and

The Intoxication Equivalency of 11-Hydroxy-{Delta}9-Tetrahydrocannabinol Relative to {Delta}9-Tetrahydrocannabinol [Special Section: Cannabinoid Signaling in Human Health and Disease]

9-Tetrahydrocannabinol (THC) is a psychoactive phytocannabinoid found in the Cannabis sativa plant. THC is primarily metabolized into 11-hydroxy-9-tetrahydrocannabinol (11-OH-THC) and 11-nor-9-carboxy-9-tetrahydrocannabinol (COOH-THC), which may themselves be psychoactive. There is very little research-based evidence concerning the pharmacokinetics and pharmacodynamics of 11-OH-THC as an individual compound. Male C57BL/6 mice were treated with THC or 11-OH-THC via intraperitoneal injection, tail vein intravenous injection, or oral gavage, and whole-blood compound levels were measured to determine pharmacokinetic parameters [Cmax, time to Cmax (Tmax), elimination half-life, area under the curve, apparent volume of distribution, systemic clearance, terminal rate constant, and absolute bioavailability] while also monitoring changes in catalepsy, body temperature, and nociception. 11-OH-THC achieved a Tmax at 30 minutes for all routes of administration. The maximum concentration at 30 minutes was not different between intravenous and intraperitoneal routes, but the oral gavage Cmax was significantly lower. THC had a 10-minute time to the maximum concentration, which was the first blood collection time point, for intravenous and intraperitoneal and 60 minutes for oral gavage, with a lower Cmax for intraperitoneal and oral gavage compared with intravenous. When accounting for circulating compound levels and ED50 responses, these data suggest that 11-OH-THC was 153% as active as THC in the tail-flick test of nociception and 78% as active as THC for catalepsy. Therefore, 11-OH-THC displayed equal or greater activity than the parent compound THC, even when accounting for pharmacokinetic differences. Thus, the THC metabolite 11-OH-THC likely plays a critical role in the bioactivity of cannabis; understanding its activity when administered directly will aid in the interpretation of future animal and human studies.

SIGNIFICANCE STATEMENT

This study establishes that the primary metabolite of THC, 11-OH-THC, displays equal or greater activity than THC in a mouse model of cannabinoid activity when directly administered and even when accounting for route of administration, sex, pharmacokinetic, and pharmacodynamic differences. These data provide critical insight into the bioactivity of THC metabolites that will inform the interpretation of future in vivo cannabinoid research and represent a model for how THC consumption and metabolism may affect cannabis use in humans.




and

Sex Differences in the Neural and Behavioral Effects of Acute High-Dose Edible Cannabis Consumption in Rats [Special Section: Cannabinoid Signaling in Human Health and Disease]

The consumption of 9-tetrahydrocannabinol (THC)- or cannabis-containing edibles has increased in recent years; however, the behavioral and neural circuit effects of such consumption remain unknown, especially in the context of ingestion of higher doses resulting in cannabis intoxication. We examined the neural and behavioral effects of acute high-dose edible cannabis consumption (AHDECC). Sprague-Dawley rats (six males, seven females) were implanted with electrodes in the prefrontal cortex (PFC), dorsal hippocampus (dHipp), cingulate cortex (Cg), and nucleus accumbens (NAc). Rats were provided access to a mixture of Nutella (6 g/kg) and THC-containing cannabis oil (20 mg/kg) for 10 minutes, during which they voluntarily consumed all of the provided Nutella and THC mixture. Cannabis tetrad and neural oscillations were examined 2, 4, 8, and 24 hours after exposure. In another cohort (16 males, 15 females), we examined the effects of AHDECC on learning and prepulse inhibition and serum and brain THC and 11-hydroxy-THC concentrations. AHDECC resulted in higher brain and serum THC and 11-hydroxy-THC levels in female rats over 24 hours. AHDECC also produced: 1) Cg, dHipp, and NAc gamma power suppression, with the suppression being greater in female rats, in a time-dependent manner; 2) hypolocomotion, hypothermia, and antinociception in a time-dependent manner; and 3) learning and prepulse inhibition impairments. Additionally, most neural activity and behavior changes appear 2 hours after ingestion, suggesting that interventions around this time might be effective in reversing/reducing the effects of AHDECC.

SIGNIFICANCE STATEMENT

The effects of high-dose edible cannabis on behavior and neural circuitry are poorly understood. We found that the effects of acute high-dose edible cannabis consumption (AHDECC), which include decreased gamma power, hypothermia, hypolocomotion, analgesia, and learning and information processing impairments, are time and sex dependent. Moreover, these effects begin 2 hours after AHDECC and last for at least 24 hours, suggesting that treatments should target this time window in order to be effective.:




and

{Delta}9-Tetrahydrocannabinol Alleviates Hyperalgesia in a Humanized Mouse Model of Sickle Cell Disease [Special Section: Cannabinoid Signaling in Human Health and Disease]

People with sickle cell disease (SCD) often experience chronic pain as well as unpredictable episodes of acute pain, which significantly affects their quality of life and life expectancy. Current treatment strategies for SCD-associated pain primarily rely on opioid analgesics, which have limited efficacy and cause serious adverse effects. Cannabis has emerged as a potential alternative, yet its efficacy remains uncertain. In this study, we investigated the antinociceptive effects of 9-tetrahydrocannabinol (THC), cannabis’ intoxicating constituent, in male HbSS mice, which express >99% human sickle hemoglobin, and male HbAA mice, which express normal human hemoglobin A, as a control. Acute THC administration (0.1–3 mg/kg–1, i.p.) dose-dependently reduced mechanical and cold hypersensitivity in human sickle hemoglobin (HbSS) but not human normal hemoglobin A (HbAA) mice. In the tail-flick assay, THC (1 and 3 mg/kg–1, i.p.) produced substantial antinociceptive effects in HbSS mice. By contrast, THC (1 mg/kg–1, i.p.) did not alter anxiety-like behavior (elevated plus maze) or long-term memory (24-hour novel object recognition). Subchronic THC treatment (1 and 3 mg/kg–1, i.p.) provided sustained relief of mechanical hypersensitivity but led to tolerance in cold hypersensitivity in HbSS mice. Together, the findings identify THC as a possible therapeutic option for the management of chronic pain in SCD. Further research is warranted to elucidate its mechanism of action and possible interaction with other cannabis constituents.

SIGNIFICANCE STATEMENT

The study explores 9-tetrahydrocannabinol (THC)’s efficacy in alleviating pain in sickle cell disease (SCD) using a humanized mouse model. Findings indicate that acute THC administration reduces mechanical and cold hypersensitivity in SCD mice without impacting emotional and cognitive dysfunction. Subchronic THC treatment offers sustained relief of mechanical hypersensitivity but leads to cold hypersensitivity tolerance. These results offer insights into THC's potential as an alternative pain management option in SCD, highlighting both its benefits and limitations.




and

Analgesic Properties of Next-Generation Modulators of Endocannabinoid Signaling: Leveraging Modern Tools for the Development of Novel Therapeutics [Special Section: Cannabinoid Signaling in Human Health and Disease-Minireview]

Targeting the endocannabinoid (eCB) signaling system for pain relief is an important treatment option that is only now beginning to be mechanistically explored. In this review, we focus on two recently appreciated cannabinoid-based targeting strategies, treatments with cannabidiol (CBD) and α/β-hydrolase domain containing 6 (ABHD6) inhibitors, which have the exciting potential to produce pain relief through distinct mechanisms of action and without intoxication. We review evidence on plant-derived cannabinoids for pain, with an emphasis on CBD and its multiple molecular targets expressed in pain pathways. We also discuss the function of eCB signaling in regulating pain responses and the therapeutic promises of inhibitors targeting ABHD6, a 2-arachidonoylglycerol (2-AG)-hydrolyzing enzyme. Finally, we discuss how the novel cannabinoid biosensor GRABeCB2.0 may be leveraged to enable the discovery of targets modulated by cannabinoids at a circuit-specific level.

SIGNIFICANCE STATEMENT

Cannabis has been used by humans as an effective medicine for millennia, including for pain management. Recent evidence emphasizes the therapeutic potential of compounds that modulate endocannabinoid signaling. Specifically, cannabidiol and inhibitors of the enzyme ABHD6 represent promising strategies to achieve pain relief by modulating endocannabinoid signaling in pain pathways via distinct, nonintoxicating mechanisms of action.




and

The National Center for Complementary and Integrative Health: Priorities for Cannabis and Cannabinoid Research [Special Section: Cannabinoid Signaling in Human Health and Disease-Commentary]

The National Center for Complementary and Integrative Health (NCCIH), which is part of the US National Institutes of Health (NIH), has a broad interest in studying the biologic activities of natural products, especially those for which compelling evidence from preclinical research suggests biologic activities that may be beneficial to health or have a potential role in disease treatment, as well as products used extensively by the American public. As of 2023, use of cannabis for medical purposes is legal in 38 states and Washington, D.C. Such use continues to climb generally without sufficient knowledge regarding risks and benefits. In keeping with NCCIH’s natural product research priorities and recognizing this gap in knowledge, NCCIH formally launched a research program in 2019 to expand research on the possible benefits for pain management of certain substances found in cannabis: minor cannabinoids and terpenes. This Viewpoint provides additional details and the rationale for this research priority at NCCIH. In addition, NCCIH’s efforts and initiatives to facilitate and coordinate an NIH research agenda focused on cannabis and cannabinoid research are described.

SIGNIFICANCE STATEMENT

Use of cannabis for purported medical purposes continues to increase despite insufficient knowledge regarding risks and benefits. Research is needed to help health professionals and patients make knowledgeable decisions about using cannabis and cannabinoids for medical purposes. The National Center for Complementary and Integrative Health, along with other NIH Institutes, Centers, and Offices, is expanding study on the safety, efficacy, and harms of cannabis—a complex mixture of phytochemicals that needs to be studied alone and in combination.




and

Cannabis and Cannabinoid Signaling: Research Gaps and Opportunities [Special Section: Cannabinoid Signaling in Human Health and Disease-Commentary]

Cannabis and its products have been used for centuries for both medicinal and recreational purposes. The recent widespread legalization of cannabis has vastly expanded its use in the United States across all demographics except for adolescents. Meanwhile, decades of research have advanced our knowledge of cannabis pharmacology and particularly of the endocannabinoid system with which the components of cannabis interact. This research has revealed multiple targets and approaches for manipulating the system for therapeutic use and to ameliorate cannabis toxicity or cannabis use disorder. Research has also led to new questions that underscore the potential risks of its widespread use, particularly the enduring consequences of exposure during critical windows of brain development or for consumption of large daily doses of cannabis with high content 9-tetrahydrocannabinol. This article highlights current neuroscience research on cannabis that has shed light on therapeutic opportunities and potential adverse consequences of misuse and points to gaps in knowledge that can guide future research.

