ide

Salt forms of amides: protonation of acetanilide

Treating the amide acetanilide (N-phenyl­acetamide, C8H9NO) with aqueous strong acids allowed the structures of five hemi-protonated salt forms of acetanilide to be elucidated. N-(1-Hy­droxy­ethyl­idene)anilinium chloride–N-phenyl­acetamide (1/1), [(C8H9NO)2H][Cl], and the bromide, [(C8H9NO)2H][Br], triiodide, [(C8H9NO)2H][I3], tetra­fluoro­borate, [(C8H9NO)2H][BF4], and di­iodo­bromide hemi(diiodine), [(C8H9NO)2H][I2Br]·0.5I2, analogues all feature centrosymmetric dimeric units linked by O—H⋯O hy­dro­gen bonds that extend into one-dimensional hy­dro­gen-bonded chains through N—H⋯X inter­actions, where X is the halide atom of the anion. Protonation occurs at the amide O atom and results in systematic lengthening of the C=O bond and a corresponding shortening of the C—N bond. The size of these geometric changes is similar to those found for hemi-protonated paracetamol structures, but less than those in fully protonated paracetamol structures. The bond angles of the amide fragments are also found to change on protonation, but these angular changes are also influenced by conformation, namely, whether the amide group is coplanar with the phenyl ring or twisted out of plane.




ide

The crystal structure of mycothiol disulfide reductase (Mtr) provides mechanistic insight into the specific low-molecular-weight thiol reductase activity of Actinobacteria

Low-molecular-weight (LMW) thiols are involved in many processes in all organisms, playing a protective role against reactive species, heavy metals, toxins and antibiotics. Actinobacteria, such as Mycobacterium tuberculosis, use the LMW thiol mycothiol (MSH) to buffer the intracellular redox environment. The NADPH-dependent FAD-containing oxidoreductase mycothiol disulfide reductase (Mtr) is known to reduce oxidized mycothiol disulfide (MSSM) to MSH, which is crucial to maintain the cellular redox balance. In this work, the first crystal structures of Mtr are presented, expanding the structural knowledge and understanding of LMW thiol reductases. The structural analyses and docking calculations provide insight into the nature of Mtrs, with regard to the binding and reduction of the MSSM substrate, in the context of related oxidoreductases. The putative binding site for MSSM suggests a similar binding to that described for the homologous glutathione reductase and its respective substrate glutathione disulfide, but with distinct structural differences shaped to fit the bulkier MSSM substrate, assigning Mtrs as uniquely functioning reductases. As MSH has been acknowledged as an attractive antitubercular target, the structural findings presented in this work may contribute towards future antituberculosis drug development.




ide

Characterization of novel mevalonate kinases from the tardigrade Ramazzottius varieornatus and the psychrophilic archaeon Methanococcoides burtonii

Mevalonate kinase is central to the isoprenoid biosynthesis pathway. Here, high-resolution X-ray crystal structures of two mevalonate kinases are presented: a eukaryotic protein from Ramazzottius varieornatus and an archaeal protein from Methanococcoides burtonii. Both enzymes possess the highly conserved motifs of the GHMP enzyme superfamily, with notable differences between the two enzymes in the N-terminal part of the structures. Biochemical characterization of the two enzymes revealed major differences in their sensitivity to geranyl pyrophosphate and farnesyl pyrophosphate, and in their thermal stabilities. This work adds to the understanding of the structural basis of enzyme inhibition and thermostability in mevalonate kinases.




ide

Identifying and avoiding radiation damage in macromolecular crystallography

Radiation damage remains one of the major impediments to accurate structure solution in macromolecular crystallography. The artefacts of radiation damage can manifest as structural changes that result in incorrect biological interpretations being drawn from a model, they can reduce the resolution to which data can be collected and they can even prevent structure solution entirely. In this article, we discuss how to identify and mitigate against the effects of radiation damage at each stage in the macromolecular crystal structure-solution pipeline.




ide

High-confidence placement of low-occupancy fragments into electron density using the anomalous signal of sulfur and halogen atoms

Fragment-based drug design using X-ray crystallography is a powerful technique to enable the development of new lead compounds, or probe molecules, against biological targets. This study addresses the need to determine fragment binding orientations for low-occupancy fragments with incomplete electron density, an essential step before further development of the molecule. Halogen atoms play multiple roles in drug discovery due to their unique combination of electronegativity, steric effects and hydrophobic properties. Fragments incorporating halogen atoms serve as promising starting points in hit-to-lead development as they often establish halogen bonds with target proteins, potentially enhancing binding affinity and selectivity, as well as counteracting drug resistance. Here, the aim was to unambiguously identify the binding orientations of fragment hits for SARS-CoV-2 nonstructural protein 1 (nsp1) which contain a combination of sulfur and/or chlorine, bromine and iodine substituents. The binding orientations of carefully selected nsp1 analogue hits were focused on by employing their anomalous scattering combined with Pan-Dataset Density Analysis (PanDDA). Anomalous difference Fourier maps derived from the diffraction data collected at both standard and long-wavelength X-rays were compared. The discrepancies observed in the maps of iodine-containing fragments collected at different energies were attributed to site-specific radiation-damage stemming from the strong X-ray absorption of I atoms, which is likely to cause cleavage of the C—I bond. A reliable and effective data-collection strategy to unambiguously determine the binding orientations of low-occupancy fragments containing sulfur and/or halogen atoms while mitigating radiation damage is presented.




ide

Structural analysis of a ligand-triggered intermolecular disulfide switch in a major latex protein from opium poppy

Several proteins from plant pathogenesis-related family 10 (PR10) are highly abundant in the latex of opium poppy and have recently been shown to play diverse and important roles in the biosynthesis of benzylisoquinoline alkaloids (BIAs). The recent determination of the first crystal structures of PR10-10 showed how large conformational changes in a surface loop and adjacent β-strand are coupled to the binding of BIA compounds to the central hydrophobic binding pocket. A more detailed analysis of these conformational changes is now reported to further clarify how ligand binding is coupled to the formation and cleavage of an intermolecular disulfide bond that is only sterically allowed when the BIA binding pocket is empty. To decouple ligand binding from disulfide-bond formation, each of the two highly conserved cysteine residues (Cys59 and Cys155) in PR10-10 was replaced with serine using site-directed mutagenesis. Crystal structures of the Cys59Ser mutant were determined in the presence of papaverine and in the absence of exogenous BIA compounds. A crystal structure of the Cys155Ser mutant was also determined in the absence of exogenous BIA compounds. All three of these crystal structures reveal conformations similar to that of wild-type PR10-10 with bound BIA compounds. In the absence of exogenous BIA compounds, the Cys59Ser and Cys155Ser mutants appear to bind an unidentified ligand or mixture of ligands that was presumably introduced during expression of the proteins in Escherichia coli. The analysis of conformational changes triggered by the binding of BIA compounds suggests a molecular mechanism coupling ligand binding to the disruption of an intermolecular disulfide bond. This mechanism may be involved in the regulation of biosynthetic reactions in plants and possibly other organisms.




ide

Utilizing anomalous signals for element identification in macromolecular crystallography

