po

checkCIF validation ALERTS: what they mean and how to respond

Authors of a paper that includes a new crystal-structure determination are expected to not only report the structural results of inter­est and their inter­pretation, but are also expected to archive in computer-readable CIF format the experimental data on which the crystal-structure analysis is based. Additionally, an IUCr/checkCIF validation report will be required for the review of a submitted paper. Such a validation report, automatically created from the deposited CIF file, lists as ALERTS not only potential errors or unusual findings, but also suggestions for improvement along with inter­esting information on the structure at hand. Major ALERTS for issues are expected to have been acted on already before the submission for publication or discussed in the associated paper and/or commented on in the CIF file. In addition, referees, readers and users of the data should be able to make their own judgment and inter­pretation of the underlying experimental data or perform their own calculations with the archived data. All the above is consistent with the FAIR (findable, accessible, inter­operable, and reusable) initiative [Helliwell (2019). Struct. Dyn. 6, 05430]. Validation can also be helpful for less experienced authors in pointing to and avoiding of crystal-structure determination and inter­pretation pitfalls. The IUCr web-based checkCIF server provides such a validation report, based on data uploaded in CIF format. Alternatively, a locally installable checkCIF version is available to be used iteratively during the structure-determination process. ALERTS come mostly as short single-line messages. There is also a short explanation of the ALERTS available through the IUCr web server or with the locally installed PLATON/checkCIF version. This paper provides additional background information on the checkCIF procedure and additional details for a number of ALERTS along with options for how to act on them.




po

Crystal structure of the coordination polymer catena-poly[[[(acetonitrile-κN)copper(I)]-μ3-1,3-dithiolane-κ3S:S:S'] hexafluoridophosphate]

The polymeric title compound, [Cu2(C2H3N)2(C3H6S2)2](PF6)2, represents an example of a one-dimensional coordination polymer resulting from the reaction of [Cu(MeCN)4][PF6] with 1,3-di­thiol­ane. The cationic one-dimensional ribbon consists of two copper(I) centers each ligated by one aceto­nitrile mol­ecule and inter­connected through two bridging 1,3-di­thiol­ane ligands. One S-donor site of each ligand is κ1-bound to Cu, whereas the second S atom acts as a four-electron donor, bridging two Cu atoms in a κ4-bonding mode. The positive charge of each copper cation is compensated for by a hexa­fluorido­phosphate counter-ion. In the crystal, the polymer chains are linked by a series of C—H⋯F hydrogen bonds, forming a supra­molecular framework. The crystal studied was refined as a two-component twin.




po

Synthesis and crystal structure of catena-poly[[bis[(2,2';6',2''-terpyridine)­manganese(II)]-μ4-penta­thio­dianti­monato] tetra­hydrate] showing a 1D MnSbS network

The asymmetric unit of the title compound, {[Mn2Sb2S5(C15H11N3)2]·4H2O}n, consists of two crystallographically independent MnII ions, two unique terpyridine ligands, one [Sb2S5]4− anion and four solvent water mol­ecules, all of which are located in general positions. The [Sb2S5]4− anion consists of two SbS3 units that share common corners. Each of the MnII ions is fivefold coordinated by two symmetry-related S atoms of [Sb2S5]4− anions and three N atoms of a terpyridine ligand within an irregular coordination. Each two anions are linked by two [Mn(terpyridine)]2+ cations into chains along the c-axis direction that consist of eight-membered Mn2Sb2S4 rings. These chains are further connected into a three-dimensional network by inter­molecular O—H⋯O and O—H⋯S hydrogen bonds. The crystal investigated was twinned and therefore, a twin refinement using data in HKLF-5 [Sheldrick (2015). Acta Cryst. C71, 3–8] format was performed.




po

Crystal structures of chlorido­[dihy­droxybis­(1-imino­eth­oxy)]arsanido-κ3N,As,N']platinum(II) and of a polymorph of chlorido­[dihy­droxybis­(1-imino­prop­oxy)arsanido-κ3N,As,N']platinum(II)