SIGNIFICANCE STATEMENT

Cannabis use has escalated with its increased availability. Here, the authors highlight the challenges of cannabis research and the gaps in our knowledge of cannabis pharmacology and of the endocannabinoid system that it targets. Future research that addresses these gaps is needed so that the endocannabinoid system can be leveraged for safe and effective use.




and

Special Section on Cannabinoid Signaling in Human Health and Disease--Editorial [Special Section on Cannabinoid Signaling in Human Health and Disease-Editorial]




and

Low-Efficacy Mu Opioid Agonists as Candidate Analgesics: Effects of Novel C-9 Substituted Phenylmorphans on Pain-Depressed Behavior in Mice [Behavioral Pharmacology]

Low-efficacy mu opioid receptor (MOR) agonists may serve as novel candidate analgesics with improved safety relative to high-efficacy opioids. This study used a recently validated assay of pain-depressed behavior in mice to evaluate a novel series of MOR-selective C9-substituted phenylmorphan opioids with graded MOR efficacies. Intraperitoneal injection of dilute lactic acid (IP acid) served as a noxious stimulus to depress locomotor activity by mice in an activity chamber composed of two compartments connected by an obstructed door. Behavioral measures included (1) crosses between compartments (vertical activity over the obstruction) and (2) movement counts quantified as photobeam breaks summed across compartments (horizontal activity). Each drug was tested alone and as a pretreatment to IP acid. A charcoal-meal test and whole-body-plethysmography assessment of breathing in 5% CO2 were also used to assess gastrointestinal (GI) inhibition and respiratory depression, respectively. IP acid produced a concentration-dependent depression in crosses and movement that was optimally alleviated by intermediate- to low-efficacy phenylmorphans with sufficient efficacy to produce analgesia with minimal locomotor disruption. Follow-up studies with two low-efficacy phenylmorphans (JL-2-39 and DC-1-76.1) indicated that both drugs produced naltrexone-reversible antinociception with a rapid onset and a duration of ~1 h. Potency of both drugs increased when behavior was depressed by a lower IP-acid concentration, and neither drug alleviated behavioral depression by a non-pain stimulus (IP lithium chloride). Both drugs produced weaker GI inhibition and respiratory depression than fentanyl and attenuated fentanyl-induced GI inhibition and respiratory depression. Results support further consideration of selective, low-efficacy MOR agonists as candidate analgesics.

SIGNIFICANCE STATEMENT

This study used a novel set of mu opioid receptor (MOR)-selective opioids with graded MOR efficacies to examine the lower boundary of MOR efficacy sufficient to relieve pain-related behavioral depression in mice. Two novel low-efficacy opioids (JL-2-39, DC-1-76.1) produced effective antinociception with improved safety relative to higher- or lower-efficacy opioids, and results support further consideration of these and other low-efficacy opioids as candidate analgesics.




and

No In Vivo Evidence for Estrogen Receptor Density Changes in Human Neuroendocrine Aging or Their Relationship to Cognition and Menopausal Symptoms




and

Freehand SPECT Combined with 3-Dimensional Light Detection and Ranging as Alternative Means of Specimen Scanning During Prostate Cancer Surgery




and

Preclinical Evaluation of 226Ac as a Theranostic Agent: Imaging, Dosimetry, and Therapy

226Ac (t1/2 = 29.37 h) has been proposed as a theranostic radioisotope leveraging both its diagnostic -emissions and therapeutic α-emissions. 226Ac emits 158 and 230 keV -photons ideal for quantitative SPECT imaging and acts as an in vivo generator of 4 high-energy α-particles. Because of these nuclear decay properties, 226Ac has potential to act as a standalone theranostic isotope. In this proof-of-concept study, we evaluated a preclinical 226Ac-radiopharmaceutical for its theranostic efficacy and present the first 226Ac-targeted α-therapy study. Methods: 226Ac was produced at TRIUMF and labeled with the chelator-peptide bioconjugate crown-TATE. [226Ac]Ac-crown-TATE was selected to target neuroendocrine tumors in male NRG mice bearing AR42J tumor xenografts for SPECT imaging, biodistribution, and therapy studies. A preclinical SPECT/CT scanner acquired quantitative images reconstructed from both the 158 and the 230 keV emissions. Mice in the biodistribution study were euthanized at 1, 3, 5, 24, and 48 h after injection, and internal radiation dosimetry was derived for the tumor and organs of interest to establish appropriate therapeutic activity levels. Mice in the therapy study were administered 125, 250, or 375 kBq treatments and were monitored for tumor size and body condition. Results: We present quantitative SPECT images of the in vivo biodistribution of [226Ac]Ac-crown-TATE, which showed agreement with ex vivo measurements. Biodistribution studies demonstrated high uptake (>30%IA/g at 5 h after injection) and retention in the tumor, with an estimated mean absorbed dose coefficient of 222 mGy/kBq. [226Ac]Ac-crown-TATE treatments significantly extended the median survival from 7 d in the control groups to 16, 24, and 27 d in the 125, 250, and 375 kBq treatment groups, respectively. Survival was prolonged by slowing tumor growth, and no weight loss or toxicities were observed. Conclusion: This study highlights the theranostic potential of 226Ac as a standalone therapeutic isotope in addition to its demonstrated diagnostic capabilities to assess dosimetry in matched 225Ac-radiopharmaceuticals. Future studies will investigate maximum dose and toxicity to further explore the therapeutic potential of 226Ac-radiopharmaceuticals.




and

Routine Use of [64Cu]Cu-DOTATATE PET/CT in a Neuroendocrine Tumor Center: Referral Patterns and Image Results of 2,249 Consecutive Scans

The role of somatostatin receptor (SSTR) PET/CT, using 68Ga-based tracers or [64Cu]Cu-DOTATATE (64Cu-DOTATATE), in the management of patients with neuroendocrine neoplasm (NEN) is guided by appropriate use criteria (AUC). In this study, we performed systematic analyses of referral patterns and image findings of routine 64Cu-DOTATATE PET/CT scans to support AUC development. Methods: We included all clinical routine 64Cu-DOTATATE PET/CT scans performed between April 10, 2018 (start of clinical use), and May 2, 2022, at Copenhagen University Hospital–Rigshospitalet. We reviewed the referral text and image report of each scan and classified the indication according to clinical scenarios as listed in the AUC. Results: In total, 1,290 patients underwent 2,249 64Cu-DOTATATE PET/CT scans. Monitoring of patients with NEN seen both on conventional imaging and on SSTR PET without clinical evidence of progression was the most common indication (defined as "may be appropriate" in the AUC) and accounted for 703 (31.3%) scans. Initial staging after NEN diagnosis ("appropriate" in the AUC) and restaging after curative-intent surgery ("may be appropriate" in the AUC) accounted for 221 (9.8%) and 241 (10.7%) scans, respectively. Selection of patients eligible for peptide receptor radionuclide therapy ("appropriate" in the AUC) and restaging after peptide receptor radionuclide therapy completion ("appropriate" in the AUC) accounted for 95 (4.2%) and 115 (5.1%) scans, respectively. The number of scans performed for indications not defined in the AUC was 371 (16.5%). Image result analysis revealed no disease in 669 scans (29.7%), stable disease in 582 (25.9%), and progression in 461 (20.5%). In 99 of the 461 (21.5%) scans, progression was detected on PET but not on CT. Conclusion: Our study provided real-life data that may contribute to support development of 64Cu-DOTATATE/SSTR PET/CT guidelines including AUC. Some scenarios listed as "may be appropriate" in the current AUC were frequent in our data. Monitoring of patients with NEN without clinical evidence of progression was the most frequent indication for 64Cu-DOTATATE PET/CT, in which disease progression was detected in more than one third, and a large proportion was visible by PET only. We therefore conclude that this scenario could potentially be classified as appropriate.




and

Cardiac Neuroendocrine Tumor Metastases on 68Ga-DOTATATE PET/CT: Identification and Prognostic Significance

Neuroendocrine tumor (NET) metastases to the heart are found in 1%–4% of NET patients and have been reported primarily in the form of individual cases. We investigated the prevalence, clinical characteristics, imaging features, and outcomes of NET patients with cardiac metastases on 68Ga-DOTATATE PET/CT. Methods: 68Ga-DOTATATE PET/CT of 490 consecutive patients from a single institution were retrospectively reviewed for sites of metastases. The cumulative cardiovascular event rate and overall survival of patients with cardiac NET metastases (CNMs) were compared with those of a control group of metastatic NET patients without cardiac metastases. In patients with CNMs, the cardiac SUVmax with and without normalization to the myocardial background uptake was compared with a separate cohort of 11 patients with active cardiac sarcoidosis who underwent 68Ga-DOTATATE PET/CT for research purposes. Results: In total, 270 patients with metastatic NETs were identified, 9 (3.3%) of whom had CNMs. All 9 patients had grade 1–2 gastroenteropancreatic NETs, most commonly from the small intestine (7 patients). The control group consisted of 140 patients with metastatic grade 1–2 gastroenteropancreatic NETs. On Kaplan–Meier analysis, there was no significant difference in the risk of cardiovascular adverse events (P = 0.91 on log-rank test) or mortality (P = 0.83) between the metastatic NET patients with and without cardiac metastases. The degree of cardiac DOTATATE uptake was significantly higher in CNMs than in patients with cardiac sarcoidosis without overlap, in terms of both cardiac SUVmax (P = 0.027) and SUVmax–to–myocardial background ratio (P = 0.021). Conclusion: Routine 68Ga-DOTATATE PET/CT can be used to identify CNMs in 3% of patients with metastatic NETs. CNMs do not confer added cardiovascular or mortality risk. A distinguishing feature of CNMs is their high degree of DOTATATE uptake compared with focal myocardial inflammation.