AlphaFold2 has revolutionized structural biology by offering unparalleled accuracy in predicting protein structures. Traditional methods for determining protein structures, such as X-ray crystallography and cryo-electron microscopy, are often time-consuming and resource-intensive. AlphaFold2 provides models that are valuable for molecular replacement, aiding in model building and docking into electron density or potential maps. However, despite its capabilities, models from AlphaFold2 do not consistently match the accuracy of experimentally determined structures, need to be validated experimentally and currently miss some crucial information, such as post-translational modifications, ligands and bound ions. In this paper, the advantages are explored of collecting X-ray anomalous data to identify chemical elements, such as metal ions, which are key to understanding certain structures and functions of proteins. This is achieved through methods such as calculating anomalous difference Fourier maps or refining the imaginary component of the anomalous scattering factor f''. Anomalous data can serve as a valuable complement to the information provided by AlphaFold2 models and this is particularly significant in elucidating the roles of metal ions.




ide

Solving protein structures by combining structure prediction, molecular replacement and direct-methods-aided model completion

Highly accurate protein structure prediction can generate accurate models of protein and protein–protein complexes in X-ray crystallography. However, the question of how to make more effective use of predicted models for completing structure analysis, and which strategies should be employed for the more challenging cases such as multi-helical structures, multimeric structures and extremely large structures, both in the model preparation and in the completion steps, remains open for discussion. In this paper, a new strategy is proposed based on the framework of direct methods and dual-space iteration, which can greatly simplify the pre-processing steps of predicted models both in normal and in challenging cases. Following this strategy, full-length models or the conservative structural domains could be used directly as the starting model, and the phase error and the model bias between the starting model and the real structure would be modified in the direct-methods-based dual-space iteration. Many challenging cases (from CASP14) have been tested for the general applicability of this constructive strategy, and almost complete models have been generated with reasonable statistics. The hybrid strategy therefore provides a meaningful scheme for X-ray structure determination using a predicted model as the starting point.




ide

Orientational analysis of atomic pair correlations in nanocrystalline indium oxide thin films

The application of grazing-incidence total X-ray scattering (GITXS) for pair distribution function (PDF) analysis using >50 keV X-rays from synchrotron light sources has created new opportunities for structural characterization of supported thin films with high resolution. Compared with grazing-incidence wide-angle X-ray scattering, which is only useful for highly ordered materials, GITXS/PDFs expand such analysis to largely disordered or nanostructured materials by examining the atomic pair correlations dependent on the direction relative to the surface of the supporting substrate. A characterization of nanocrystalline In2O3-derived thin films is presented here with in-plane-isotropic and out-of-plane-anisotropic orientational ordering of the atomic structure, each synthesized using different techniques. The atomic orientations of such films are known to vary based on the synthetic conditions. Here, an azimuthal orientational analysis of these films using GITXS with a single incident angle is shown to resolve the markedly different orientations of the atomic structures with respect to the planar support and the different degrees of long-range order, and hence, the terminal surface chemistries. It is anticipated that orientational analysis of GITXS/PDF data will offer opportunities to extend structural analyses of thin films by providing a means to qualitatively determine the major atomic orientation within nanocrystalline and, eventually, non-crystalline films.




ide

Nanostructure and dynamics of N-truncated copper amyloid-β peptides from advanced X-ray absorption fine structure

An X-ray absorption spectroscopy (XAS) electrochemical cell was used to collect high-quality XAS measurements of N-truncated Cu:amyloid-β (Cu:Aβ) samples under near-physiological conditions. N-truncated Cu:Aβ peptide complexes contribute to oxidative stress and neurotoxicity in Alzheimer's patients' brains. However, the redox properties of copper in different Aβ peptide sequences are inconsistent. Therefore, the geometry of binding sites for the copper binding in Aβ4–8/12/16 was determined using novel advanced extended X-ray absorption fine structure (EXAFS) analysis. This enables these peptides to perform redox cycles in a manner that might produce toxicity in human brains. Fluorescence XAS measurements were corrected for systematic errors including defective-pixel data, monochromator glitches and dispersion of pixel spectra. Experimental uncertainties at each data point were measured explicitly from the point-wise variance of corrected pixel measurements. The copper-binding environments of Aβ4–8/12/16 were precisely determined by fitting XAS measurements with propagated experimental uncertainties, advanced analysis and hypothesis testing, providing a mechanism to pursue many similarly complex questions in bioscience. The low-temperature XAS measurements here determine that CuII is bound to the first amino acids in the high-affinity amino-terminal copper and nickel (ATCUN) binding motif with an oxygen in a tetragonal pyramid geometry in the Aβ4–8/12/16 peptides. Room-temperature XAS electrochemical-cell measurements observe metal reduction in the Aβ4–16 peptide. Robust investigations of XAS provide structural details of CuII binding with a very different bis-His motif and a water oxygen in a quasi-tetrahedral geometry. Oxidized XAS measurements of Aβ4–12/16 imply that both CuII and CuIII are accommodated in an ATCUN-like binding site. Hypotheses for these CuI, CuII and CuIII geometries were proven and disproven using the novel data and statistical analysis including F tests. Structural parameters were determined with an accuracy some tenfold better than literature claims of past work. A new protocol was also developed using EXAFS data analysis for monitoring radiation damage. This gives a template for advanced analysis of complex biosystems.




ide

Crystal structure of human peptidylarginine deiminase type VI (PAD6) provides insights into its inactivity

Human peptidylarginine deiminase isoform VI (PAD6), which is predominantly limited to cytoplasmic lattices in the mammalian oocytes in ovarian tissue, is essential for female fertility. It belongs to the peptidylarginine deiminase (PAD) enzyme family that catalyzes the conversion of arginine residues to citrulline in proteins. In contrast to other members of the family, recombinant PAD6 was previously found to be catalytically inactive. We sought to provide structural insight into the human homologue to shed light on this observation. We report here the first crystal structure of PAD6, determined at 1.7 Å resolution. PAD6 follows the same domain organization as other structurally known PAD isoenzymes. Further structural analysis and size-exclusion chromatography show that PAD6 behaves as a homodimer similar to PAD4. Differential scanning fluorimetry suggests that PAD6 does not coordinate Ca2+ which agrees with acidic residues found to coordinate Ca2+ in other PAD homologs not being conserved in PAD6. The crystal structure of PAD6 shows similarities with the inactive state of apo PAD2, in which the active site conformation is unsuitable for catalytic citrullination. The putative active site of PAD6 adopts a non-productive conformation that would not allow protein–substrate binding due to steric hindrance with rigid secondary structure elements. This observation is further supported by the lack of activity on the histone H3 and cytokeratin 5 substrates. These findings suggest a different mechanism for enzymatic activation compared with other PADs; alternatively, PAD6 may exert a non-enzymatic function in the cytoplasmic lattice of oocytes and early embryos.




ide

RCSB Protein Data Bank: supporting research and education worldwide through explorations of experimentally determined and computationally predicted atomic level 3D biostructures

The Protein Data Bank (PDB) was established as the first open-access digital data resource in biology and medicine in 1971 with seven X-ray crystal structures of proteins. Today, the PDB houses >210 000 experimentally determined, atomic level, 3D structures of proteins and nucleic acids as well as their complexes with one another and small molecules (e.g. approved drugs, enzyme cofactors). These data provide insights into fundamental biology, biomedicine, bioenergy and biotechnology. They proved particularly important for understanding the SARS-CoV-2 global pandemic. The US-funded Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB) and other members of the Worldwide Protein Data Bank (wwPDB) partnership jointly manage the PDB archive and support >60 000 `data depositors' (structural biologists) around the world. wwPDB ensures the quality and integrity of the data in the ever-expanding PDB archive and supports global open access without limitations on data usage. The RCSB PDB research-focused web portal at https://www.rcsb.org/ (RCSB.org) supports millions of users worldwide, representing a broad range of expertise and interests. In addition to retrieving 3D structure data, PDB `data consumers' access comparative data and external annotations, such as information about disease-causing point mutations and genetic variations. RCSB.org also provides access to >1 000 000 computed structure models (CSMs) generated using artificial intelligence/machine-learning methods. To avoid doubt, the provenance and reliability of experimentally determined PDB structures and CSMs are identified. Related training materials are available to support users in their RCSB.org explorations.




