:2005.03403v1 [cs.LG])

We present SmartExchange, an algorithm-hardware co-design framework to trade higher-cost memory storage/access for lower-cost computation, for energy-efficient inference of deep neural networks (DNNs). We develop a novel algorithm to enforce a specially favorable DNN weight structure, where each layerwise weight matrix can be stored as the product of a small basis matrix and a large sparse coefficient matrix whose non-zero elements are all power-of-2. To our best knowledge, this algorithm is the first formulation that integrates three mainstream model compression ideas: sparsification or pruning, decomposition, and quantization, into one unified framework. The resulting sparse and readily-quantized DNN thus enjoys greatly reduced energy consumption in data movement as well as weight storage. On top of that, we further design a dedicated accelerator to fully utilize the SmartExchange-enforced weights to improve both energy efficiency and latency performance. Extensive experiments show that 1) on the algorithm level, SmartExchange outperforms state-of-the-art compression techniques, including merely sparsification or pruning, decomposition, and quantization, in various ablation studies based on nine DNN models and four datasets; and 2) on the hardware level, the proposed SmartExchange based accelerator can improve the energy efficiency by up to 6.7$ imes$ and the speedup by up to 19.2$ imes$ over four state-of-the-art DNN accelerators, when benchmarked on seven DNN models (including four standard DNNs, two compact DNN models, and one segmentation model) and three datasets.




l

Distributional Robustness of K-class Estimators and the PULSE. (arXiv:2005.03353v1 [econ.EM])

In causal settings, such as instrumental variable settings, it is well known that estimators based on ordinary least squares (OLS) can yield biased and non-consistent estimates of the causal parameters. This is partially overcome by two-stage least squares (TSLS) estimators. These are, under weak assumptions, consistent but do not have desirable finite sample properties: in many models, for example, they do not have finite moments. The set of K-class estimators can be seen as a non-linear interpolation between OLS and TSLS and are known to have improved finite sample properties. Recently, in causal discovery, invariance properties such as the moment criterion which TSLS estimators leverage have been exploited for causal structure learning: e.g., in cases, where the causal parameter is not identifiable, some structure of the non-zero components may be identified, and coverage guarantees are available. Subsequently, anchor regression has been proposed to trade-off invariance and predictability. The resulting estimator is shown to have optimal predictive performance under bounded shift interventions. In this paper, we show that the concepts of anchor regression and K-class estimators are closely related. Establishing this connection comes with two benefits: (1) It enables us to prove robustness properties for existing K-class estimators when considering distributional shifts. And, (2), we propose a novel estimator in instrumental variable settings by minimizing the mean squared prediction error subject to the constraint that the estimator lies in an asymptotically valid confidence region of the causal parameter. We call this estimator PULSE (p-uncorrelated least squares estimator) and show that it can be computed efficiently, even though the underlying optimization problem is non-convex. We further prove that it is consistent.




l

A Locally Adaptive Interpretable Regression. (arXiv:2005.03350v1 [stat.ML])

Machine learning models with both good predictability and high interpretability are crucial for decision support systems. Linear regression is one of the most interpretable prediction models. However, the linearity in a simple linear regression worsens its predictability. In this work, we introduce a locally adaptive interpretable regression (LoAIR). In LoAIR, a metamodel parameterized by neural networks predicts percentile of a Gaussian distribution for the regression coefficients for a rapid adaptation. Our experimental results on public benchmark datasets show that our model not only achieves comparable or better predictive performance than the other state-of-the-art baselines but also discovers some interesting relationships between input and target variables such as a parabolic relationship between CO2 emissions and Gross National Product (GNP). Therefore, LoAIR is a step towards bridging the gap between econometrics, statistics, and machine learning by improving the predictive ability of linear regression without depreciating its interpretability.




l

Reducing Communication in Graph Neural Network Training. (arXiv:2005.03300v1 [cs.LG])

Graph Neural Networks (GNNs) are powerful and flexible neural networks that use the naturally sparse connectivity information of the data. GNNs represent this connectivity as sparse matrices, which have lower arithmetic intensity and thus higher communication costs compared to dense matrices, making GNNs harder to scale to high concurrencies than convolutional or fully-connected neural networks.