and

Efficacy and Toxicity of [177Lu]Lu-PSMA-617 for Metastatic Castration-Resistant Prostate Cancer: Results from the U.S. Expanded-Access Program and Comparisons with Phase 3 VISION Data

The phase 3 VISION trial demonstrated that [177Lu]Lu-PSMA-617 prolonged progression-free survival and overall survival (OS) in prostate-specific membrane antigen [PSMA]–positive metastatic castration-resistant prostate cancer (mCRPC) patients who progressed on taxane-based chemotherapy and androgen receptor–signaling inhibitors (ARSIs). The U.S. expanded-access program (EAP; NCT04825652) was opened to provide access to [177Lu]Lu-PSMA-617 for eligible patients until regulatory approval was obtained. This study aimed to evaluate the efficacy and safety profile of [177Lu]Lu-PSMA-617 within the EAP and compare the results with those from the VISION trial. Methods: Patients enrolled in the EAP at 4 institutions in the United States with available toxicity and outcome data were included. Outcome measures included OS, a prostate-specific antigen (PSA) response rate (RR) of at least 50%, and incidences of toxicity according to Common Terminology Criteria for Adverse Events version 5.0. Differences in baseline characteristics, outcome data, and toxicity between the EAP and VISION were evaluated using t testing of proportions and survival analyses. Results: In total, 117 patients with mCRPC who received [177Lu]Lu-PSMA-617 within the EAP between May 2021 and March 2022 were eligible and included in this analysis. Patients enrolled in the EAP were more heavily pretreated with ARSI (≥2 ARSI regimens: 70% vs. 46%; P < 0.001) and had worse performance status at baseline (Eastern Cooperative Oncology Group score ≥ 2: 19% vs. 7%; P < 0.001) than VISION patients. EAP and VISION patients had similar levels of grade 3 or higher anemia (18% vs. 13%; P = 0.15), thrombocytopenia (13% vs. 8%; P = 0.13), and neutropenia (3% vs. 3%; P = 0.85) and similar PSA RRs (42% vs. 46%; P = 0.50) and OS (median: 15.1 vs. 15.3 mo; P > 0.05). Conclusion: Patients with PSMA-positive mCRPC who received [177Lu]Lu-PSMA-617 within the EAP were later in their disease trajectory than VISION patients. Patients enrolled in the EAP achieved similar PSA RRs and OS and had a safety profile similar to that of the VISION trial patients.




and

Association of Free-to-Total PSA Ratio and 18F-DCFPyL Prostate-Specific Membrane Antigen PET/CT Findings in Patients with Biochemical Recurrence After Radical Prostatectomy: A Prospective Single-Center Study

In Canada and across the globe, access to PSMA PET/CT is limited and expensive. For patients with biochemical recurrence (BCR) after treatment for prostate cancer, novel strategies are needed to better stratify patients who may or may not benefit from a PSMA PET scan. The role of the free-to-total prostate-specific antigen (PSA) ratio (FPSAR) in posttreatment prostate cancer, specifically in the PSMA PET/CT era, remains unknown. Our aim in this study was to determine the association of FPSAR in patients referred for 18F-DCFPyL PSMA PET/CT in the BCR setting and assess the correlation between FPSAR and 18F-DCFPyL PSMA PET/CT positivity (local recurrence or distant metastases). Methods: This prospective study included 137 patients who were referred for 18F-DCFPyL PSMA PET/CT and had BCR with a total PSA of less than 1 ng/mL after radical prostatectomy (RP) (including adjuvant or salvage radiotherapy). Blood samples were collected on the day of 18F-DCFPyL PSMA PET/CT. FPSAR was categorized as less than 0.10 or as 0.10 or more. A positive 18F-DCFPyL PSMA PET/CT scan was defined by a PROMISE classification lesion score of 2 or 3, irrespective of the site of increased tracer uptake (e.g., prostate, pelvic nodes, bone, or viscera). Results: Overall, 137 blood samples of patients with BCR after RP were analyzed to calculate FPSAR. The median age at 18F-DCFPyL PSMA PET/CT was 68.6 y (interquartile range, 63.0–72.4 y), and the median PSA at 18F-DCFPyL PSMA PET/CT was 0.3 ng/mL (interquartile range, 0.3–0.6 ng/mL). Eighty-six patients (62.8%) had an FPSAR of less than 0.10, whereas 51 patients (37.2%) had an FPSAR of 0.10 or more. An FPSAR of 0.10 or more was identified as an independent predictor of a positive 18F-DCFPyL PSMA PET/CT scan, with an odds ratio of 6.99 (95% CI, 2.96–16.51; P < 0.001). Conclusion: An FPSAR of 0.10 or more after RP independently correlated with increased odds of a positive 18F-DCFPyL PSMA PET/CT scan among BCR post-RP patients. These findings may offer an inexpensive method by which to triage access to 18F-DCFPyL PSMA PET/CT in jurisdictions where availability is not replete.




and

Initial Experience with [177Lu]Lu-PSMA-617 After Regulatory Approval for Metastatic Castration-Resistant Prostate Cancer: Efficacy, Safety, and Outcome Prediction

[177Lu]Lu-PSMA-617 was approved by the U.S. Food and Drug Administration for patients with prostate-specific membrane antigen (PSMA)–positive metastatic castration-resistant prostate cancer (mCRPC). Since the time of regulatory approval, however, real-world data have been lacking. This study investigated the efficacy, safety, and outcome predictors of [177Lu]Lu-PSMA-617 at a major U.S. academic center. Methods: Patients with mCRPC who received [177Lu]Lu-PSMA-617 at the Johns Hopkins Hospital outside clinical trials were screened for inclusion. Patients who underwent [177Lu]Lu-PSMA-617 and had available outcome data were included in this study. Outcome data included prostate-specific antigen (PSA) response (≥50% decline), PSA progression-free survival (PFS), and overall survival (OS). Toxicity data were evaluated according to the Common Terminology Criteria for Adverse Events version 5.03. The study tested the association of baseline circulating tumor DNA mutational status in homologous recombination repair, PI3K alteration pathway, and aggressive-variant prostate cancer–associated genes with treatment outcome. Baseline PSMA PET/CT images were analyzed using SelectPSMA, an artificial intelligence algorithm, to predict treatment outcome. Associations with the observed treatment outcome were evaluated. Results: All 76 patients with PSMA-positive mCRPC who received [177Lu]Lu-PSMA-617 met the inclusion criteria. A PSA response was achieved in 30 of 74 (41%) patients. The median PSA PFS was 4.1 mo (95% CI, 2.0–6.2 mo), and the median OS was 13.7 mo (95% CI, 11.3–16.1 mo). Anemia of grade 3 or greater, thrombocytopenia, and neutropenia were observed in 9 (12%), 3 (4%), and 1 (1%), respectively, of 76 patients. Transient xerostomia was observed in 23 (28%) patients. The presence of aggressive-variant prostate cancer–associated genes was associated with a shorter PSA PFS (median, 1.3 vs. 6.3 mo; P = 0.040). No other associations were observed between circulating tumor DNA mutational status and treatment outcomes. Eighteen of 71 (25%) patients classified by SelectPSMA as nonresponders had significantly lower rates of PSA response than patients classified as likely responders (6% vs. 51%; P < 0.001), a shorter PSA PFS (median, 1.3 vs. 6.3 mo; P < 0.001), and a shorter OS (median, 6.3 vs. 14.5 mo; P = 0.046). Conclusion: [177Lu]Lu-PSMA-617 offered in a real-world setting after regulatory approval in the United States demonstrated antitumor activity and a favorable toxicity profile. Artificial-intelligence–based analysis of baseline PSMA PET/CT images may improve patient selection. Validation of these findings on larger cohorts is warranted.




and

uPAR Immuno-PET in Pancreatic Cancer, Aging, and Chemotherapy-Induced Senescence

Identifying cancer therapy resistance is a key time-saving tool for physicians. Part of chemotherapy resistance includes senescence, a persistent state without cell division or cell death. Chemically inducing senescence with the combination of trametinib and palbociclib (TP) yields several tumorigenic and prometastatic factors in pancreatic cancer models with many potential antibody-based targets. In particular, urokinase plasminogen activator receptor (uPAR) has been shown to be a membrane-bound marker of senescence in addition to an oncology target. Methods: Here, 2 antibodies against murine uPAR and human uPAR were developed as immuno-PET agents to noninvasively track uPAR antigen abundance. Results: TP treatment increased cell uptake both in murine KPC cells and in human MiaPaCa2 cells. In vivo, subcutaneously implanted murine KPC tumors had high tumor uptake with the antimurine uPAR antibody independently of TP in young mice, yet uPAR uptake was maintained in aged mice on TP. Mice xenografted with human MiaPaCa2 tumors showed a significant increase in tumor uptake on TP therapy when imaged with the antihuman uPAR antibody. Imaging with either uPAR antibody was found to be more tumor-selective than imaging with [18F]FDG or [18F]F-DPA-714. Conclusion: The use of radiolabeled uPAR-targeting antibodies provides a new antibody-based PET imaging candidate for pancreatic cancer imaging as well as chemotherapy-induced senescence.




and

Intrapatient Intermetastatic Heterogeneity Determined by Triple-Tracer PET Imaging in mCRPC Patients and Correlation to Survival: The 3TMPO Cohort Study

Intrapatient intermetastatic heterogeneity (IIH) has been demonstrated in metastatic castration-resistant prostate cancer (mCRPC) patients and is of the utmost importance for radiopharmaceutical therapy (RPT) eligibility. This study was designed to determine the prevalence of IIH and RPT eligibility in mCRPC patients through a triple-tracer PET imaging strategy. Methods: This was a multisite prospective observational study in which mCRPC patients underwent both 18F-FDG and 68Ga-prostate-specific membrane antigen (PSMA)–617 PET/CT scans. A third scan with 68Ga-DOTATATE, a potential biomarker of neuroendocrine differentiation, was performed if an 18F-FDG–positive/68Ga-PSMA–negative lesion was found. Per-tracer lesion positivity was defined as having an uptake at least 50% above that of the liver. IIH prevalence was defined as the percentage of participants having at least 2 lesions with discordant features on multitracer PET. Results: IIH was observed in 81 patients (82.7%), and at least 1 18F-FDG–positive/68Ga-PSMA–negative lesion was found in 45 patients (45.9%). Of the 37 participants who also underwent 68Ga-DOTATATE PET/CT, 6 (16.2%) had at least 1 68Ga-DOTATATE–positive lesion. In total, 12 different combinations of lesion imaging phenotypes were observed. On the basis of our prespecified criteria, 52 (53.1%) participants were determined to be eligible for PSMA RPT, but none for DOTATATE RPT. Patients with IIH had a significantly shorter median overall survival than patients without IIH (9.5 mo vs. not reached; log-rank P = 0.03; hazard ratio, 2.7; 95% CI, 1.1–6.8). Conclusion: Most mCRPC patients showed IIH, which was associated with shorter overall survival. On the basis of a triple-tracer PET approach, multiple phenotypic combinations were found. Correlation of these imaging phenotypes with genomics and treatment response will be relevant for precision medicine.