ide

Chaperone-mediated MHC-I peptide exchange in antigen presentation

This work focuses on molecules that are encoded by the major histocompatibility complex (MHC) and that bind self-, foreign- or tumor-derived peptides and display these at the cell surface for recognition by receptors on T lymphocytes (T cell receptors, TCR) and natural killer (NK) cells. The past few decades have accumulated a vast knowledge base of the structures of MHC molecules and the complexes of MHC/TCR with specificity for many different peptides. In recent years, the structures of MHC-I molecules complexed with chaperones that assist in peptide loading have been revealed by X-ray crystallography and cryogenic electron microscopy. These structures have been further studied using mutagenesis, molecular dynamics and NMR approaches. This review summarizes the current structures and dynamic principles that govern peptide exchange as these relate to the process of antigen presentation.




ide

A predicted model-aided reconstruction algorithm for X-ray free-electron laser single-particle imaging

Ultra-intense, ultra-fast X-ray free-electron lasers (XFELs) enable the imaging of single protein molecules under ambient temperature and pressure. A crucial aspect of structure reconstruction involves determining the relative orientations of each diffraction pattern and recovering the missing phase information. In this paper, we introduce a predicted model-aided algorithm for orientation determination and phase retrieval, which has been tested on various simulated datasets and has shown significant improvements in the success rate, accuracy and efficiency of XFEL data reconstruction.




ide

Bridging the microscopic divide: a comprehensive overview of micro-crystallization and in vivo crystallography

A series of events underscoring the significant advancements in micro-crystallization and in vivo crystallography were held during the 26th IUCr Congress in Melbourne, positioning microcrystallography as a pivotal field within structural biology. Through collaborative discussions and the sharing of innovative methodologies, these sessions outlined frontier approaches in macromolecular crystallography. This review provides an overview of this rapidly moving field in light of the rich dialogues and forward-thinking proposals explored during the congress workshop and microsymposium. These advances in microcrystallography shed light on the potential to reshape current research paradigms and enhance our comprehension of biological mechanisms at the molecular scale.




ide

Crystallographic phase identifier of a convolutional self-attention neural network (CPICANN) on powder diffraction patterns

Spectroscopic data, particularly diffraction data, are essential for materials characterization due to their comprehensive crystallographic information. The current crystallographic phase identification, however, is very time consuming. To address this challenge, we have developed a real-time crystallographic phase identifier based on a convolutional self-attention neural network (CPICANN). Trained on 692 190 simulated powder X-ray diffraction (XRD) patterns from 23 073 distinct inorganic crystallographic information files, CPICANN demonstrates superior phase-identification power. Single-phase identification on simulated XRD patterns yields 98.5 and 87.5% accuracies with and without elemental information, respectively, outperforming JADE software (68.2 and 38.7%, respectively). Bi-phase identification on simulated XRD patterns achieves 84.2 and 51.5% accuracies, respectively. In experimental settings, CPICANN achieves an 80% identification accuracy, surpassing JADE software (61%). Integration of CPICANN into XRD refinement software will significantly advance the cutting-edge technology in XRD materials characterization.




ide

Binding structures of SERF1a with NT17-polyQ peptides of huntingtin exon 1 revealed by SEC-SWAXS, NMR and molecular simulation

The aberrant fibrillization of huntingtin exon 1 (Httex1) characterized by an expanded polyglutamine (polyQ) tract is a defining feature of Huntington's disease, a neurodegenerative disorder. Recent investigations underscore the involvement of a small EDRK-rich factor 1a (SERF1a) in promoting Httex1 fibrillization through interactions with its N terminus. By establishing an integrated approach with size-exclusion-column-based small- and wide-angle X-ray scattering (SEC-SWAXS), NMR, and molecular simulations using Rosetta, the analysis here reveals a tight binding of two NT17 fragments of Httex1 (comprising the initial 17 amino acids at the N terminus) to the N-terminal region of SERF1a. In contrast, examination of the complex structure of SERF1a with a coiled NT17-polyQ peptide (33 amino acids in total) indicates sparse contacts of the NT17 and polyQ segments with the N-terminal side of SERF1a. Furthermore, the integrated SEC-SWAXS and molecular-simulation analysis suggests that the coiled NT17 segment can transform into a helical conformation when associated with a polyQ segment exhibiting high helical content. Intriguingly, NT17-polyQ peptides with enhanced secondary structures display diminished interactions with SERF1a. This insight into the conformation-dependent binding of NT17 provides clues to a catalytic association mechanism underlying SERF1a's facilitation of Httext1 fibrillization.




ide

Structure–property relationship of a complex photoluminescent arylacetylide-gold(I) compound. I: a pressure-induced phase transformation caught in the act

A pressure-induced triclinic-to-monoclinic phase transition has been caught `in the act' over a wider series of high-pressure synchrotron diffraction experiments conducted on a large, photoluminescent organo-gold(I) compound. Here, we describe the mechanism of this single-crystal-to-single-crystal phase transition, the onset of which occurs at ∼0.6 GPa, and we report a high-quality structure of the new monoclinic phase, refined using aspherical atomic scattering factors. Our case illustrates how conducting a fast series of diffraction experiments, enabled by modern equipment at synchrotron facilities, can lead to overestimation of the actual pressure of a phase transition due to slow transformation kinetics.




ide

A predicted model-aided one-step classification–multireconstruction algorithm for X-ray free-electron laser single-particle imaging

Ultrafast, high-intensity X-ray free-electron lasers can perform diffraction imaging of single protein molecules. Various algorithms have been developed to determine the orientation of each single-particle diffraction pattern and reconstruct the 3D diffraction intensity. Most of these algorithms rely on the premise that all diffraction patterns originate from identical protein molecules. However, in actual experiments, diffraction patterns from multiple different molecules may be collected simultaneously. Here, we propose a predicted model-aided one-step classification–multireconstruction algorithm that can handle mixed diffraction patterns from various molecules. The algorithm uses predicted structures of different protein molecules as templates to classify diffraction patterns based on correlation coefficients and determines orientations using a correlation maximization method. Tests on simulated data demonstrated high accuracy and efficiency in classification and reconstruction.




ide

Crystal structures of two new high-pressure oxynitrides with composition SnGe4N4O4, from single-crystal electron diffraction

SnGe4N4O4 was synthesized at high pressure (16 and 20 GPa) and high temperature (1200 and 1500°C) in a large-volume press. Powder X-ray diffraction experiments using synchrotron radiation indicate that the derived samples are mixtures of known and unknown phases. However, the powder X-ray diffraction patterns are not sufficient for structural characterization. Transmission electron microscopy studies reveal crystals of several hundreds of nanometres in size with different chemical composition. Among them, crystals of a previously unknown phase with stoichiometry SnGe4N4O4 were detected and investigated using automated diffraction tomography (ADT), a three-dimensional electron diffraction method. Via ADT, the crystal structure could be determined from single nanocrystals in space group P63mc, exhibiting a nolanite-type structure. This was confirmed by density functional theory calculations and atomic resolution scanning transmission electron microscopy images. In one of the syntheses runs a rhombohedral 6R polytype of SnGe4N4O4 could be found together with the nolanite-type SnGe4N4O4. The structure of this polymorph was solved as well using ADT.