We present a family of parallel algorithms for training GNNs. These algorithms are based on their counterparts in dense and sparse linear algebra, but they had not been previously applied to GNN training. We show that they can asymptotically reduce communication compared to existing parallel GNN training methods. We implement a promising and practical version that is based on 2D sparse-dense matrix multiplication using torch.distributed. Our implementation parallelizes over GPU-equipped clusters. We train GNNs on up to a hundred GPUs on datasets that include a protein network with over a billion edges.




l

CARL: Controllable Agent with Reinforcement Learning for Quadruped Locomotion. (arXiv:2005.03288v1 [cs.LG])

Motion synthesis in a dynamic environment has been a long-standing problem for character animation. Methods using motion capture data tend to scale poorly in complex environments because of their larger capturing and labeling requirement. Physics-based controllers are effective in this regard, albeit less controllable. In this paper, we present CARL, a quadruped agent that can be controlled with high-level directives and react naturally to dynamic environments. Starting with an agent that can imitate individual animation clips, we use Generative Adversarial Networks to adapt high-level controls, such as speed and heading, to action distributions that correspond to the original animations. Further fine-tuning through the deep reinforcement learning enables the agent to recover from unseen external perturbations while producing smooth transitions. It then becomes straightforward to create autonomous agents in dynamic environments by adding navigation modules over the entire process. We evaluate our approach by measuring the agent's ability to follow user control and provide a visual analysis of the generated motion to show its effectiveness.




l

An Empirical Study of Incremental Learning in Neural Network with Noisy Training Set. (arXiv:2005.03266v1 [cs.LG])

The notion of incremental learning is to train an ANN algorithm in stages, as and when newer training data arrives. Incremental learning is becoming widespread in recent times with the advent of deep learning. Noise in the training data reduces the accuracy of the algorithm. In this paper, we make an empirical study of the effect of noise in the training phase. We numerically show that the accuracy of the algorithm is dependent more on the location of the error than the percentage of error. Using Perceptron, Feed Forward Neural Network and Radial Basis Function Neural Network, we show that for the same percentage of error, the accuracy of the algorithm significantly varies with the location of error. Furthermore, our results show that the dependence of the accuracy with the location of error is independent of the algorithm. However, the slope of the degradation curve decreases with more sophisticated algorithms




l

On a computationally-scalable sparse formulation of the multidimensional and non-stationary maximum entropy principle. (arXiv:2005.03253v1 [stat.CO])

Data-driven modelling and computational predictions based on maximum entropy principle (MaxEnt-principle) aim at finding as-simple-as-possible - but not simpler then necessary - models that allow to avoid the data overfitting problem. We derive a multivariate non-parametric and non-stationary formulation of the MaxEnt-principle and show that its solution can be approximated through a numerical maximisation of the sparse constrained optimization problem with regularization. Application of the resulting algorithm to popular financial benchmarks reveals memoryless models allowing for simple and qualitative descriptions of the major stock market indexes data. We compare the obtained MaxEnt-models to the heteroschedastic models from the computational econometrics (GARCH, GARCH-GJR, MS-GARCH, GARCH-PML4) in terms of the model fit, complexity and prediction quality. We compare the resulting model log-likelihoods, the values of the Bayesian Information Criterion, posterior model probabilities, the quality of the data autocorrelation function fits as well as the Value-at-Risk prediction quality. We show that all of the considered seven major financial benchmark time series (DJI, SPX, FTSE, STOXX, SMI, HSI and N225) are better described by conditionally memoryless MaxEnt-models with nonstationary regime-switching than by the common econometric models with finite memory. This analysis also reveals a sparse network of statistically-significant temporal relations for the positive and negative latent variance changes among different markets. The code is provided for open access.




l

Training and Classification using a Restricted Boltzmann Machine on the D-Wave 2000Q. (arXiv:2005.03247v1 [cs.LG])

Restricted Boltzmann Machine (RBM) is an energy based, undirected graphical model. It is commonly used for unsupervised and supervised machine learning. Typically, RBM is trained using contrastive divergence (CD). However, training with CD is slow and does not estimate exact gradient of log-likelihood cost function. In this work, the model expectation of gradient learning for RBM has been calculated using a quantum annealer (D-Wave 2000Q), which is much faster than Markov chain Monte Carlo (MCMC) used in CD. Training and classification results are compared with CD. The classification accuracy results indicate similar performance of both methods. Image reconstruction as well as log-likelihood calculations are used to compare the performance of quantum and classical algorithms for RBM training. It is shown that the samples obtained from quantum annealer can be used to train a RBM on a 64-bit `bars and stripes' data set with classification performance similar to a RBM trained with CD. Though training based on CD showed improved learning performance, training using a quantum annealer eliminates computationally expensive MCMC steps of CD.