and

[18F]AlF-NOTA-FAPI-04 PET/CT for Predicting Pathologic Response of Resectable Esophageal Squamous Cell Carcinoma to Neoadjuvant Camrelizumab and Chemotherapy: A Phase II Clinical Trial

This single-center, single-arm, phase II trial (ChiCTR2100050057) investigated the ability of 18F-labeled fibroblast activation protein inhibitor ([18F]AlF-NOTA-FAPI-04, denoted as 18F-FAPI) PET/CT to predict the response to neoadjuvant camrelizumab plus chemotherapy (nCC) in locally advanced esophageal squamous cell carcinoma (LA-ESCC). Methods: This study included 32 newly diagnosed LA-ESCC participants who underwent 18F-FAPI PET/CT at baseline, of whom 23 also underwent scanning after 2 cycles of nCC. The participants underwent surgery after 2 cycles of nCC. Recorded PET parameters included maximum, peak, and mean SUVs and tumor-to-background ratios (TBRs), metabolic tumor volume, and total lesion FAP expression. PET parameters were compared between patient groups with good and poor pathologic responses, and the predictive performance for treatment response was analyzed. Results: The good and poor response groups each included 16 participants (16/32, 50.0%). On 18F-FAPI PET/CT, the posttreatment SUVs were significantly lower in good responders than in poor responders, whereas the changes in SUVs with treatment were significantly higher (all P < 0.05). SUVmax (area under the curve [AUC], 0.87; P = 0.0026), SUVpeak (AUC, 0.89; P = 0.0017), SUVmean (AUC, 0.88; P = 0.0021), TBRmax (AUC, 0.86; P = 0.0031), and TBRmean (AUC, 0.88; P = 0.0021) after nCC were significant predictors of pathologic response to nCC, with sensitivities of 63.64%–81.82% and specificities of 83.33%–100%. Changes in SUVmax (AUC, 0.81; P = 0.0116), SUVpeak (AUC, 0.82; P = 0.0097), SUVmean (AUC, 0.81; P = 0.0116), and TBRmean (AUC, 0.74; P = 0.0489) also were significant predictors of the pathologic response to nCC, with sensitivities and specificities in similar ranges. Conclusion: 18F-FAPI PET/CT parameters after treatment and their changes from baseline can predict the pathologic response to nCC in LA-ESCC participants.




and

Reimagining Biologically Adapted Somatostatin Receptor-Targeted Radionuclide Therapy: Perspectives Based on Personal Experience and Observations on Recent Trials




and

Is the Clinical Application of CXCR4 Imaging in the Diagnosis and Management of Primary Aldosteronism Really Happening?




and

Precautions to Consider in the Analysis of Prognostic and Predictive Indices

Understanding the differences between prognostic and predictive indices is imperative for medical research advances. We have developed a new prognostic measure that will identify the strengths, limitations, and potential applications in clinical practice.




and

U.S. Imaging Costs: Michal Horny Talks with Ken Herrmann and Johannes Czernin About the Changing Contribution of Medical Imaging to Health Care Costs




and

Intestinal Lymphatic Biology, Drug Delivery, and Therapeutics: Current Status and Future Directions [Review Article]

Historically, the intestinal lymphatics were considered passive conduits for fluids, immune cells, dietary lipids, lipid soluble vitamins, and lipophilic drugs. Studies of intestinal lymphatic drug delivery in the late 20th century focused primarily on the drugs’ physicochemical properties, especially high lipophilicity, that resulted in intestinal lymphatic transport. More recent discoveries have changed our traditional view by demonstrating that the lymphatics are active, plastic, and tissue-specific players in a range of biological and pathological processes, including within the intestine. These findings have, in turn, inspired exploration of lymph-specific therapies for a range of diseases, as well as the development of more sophisticated strategies to actively deliver drugs or vaccines to the intestinal lymph, including a range of nanotechnologies, lipid prodrugs, and lipid-conjugated materials that "hitchhike" onto lymphatic transport pathways. With the increasing development of novel therapeutics such as biologics, there has been interest in whether these therapeutics are absorbed and transported through intestinal lymph after oral administration. Here we review the current state of understanding of the anatomy and physiology of the gastrointestinal lymphatic system in health and disease, with a focus on aspects relevant to drug delivery. We summarize the current state-of-the-art approaches to deliver drugs and quantify their uptake into the intestinal lymphatic system. Finally, and excitingly, we discuss recent examples of significant pharmacokinetic and therapeutic benefits achieved via intestinal lymphatic drug delivery. We also propose approaches to advance the development and clinical application of intestinal lymphatic delivery strategies in the future.

Significance Statement

This comprehensive review details the understanding of the anatomy and physiology of the intestinal lymphatic system in health and disease, with a focus on aspects relevant to drug delivery. It highlights current state-of-the-art approaches to deliver drugs to the intestinal lymphatics and the shift toward the use of these strategies to achieve pharmacokinetic and therapeutic benefits for patients.




and

Somatostatin: Linking Cognition and Alzheimer Disease to Therapeutic Targeting [Review Article]

Over 4 decades of research support the link between Alzheimer disease (AD) and somatostatin [somatotropin-releasing inhibitory factor (SRIF)]. SRIF and SRIF-expressing neurons play an essential role in brain function, modulating hippocampal activity and memory formation. Loss of SRIF and SRIF-expressing neurons in the brain rests at the center of a series of interdependent pathological events driven by amyloid-β peptide (Aβ), culminating in cognitive decline and dementia. The connection between the SRIF and AD further extends to the neuropsychiatric symptoms, seizure activity, and inflammation, whereas preclinical AD investigations show SRIF or SRIF receptor agonist administration capable of enhancing cognition. SRIF receptor subtype-4 activation in particular presents unique attributes, with the potential to mitigate learning and memory decline, reduce comorbid symptoms, and enhance enzymatic degradation of Aβ in the brain. Here, we review the links between SRIF and AD along with the therapeutic implications.

Significance Statement

Somatostatin and somatostatin-expressing neurons in the brain are extensively involved in cognition. Loss of somatostatin and somatostatin-expressing neurons in Alzheimer disease rests at the center of a series of interdependent pathological events contributing to cognitive decline and dementia. Targeting somatostatin-mediated processes has significant therapeutic potential for the treatment of Alzheimer disease.




and

Posttranslational Modifications of {alpha}-Synuclein, Their Therapeutic Potential, and Crosstalk in Health and Neurodegenerative Diseases [Review Article]

α-Synuclein (α-Syn) aggregation in Lewy bodies and Lewy neurites has emerged as a key pathogenetic feature in Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. Various factors, including posttranslational modifications (PTMs), can influence the propensity of α-Syn to misfold and aggregate. PTMs are biochemical modifications of a protein that occur during or after translation and are typically mediated by enzymes. PTMs modulate several characteristics of proteins including their structure, activity, localization, and stability. α-Syn undergoes various posttranslational modifications, including phosphorylation, ubiquitination, SUMOylation, acetylation, glycation, O-GlcNAcylation, nitration, oxidation, polyamination, arginylation, and truncation. Different PTMs of a protein can physically interact with one another or work together to influence a particular physiological or pathological feature in a process known as PTMs crosstalk. The development of detection techniques for the cooccurrence of PTMs in recent years has uncovered previously unappreciated mechanisms of their crosstalk. This has led to the emergence of evidence supporting an association between α-Syn PTMs crosstalk and synucleinopathies. In this review, we provide a comprehensive evaluation of α-Syn PTMs, their impact on misfolding and pathogenicity, the pharmacological means of targeting them, and their potential as biomarkers of disease. We also highlight the importance of the crosstalk between these PTMs in α-Syn function and aggregation. Insight into these PTMS and the complexities of their crosstalk can improve our understanding of the pathogenesis of synucleinopathies and identify novel targets of therapeutic potential.

Significance Statement

α-Synuclein is a key pathogenic protein in Parkinson’s disease and other synucleinopathies, making it a leading therapeutic target for disease modification. Multiple posttranslational modifications occur at various sites in α-Synuclein and alter its biophysical and pathological properties, some interacting with one another to add to the complexity of the pathogenicity of this protein. This review details these modifications, their implications in disease, and potential therapeutic opportunities.




and

Bile Acid Signaling in Metabolic and Inflammatory Diseases and Drug Development [Review Article]

Bile acids are the end products of cholesterol catabolism. Hepatic bile acid synthesis accounts for a major fraction of daily cholesterol turnover in humans. Biliary secretion of bile acids generates bile flow and facilitates biliary secretion of lipids, endogenous metabolites, and xenobiotics. In intestine, bile acids facilitate the digestion and absorption of dietary lipids and fat-soluble vitamins. Through activation of nuclear receptors and G protein-coupled receptors and interaction with gut microbiome, bile acids critically regulate host metabolism and innate and adaptive immunity and are involved in the pathogenesis of cholestasis, metabolic dysfunction-associated steatotic liver disease, alcohol-associated liver disease, type-2 diabetes, and inflammatory bowel diseases. Bile acids and their derivatives have been developed as potential therapeutic agents for treating chronic metabolic and inflammatory liver diseases and gastrointestinal disorders.