ide

New ion radii for oxides and oxysalts, fluorides, chlorides and nitrides

Ion radii are derived here from the characteristic (grand mean) bond lengths for (i) 135 ions bonded to oxygen in 459 configurations (on the basis of coordination number) using 177 143 bond lengths extracted from 30 805 ordered coordination polyhedra from 9210 crystal structures; and (ii) 76 ions bonded to nitro­gen in 137 configurations using 4048 bond lengths extracted from 875 ordered coordination polyhedra from 434 crystal structures. There are two broad categories of use for ion radii: (1) those methods which use the relative sizes of cation and anion radii to predict local atomic arrangements; (2) those methods which compare the radii of different cations (or the radii of different anions) to predict local atomic arrangements. There is much uncertainty with regard to the relative sizes of cations and anions, giving rise to the common failure of type (1) methods, e.g. Pauling's first rule which purports to relate the coordination adopted by cations to the radius ratio of the constituent cation and anion. Conversely, type (2) methods, which involve comparing the sizes of different cations with each other (or different anions with each other), can give very accurate predictions of site occupancies, physical properties etc. Methods belonging to type (2) can equally well use the characteristic bond lengths themselves (from which the radii are derived) in place of radii to develop correlations and predict crystal properties. Extensive quantum-mechanical calculations of electron density in crystals in the literature indicate that the radii of both cations and anions are quite variable with local arrangement, suggesting significant problems with any use of ion radii. However, the dichotomy between the experimentally derived ion radii and the quantum-mechanical calculations of electron density in crystals is removed by the recognition that ion radii are pr­oxy variables for characteristic bond lengths in type (2) relations.




ide

Following the guidelines for communicating commensurate magnetic structures: real case examples

A few real case examples are presented on how to report magnetic structures, with precise step-by-step explanations, following the guidelines of the IUCr Commission on Magnetic Structures [Perez-Mato et al. (2024). Acta Cryst. B80, 219–234]. Four examples have been chosen, illustrating different types of single-k magnetic orders, from the basic case to more complex ones, including odd-harmonics, and one multi-k order. In addition to acquainting researchers with the process of communicating commensurate magnetic structures, these examples also aim to clarify important concepts, which are used throughout the guidelines, such as the transformation to a standard setting of a magnetic space group.




ide

Crystal structure of S-n-octyl 3-(1-phenyl­ethyl­idene)di­thio­carbazate and of its bis-chelated nickel(II) complex

The nitro­gen–sulfur Schiff base proligand S-n-octyl 3-(1-phenyl­ethyl­idene)di­thio­carbazate, C17H26N2S2 (HL), was prepared by reaction of S-octyl di­thio­carbamate with aceto­phenone. Treatment of HL with nickel acetate yielded the complex bis­[S-n-octyl 3-(1-phenyl­ethyl­idene)di­thio­carbazato]nickel(II), [Ni(C17H25N2S2)2] (NiL2), which was shown to adopt a tetra­hedrally distorted cis-square-planar coordination geometry, with the NiSN planes of the two ligands forming a dihedral angle of 21.66 (6)°. Changes in the geometry of the L ligand upon chelation of Ni2+ are described, involving a ca 180° rotation around the N(azomethine)—C(thiol­ate) bond.




ide

Crystal structures of the isotypic complexes bis­(morpholine)­gold(I) chloride and bis­(morpholine)­gold(I) bromide

The compounds bis­(morpholine-κN)gold(I) chloride, [Au(C4H9NO)2]Cl, 1, and bis­(morpholine-κN)gold(I) bromide, [Au(C4H9NO)2]Br, 2, crystallize isotypically in space group C2/c with Z = 4. The gold atoms, which are axially positioned at the morpholine rings, lie on inversion centres (so that the N—Au—N coordination is exactly linear) and the halide anions on twofold axes. The residues are connected by a classical hydrogen bond N—H⋯halide and by a short gold⋯halide contact to form a layer structure parallel to the bc plane. The morpholine oxygen atom is not involved in classical hydrogen bonding.




ide

Crystal structure of polymeric bis­(3-amino-1H-pyrazole)­cadmium dibromide

The reaction of cadmium bromide tetra­hydrate with 3-amino­pyrazole (3-apz) in ethano­lic solution leads to tautomerization of the ligand and the formation of crystals of the title compound, catena-poly[[di­bromido­cadmium(II)]-bis­(μ-3-amino-1H-pyrazole)-κ2N3:N2;κ2N2:N3], [CdBr2(C3H5N3)2]n or [CdBr2(3-apz)2]n. Its asymmetric unit consists of a half of a Cd2+ cation, a bromide anion and a 3-apz mol­ecule. The Cd2+ cations are coordinated by two bromide anions and two 3-apz ligands, generating trans-CdN4Br2 octa­hedra, which are linked into chains by pairs of the bridging ligands. In the crystal, the ligand mol­ecules and bromide anions of neighboring chains are linked through inter­chain hydrogen bonds into a two-dimensional network. The inter­molecular contacts were qu­anti­fied using Hirshfeld surface analysis and two-dimensional fingerprint plots, revealing the relative qu­anti­tative contributions of the weak inter­molecular contacts.




ide

Crystal structure and Hirshfeld surface analysis of (2Z)-3-oxo-N-phenyl-2-[(1H-pyrrol-2-yl)methylidene]butanamide monohydrate

In the title compound, C15H14N2O2·H2O, the 1H-pyrrole ring makes a dihedral angle of 59.95 (13)° with the phenyl ring. In the crystal, the mol­ecules are connected by C—H⋯O hydrogen bonds into layers parallel to the (020) plane, while two mol­ecules are connected to the water mol­ecule by two N—H⋯O hydrogen bonds and one mol­ecule by an O—H⋯O hydrogen bond. C—H⋯π and π–π inter­actions further link the mol­ecules into chains extending in the [overline{1}01] direction and stabilize the mol­ecular packing. According to a Hirshfeld surface study, H⋯H (49.4%), C⋯H/H⋯C (23.2%) and O⋯H/H⋯O (20.0%) inter­actions are the most significant contributors to the crystal packing.




ide

Synthesis, crystal structure and Hirshfeld analysis of trans-bis­(2-{1-[(6R,S)-3,5,5,6,8,8-hexa­methyl-5,6,7,8-tetra­hydronaphthalen-2-yl]ethyl­idene}-N-methyl­hydrazinecarbo­thio­amidato-κ2N2,S)palladium(II) ethanol mon