l

Fast multivariate empirical cumulative distribution function with connection to kernel density estimation. (arXiv:2005.03246v1 [cs.DS])

This paper revisits the problem of computing empirical cumulative distribution functions (ECDF) efficiently on large, multivariate datasets. Computing an ECDF at one evaluation point requires $mathcal{O}(N)$ operations on a dataset composed of $N$ data points. Therefore, a direct evaluation of ECDFs at $N$ evaluation points requires a quadratic $mathcal{O}(N^2)$ operations, which is prohibitive for large-scale problems. Two fast and exact methods are proposed and compared. The first one is based on fast summation in lexicographical order, with a $mathcal{O}(N{log}N)$ complexity and requires the evaluation points to lie on a regular grid. The second one is based on the divide-and-conquer principle, with a $mathcal{O}(Nlog(N)^{(d-1){vee}1})$ complexity and requires the evaluation points to coincide with the input points. The two fast algorithms are described and detailed in the general $d$-dimensional case, and numerical experiments validate their speed and accuracy. Secondly, the paper establishes a direct connection between cumulative distribution functions and kernel density estimation (KDE) for a large class of kernels. This connection paves the way for fast exact algorithms for multivariate kernel density estimation and kernel regression. Numerical tests with the Laplacian kernel validate the speed and accuracy of the proposed algorithms. A broad range of large-scale multivariate density estimation, cumulative distribution estimation, survival function estimation and regression problems can benefit from the proposed numerical methods.




l

Classification of pediatric pneumonia using chest X-rays by functional regression. (arXiv:2005.03243v1 [stat.AP])

An accurate and prompt diagnosis of pediatric pneumonia is imperative for successful treatment intervention. One approach to diagnose pneumonia cases is using radiographic data. In this article, we propose a novel parsimonious scalar-on-image classification model adopting the ideas of functional data analysis. Our main idea is to treat images as functional measurements and exploit underlying covariance structures to select basis functions; these bases are then used in approximating both image profiles and corresponding regression coefficient. We re-express the regression model into a standard generalized linear model where the functional principal component scores are treated as covariates. We apply the method to (1) classify pneumonia against healthy and viral against bacterial pneumonia patients, and (2) test the null effect about the association between images and responses. Extensive simulation studies show excellent numerical performance in terms of classification, hypothesis testing, and efficient computation.




l

Multi-Label Sampling based on Local Label Imbalance. (arXiv:2005.03240v1 [cs.LG])

Class imbalance is an inherent characteristic of multi-label data that hinders most multi-label learning methods. One efficient and flexible strategy to deal with this problem is to employ sampling techniques before training a multi-label learning model. Although existing multi-label sampling approaches alleviate the global imbalance of multi-label datasets, it is actually the imbalance level within the local neighbourhood of minority class examples that plays a key role in performance degradation. To address this issue, we propose a novel measure to assess the local label imbalance of multi-label datasets, as well as two multi-label sampling approaches based on the local label imbalance, namely MLSOL and MLUL. By considering all informative labels, MLSOL creates more diverse and better labeled synthetic instances for difficult examples, while MLUL eliminates instances that are harmful to their local region. Experimental results on 13 multi-label datasets demonstrate the effectiveness of the proposed measure and sampling approaches for a variety of evaluation metrics, particularly in the case of an ensemble of classifiers trained on repeated samples of the original data.




l

Subdomain Adaptation with Manifolds Discrepancy Alignment. (arXiv:2005.03229v1 [cs.LG])

Reducing domain divergence is a key step in transfer learning problems. Existing works focus on the minimization of global domain divergence. However, two domains may consist of several shared subdomains, and differ from each other in each subdomain. In this paper, we take the local divergence of subdomains into account in transfer. Specifically, we propose to use low-dimensional manifold to represent subdomain, and align the local data distribution discrepancy in each manifold across domains. A Manifold Maximum Mean Discrepancy (M3D) is developed to measure the local distribution discrepancy in each manifold. We then propose a general framework, called Transfer with Manifolds Discrepancy Alignment (TMDA), to couple the discovery of data manifolds with the minimization of M3D. We instantiate TMDA in the subspace learning case considering both the linear and nonlinear mappings. We also instantiate TMDA in the deep learning framework. Extensive experimental studies demonstrate that TMDA is a promising method for various transfer learning tasks.