Significance Statement

Bile acids facilitate biliary cholesterol solubilization and dietary lipid absorption, regulate host metabolism and immunity, and modulate gut microbiome. Targeting bile acid metabolism and signaling holds promise for treating metabolic and inflammatory diseases.




and

Drug-Drug Interactions and Synergy: From Pharmacological Models to Clinical Application [Review Article]

This review explores the concept of synergy in pharmacology, emphasizing its importance in optimizing treatment outcomes through the combination of drugs with different mechanisms of action. Synergy, defined as an effect greater than the expected additive effect elicited by individual agents according to specific predictive models, offers a promising approach to enhance therapeutic efficacy while minimizing adverse events. The historical evolution of synergy research, from ancient civilizations to modern pharmacology, highlights the ongoing quest to understand and harness synergistic interactions. Key concepts, such as concentration-response curves, additive effects, and predictive models, are discussed in detail, emphasizing the need for accurate assessment methods throughout translational drug development. Although various mathematical models exist for synergy analysis, selecting the appropriate model and software tools remains a challenge, necessitating careful consideration of experimental design and data interpretation. Furthermore, this review addresses practical considerations in synergy assessment, including preclinical and clinical approaches, mechanism of action, and statistical analysis. Optimizing synergy requires attention to concentration/dose ratios, target site localization, and timing of drug administration, ensuring that the benefits of combination therapy detected bench-side are translatable into clinical practice. Overall, the review advocates for a systematic approach to synergy assessment, incorporating robust statistical analysis, effective and simplified predictive models, and collaborative efforts across pivotal sectors, such as academic institutions, pharmaceutical companies, and regulatory agencies. By overcoming critical challenges and maximizing therapeutic potential, effective synergy assessment in drug development holds promise for advancing patient care.

Significance Statement

Combining drugs with different mechanisms of action for synergistic interactions optimizes treatment efficacy and safety. Accurate interpretation of synergy requires the identification of the expected additive effect. Despite innovative models to predict the additive effect, consensus in drug-drug interactions research is lacking, hindering the bench-to-bedside development of combination therapies. Collaboration among science, industry, and regulation is crucial for advancing combination therapy development, ensuring rigorous application of predictive models in clinical settings.




and

Glatiramer Acetate for the Treatment of Multiple Sclerosis: From First-Generation Therapy to Elucidation of Immunomodulation and Repair [Review Article]

Multiple sclerosis (MS) is a chronic inflammatory demyelinating and neurodegenerative disease of the central nervous system (CNS), with a putative autoimmune origin and complex pathogenesis. Modification of the natural history of MS by reducing relapses and slowing disability accumulation was first attained in the 1990 s with the development of the first-generation disease-modifying therapies. Glatiramer acetate (GA), a copolymer of L-alanine, L-lysine, L-glutamic acid, and L-tyrosine, was discovered due to its ability to suppress the animal model of MS, experimental autoimmune encephalomyelitis. Extensive clinical trials and long-term assessments established the efficacy and the safety of GA. Furthermore, studies of the therapeutic processes induced by GA in animal models and in MS patients indicate that GA affects various levels of the innate and the adaptive immune response, generating deviation from proinflammatory to anti-inflammatory pathways. This includes competition for binding to antigen presenting cells; driving dendritic cells, monocytes, and B-cells toward anti-inflammatory responses; and stimulating T-helper 2 and T-regulatory cells. The immune cells stimulated by GA reach the CNS and secrete in situ anti-inflammatory cytokines alleviating the pathological processes. Furthermore, cumulative findings reveal that in addition to its immunomodulatory effect, GA promotes neuroprotective repair processes such as neurotrophic factors secretion, remyelination, and neurogenesis. This review aims to provide an overview of MS pathology diagnosis and treatment as well as the diverse mechanism of action of GA.

Significance Statement

Understanding the complex MS immune pathogenesis provided multiple targets for therapeutic intervention, resulting in a plethora of agents, with various mechanisms of action, efficacy, and safety profiles. However, promoting repair beyond the body’s limited spontaneous extent is still a major challenge. GA, one of the first approved disease-modifying therapies, induces diverse immunomodulatory effects. Furthermore, GA treatment results in elevated neurotrophic factors secretion, remyelination and neurogenesis, supporting the notion that immunomodulatory treatment can support in situ a growth-promoting and repair environment.




and

Cytochrome P450 Enzymes: The Old Pandoras Box with an Ever-Growing Hope for Therapy Optimization and Drug Development--Editorial [Editorial]




and

The 75-Year Anniversary of the Department of Physiology and Pharmacology at Karolinska Institutet--Examples of Recent Accomplishments and Future Perspectives [75th Anniversary Celebration Collection Special Section-Perspective]

Karolinska Institutet is a medical university encompassing 21 departments distributed across three departmental or campus groups. Pharmacological research has a long and successful tradition at the institute with a multitude of seminal findings in the areas of neuronal control of vasodilatation, cardiovascular pharmacology, neuropsychopharmacology, receptor pharmacology, and pharmacogenomics that resulted in, among many other recognitions, two Nobel prizes in Physiology and Medicine, one in 1970 to Ulf von Euler for his discovery of the processes involved in storage, release, and inactivation of neurotransmitters and the other in 1982 to Sune Bergström and Bengt Samuelsson for their work on prostaglandins and the discovery of leukotrienes. Pharmacology at Karolinska Institutet has over the last decade been ranked globally among the top 10 according to the QS World University Ranking. With the Department of Physiology and Pharmacology now celebrating its 75-year anniversary, we wanted to take this as an opportunity to showcase recent research achievements and how they paved the way for current activities at the department. We emphasize examples from preclinical and clinical research where the dpartment's integrative environment and robust infrastructure have successfully facilitated the translation of findings into clinical applications and patient benefits. The close collaboration between preclinical scientists and clinical researchers across various disciplines, along with a strong network of partnerships within the department and beyond, positions us to continue leading world-class pharmacological research at the Department of Physiology and Pharmacology for decades to come.

Significance Statement

Pharmacological research at Karolinska Institutet has a long and successful history. Given the 75-year anniversary of the Department of Physiology and Pharmacology, this perspective provides an overview of recent departmental achievements and future trajectories. For these developments, interdisciplinary and intersectoral collaborations and a clear focus on result translation are key elements to continue its legacy of world-leading pharmacological research.




and

Nitric Oxide Signaling and Regulation in the Cardiovascular System: Recent Advances [75th Anniversary Celebration Collection Special Section]

Nitric oxide (NO) from endothelial NO synthase importantly contributes to vascular homeostasis. Reduced NO production or increased scavenging during disease conditions with oxidative stress contribute to endothelial dysfunction and NO deficiency. In addition to the classical enzymatic NO synthases (NOS) system, NO can also be generated via the nitrate-nitrite-NO pathway. Dietary and pharmacological approaches aimed at increasing NO bioactivity, especially in the cardiovascular system, have been the focus of much research since the discovery of this small gaseous signaling molecule. Despite wide appreciation of the biological role of NOS/NO signaling, questions still remain about the chemical nature of NOS-derived bioactivity. Recent studies show that NO-like bioactivity can be efficiently transduced by mobile NO-ferroheme species, which can transfer between proteins, partition into a hydrophobic phase, and directly activate the soluble guanylyl cyclase-cGMP-protein kinase G pathway without intermediacy of free NO. Moreover, interaction between red blood cells and the endothelium in the regulation of vascular NO homeostasis have gained much attention, especially in conditions with cardiometabolic disease. In this review we discuss both classical and nonclassical pathways for NO generation in the cardiovascular system and how these can be modulated for therapeutic purposes.

Significance Statement

After four decades of intensive research, questions persist about the transduction and control of nitric oxide (NO) synthase bioactivity. Here we discuss NO signaling in cardiovascular health and disease, highlighting new findings, such as the important role of red blood cells in cardiovascular NO homeostasis. Nonclassical signaling modes, like the nitrate-nitrite-NO pathway, and therapeutic opportunities related to the NO system are discussed. Existing and potential pharmacological treatments/strategies, as well as dietary components influencing NO generation and signaling are covered.




and

International Union of Basic and Clinical Pharmacology CXV: The Class F of G Protein-Coupled Receptors [75th Anniversary Celebration Collection Special Section]

The class F of G protein-coupled receptors (GPCRs) consists of 10 Frizzleds (FZD1–10) and Smoothened (SMO). FZDs bind and are activated by secreted lipoglycoproteins of the Wingless/Int-1 (WNT) family, and SMO is indirectly activated by the Hedgehog (Hh) family of morphogens acting on the transmembrane protein Patched. The advance of our understanding of FZDs and SMO as dynamic transmembrane receptors and molecular machines, which emerged during the past 14 years since the first-class F GPCR IUPHAR nomenclature report, justifies an update. This article focuses on the advances in molecular pharmacology and structural biology providing new mechanistic insight into ligand recognition, receptor activation mechanisms, signal initiation, and signal specification. Furthermore, class F GPCRs continue to develop as drug targets, and novel technologies and tools such as genetically encoded biosensors and CRISP/Cas9 edited cell systems have contributed to refined functional analysis of these receptors. Also, advances in crystal structure analysis and cryogenic electron microscopy contribute to the rapid development of our knowledge about structure-function relationships, providing a great starting point for drug development. Despite the progress, questions and challenges remain to fully understand the complexity of the WNT/FZD and Hh/SMO signaling systems.

Significance Statement

The recent years of research have brought about substantial functional and structural insight into mechanisms of activation of Frizzleds and Smoothened. While the advance furthers our mechanistic understanding of ligand recognition, receptor activation, signal specification, and initiation, broader opportunities emerge that allow targeting class F GPCRs for therapy and regenerative medicine employing both biologics and small molecule compounds.




and

Neuroactive Kynurenines as Pharmacological Targets: New Experimental Tools and Exciting Therapeutic Opportunities [75th Anniversary Celebration Collection Special Section]

Both preclinical and clinical studies implicate functional impairments of several neuroactive metabolites of the kynurenine pathway (KP), the major degradative cascade of the essential amino acid tryptophan in mammals, in the pathophysiology of neurologic and psychiatric diseases. A number of KP enzymes, such as tryptophan 2,3-dioxygenase (TDO2), indoleamine 2,3-dioxygenases (IDO1 and IDO2), kynurenine aminotransferases (KATs), kynurenine 3-monooxygenase (KMO), 3-hydroxyanthranilic acid oxygenase (3-HAO), and quinolinic acid phosphoribosyltransferase (QPRT), control brain KP metabolism in health and disease and are therefore increasingly considered to be promising targets for the treatment of disorders of the nervous system. Understanding the distribution, cellular expression, and regulation of KP enzymes and KP metabolites in the brain is therefore critical for the conceptualization and implementation of successful therapeutic strategies.