The reaction between the (R,S)-fixolide 4-methyl­thio­semicarbazone and PdII chloride yielded the title compound, [Pd(C20H30N3S)2]·C2H6O {common name: trans-bis­[(R,S)-fixolide 4-methyl­thio­semicarbazonato-κ2N2S]palladium(II) ethanol monosolvate}. The asymmetric unit of the title compound consists of one bis-thio­semicarbazonato PdII complex and one ethanol solvent mol­ecule. The thio­semicarbazononato ligands act as metal chelators with a trans configuration in a distorted square-planar geometry. A C—H⋯S intra­molecular inter­action, with graph-set motif S(6), is observed and the coordination sphere resembles a hydrogen-bonded macrocyclic environment. Additionally, one C—H⋯Pd anagostic inter­action can be suggested. Each ligand is disordered over the aliphatic ring, which adopts a half-chair conformation, and two methyl groups [s.o.f. = 0.624 (2):0.376 (2)]. The disorder includes the chiral carbon atoms and, remarkably, one ligand has the (R)-isomer with the highest s.o.f. value atoms, while the other one shows the opposite, the atoms with the highest s.o.f. value are associated with the (S)-isomer. The N—N—C(=S)—N fragments of the ligands are approximately planar, with the maximum deviations from the mean plane through the selected atoms being 0.0567 (1) and −0.0307 (8) Å (r.m.s.d. = 0.0403 and 0.0269 Å) and the dihedral angle with the respective aromatic rings amount to 46.68 (5) and 50.66 (4)°. In the crystal, the complexes are linked via pairs of N—H⋯S inter­actions, with graph-set motif R22(8), into centrosymmetric dimers. The dimers are further connected by centrosymmetric pairs of ethanol mol­ecules, building mono-periodic hydrogen-bonded ribbons along [011]. The Hirshfeld surface analysis indicates that the major contributions for the crystal cohesion are [atoms with highest/lowest s.o.f.s considered separately]: H⋯H (81.6/82.0%), H⋯C/C⋯H (6.5/6.4%), H⋯N/N⋯H (5.2/5.0%) and H⋯S/S⋯H (5.0/4.9%).




ide

Synthesis, crystal structure and Hirshfeld surface analysis of the tetra­kis complex NaNdPyr4(i-PrOH)2·i-PrOH with a carbacyl­amido­phosphate of the amide type

The tetra­kis complex of neodymium(III), tetra­kis­{μ-N-[bis­(pyrrolidin-1-yl)phos­phor­yl]acet­am­id­ato}bis(pro­pan-2-ol)neodymiumsodium pro­pan-2-ol monosol­vate, [NaNd(C10H16Cl3N3O2)4(C3H8O)2]·C3H8O or NaNdPyr4(i-PrOH)2·i-PrOH, with the amide type CAPh ligand bis(N,N-tetra­methylene)(tri­chloro­acetyl)phos­phoric acid tri­amide (HPyr), has been synthesized, crystallized and characterized by X-ray diffraction. The complex does not have the tetra­kis­(CAPh)lanthanide anion, which is typical for ester-type CAPh-based coordin­ation compounds. Instead, the NdO8 polyhedron is formed by one oxygen atom of a 2-propanol mol­ecule and seven oxygen atoms of CAPh ligands in the title compound. Three CAPh ligands are coordinated in a bidentate chelating manner to the NdIII ion and simultaneously binding the sodium cation by μ2-bridging PO and CO groups while the fourth CAPh ligand is coordinated to the sodium cation in a bidentate chelating manner and, due to the μ2-bridging function of the PO group, also binds the neodymium ion.




ide

Crystal structure of [1,3-bis­(2,4,6-tri­methyl­phen­yl)imidazolidin-2-yl­idene]di­chlorido­(2-{[(2-methoxyeth­yl)(meth­yl)amino]­meth­yl}benzyl­idene)ruth­en­ium

The title compound, [RuCl2(C33H43N3O)], is an example of a new generation of N,N-dialkyl ruthenium catalysts with an N—Ru coordination bond as part of a six-membered chelate ring. The Ru atom has an Addison τ parameter of 0.244, which indicates a geometry inter­mediate between square-based pyramidal and trigonal–bipyramidal. The complex shows the usual trans arrangement of the two chlorides, with Ru—Cl bond lengths of 2.3515 (8) and 2.379 (7) Å, and a Cl—Ru—Cl angle of 158.02 (3)°. One of the chlorine atoms and the atoms of the 2-meth­oxy-N-methyl-N-[(2-methyl­phen­yl)meth­yl]ethane-1-amine group of the title complex display disorder over two positions in a 0.889 (2): 0.111 (2) ratio.




ide

The synthesis and structural properties of a chlorido­bis­{N-[(4-meth­oxy­phen­yl)imino]­pyrrolidine-1-carboxamide}­zinc(II) (aceto­nitrile)­trichlorido­zincate coordination complex

The title complex, [ZnCl(C12H15N3O2)2][ZnCl3(CH3CN)], was synthesized and its structure was fully characterized through single-crystal X-ray diffraction analysis. The complex crystallizes in the ortho­rhom­bic system, space group Pbca (61), with a central zinc atom coordinating one chlorine atom and two pyrrolidinyl-4-meth­oxy­phenyl azoformamide ligands in a bidentate manner, utilizing both the nitro­gen and oxygen atoms in a 1,3-heterodiene (N=N—C=O) motif for coordinative bonding, yielding an overall positively (+1) charged complex. The complex is accompanied by a [(CH3CN)ZnCl3]− counter-ion. The crystal data show that the harder oxygen atoms in the heterodiene zinc chelate form bonding inter­actions with distances of 2.002 (3) and 2.012 (3) Å, while nitro­gen atoms are coordinated by the central zinc cation with bond lengths of 2.207 (3) and 2.211 (3) Å. To gain further insight into the inter­molecular inter­actions within the crystal, Hirshfeld surface analysis was performed, along with the calculation of two-dimensional fingerprint plots. This analysis revealed that H⋯H (39.9%), Cl⋯H/H⋯Cl (28.2%) and C⋯H/H⋯C (7.2%) inter­actions are dominant. This unique crystal structure sheds light on arrangement and bonding inter­actions with azo­formamide ligands, and their unique qualities over similar semicarbazone and azo­thio­formamide structures.




ide

Crystal structures of sixteen phosphane chalcogenide complexes of gold(I) chloride, bromide and iodide

The structures of 16 phosphane chalcogenide complexes of gold(I) halides, with the general formula R13-nR2nPEAuX (R1 = t-butyl; R2 = isopropyl; n = 0 to 3; E = S or Se; X = Cl, Br or I), are presented. The eight possible chlorido derivatives are: 1a, n = 3, E = S; 2a, n = 2, E = S; 3a, n = 1, E = S; 4a, n = 0, E = S; 5a, n = 3, E = Se; 6a, n = 2, E = Se; 7a, n = 1, E = Se; and 8a, n = 0, E = Se, and the corresponding bromido derivatives are 1b–8b in the same order. However, 2a and 2b were badly disordered and 8a was not obtained. The iodido derivatives are 2c, 6c and 7c (numbered as for the series a and b). All structures are solvent-free and all have Z' = 1 except for 6b and 6c (Z' = 2). All mol­ecules show the expected linear geometry at gold and approximately tetra­hedral angles P—E—Au. The presence of bulky ligands forces some short intra­molecular contacts, in particular H⋯Au and H⋯E. The Au—E bond lengths have a slight but consistent tendency to be longer when trans to a softer X ligand, and vice versa. The five compounds 1a, 5a, 6a, 1b and 5b form an isotypic set, despite the different alkyl groups in 6a. Compounds 3a/3b, 4b/8b and 6b/6c form isotypic pairs. The crystal packing can be analysed in terms of various types of secondary inter­actions, of which the most frequent are `weak' hydrogen bonds from methine hydrogen atoms to the halogenido ligands. For the structure type 1a, H⋯X and H⋯E contacts combine to form a layer structure. For 3a/3b, the packing is almost featureless, but can be described in terms of a double-layer structure involving borderline H⋯Cl/Br and H⋯S contacts. In 4a and 4b/8b, which lack methine groups, Cmeth­yl—H⋯X contacts combine to form layer structures. In 7a/7b, short C—H⋯X inter­actions form chains of mol­ecules that are further linked by association of short Au⋯Se contacts to form a layer structure. The packing of compound 6b/6c can conveniently be analysed for each independent mol­ecule separately, because they occupy different regions of the cell. Mol­ecule 1 forms chains in which the mol­ecules are linked by a Cmethine⋯Au contact. The mol­ecules 2 associate via a short Se⋯Se contact and a short H⋯X contact to form a layer structure. The packing of compound 2c can be described in terms of two short Cmethine—H⋯I contacts, which combine to form a corrugated ribbon structure. Compound 7c is the only compound in this paper to feature Au⋯Au contacts, which lead to twofold-symmetric dimers. Apart from this, the packing is almost featureless, consisting of layers with only translation symmetry except for two very borderline Au⋯H contacts.