l

Collective Loss Function for Positive and Unlabeled Learning. (arXiv:2005.03228v1 [cs.LG])

People learn to discriminate between classes without explicit exposure to negative examples. On the contrary, traditional machine learning algorithms often rely on negative examples, otherwise the model would be prone to collapse and always-true predictions. Therefore, it is crucial to design the learning objective which leads the model to converge and to perform predictions unbiasedly without explicit negative signals. In this paper, we propose a Collectively loss function to learn from only Positive and Unlabeled data (cPU). We theoretically elicit the loss function from the setting of PU learning. We perform intensive experiments on the benchmark and real-world datasets. The results show that cPU consistently outperforms the current state-of-the-art PU learning methods.




l

Detecting Latent Communities in Network Formation Models. (arXiv:2005.03226v1 [econ.EM])

This paper proposes a logistic undirected network formation model which allows for assortative matching on observed individual characteristics and the presence of edge-wise fixed effects. We model the coefficients of observed characteristics to have a latent community structure and the edge-wise fixed effects to be of low rank. We propose a multi-step estimation procedure involving nuclear norm regularization, sample splitting, iterative logistic regression and spectral clustering to detect the latent communities. We show that the latent communities can be exactly recovered when the expected degree of the network is of order log n or higher, where n is the number of nodes in the network. The finite sample performance of the new estimation and inference methods is illustrated through both simulated and real datasets.




l

Learning on dynamic statistical manifolds. (arXiv:2005.03223v1 [math.ST])

Hyperbolic balance laws with uncertain (random) parameters and inputs are ubiquitous in science and engineering. Quantification of uncertainty in predictions derived from such laws, and reduction of predictive uncertainty via data assimilation, remain an open challenge. That is due to nonlinearity of governing equations, whose solutions are highly non-Gaussian and often discontinuous. To ameliorate these issues in a computationally efficient way, we use the method of distributions, which here takes the form of a deterministic equation for spatiotemporal evolution of the cumulative distribution function (CDF) of the random system state, as a means of forward uncertainty propagation. Uncertainty reduction is achieved by recasting the standard loss function, i.e., discrepancy between observations and model predictions, in distributional terms. This step exploits the equivalence between minimization of the square error discrepancy and the Kullback-Leibler divergence. The loss function is regularized by adding a Lagrangian constraint enforcing fulfillment of the CDF equation. Minimization is performed sequentially, progressively updating the parameters of the CDF equation as more measurements are assimilated.




l

Deep Learning Framework for Detecting Ground Deformation in the Built Environment using Satellite InSAR data. (arXiv:2005.03221v1 [cs.CV])

The large volumes of Sentinel-1 data produced over Europe are being used to develop pan-national ground motion services. However, simple analysis techniques like thresholding cannot detect and classify complex deformation signals reliably making providing usable information to a broad range of non-expert stakeholders a challenge. Here we explore the applicability of deep learning approaches by adapting a pre-trained convolutional neural network (CNN) to detect deformation in a national-scale velocity field. For our proof-of-concept, we focus on the UK where previously identified deformation is associated with coal-mining, ground water withdrawal, landslides and tunnelling. The sparsity of measurement points and the presence of spike noise make this a challenging application for deep learning networks, which involve calculations of the spatial convolution between images. Moreover, insufficient ground truth data exists to construct a balanced training data set, and the deformation signals are slower and more localised than in previous applications. We propose three enhancement methods to tackle these problems: i) spatial interpolation with modified matrix completion, ii) a synthetic training dataset based on the characteristics of real UK velocity map, and iii) enhanced over-wrapping techniques. Using velocity maps spanning 2015-2019, our framework detects several areas of coal mining subsidence, uplift due to dewatering, slate quarries, landslides and tunnel engineering works. The results demonstrate the potential applicability of the proposed framework to the development of automated ground motion analysis systems.




l

Fractional ridge regression: a fast, interpretable reparameterization of ridge regression. (arXiv:2005.03220v1 [stat.ME])