Significance Statement

Studies have implicated the kynurenine pathway of tryptophan in the pathophysiology of neurologic and psychiatric diseases. Key enzymes of the kynurenine pathway regulate brain metabolism in both health and disease, making them promising targets for treating these disorders. Therefore, understanding the distribution, cellular expression, and regulation of these enzymes and metabolites in the brain is critical for developing effective therapeutic strategies. This review endeavors to describe these processes in detail.:




and

Seventy-Five Years of Interactions: The Department of Physiology and Pharmacology at Karolinska Institutet and Pharmacological Reviews [75th Anniversary Celebration Collection Special Section-Editorial]




and

Summing Up Pharmacological Reviews 75th Anniversary Year and a Look to the Future [75th Anniversary Celebration Collection Special Section-Editorial]




and

Prevalence of Rathke Cleft and Other Incidental Pituitary Gland Findings on Contrast-Enhanced 3D Fat-Saturated T1 MPRAGE at 7T MRI [CLINICAL PRACTICE]

BACKGROUND AND PURPOSE:

A cleftlike nonenhancing hypointensity was observed repeatedly in the pituitary gland at the adenohypophysis/neurohypophysis border on contrast-enhanced 3D fat-saturated T1-MPRAGE using clinical 7T MRI. Our primary goal was to assess the prevalence of this finding. The secondary goals were to evaluate the frequency of other incidental pituitary lesions, MRI artifacts, and their effect on pituitary imaging on the contrast-enhanced 3D fat-saturated T1 MPRAGE at 7T.

MATERIALS AND METHODS:

One hundred patients who underwent 7T neuroimaging between October 27, 2021, and August 10, 2023, were included. Each case was evaluated for cleftlike pituitary hypointensity, pituitary masses, and artifacts on contrast-enhanced 3D fat-saturated T1 MPRAGE. Follow-up examinations were evaluated if present. The average prevalence for each finding was calculated, as were descriptive statistics for age and sex.

RESULTS:

A cleftlike hypointensity was present in 66% of 7T MRIs. There were no significant differences between the "cleftlike present" and "cleftlike absent" groups regarding sex (P = .39) and age (P = .32). The cleftlike hypointensity was demonstrated on follow-up MRIs in 3/3 patients with 7T, 1/12 with 3T, and 1/5 with 1.5T. A mass was found in 22%, while 75% had no mass and 3% were indeterminate. A mass was found in 18 (27%) of the cleftlike present and 4 (13%) of the cleftlike absent groups. The most common mass types were Rathke cleft cyst in 7 (31.8%) patients, "Rathke cleft cyst versus entrapped CSF" in 6 (27.3%), and microadenoma in 6 (22.2%) in the cleftlike present group. There were no significant differences in the mass types between the cleftlike present and cleftlike absent groups (P = .23). Susceptibility and/or motion artifacts were frequent using contrast-enhanced 3D fat-saturated T1 MPRAGE (54%). Artifact-free scans were significantly more frequent in the cleftlike present group (P = .03).

CONCLUSIONS:

A cleftlike nonenhancing hypointensity was frequently seen on the contrast-enhanced 3D fat-saturated T1 MPRAGE images at 7T MRI, which most likely represents a normal embryologic Rathke cleft remnant and cannot be seen in lower-field-strength MRIs. Susceptibility and motion artifacts are common in the sella. They may affect image quality, and the artifacts at 7T may lead to an underestimation of the prevalence of the Rathke cleft and other incidental findings.




and

Diffusion Analysis of Intracranial Epidermoid, Head and Neck Epidermal Inclusion Cyst, and Temporal Bone Cholesteatoma [CLINICAL PRACTICE]

BACKGROUND AND PURPOSE:

Intracranial epidermoids temporal bone cholesteatomas, and head and neck epidermal inclusion cysts are typically slow-growing, benign conditions arising from ectodermal tissue. They exhibit increased signal on DWI. While much of the imaging literature describes these lesions as showing diffusion restriction, we investigated these qualitative signal intensities and interpretations of restricted diffusion with respect to normal brain structures. This study aimed to quantitatively evaluate the ADC values and histogram features of these lesions.

MATERIALS AND METHODS:

This retrospective study included children with histologically confirmed diagnoses of intracranial epidermoids, temporal bone cholesteatomas, or head and neck epidermal inclusion cysts. Lesions were segmented, and voxelwise calculation of ADC values was performed along with histogram analysis. ADC calculations were validated with a second analysis software to ensure accuracy. Normal brain ROIs—including the cerebellum, white matter, and thalamus—served as normal comparators. Correlational analysis and Bland-Altman plots assessed agreement among software tools for ADC calculations. Differences in the distribution of values between the lesions and normal brain tissues were assessed using the Wilcoxon rank sum and Kruskal-Wallis tests.

RESULTS:

Forty-eight pathology-proved cases were included in this study. Among them, 13 (27.1%) patients had intracranial epidermoids 14 (29.2%) had head and neck epidermal inclusion cysts, and 21 (43.7%) had temporal bone cholesteatomas. The mean age was 8.67 (SD, 5.30) years, and 27 (56.3%) were female. The intraclass correlation for absolute agreement for lesional ADC between the 2 software tools was 0.997 (95% CI, 0.995–0.998). The intracranial epidermoid head and neck epidermal inclusion cyst, and temporal bone cholesteatoma median ADC values were not significantly different (973.7 versus 875.7 versus 933.2 x 10–6 mm2/s, P = .265). However, the ADCs of the 3 types of lesions were higher than those of 3 normal brain tissue types (933 versus 766, x 10–6 mm2/s, P < .001).

CONCLUSIONS:

The ADC values of intracranial epidermoids, temporal bone cholesteatomas, and head and neck epidermal inclusion cysts are higher than those of normal brain regions. It is not accurate to simply classify these lesions as exhibiting restricted diffusion or reduced diffusivity without considering the tissue used for comparison. The observed hyperintensity on DWI compared with the brain is likely attributable to a relatively higher contribution of the T2 shinethrough effect.




and

Utility of Early Postoperative DWI to Assess the Extent of Resection of Adult-Type World Health Organization Grade 2 and 3 Diffuse Gliomas [CLINICAL PRACTICE]

BACKGROUND AND PURPOSE:

World Health Organization (WHO) grade 2 and 3 diffuse gliomas account for approximately 5% of primary brain tumors. They are invasive and infiltrative tumors and have considerable morbidity, causing progressive neurologic deterioration. The mean survival time is <10 years from diagnosis. Surgical debulking represents first-line management. The extent of resection is associated with progression-free and overall survival. Radiologic assessment of the extent of resection is challenging. This can be underestimated on early postoperative MRI, meaning that accurate assessment may be achieved only on delayed follow-up imaging. We hypothesized that DWI may help facilitate more reliable estimates of the extent of resection on early postoperative MRI. This study aimed to assess the utility of DWI in early postoperative MRI to evaluate the extent of resection.

MATERIALS AND METHODS:

A single-center observational cohort study was performed. All patients with histologically confirmed WHO grade 2 and 3 gliomas managed with surgical debulking between January 2015 and December 2020 were identified. Preoperative, early postoperative, and follow-up imaging were reviewed independently by 2 consultant neuroradiologists. The extent of resection was estimated with and without DWI sequences for each case.

RESULTS:

Two hundred twenty-four patients with WHO grade 2 and 3 gliomas were managed with surgical debulking between 2015 and 2020. DWI was not performed on early postoperative MRI in 2 patients. With the use of DWI, the extent of resection was upgraded in 30% of cases (n = 66/222) and classified as "complete" or "supramaximal" in 58% of these patients (n = 38/66). In cases in which the extent of resection was upgraded with the use of DWI, signal abnormality was stable or reduced at follow-up in 78% (n = 49/63). In cases with worsening signal abnormality, 64% were deemed to be secondary to adjuvant radiation therapy (n = 9/14). Eight percent (n = 5/63) of patients with an increased estimated extent of resection using DWI demonstrated signal progression attributed to true disease progression at follow-up.

CONCLUSIONS:

DWI is a helpful and reliable adjunct in differentiating residual tumor from marginal ischemia in early postoperative MRI in WHO grade 2 and 3 diffuse gliomas and increases the accuracy in assessing the extent of resection. It should be used routinely in these cases.




and

Preoperative Assessment of Meningioma Consistency Using a Combination of MR Elastography and DTI [RESEARCH]

BACKGROUND AND PURPOSE:

Preoperative assessment of meningioma consistency is beneficial for optimizing surgical strategy and prognosis of patients. We aim to develop a noninvasive prediction model for meningioma consistency utilizing MR elastography and DTI.

MATERIALS AND METHODS:

Ninety-four patients (52 ± 22 years old, 69 women, 25 men) diagnosed with meningioma were recruited in the study. Each patient underwent preoperative T1WI, T2WI, DTI, and MR elastography. Combined MR elastography–DTI model was developed based on multiple logistic regression. Intraoperative tumor descriptions served as clinical criteria for evaluating meningioma consistency. The diagnostic efficacy in determining meningioma consistency was evaluated by using a receiver operating characteristic curve. Further validation was conducted in 27 stereotactic biopsies by using indentation tests and underlying mechanism was investigated by histologic analysis.

RESULTS:

Among all the imaging modalities, MR elastography demonstrated the highest efficacy with the shear modulus magnitude (|G*|) achieving an area under the curve (AUC) of 0.81 (95% CI: 0.699–0.929). When combined with DTI, the diagnostic accuracy further increased (AUC: 0.88, 95% CI: 0.784–0.971), surpassing any technique alone. Indentation measurement based on stereotactic biopsies further demonstrated that the MR elastography–DTI model was suitable for predicting intratumor consistency. Histologic analysis suggested that meningioma consistency may be correlated with tumor cell density and fibrous content.

CONCLUSIONS:

The MR elastography–DTI combined model is effective in noninvasive prediction of meningioma consistency.




and

NeuroMix with MRA: A Fast MR Protocol to Reduce Head and Neck CTA for Patients with Acute Neurologic Presentations [RESEARCH]

BACKGROUND AND PURPOSE:

Overuse of CT-based cerebrovascular imaging in the emergency department and inpatient settings, notably CTA of the head and neck for minor and nonfocal neurologic presentations, stresses imaging services and exposes patients to radiation and contrast. Furthermore, such CT-based imaging is often insufficient for definitive diagnosis, necessitating additional MR imaging. Recent advances in fast MRI may allow timely assessment and a reduced need for head and neck CTA in select populations.