ide

Synthesis, crystal structure and properties of poly[(μ-2-methyl­pyridine N-oxide-κ2O:O)bis­(μ-thio­cyanato-κ2N:S)cobalt(II)]

The title compound, [Co(NCS)2(C6H7NO)]n or Co(NCS)2(2-methyl­pyridine N-oxide), was prepared by the reaction of Co(NCS)2 and 2-methyl­pyridine N-oxide in methanol. All crystals obtained by this procedure show reticular pseudo-merohedric twinning, but after recrystallization, one crystal was found that had a minor component with only a very few overlapping reflections. The asymmetric unit consists of one CoII cation, two thio­cyanate anions and one 2-methyl­pyridine N-oxide coligand in general positions. The CoII cations are octa­hedrally coordinated by two O-bonding 2-methyl­pyridine N-oxide ligands, as well as two S- and two N-bonding thio­cyanate anions, and are connected via μ-1,3(N,S)-bridging thio­cyanate anions into chains that are linked by μ-1,1(O,O) bridging coligands into layers. No pronounced directional inter­molecular inter­actions are observed between the layers. The 2-methyl­pyridine coligand is disordered over two orientations and was refined using a split model with restraints. Powder X-ray diffraction (PXRD) indicates that a pure sample was obtained and IR spectroscopy confirms that bridging thio­cyanate anions are present. Thermogravimetry and differential thermoanalysis (TG-DTA) shows one poorly resolved mass loss in the TG curve that is accompanied by an exothermic and an endothermic signal in the DTA curve, which indicate the decomposition of the 2-methyl­pyridine N-oxide coligands.




ide

Temperature-dependent solid-state phase transition with twinning in the crystal structure of 4-meth­oxy­anilinium chloride

At room temperature, the title salt, C7H10NO+·Cl−, is ortho­rhom­bic, space group Pbca with Z' = 1, as previously reported [Zhao (2009). Acta Cryst. E65, o2378]. Between 250 and 200 K, there is a solid-state phase transition to a twinned monoclinic P21/c structure with Z' = 2. We report the high temperature structure at 250 K and the low-temperature structure at 100 K. In the low-temperature structure, the –NH3 hydrogen atoms are ordered and this group has a different orientation in each independent mol­ecule, in keeping with optimizing N—H⋯Cl hydrogen bonding, some of which are bifurcated: these hydrogen bonds have N⋯Cl distances in the range 3.1201 (8)–3.4047 (8) Å. In the single cation of the high-temperature structure, the NH hydrogen atoms are disordered into the average of the two low-temperature positions and the N⋯Cl hydrogen bond distances are in the range 3.1570 (15)–3.3323 (18) Å. At both temperatures, the meth­oxy group is nearly coplanar with the rest of the mol­ecule, with the C—C—O—C torsion angles being −7.0 (2)° at 250 K and −6.94 (12) and −9.35 (12)° at 100 K. In the extended ortho­rhom­bic structure, (001) hydrogen-bonded sheets occur; in the monoclinic structure, the sheets propagate in the (010) plane.




ide

Crystal structure of poly[hexa-μ-bro­mido-bis{2-[1-(py­ri­din-2-yl)ethyl­idene­amino]ethanol­ato}tetracopper(II)]

The reaction of the Schiff base 2-[1-(pyridin-2-yl)ethyl­idene­amino]­ethanol (HL), which is formed by reaction of 2-amino­ethanol and 2-acetyl­pyridine with CuBr2 in ethanol results in the isolation of the new polymeric complex poly[hexa-μ-bromido-bis­{2-[1-(pyridin-2-yl)ethyl­idene­amino]­ethano­lato}tetra­copper(II)], [Cu4Br6(C9H11N2O)2]n or [Cu4Br6L2]n. The asymmetric unit of the crystal structure of the polymeric [Cu4Br6L2]n complex is composed by four copper (II) cations, two monodeprotonated mol­ecules of the ligand, and six bromide anions, which act as bridges. The ligand mol­ecules act in a tridentate fashion through their azomethine nitro­gen atoms, their pyridine nitro­gen atoms, and their alcoholate O atoms. The crystal structure shows two types of geometries in the coordination polyhedrons around Cu2+ ions. Two copper cations are situated in a square-based pyramidal environment, while the two other copper cations adopt a tetra­hedral geometry. Bromides anions acting as bridges between two metal ions connect the units, resulting in a tetra­nuclear polymer compound.




ide

An unexpected tautomer: synthesis and crystal structure of N-[6-amino-4-(methyl­sulfan­yl)-1,2-di­hydro-1,3,5-triazin-2-yl­idene]benzenesulfonamide

The title compound, C10H11N5O2S2, consists of an unexpected tautomer with a protonated nitro­gen atom in the triazine ring and a formal exocyclic double bond C=N to the sulfonamide moiety. The ring angles at the unsubstituted nitro­gen atoms are narrow, at 115.57 (12) and 115.19 (12)°, respectively, whereas the angle at the carbon atom between these N atoms is very wide, 127.97 (13)°. The inter­planar angle between the two rings is 79.56 (5)°. The mol­ecules are linked by three classical hydrogen bonds, forming a ribbon structure. There are also unusual linkages involving three short contacts (< 3 Å) from a sulfonamide oxygen atom to the C—NH—C part of a triazine ring.




ide

Crystal structure and Hirshfeld surface analysis of (E)-2-[2-(2-amino-1-cyano-2-oxo­ethyl­idene)hydrazin-1-yl]benzoic acid N,N-di­methylformamide monosolvate

In the title compound, C10H8N4O3·C3H7NO, the asymmetric unit contains two crystallographically independent mol­ecules A and B, each of which has one DMF solvate mol­ecule. Mol­ecules A and B both feature intra­molecular N—H⋯O hydrogen bonds, forming S(6) ring motifs and consolidating the mol­ecular configuration. In the crystal, N—H⋯O and O—H⋯O hydrogen bonds connect mol­ecules A and B, forming R22(8) ring motifs. Weak C—H⋯O inter­actions link the mol­ecules, forming layers parallel to the (overline{2}12) plane. The DMF solvent mol­ecules are also connected to the main mol­ecules (A and B) by N—H⋯O hydrogen bonds. π–π stacking inter­actions [centroid-to-centroid distance = 3.8702 (17) Å] between the layers also increase the stability of the mol­ecular structure in the third dimension. According to the Hirshfeld surface study, O⋯H/H⋯O inter­actions are the most significant contributors to the crystal packing (27.5% for mol­ecule A and 25.1% for mol­ecule B).