Ridge regression (RR) is a regularization technique that penalizes the L2-norm of the coefficients in linear regression. One of the challenges of using RR is the need to set a hyperparameter ($alpha$) that controls the amount of regularization. Cross-validation is typically used to select the best $alpha$ from a set of candidates. However, efficient and appropriate selection of $alpha$ can be challenging, particularly where large amounts of data are analyzed. Because the selected $alpha$ depends on the scale of the data and predictors, it is not straightforwardly interpretable. Here, we propose to reparameterize RR in terms of the ratio $gamma$ between the L2-norms of the regularized and unregularized coefficients. This approach, called fractional RR (FRR), has several benefits: the solutions obtained for different $gamma$ are guaranteed to vary, guarding against wasted calculations, and automatically span the relevant range of regularization, avoiding the need for arduous manual exploration. We provide an algorithm to solve FRR, as well as open-source software implementations in Python and MATLAB (https://github.com/nrdg/fracridge). We show that the proposed method is fast and scalable for large-scale data problems, and delivers results that are straightforward to interpret and compare across models and datasets.




l

Efficient Characterization of Dynamic Response Variation Using Multi-Fidelity Data Fusion through Composite Neural Network. (arXiv:2005.03213v1 [stat.ML])

Uncertainties in a structure is inevitable, which generally lead to variation in dynamic response predictions. For a complex structure, brute force Monte Carlo simulation for response variation analysis is infeasible since one single run may already be computationally costly. Data driven meta-modeling approaches have thus been explored to facilitate efficient emulation and statistical inference. The performance of a meta-model hinges upon both the quality and quantity of training dataset. In actual practice, however, high-fidelity data acquired from high-dimensional finite element simulation or experiment are generally scarce, which poses significant challenge to meta-model establishment. In this research, we take advantage of the multi-level response prediction opportunity in structural dynamic analysis, i.e., acquiring rapidly a large amount of low-fidelity data from reduced-order modeling, and acquiring accurately a small amount of high-fidelity data from full-scale finite element analysis. Specifically, we formulate a composite neural network fusion approach that can fully utilize the multi-level, heterogeneous datasets obtained. It implicitly identifies the correlation of the low- and high-fidelity datasets, which yields improved accuracy when compared with the state-of-the-art. Comprehensive investigations using frequency response variation characterization as case example are carried out to demonstrate the performance.




l

Fair Algorithms for Hierarchical Agglomerative Clustering. (arXiv:2005.03197v1 [cs.LG])

Hierarchical Agglomerative Clustering (HAC) algorithms are extensively utilized in modern data science and machine learning, and seek to partition the dataset into clusters while generating a hierarchical relationship between the data samples themselves. HAC algorithms are employed in a number of applications, such as biology, natural language processing, and recommender systems. Thus, it is imperative to ensure that these algorithms are fair-- even if the dataset contains biases against certain protected groups, the cluster outputs generated should not be discriminatory against samples from any of these groups. However, recent work in clustering fairness has mostly focused on center-based clustering algorithms, such as k-median and k-means clustering. Therefore, in this paper, we propose fair algorithms for performing HAC that enforce fairness constraints 1) irrespective of the distance linkage criteria used, 2) generalize to any natural measures of clustering fairness for HAC, 3) work for multiple protected groups, and 4) have competitive running times to vanilla HAC. To the best of our knowledge, this is the first work that studies fairness for HAC algorithms. We also propose an algorithm with lower asymptotic time complexity than HAC algorithms that can rectify existing HAC outputs and make them subsequently fair as a result. Moreover, we carry out extensive experiments on multiple real-world UCI datasets to demonstrate the working of our algorithms.




l

Active Learning with Multiple Kernels. (arXiv:2005.03188v1 [cs.LG])

Online multiple kernel learning (OMKL) has provided an attractive performance in nonlinear function learning tasks. Leveraging a random feature approximation, the major drawback of OMKL, known as the curse of dimensionality, has been recently alleviated. In this paper, we introduce a new research problem, termed (stream-based) active multiple kernel learning (AMKL), in which a learner is allowed to label selected data from an oracle according to a selection criterion. This is necessary in many real-world applications as acquiring true labels is costly or time-consuming. We prove that AMKL achieves an optimal sublinear regret, implying that the proposed selection criterion indeed avoids unuseful label-requests. Furthermore, we propose AMKL with an adaptive kernel selection (AMKL-AKS) in which irrelevant kernels can be excluded from a kernel dictionary 'on the fly'. This approach can improve the efficiency of active learning as well as the accuracy of a function approximation. Via numerical tests with various real datasets, it is demonstrated that AMKL-AKS yields a similar or better performance than the best-known OMKL, with a smaller number of labeled data.




l

Model Reduction and Neural Networks for Parametric PDEs. (arXiv:2005.03180v1 [math.NA])