MATERIALS AND METHODS:

We identified inpatients or patients in the emergency department who underwent CTAHN (including noncontrast and postcontrast head CT, with or without CTP imaging) followed within 24 hours by a 3T MRI study that included a 2.5-minute unenhanced multicontrast sequence (NeuroMix) and a 5-minute intracranial time of flight MRA) during a 9-month period (April to December 2022). Cases were classified by 4 radiologists in consensus as to whether NeuroMix and NeuroMix + MRA detected equivalent findings, detected unique findings, or missed findings relative to CTAHN.

RESULTS:

One hundred seventy-four cases (mean age, 67 [SD, 16] years; 56% female) met the inclusion criteria. NeuroMix alone and NeuroMix + MRA protocols were determined to be equivalent or better compared with CTAHN in 71% and 95% of patients, respectively. NeuroMix always provided equivalent or better assessment of the brain parenchyma, with unique findings on NeuroMix and NeuroMix + MRA in 35% and 36% of cases, respectively, most commonly acute infarction or multiple microhemorrhages. In 8/174 cases (5%), CTAHN identified vascular abnormalities not seen on the NeuroMix + MRA protocol due to the wider coverage of the cervical arteries by CTAHN.

CONCLUSIONS:

A fast MR imaging protocol consisting of NeuroMix + MRA provided equivalent or better information compared with CTAHN in 95% of cases in our population of patients with an acute neurologic presentation. The findings provide a deeper understanding of the benefits and challenges of a fast unenhanced MR-first approach with NeuroMix + MRA, which could be used to design prospective trials in select patient groups, with the potential to reduce radiation dose, mitigate adverse contrast-related patient and environmental effects, and lessen the burden on radiologists and health care systems.




and

Predictors and Outcomes of Periprocedural Intracranial Hemorrhage after Stenting for Symptomatic Intracranial Atherosclerotic Stenosis [CLINICAL PRACTICE]

BACKGROUND AND PURPOSE:

Periprocedural intracranial hemorrhage is one of common complications after stent placement for symptomatic intracranial atherosclerotic stenosis. This study was conducted to demonstrate predictors and long-term outcomes of periprocedural intracranial hemorrhage after stent placement for symptomatic intracranial atherosclerotic stenosis.

MATERIALS AND METHODS:

We retrospectively analyzed patients with symptomatic intracranial atherosclerotic stenosis stent placement in a prospective cohort at a high-volume stroke center. Clinical, radiologic, and periprocedural characteristics and long-term outcomes were reviewed. Periprocedural intracranial hemorrhage was classified as procedure-related hemorrhage (PRH) and non-procedure-related hemorrhage (NPRH). The long-term outcomes were compared between patients with PRH and NPRH, and the predictors of NPRH were explored.

RESULTS:

Among 1849 patients, 24 (1.3%) had periprocedural intracranial hemorrhage, including PRH (4) and NPRH (20). The postprocedural 30-day mRS was 0–2 in 9 (37.5%) cases, 3–5 in 5 (20.8%) cases, and 6 in 10 (41.7%) cases. For the 14 survivors, the long-term (median of 78 months) mRS were 0–2 in 10 (76.9%) cases and 3–5 in 3 (23.1%) cases. The proportion of poor long-term outcomes (mRS ≥3) in patients with NPRH was significantly higher than those with PRH (68.4% versus 0%, P = .024). Anterior circulation (P = .002), high preprocedural stenosis rate (P < .001), and cerebral infarction within 30 days (P = .006) were independent predictors of NPRH after stent placement.

CONCLUSIONS:

Patients with NPRH had worse outcomes than those with PRH after stent placement for symptomatic ICAS. Anterior circulation, severe preprocedural stenosis, and recent infarction are independent predictors of NPRH.




and

Cyclic Aspiration in Mechanical Thrombectomy: Influencing Factors and Experimental Validation [RESEARCH]

BACKGROUND AND PURPOSE:

Mechanical thrombectomy is a fundamental intervention for acute ischemic stroke treatment. While conventional techniques are effective, cyclic aspiration (CyA) shows potential for better recanalization rates. We aim to investigate factors affecting CyA and compare them with static aspiration (StA).

MATERIALS AND METHODS:

StA setup consisted of an aspiration pump connected to pressure transducer. CyA was tested with 5 subsequent iterations: single solenoid valve with air plus saline (i1) or saline alone (i2) as aspiration medium; 2 solenoid valves with air plus saline (i3) as aspiration medium; complete air removal and saline feeding (i4); and pressurized saline feeding (i5). To assess the efficacy of clot ingestion, the pressure transducer was replaced with a distal aspiration catheter. Moderately stiff clot analogs (15 mm) were used to investigate the ingestion quantified as clot relative weight loss. Additionally, the aspiration flow rate was assessed for each setup.

RESULTS:

With CyA i1, the amplitude of the achieved negative pressure waves declined with increasing frequencies but progressively increased with each subsequent iteration, achieving a maximum amplitude of 81 kPa for i5 at 1 Hz. Relative clot weight loss was significantly higher with i5 at 5 Hz than with StA (100% versus 37.8%; P = .05). Aspiration flow rate was lower with CyA than with StA (i5 at 5 Hz: 199.8 mL/min versus StA: 311 mL/min; P < .01).

CONCLUSIONS:

CyA with the appropriate setup may represent an encouraging innovation in mechanical thrombectomy, offering a promising pathway for improving efficacy in clot ingestion and recanalization. The observed benefits warrant confirmation in a clinical setting.




and

Stent Retriever AssIsted Lysis Technique with Tirofiban: A Potential Bailout Alternative to Angioplasty and Stenting [CLINICAL PRACTICE]

BACKGROUND AND PURPOSE:

Angioplasty and stent placement have been described as a bailout technique in individuals with failed thrombectomy. We aimed to investigate Stent retriever AssIsted Lysis (SAIL) with tirofiban before angioplasty and stent placement.

MATERIALS AND METHODS:

Patients from 2 comprehensive stroke centers were reviewed (2020–2023). We included patients with failed thrombectomy and/or underlying intracranial stenosis who received SAIL with tirofiban before the intended angioplasty and stent placement. SAIL consisted of deploying a stent retriever through the occluding lesion to create a bypass channel and infuse 10 mL of tirofiban for 10 minutes either intra-arterially or IV. The stent retriever was re-sheathed before retrieval. The primary end points were successful reperfusion (expanded TICI 2b–3) and symptomatic intracerebral hemorrhage. Additional end points included 90-day mRS 0–2 and mortality.

RESULTS:

After a median of 3 (interquartile range, 2–4) passes, 44 patients received the SAIL bridging protocol with tirofiban, and later they were considered potential candidates for angioplasty and stent placement bailout (43.2%, intra-arterial SAIL). Post-SAIL successful reperfusion was obtained in 79.5%. A notable residual stenosis (>50%) after successful SAIL was observed in 45.7%. No significant differences were detected according to post-SAIL: successful reperfusion (intra-arterial SAIL, 80.0% versus IV-SAIL, 78.9%; P = .932), significant stenosis (33.3% versus 55.0%; P = .203), early symptomatic re-occlusion (0% versus 8.0%; P = .207), or symptomatic intracerebral hemorrhage (5.3% versus 8.0%; P = .721). Rescue angioplasty and stent placement were finally performed in 15 (34.1%) patients (intra-arterial SAIL 21.0% versus IV-SAIL 44%; P = .112). At 90 days, mRS 0–2 (intra-arterial SAIL 50.0% versus IV-SAIL 43.5%; P = .086) and mortality (26.3% versus 12.0%; P = .223) were also similar.

CONCLUSIONS:

In patients with stroke in which angioplasty and stent placement are considered, SAIL with tirofiban, either intra-arterial or IV, seems to safely induce sustained recanalization, offering a potential alternative to definitive angioplasty and stent placement.




and

Prognosis of Proximal and Distal Vertebrobasilar Artery Stent Placement [CLINICAL PRACTICE]

BACKGROUND AND PURPOSE:

Vertebrobasilar artery stent placement (VBS) is potentially effective in preventing recurrent posterior circulation strokes; however, the incidences of in-stent restenosis and stented-territory ischemic events based on the location of stent placement have rarely been investigated. We aimed to investigate the characteristics and prognosis of VBS between intracranial and extracranial.

MATERIALS AND METHODS:

This study was single-center retrospective cohort study, and we obtained medical records of patients who underwent VBS. We compared clinical and periprocedural factors between extracranial and intracranial VBS. The primary outcomes included the incidence of in-stent restenosis (>50% reduction in lumen diameter) and stented-territory ischemic events. We compared the incidence of in-stent restenosis and stented-territory ischemic events by using Kaplan-Meier curves.

RESULTS:

Of the 105 patients, 41 (39.0%) underwent extracranial VBS, and 64 (61.0%) underwent intracranial VBS. During the follow-up, the incidences of in-stent restenosis and stented-territory ischemic events were 15.2% and 22.9%, respectively. The procedure time was longer (47.7 ± 19.5 minutes versus 74.5 ± 35.2 minutes, P < .001), and the rate of residual stenosis (≥30%) just after VBS was higher (2 [4.9%] versus 24 [37.5%], P < .001) in intracranial VBS than in extracranial VBS. Also, the incidences of in-stent restenosis were significantly higher in intracranial VBS than in extracranial VBS (4.9% versus 21.9%, P = .037). On the other hand, the incidences of stented-territory ischemic events (7.3% versus 32.8%, P < .001) were significantly higher in intracranial VBS than in extracranial VBS. The main mechanisms of stroke were artery-to-artery embolism (2 [66.7%]) in extracranial VBS, and artery-to-artery embolism (9 [42.9%]) and branch atheromatous disease (8 [38.1%]) in intracranial VBS. The Kaplan-Meier curve demonstrated a higher incidence of in-stent restenosis and stented-territory ischemic events in intracranial VBS than in extracranial VBS (P = .008 and P = .002, respectively).