ide

{[(E)-(1,3-Benzodioxol-5-yl)methyl­idene]amino}thio­urea

The synthesis and crystallographic analysis of the title compound, C9H9N3O2S, are reported. The compound crystallizes in the monoclinic space group P21/c, revealing characteristic bond lengths and angles typical of thio­semicarbazone groups. The supra­molecular organization primarily arises from hydrogen bonding and π–π stacking inter­actions, leading to distinctive dimeric formations.




ide

Crystal structure, Hirshfeld surface analysis and energy frameworks of 1-[(E)-2-(2-fluoro­phen­yl)diazan-1-yl­idene]naphthalen-2(1H)-one

The title compound, C16H11N2OF, is a member of the azo dye family. The dihedral angle subtended by the benzene ring and the naphthalene ring system measures 18.75 (7)°, indicating that the compound is not perfectly planar. An intra­molecular N—H⋯O hydrogen bond occurs between the imino and carbonyl groups. In the crystal, the mol­ecules are linked into inversion dimers by C—H⋯O inter­actions. Aromatic π–π stacking between the naphthalene ring systems lead to the formation of chains along [001]. A Hirshfeld surface analysis was undertaken to investigate and qu­antify the inter­molecular inter­actions. In addition, energy frameworks were used to examine the cooperative effect of these inter­molecular inter­actions across the crystal, showing dispersion energy to be the most influential factor in the crystal organization of the compound.




ide

Synthesis and crystal structure of N1,N2-di­methyl­ethane­dihydrazide

The title compound, N1,N2-di­methyl­ethane­dihydrazide, C4H10N4O2, was obtained by the methyl­ation of oxalyl dihydrazide protected with phthalimide. The mol­ecule is essentially non-planar with a dihedral angle between the two planar hydrazide fragments of 86.5 (2)°. This geometry contributes to the formation of a multi-contact three-dimensional supra­molecular network via C—H⋯O, N—H⋯O and N—H⋯N hydrogen bonds.




ide

Synthesis, crystal structure and thermal properties of di­bromido­bis­(2-methyl­pyridine N-oxide-κO)cobalt(II)

Reaction of CoBr2 with 2-methyl­pyridine N-oxide in n-butanol leads to the formation of the title compound, [CoBr2(C6H7NO)2] or [CoBr2(2-methyl­pyridine N-oxide)2]. Its asymmetric unit consists of one CoII cation as well as two bromide anions and two 2-methyl­pyridine N-oxide coligands in general positions. The CoII cations are tetra­hedrally coordinated by two bromide anions and two 2-methyl­pyridine N-oxides, forming discrete complexes. In the crystal structure, these complexes are linked predominantly by weak C–H⋯Br hydrogen bonding into chains that propagate along the crystallographic a-axis. Powder X-ray diffraction (PXRD) measurements indicate that a pure phase was obtained. Thermoanalytical investigations prove that the title compound melts before decomposition; before melting, a further endothermic signal of unknown origin was observed that does not correspond to a phase transition.




ide

Synthesis and crystal structure of [1,3-bis­(2,6-diiso­propyl­phen­yl)imidazol-2-yl­idene](iso­cyanato-κN)gold(I)

The title complex, [Au(NCO)(C27H36N2)], was synthesized by ligand metathesis from [1,3-bis­(2,6-diiso­propyl­phen­yl)imidazol-2-yl­idene]gold(I) chloride and sodium cyanate in anhydrous tetra­hydro­furan and crystallized from toluene at 233 K in the ortho­rhom­bic space group P212121, as a neutral complex with the central Au atom di-coordinated by an N-heterocyclic carbene [Au—C = 1.963 (2) Å] and an iso­cyanate [Au—N 1.999 (2) Å] ligands, with a linear CAuNCO moiety. The crystal packing is consolidated by C—H⋯O hydrogen bonds.




ide

Synthesis and crystal structure of diiso­thio­cyanato­tetra­kis­(4-methyl­pyridine N-oxide)cobalt(II) and diiso­thio­cyanato­tris­(4-methyl­pyridine N-oxide)cobalt(II) showing two different metal coor

The reaction of Co(NCS)2 with 4-methyl­pyridine N-oxide (C6H7NO) leads to the formation of two compounds, namely, tetra­kis­(4-methyl­pyridine N-oxide-κO)bis­(thio­cyanato-κN)cobalt(II), [Co(NCS)2(C6H7NO)4] (1), and tris­(4-methyl­pyridine N-oxide-κO)bis­(thio­cyanato-κN)cobalt(II), [Co(NCS)2(C6H7NO)3] (2). The asymmetric unit of 1 consists of one CoII cation located on a centre of inversion, as well as one thio­cyanate anion and two 4-methyl­pyridine N-oxide coligands in general positions. The CoII cations are octa­hedrally coordinated by two terminal N-bonding thio­cyanate anions in trans positions and four 4-methyl­pyridine N-oxide ligands. In the extended structure, these complexes are linked by C—H⋯O and C—H⋯S inter­actions. In compound 2, two crystallographically independent complexes are present, which occupy general positions. In each of these complexes, the CoII cations are coordinated in a trigonal–bipyramidal manner by two terminal N-bonding thio­cyanate anions in axial positions and by three 4-methyl­pyridine N-oxide ligands in equatorial positions. In the crystal, these complex mol­ecules are linked by C—H⋯S inter­actions. For compound 2, a nonmerohedral twin refinement was performed. Powder X-ray diffraction (PXRD) reveals that 2 was nearly obtained as a pure phase, which is not possible for compound 1. Differential thermoanalysis and thermogravimetry data (DTA–TG) show that compound 2 start to decompose at about 518 K.




ide

(S)-(+)-1-(4-Bromo­phen­yl)-N-[(4-methoxyphen­yl)methyl­idene]ethyl­amine and bis­{(S)-(+)-1-(4-bromo­phen­yl)-N-[(4-methoxyphen­yl)methyl­idene]ethyl­amine-κN}di­chlorido­palladium(II)

The (S)-(+)-1-(4-bromo­phen­yl)-N-[(4-methoxyphen­yl)methyl­idene]ethyl­amine ligand, C16H16BrNO, (I), was synthesized through the reaction of 4-meth­oxy­anisaldehyde with (S)-(−)-1-(4-bromo­phen­yl)ethyl­amine. It crystallizes in the ortho­rhom­bic space group P212121 belonging to the Sohncke group, featuring a single mol­ecule in the asymmetric unit. The refinement converged successfully, achieving an R factor of 0.0508. The PdII com­plex bis­{(S)-(+)-1-(4-bromo­phen­yl)-N-[(4-methoxyphen­yl)methyl­idene]ethyl­amine-κN}di­chlorido­pal­ladium(II), [PdCl2(C16H16BrNO)2], (II), crystallizes in the monoclinic space group P21 belonging to the Sohncke group, with two mol­ecules in the asymmetric unit. The central atom is tetra­coordinated by two N atoms and two Cl atoms, resulting in a square-planar configuration. The imine moieties exhibit a trans configuration around the PdII centre, with average Cl—Pd—N angles of approximately 89.95 and 90°. The average distances within the palladium com­plex for the two mol­ecules are ∼2.031 Å for Pd—N and ∼2.309 Å for Pd—Cl.