We develop a general framework for data-driven approximation of input-output maps between infinite-dimensional spaces. The proposed approach is motivated by the recent successes of neural networks and deep learning, in combination with ideas from model reduction. This combination results in a neural network approximation which, in principle, is defined on infinite-dimensional spaces and, in practice, is robust to the dimension of finite-dimensional approximations of these spaces required for computation. For a class of input-output maps, and suitably chosen probability measures on the inputs, we prove convergence of the proposed approximation methodology. Numerically we demonstrate the effectiveness of the method on a class of parametric elliptic PDE problems, showing convergence and robustness of the approximation scheme with respect to the size of the discretization, and compare our method with existing algorithms from the literature.




l

MAZE: Data-Free Model Stealing Attack Using Zeroth-Order Gradient Estimation. (arXiv:2005.03161v1 [stat.ML])

Model Stealing (MS) attacks allow an adversary with black-box access to a Machine Learning model to replicate its functionality, compromising the confidentiality of the model. Such attacks train a clone model by using the predictions of the target model for different inputs. The effectiveness of such attacks relies heavily on the availability of data necessary to query the target model. Existing attacks either assume partial access to the dataset of the target model or availability of an alternate dataset with semantic similarities.

This paper proposes MAZE -- a data-free model stealing attack using zeroth-order gradient estimation. In contrast to prior works, MAZE does not require any data and instead creates synthetic data using a generative model. Inspired by recent works in data-free Knowledge Distillation (KD), we train the generative model using a disagreement objective to produce inputs that maximize disagreement between the clone and the target model. However, unlike the white-box setting of KD, where the gradient information is available, training a generator for model stealing requires performing black-box optimization, as it involves accessing the target model under attack. MAZE relies on zeroth-order gradient estimation to perform this optimization and enables a highly accurate MS attack.

Our evaluation with four datasets shows that MAZE provides a normalized clone accuracy in the range of 0.91x to 0.99x, and outperforms even the recent attacks that rely on partial data (JBDA, clone accuracy 0.13x to 0.69x) and surrogate data (KnockoffNets, clone accuracy 0.52x to 0.97x). We also study an extension of MAZE in the partial-data setting and develop MAZE-PD, which generates synthetic data closer to the target distribution. MAZE-PD further improves the clone accuracy (0.97x to 1.0x) and reduces the query required for the attack by 2x-24x.




l

On the Optimality of Randomization in Experimental Design: How to Randomize for Minimax Variance and Design-Based Inference. (arXiv:2005.03151v1 [stat.ME])

I study the minimax-optimal design for a two-arm controlled experiment where conditional mean outcomes may vary in a given set. When this set is permutation symmetric, the optimal design is complete randomization, and using a single partition (i.e., the design that only randomizes the treatment labels for each side of the partition) has minimax risk larger by a factor of $n-1$. More generally, the optimal design is shown to be the mixed-strategy optimal design (MSOD) of Kallus (2018). Notably, even when the set of conditional mean outcomes has structure (i.e., is not permutation symmetric), being minimax-optimal for variance still requires randomization beyond a single partition. Nonetheless, since this targets precision, it may still not ensure sufficient uniformity in randomization to enable randomization (i.e., design-based) inference by Fisher's exact test to appropriately detect violations of null. I therefore propose the inference-constrained MSOD, which is minimax-optimal among all designs subject to such uniformity constraints. On the way, I discuss Johansson et al. (2020) who recently compared rerandomization of Morgan and Rubin (2012) and the pure-strategy optimal design (PSOD) of Kallus (2018). I point out some errors therein and set straight that randomization is minimax-optimal and that the "no free lunch" theorem and example in Kallus (2018) are correct.




l

Towards Frequency-Based Explanation for Robust CNN. (arXiv:2005.03141v1 [cs.LG])

Current explanation techniques towards a transparent Convolutional Neural Network (CNN) mainly focuses on building connections between the human-understandable input features with models' prediction, overlooking an alternative representation of the input, the frequency components decomposition. In this work, we present an analysis of the connection between the distribution of frequency components in the input dataset and the reasoning process the model learns from the data. We further provide quantification analysis about the contribution of different frequency components toward the model's prediction. We show that the vulnerability of the model against tiny distortions is a result of the model is relying on the high-frequency features, the target features of the adversarial (black and white-box) attackers, to make the prediction. We further show that if the model develops stronger association between the low-frequency component with true labels, the model is more robust, which is the explanation of why adversarially trained models are more robust against tiny distortions.