Each central platinum(II) atom in the crystal structures of chlorido­[dihy­droxybis­(1-imino­eth­oxy)arsanido-κ3N,As,N']platinum(II), [Pt(C4H10AsN2O4)Cl] (1), and of chlorido­[dihy­droxybis­(1-imino­prop­oxy)arsanido-κ3N,As,N']platinum(II), [Pt(C6H14AsN2O4)Cl] (2), is coordinated by two nitro­gen donor atoms, a chlorido ligand and to arsenic, which, in turn, is coordinated by two oxygen donor ligands, two hydroxyl ligands and the platinum(II) atom. The square-planar and trigonal–bipyramidal coordination environments around platinum and arsenic, respectively, are significantly distorted with the largest outliers being 173.90 (13) and 106.98 (14)° for platinum and arsenic in (1), and 173.20 (14)° and 94.20 (9)° for (2), respectively. One intra­molecular and four classical inter­molecular hydrogen-bonding inter­actions are observed in the crystal structure of (1), which give rise to an infinite three-dimensional network. A similar situation (one intra­molecular and four classical inter­molecular hydrogen-bonding inter­actions) is observed in the crystal structure of (2). Various π-inter­actions are present in (1) between the platinum(II) atom and the centroid of one of the five-membered rings formed by Pt, As, C, N, O with a distance of 3.7225 (7) Å, and between the centroids of five-membered (Pt, As, C, N, O) rings of neighbouring mol­ecules with distances of 3.7456 (4) and 3.7960 (6) Å. Likewise, weak π-inter­actions are observed in (2) between the platinum(II) atom and the centroid of one of the five-membered rings formed by Pt, As, C, N, O with a distance of 3.8213 (2) Å, as well as between the Cl atom and the centroid of a symmetry-related five-membered ring with a distance of 3.8252 (12) Å. Differences between (2) and the reported polymorph [Miodragović et al. (2013). Angew. Chem. Int. Ed. 52, 10749–10752] are discussed.




po

Synthesis, crystal structure and Hirshfeld analysis of a crystalline compound comprising a 1/1 mixture of 1-[(1R,4S)- and 1-[(1S,4R)-1,7,7-trimethyl-2-oxobi­cyclo[2.2.1]heptan-3-yl­idene]hydrazinecarbo­thio­amide

The equimolar reaction between a racemic mixture of (R)- and (S)-camphorquinone with thio­semicarbazide yielded the title compound, C11H17N3OS [common name: (R)- and (S)-camphor thio­semicarbazone], which maintains the chirality of the methyl­ated chiral carbon atoms and crystallizes in the centrosymmetric space group C2/c. There are two mol­ecules in general positions in the asymmetric unit, one of them being the (1R)-camphor thio­semicarbazone isomer and the second the (1S)- isomer. In the crystal, the mol­ecular units are linked by C—H⋯S, N—H⋯O and N—H⋯S inter­actions, building a tape-like structure parallel to the (overline{1}01) plane, generating R21(7) and R22(8) graph-set motifs for the H⋯S inter­actions. The Hirshfeld surface analysis indicates that the major contributions for crystal cohesion are from H⋯H (55.00%), H⋯S (22.00%), H⋯N (8.90%) and H⋯O (8.40%) inter­actions.




po

Synthesis and crystal structure of a mixed alkaline-earth powellite, Ca0.84Sr0.16MoO4

A mixed alkaline-earth powellite, Ca0.84Sr0.16MoO4 (calcium strontium molybdate), was synthesized by a flux method and its crystal structure was solved using single-crystal X-ray diffraction (SC-XRD) data. The compound crystallized in the I41/a space group as with a typical CaMoO4 powellite, but with larger unit-cell parameters and unit-cell volume as a result of the partial incorporation of larger Sr cations into the Ca sites within the crystal. The unit cell and volume were well fitted with the trendline calculated from literature values, and the powder X-ray diffraction (P-XRD) pattern of the ground crystal is in good agreement with the calculated pattern from the solved structure.