ide

Crystal structure and characterization of a new lanthanide coordination polymer, [Pr2(pydc)(phth)2(H2O)3]·H2O

A new lanthanide coordination polymer, poly[[tri­aqua­bis­(μ4-phthalato)(μ3-pyridine-2,5-di­carboxyl­ato)dipraseodymium] monohydrate], {[Pr2(C7H3NO4)2(C8H4O4)(H2O)3]·H2O}n or {[Pr2(phth)2(pydc)(H2O)3]·H2O}n, (pydc2− = pyridine-2,5-di­carboxyl­ate and phth2− = phthalate) was synthesized and characterized, revealing the structure to be an assembly of di-periodic {Pr2(pydc)(phth)2(H2O)3}n layers. Each layer is built up by edge-sharing {Pr2N2O14} and {Pr2O16} dimers, which are connected through a new coordin­ation mode of pydc2− and phth2−. These layers are stabilized by inter­nal hydrogen bonds and π–π inter­actions. In addition, a three-dimensional supra­molecular framework is built by inter­layer hydrogen-bonding inter­actions involving the non-coordinated water mol­ecule. Thermogravimetric analysis shows that the title compound is thermally stable up to 400°C.




ide

Crystal structure, Hirshfeld surface analysis and DFT study of N-(2-nitro­phen­yl)male­imide

The title compound [systematic name: 1-(2-nitro­phen­yl)pyrrole-2,5-dione], C10H6N2O4, crystallizes in the monoclinic system (space group P21/n) with two mol­ecules in the asymmetric unit, which are linked by C—H⋯O hydrogen bonds. Hirshfeld surface analysis showed that the most significant contributions to the crystal packing are from H⋯O/O⋯H, H⋯C/C⋯H and H⋯H inter­actions, which contribute 54.7%, 15.2% and 15.6%, respectively. A DFT study was conducted using three different levels of theory [(B3LYP/6–311+G(d,p), wB97XD/Def2TZVPP and LC-wpbe/6–311(2 d,2p)] in order to determine the stability, structural and electronic properties of the title mol­ecule with a view to its potential applications and photochemical and copolymer properties.




ide

Synthesis and crystal structure of the adduct between 2-pyridyl­selenyl chloride and isobutyro­nitrile

The reaction between 2-pyridyl­selenenyl chloride and isobutyro­nitrile results in the formation of the corresponding cationic pyridinium-fused 1,2,4-seleno­diazole, namely, 3-(propan-2-yl)-1,2,4-[1,2,4]selena­diazolo[4,5-a]pyridin-4-ylium chloride, C9H11N2Se+·Cl−, in high yield (89%). The structure of the compound, established by means of single-crystal X-ray analysis at 100 K, has monoclinic (P21/c) symmetry and revealed the presence of bifurcated chalcogen-hydrogen bonding Se⋯Cl−⋯H—Cl, and these non-covalent contacts were analysed by DFT calculations followed by a topological analysis of the electron-density distribution (ωB97XD/6-311++G** level of theory).




ide

Crystal structure and Hirshfeld surface analysis of (Z)-N-{chloro­[(4-ferrocenylphen­yl)imino]­meth­yl}-4-ferrocenylaniline N,N-di­methyl­formamide monosolvate

The title mol­ecule, [Fe2(C5H5)2(C23H17ClN2)]·C3H7NO, is twisted end to end and the central N/C/N unit is disordered. In the crystal, several C—H⋯π(ring) inter­actions lead to the formation of layers, which are connected by further C—H⋯π(ring) inter­actions. A Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (60.2%) and H⋯C/C⋯H (27.0%) inter­actions. Hydrogen bonding, C—H⋯π(ring) inter­actions and van der Waals inter­actions dominate the crystal packing.




ide

Crystal structures of sulfonamide protected bicyclic guanidines: (S)-8-{[(tert-butyl­dimethyl­sil­yl)­oxy]meth­yl}-1-[(2,2,4,6,7-penta­methyl-2,3-di­hydro­benzo­furan-5-yl)sulfon­yl]-1,3,4,6,7,8-hexa­

Two compounds, (S)-8-{[(tert-butyl­dimethyl­sil­yl)­oxy]meth­yl}-1-[(2,2,4,6,7-penta­methyl-2,3-di­hydro­benzo­furan-5-yl)sulfon­yl]-1,3,4,6,7,8-hexa­hydro-2H-pyrimido[1,2-a]pyrimidin-1-ium tri­fluoro­methane­sulfonate, C27H46N3O4SSi+·CF3O3S−, (1) and (S)-8-(iodo­meth­yl)-1-tosyl-1,3,4,6,7,8-hexa­hydro-2H-pyrimido[1,2-a]pyrimidin-1-ium iodide, C15H21IN3O2S+·I−, (2), have been synthesized and characterized. They are bicyclic guanidinium salts and were synthesized from N-(tert-but­oxy­carbon­yl)-l-me­thio­nine (Boc-l-Met-OH). The guanidine is protected by a 2,2,4,6,7-penta­methyl­dihydro­benzo­furan-5-sulfonyl (Pbf, 1) or a tosyl (2) group. In the crystals of both compounds, the guanidinium group is almost planar and the N–H forms an intra­molecular hydrogen bond in a six-membered ring to the oxygen atom of the sulfonamide protecting group.




ide

Crystal structure of the tetra­ethyl­ammonium salt of the non-steroidal anti-inflammatory drug nimesulide (polymorph II)

The crystal structure of the tetra­ethyl­ammonium salt of the non-steroidal anti-inflammatory drug nimesulide (polymorph II) (systematic name: tetra­ethyl­ammonium N-methane­sulfonyl-4-nitro-2-phen­oxy­anilinide), C8H20N+·C13H11N2O5S−, was determined using single-crystal X-ray diffraction. The title compound crystallizes in the monoclinic space group P21/c with one tetra­ethyl­ammonium cation and one nimesulide anion in the asymmetric unit. In the crystal, the ions are linked by C—H⋯N and C—H⋯O hydrogen bonds and C—H⋯π inter­actions. There are differences in the geometry of both the nimesulide anion and the tetra­ethyl­ammonium cation in polymorphs I [Rybczyńska & Sikorski (2023). Sci. Rep. 13, 17268] and II of the title compound.




ide

Crystal structure of the sodium salt of mesotrione: a triketone herbicide

The crystal structure of the sodium salt of mesotrione, namely, catena-poly[[sodium-μ3-2-[(4-methane­sulfonyl-2-nitro­phen­yl)carbon­yl]-3-oxo­cyclo­hex-1-en-1-olato] ethanol monosolvate], {[Na(C14H12NO7S)]C2H5OH}n, is described. The X-ray structural analysis results reveal that the coordination sphere is established by two chelating O atoms, the O atom of the coordinated ethanol mol­ecule, and an O atom from the methyl­sulfonyl group of a neighboring mol­ecule. Simultaneously, an O atom of the cyclo­hexane fragment serves as a bridge to a neighboring sodium ion, forming a flat Na–O–Na–O quadrangle, thereby forming a mono-periodic polymer. The structure displays O—H⋯O hydrogen bonds and C—H⋯O short contacts. Thermogravimetric analysis (TGA) data indicate that the sodium salt of mesotrione decomposes in four stages.