l

Joint Multi-Dimensional Model for Global and Time-Series Annotations. (arXiv:2005.03117v1 [cs.LG])

Crowdsourcing is a popular approach to collect annotations for unlabeled data instances. It involves collecting a large number of annotations from several, often naive untrained annotators for each data instance which are then combined to estimate the ground truth. Further, annotations for constructs such as affect are often multi-dimensional with annotators rating multiple dimensions, such as valence and arousal, for each instance. Most annotation fusion schemes however ignore this aspect and model each dimension separately. In this work we address this by proposing a generative model for multi-dimensional annotation fusion, which models the dimensions jointly leading to more accurate ground truth estimates. The model we propose is applicable to both global and time series annotation fusion problems and treats the ground truth as a latent variable distorted by the annotators. The model parameters are estimated using the Expectation-Maximization algorithm and we evaluate its performance using synthetic data and real emotion corpora as well as on an artificial task with human annotations




l

Adaptive Invariance for Molecule Property Prediction. (arXiv:2005.03004v1 [q-bio.QM])

Effective property prediction methods can help accelerate the search for COVID-19 antivirals either through accurate in-silico screens or by effectively guiding on-going at-scale experimental efforts. However, existing prediction tools have limited ability to accommodate scarce or fragmented training data currently available. In this paper, we introduce a novel approach to learn predictors that can generalize or extrapolate beyond the heterogeneous data. Our method builds on and extends recently proposed invariant risk minimization, adaptively forcing the predictor to avoid nuisance variation. We achieve this by continually exercising and manipulating latent representations of molecules to highlight undesirable variation to the predictor. To test the method we use a combination of three data sources: SARS-CoV-2 antiviral screening data, molecular fragments that bind to SARS-CoV-2 main protease and large screening data for SARS-CoV-1. Our predictor outperforms state-of-the-art transfer learning methods by significant margin. We also report the top 20 predictions of our model on Broad drug repurposing hub.




l

Entries open for State Library’s $20,000 short film competition

Thursday 21 November 2019

The State Library of NSW is inviting entries for its short film prize Shortstacks, with a total of $20,000 on offer across two categories.




l

Entries now open for the 2020 National Biography Award

Tuesday 10 December 2019

Entries are now open for the 2020 National Biography Award – Australia's richest prize for biography and memoir writing.




l

Call for nominations: NSW Premier’s History Awards 2020

Wednesday 19 February 2020
The State Library announces the opening of nominations for the NSW Premier’s History Awards 2020.

 




l

State Library creates a new space for Aboriginal communities to connect with their cultural heritage

Thursday 20 February 2020
In an Australian first, the State Library of NSW launched a new digital space for Aboriginal communities to connect with their histories and cultures.




l

Entries open for $40,000 award for female scriptwriters

Friday 6 March 2020
Nominations opened for the 2020 Mona Brand Award for Women Stage and Screen Writers.




l

Public libraries report spike in demand for books in language

Tuesday 17 March 2020
NSW residents are reading more and more books in languages other than English than ever before with the State Library of NSW reporting a 20% increase in requests from public libraries for multicultural material just in the last 12 months.




l

Shortlists announced for 2020 NSW Premier’s Literary Awards

Friday 20 March 2020
Contemporary works by leading and emerging Australian writers have been shortlisted for the 2020 NSW Premier's Literary Awards, the State Library of NSW announced today.




l

2020 NSW Premier’s Literary Awards announced

Sunday 26 April 2020
A total of $295,000 awarded across 12 prize categories. 




l

Flexible Imputation of Missing Data (2nd Edition)




l

mgm: Estimating Time-Varying Mixed Graphical Models in High-Dimensional Data

We present the R package mgm for the estimation of k-order mixed graphical models (MGMs) and mixed vector autoregressive (mVAR) models in high-dimensional data. These are a useful extensions of graphical models for only one variable type, since data sets consisting of mixed types of variables (continuous, count, categorical) are ubiquitous. In addition, we allow to relax the stationarity assumption of both models by introducing time-varying versions of MGMs and mVAR models based on a kernel weighting approach. Time-varying models offer a rich description of temporally evolving systems and allow to identify external influences on the model structure such as the impact of interventions. We provide the background of all implemented methods and provide fully reproducible examples that illustrate how to use the package.