po

Crystal structure of silver strontium copper orthophosphate, AgSr4Cu4.5(PO4)6

Crystals of the new compound, AgSr4Cu4.5(PO4)6, were grown successfully by the hydro­thermal process. The asymmetric unit of the crystal structure of the title compound contains 40 independent atoms (4 Sr, 4.5 Cu, 1 Ag, 6 P and 24 O), which are all in general positions except for one Cu atom, which is located on an inversion centre. The Cu atoms are arranged in CuOn (n = 4 or 5) polyhedra, linked through common oxygen corners to build a rigid three-dimensional motif. The connection of these copper units is assured by PO4 tetra­hedra. This arrangement allows the construction of layers extending parallel to the (100) plane and hosts suitable cavities in which Ag+ and Sr2+ cations are located. The crystal-structure cohesion is ensured by ionic bonds between the silver and strontium cations and the oxygen anions belonging to two adjacent sheets. Charge-distribution analysis and bond-valence-sum calculations were used to validate the structural model.




po

Crystal structure of the deuterated hepta­hydrate of potassium phosphate, K3PO4·7D2O

Deuterated potassium orthophosphate hepta­hydrate, K3PO4·7D2O, crystallizes in the Sohnke space group P21, and its absolute structure was determined from 2017 Friedel pairs [Flack parameter 0.004 (16)]. Each of the three crystallographically unique K+ cations is surrounded by six water mol­ecules and one oxygen atom from the orthophosphate group, using a threshold for K—O bonds of 3.10 Å. The highly irregular coordination polyhedra are linked by corner- and edge-sharing into a three-dimensional network that is consolidated by an intricate network of O—D⋯O hydrogen bonds of medium strength.




po

The first coordination compound of deprotonated 2-bromo­nicotinic acid: crystal structure of a dinuclear paddle-wheel copper(II) complex

A copper(II) dimer with the deprotonated anion of 2-bromo­nicotinic acid (2-BrnicH), namely, tetrakis(μ-2-bromonicotinato-κ2O:O')bis[aquacopper(­II)](Cu—Cu), [Cu2(H2O)2(C6H3BrNO2)4] or [Cu2(H2O)2(2-Brnic)4], (1), was prepared by the reaction of copper(II) chloride dihydrate and 2-bromo­nicotinic acid in water. The copper(II) ion in 1 has a distorted square-pyramidal coordination environment, achieved by four carboxyl­ate O atoms in the basal plane and the water mol­ecule in the apical position. The pair of symmetry-related copper(II) ions are connected into a centrosymmetric paddle-wheel dinuclear cluster [Cu⋯Cu = 2.6470 (11) Å] via four O,O'-bridging 2-bromo­nicotinate ligands in the syn-syn coordination mode. In the extended structure of 1, the cluster mol­ecules are assembled into an infinite two-dimensional hydrogen-bonded network lying parallel to the (001) plane via strong O—H⋯O and O—H⋯N hydrogen bonds, leading to the formation of various hydrogen-bond ring motifs: dimeric R22(8) and R22(16) loops and a tetra­meric R44(16) loop. The Hirshfeld surface analysis was also performed in order to better illustrate the nature and abundance of the inter­molecular contacts in the structure of 1.




po

Crystal structures of 2,3,7,8,12,13,17,18-octa­bromo-5,10,15,20-tetra­kis­(penta­fluoro­phen­yl)porphyrin as the chloro­form monosolvate and tetra­hydro­furan monosolvate

The crystal structures of the title compounds, two solvates (CHCl3 and THF) of a symmetric and highly substituted porphyrin, C44H2Br8F20N4 or OBrTPFPP, are described. These structures each feature a non-planar porphyrin ring, exhibiting a similar conformation of the strained ring independent of solvent identity. These distorted porphyrins are able to form hydrogen bonds and sub-van der Waals halogen inter­actions with enclathrated solvent; supra­molecular inter­actions of proximal macrocycles are additionally affected by solvent choice. The crystal studied for compound 1·CHCl3 was refined as an inversion twin. One penta­fluoro­phenyl group was modelled as disordered over two sites [occupancy ratio = 0.462 (7):0.538 (7)]. The chloro­form solvate was also modelled as disordered over two orientations [occupancy ratio = 0.882 (7): 0.118 (7).