CONCLUSIONS:

During the follow-up, the incidence of in-stent restenosis and stented-territory ischemic events was higher in patients with intracranial VBS than in those with extracranial VBS. The higher rates of postprocedural residual stenosis might have contributed to the increased risk of in-stent restenosis. Furthermore, prolonged procedure time and additional stroke mechanism, including branch atheromatous disease, might be associated with a higher risk of stented-territory ischemic events in intracranial VBS.




and

Clinical and Pathophysiologic Correlates of Basilar Artery Measurements in Fabry Disease [CLINICAL PRACTICE]

BACKGROUND AND PURPOSE:

Alterations of the basilar artery (BA) anatomy have been suggested as a possible MRA feature of Fabry disease (FD). Nonetheless, no information about their clinical or pathophysiologic correlates is available, limiting our comprehension of the real impact of vessel remodeling in FD.

MATERIALS AND METHODS:

Brain MRIs of 53 subjects with FD (mean age, 40.7 [SD, 12.4] years; male/female ratio = 23:30) were collected in this single-center study. Mean BA diameter and its tortuosity index were calculated on MRA. Possible correlations between these metrics and clinical, laboratory, and advanced imaging variables of the posterior circulation were tested. In a subgroup of 20 subjects, a 2-year clinical and imaging follow-up was available, and possible longitudinal changes of these metrics and their ability to predict clinical scores were also probed.

RESULTS:

No significant association was found between MRA metrics and any clinical, laboratory, or advanced imaging variable (P values ranging from –0.006 to 0.32). At the follow-up examination, no changes were observed with time for the mean BA diameter (P = .84) and the tortuosity index (P = .70). Finally, baseline MRA variables failed to predict the clinical status of patients with FD at follow-up (P = .42 and 0.66, respectively).

CONCLUSIONS:

Alterations of the BA in FD lack of any meaningful association with clinical, laboratory, or advanced imaging findings collected in this study. Furthermore, this lack of correlation seems constant across time, suggesting stability over time. Taken together, these results suggest that the role of BA dolichoectasia in FD should be reconsidered.




and

Artificial Intelligence Efficacy as a Function of Trainee Interpreter Proficiency: Lessons from a Randomized Controlled Trial [RESEARCH]

BACKGROUND AND PURPOSE:

Recently, artificial intelligence tools have been deployed with increasing speed in educational and clinical settings. However, the use of artificial intelligence by trainees across different levels of experience has not been well-studied. This study investigates the impact of artificial intelligence assistance on the diagnostic accuracy for intracranial hemorrhage and large-vessel occlusion by medical students and resident trainees.

MATERIALS AND METHODS:

This prospective study was conducted between March 2023 and October 2023. Medical students and resident trainees were asked to identify intracranial hemorrhage and large-vessel occlusion in 100 noncontrast head CTs and 100 head CTAs, respectively. One group received diagnostic aid simulating artificial intelligence for intracranial hemorrhage only (n = 26); the other, for large-vessel occlusion only (n = 28). Primary outcomes included accuracy, sensitivity, and specificity for intracranial hemorrhage/large-vessel occlusion detection without and with aid. Study interpretation time was a secondary outcome. Individual responses were pooled and analyzed with the t test; differences in continuous variables were assessed with ANOVA.

RESULTS:

Forty-eight participants completed the study, generating 10,779 intracranial hemorrhage or large-vessel occlusion interpretations. With diagnostic aid, medical student accuracy improved 11.0 points (P < .001) and resident trainee accuracy showed no significant change. Intracranial hemorrhage interpretation time increased with diagnostic aid for both groups (P < .001), while large-vessel occlusion interpretation time decreased for medical students (P < .001). Despite worse performance in the detection of the smallest-versus-largest hemorrhages at baseline, medical students were not more likely to accept a true-positive artificial intelligence result for these more difficult tasks. Both groups were considerably less accurate when disagreeing with the artificial intelligence or when supplied with an incorrect artificial intelligence result.

CONCLUSIONS:

This study demonstrated greater improvement in diagnostic accuracy with artificial intelligence for medical students compared with resident trainees. However, medical students were less likely than resident trainees to overrule incorrect artificial intelligence interpretations and were less accurate, even with diagnostic aid, than the artificial intelligence was by itself.




and

Distribution and Disparities of Industry Payments to Neuroradiologists [CLINICAL PRACTICE]

BACKGROUND AND PURPOSE:

Physician-industry relationships can be useful for driving innovation and technologic progress, though little is known about the scale or impact of industry involvement in neuroradiology. The purpose of this study was to assess the trends and distributions of industry payments to neuroradiologists.

MATERIALS AND METHODS:

Neuroradiologists were identified using a previously-validated method based on Work Relative Value Units and Neiman Imaging Types of Service classification. Data on payments from industry were obtained from the Open Payments database from the Centers for Medicare & Medicaid Services, from 2016 to 2021. Payments were grouped into 7 categories, including consulting fees, education, gifts, medical supplies, research, royalties/ownership, and speaker fees. Descriptive statistics were calculated.

RESULTS:

A total of 3019 neuroradiologists were identified in this study. Between 2016 and 2021, 48% (1440/3019) received at least 1 payment from industry, amounting to a total number of 21,967 payments. Each year, among those receiving payments from industry, each unique neuroradiologist received between a mean of 5.49–7.42 payments and a median of 2 payments, indicating a strong rightward skew to the distribution of payments. Gifts were the most frequent payment type made (60%, 13,285/21,967) but accounted for only 4.1% ($689,859/$17,010,546) of payment value. The greatest aggregate payment value came from speaker fees, which made up 36% ($6,127,484/$17,010,546) of the total payment value. The top 5% highest paid neuroradiologists received 42% (9133/21,967) of payments, which accounted for 84% ($14,284,120/$17,010,546) of the total dollar value. Since the start of the coronavirus 2019 (COVID-19) pandemic, the number of neuroradiologists receiving industry payments decreased from a mean of 671 neuroradiologists per year prepandemic (2016–2019) to 411 in the postpandemic (2020–2021) era (P = .030). The total number of payments to neuroradiologists decreased from 4177 per year prepandemic versus 2631 per year postpandemic (P = .011).

CONCLUSIONS:

Industry payments to neuroradiologists are highly concentrated among top earners, particularly among the top 5% of payment recipients. The number of payments decreased during the COVID-19 pandemic, though the dollar value of payments was offset by coincidental increases in royalty payments. Further investigation is needed in subsequent years to determine if the postpandemic changes in industry payment trends continue.




and

Ependymal Tumors: Overview of the Recent World Health Organization Histopathologic and Genetic Updates with an Imaging Characteristic [CLINICAL PRACTICE]

SUMMARY:

The 2021 World Health Organization Classification of Tumors of the Central Nervous System (CNS5), introduced significant changes, impacting tumors ranging from glial to ependymal neoplasms. Ependymal tumors were previously classified and graded based on histopathology, which had limited clinical and prognostic utility. The updated CNS5 classification now divides ependymomas into 10 subgroups based on anatomic location (supratentorial, posterior fossa, and spinal compartment) and genomic markers. Supratentorial tumors are defined by zinc finger translocation associated (ZFTA) (formerly v-rel avian reticuloendotheliosis viral oncogene [RELA]), or yes-associated protein 1 (YAP1) fusion; posterior fossa tumors are classified into groups A (PFA) and B (PFB), spinal ependymomas are defined by MYCN amplification. Subependymomas are present across all these anatomic compartments. The new classification kept an open category of "not elsewhere classified" or "not otherwise specified" if no pathogenic gene fusion is identified or if the molecular diagnosis is not feasible. Although there is significant overlap in the imaging findings of these tumors, a neuroradiologist needs to be familiar with updated CNS5 classification to understand tumor behavior, for example, the higher tendency for tumor recurrence along the dural flap for ZFTA fusion-positive ependymomas. On imaging, supratentorial ZFTA-fused ependymomas are preferentially located in the cerebral cortex, carrying predominant cystic components. YAP1-MAMLD1-fused ependymomas are intra- or periventricular with prominent multinodular solid components and have significantly better prognosis than ZFTA-fused counterparts. PFA ependymomas are aggressive paramedian masses with frequent calcification, seen in young children, originating from the lateral part of the fourth ventricular roof. PFB ependymomas are usually midline, noncalcified solid-cystic masses seen in adolescents and young adults arising from the fourth ventricular floor. PFA has a poorer prognosis, higher recurrence, and higher metastatic rate than PFB. Myxopapillary spinal ependymomas are now considered grade II due to high recurrence rates. Spinal-MYCN ependymomas are aggressive tumors with frequent leptomeningeal spread, relapse, and poor prognosis. Subependymomas are noninvasive, intraventricular, slow-growing benign tumors with an excellent prognosis. Currently, the molecular classification does not enhance the clinicopathologic understanding of subependymoma and myxopapillary categories. However, given the molecular advancements, this will likely change in the future. This review provides an updated molecular classification of ependymoma, discusses the individual imaging characteristics, and briefly outlines the latest targeted molecular therapies.




and

Academic Neuroradiology: 2023 Update on Turnaround Time, Financial Recruitment, and Retention Strategies [CLINICAL PRACTICE]

SUMMARY:

The ASNR Neuroradiology Division Chief Working Group's 2023 survey, with responses from 62 division chiefs, provides insights into turnaround times, faculty recruitment, moonlighting opportunities, and academic funds. In emergency cases, 61% aim for a turnaround time of less than 45–60 minutes, with two-thirds meeting this expectation more than 75% of the time. For inpatient CT and MR imaging scans, 54% achieve a turnaround time of 4–8 hours, with three-quarters meeting this expectation at least 50% of the time. Outpatient scans have an expected turnaround time of 24–48 hours, which is met in 50% of cases. Faculty recruitment strategies included 35% offering sign-on bonuses, with a median of $30,000. Additionally, 23% provided bonuses to fellows during fellowship to retain them in the practice upon completion of their fellowship. Internal moonlighting opportunities for faculty were offered by 70% of divisions, with a median pay of $250 per hour. The median annual academic fund for a full-time neuroradiology faculty member was $6000, typically excluding license fees but including American College of Radiology and American Board of Radiology membership, leaving $4000 for professional expenses. This survey calls for further dialogue on adapting and innovating academic institutions to meet evolving needs in neuroradiology.