l

lslx: Semi-Confirmatory Structural Equation Modeling via Penalized Likelihood

Sparse estimation via penalized likelihood (PL) is now a popular approach to learn the associations among a large set of variables. This paper describes an R package called lslx that implements PL methods for semi-confirmatory structural equation modeling (SEM). In this semi-confirmatory approach, each model parameter can be specified as free/fixed for theory testing, or penalized for exploration. By incorporating either a L1 or minimax concave penalty, the sparsity pattern of the parameter matrix can be efficiently explored. Package lslx minimizes the PL criterion through a quasi-Newton method. The algorithm conducts line search and checks the first-order condition in each iteration to ensure the optimality of the obtained solution. A numerical comparison between competing packages shows that lslx can reliably find PL estimates with the least time. The current package also supports other advanced functionalities, including a two-stage method with auxiliary variables for missing data handling and a reparameterized multi-group SEM to explore population heterogeneity.




l

Bayesian Random-Effects Meta-Analysis Using the bayesmeta R Package

The random-effects or normal-normal hierarchical model is commonly utilized in a wide range of meta-analysis applications. A Bayesian approach to inference is very attractive in this context, especially when a meta-analysis is based only on few studies. The bayesmeta R package provides readily accessible tools to perform Bayesian meta-analyses and generate plots and summaries, without having to worry about computational details. It allows for flexible prior specification and instant access to the resulting posterior distributions, including prediction and shrinkage estimation, and facilitating for example quick sensitivity checks. The present paper introduces the underlying theory and showcases its usage.




l

Object-Oriented Software for Functional Data

This paper introduces the funData R package as an object-oriented implementation of functional data. It implements a unified framework for dense univariate and multivariate functional data on one- and higher dimensional domains as well as for irregular functional data. The aim of this package is to provide a user-friendly, self-contained core toolbox for functional data, including important functionalities for creating, accessing and modifying functional data objects, that can serve as a basis for other packages. The package further contains a full simulation toolbox, which is a useful feature when implementing and testing new methodological developments. Based on the theory of object-oriented data analysis, it is shown why it is natural to implement functional data in an object-oriented manner. The classes and methods provided by funData are illustrated in many examples using two freely available datasets. The MFPCA package, which implements multivariate functional principal component analysis, is presented as an example for an advanced methodological package that uses the funData package as a basis, including a case study with real data. Both packages are publicly available on GitHub and the Comprehensive R Archive Network.




l

mvord: An R Package for Fitting Multivariate Ordinal Regression Models

The R package mvord implements composite likelihood estimation in the class of multivariate ordinal regression models with a multivariate probit and a multivariate logit link. A flexible modeling framework for multiple ordinal measurements on the same subject is set up, which takes into consideration the dependence among the multiple observations by employing different error structures. Heterogeneity in the error structure across the subjects can be accounted for by the package, which allows for covariate dependent error structures. In addition, different regression coefficients and threshold parameters for each response are supported. If a reduction of the parameter space is desired, constraints on the threshold as well as on the regression coefficients can be specified by the user. The proposed multivariate framework is illustrated by means of a credit risk application.




l

lmSubsets: Exact Variable-Subset Selection in Linear Regression for R

An R package for computing the all-subsets regression problem is presented. The proposed algorithms are based on computational strategies recently developed. A novel algorithm for the best-subset regression problem selects subset models based on a predetermined criterion. The package user can choose from exact and from approximation algorithms. The core of the package is written in C++ and provides an efficient implementation of all the underlying numerical computations. A case study and benchmark results illustrate the usage and the computational efficiency of the package.




l

Semi-Parametric Joint Modeling of Survival and Longitudinal Data: The R Package JSM

This paper is devoted to the R package JSM which performs joint statistical modeling of survival and longitudinal data. In biomedical studies it has been increasingly common to collect both baseline and longitudinal covariates along with a possibly censored survival time. Instead of analyzing the survival and longitudinal outcomes separately, joint modeling approaches have attracted substantive attention in the recent literature and have been shown to correct biases from separate modeling approaches and enhance information. Most existing approaches adopt a linear mixed effects model for the longitudinal component and the Cox proportional hazards model for the survival component. We extend the Cox model to a more general class of transformation models for the survival process, where the baseline hazard function is completely unspecified leading to semiparametric survival models. We also offer a non-parametric multiplicative random effects model for the longitudinal process in JSM in addition to the linear mixed effects model. In this paper, we present the joint modeling framework that is implemented in JSM, as well as the standard error estimation methods, and illustrate the package with two real data examples: a liver cirrhosis data and a Mayo Clinic primary biliary cirrhosis data.