po

A new pseudopolymorph of perchlorinated neo­penta­silane: the benzene monosolvate Si(SiCl3)4·C6H6

A new pseudopolymorph of dodeca­chloro­penta­silane, namely a benzene monosolvate, Si5Cl12·C6H6, is described. There are two half mol­ecules of each kind in the asymmetric unit. Both Si5Cl12 mol­ecules are completed by crystallographic twofold symmetry. One of the benzene mol­ecules is located on a twofold rotation axis with two C—H groups located on this rotation axis. The second benzene mol­ecule has all atoms on a general position: it is disordered over two equally occupied orientations. No directional inter­actions beyond normal van der Waals contacts occur in the crystal.




po

Poly[[tetra­deca­kis­(μ-propionato)hepta­barium] propionic acid monosolvate tetra­hydrate]

The title compound, {[Ba7(C3H5O2)14]·0.946C3H6O2·4H2O}n, is represented by a metal–organic framework structure that is held together by Ba—O—Ba bonds, as well as by O—H⋯O hydrogen bonds of moderate strength. The structure comprises of four independent Ba2+ cations (one of which is situated on a twofold rotation axis), seven independent propionate and two independent water mol­ecules. The bond-valence sums of all the cations indicate a slight overbonding. There is also an occupationally, as well as a positionally disordered propionic acid mol­ecule present in the structure. Its occupation is slightly lower than the full occupation while the disordered mol­ecules occupy two positions related by a rotation about a twofold rotation axis. In addition, the methyl group in the symmetry-independent propionic acid mol­ecule is also disordered, and occupies two positions. Each propionic acid mol­ecule coordinates to just one cation from a pair of symmetry-equivalent Ba2+ sites and is simultaneously bonded by an O—H⋯Opropionate hydrogen bond. This means that on a microscopic scale, the coordination number of the corresponding Ba2+ site is either 9 or 10. The methyl as well as hy­droxy hydrogen atoms of the disordered propionic acid mol­ecule were not determined.




po

Crystal structure of {4-[10,15,20-tris­(4-meth­oxy­phen­yl)porphyrin-5-yl]benzyl 2-diazo­acetato}­zinc(II)

In the title compound, [Zn(C50H36N6O5)], the ZnII cation is chelated by four pyrrole N atoms of the porphyrinate anion and coordinated by a symmetry-generated keto O atom of the diazo­ester group in a distorted square-pyramidal geometry. The mean Zn—N(pyrrole) bond length is 2.058 Å and the Zn—O(diazo­ester) bond length is 2.179 (4) Å. The zinc cation is displaced by 0.2202 (13) Å from the N4C20 mean plane of the porphyrinate anion toward the O atom; the involvement of this atom leads to a [100] polymeric chain in the crystal.




po

Crystal structure of a nickel compound comprising two nickel(II) complexes with different ligand environments: [Ni(tren)(H2O)2][Ni(H2O)6](SO4)2

The title compound, di­aqua­[tris­(2-amino­eth­yl)amine]­nickel(II) hexa­aqua­nickel(II) bis­(sulfate), [Ni(C6H18N4)(H2O)2][Ni(H2O)6](SO4)2 or [Ni(tren)(H2O)2][Ni(H2O)6](SO4)2, consists of two octa­hedral nickel complexes within the same unit cell. These metal complexes are formed from the reaction of [Ni(H2O)6](SO4) and the ligand tris­(2-amino­eth­yl)amine (tren). The crystals of the title compound are purple, different from those of the starting complex [Ni(H2O)6](SO4), which are turquoise. The reaction was performed both in a 1:1 and 1:2 metal–ligand molar ratio, always yielding the co-precipitation of the two types of crystals. The asymmetric unit of the title compound, which crystallizes in the space group Pnma, consists of two half NiII complexes and a sulfate counter-anion. The mononuclear cationic complex [Ni(tren)(H2O)2]2+ comprises an Ni ion, the tren ligand and two water mol­ecules, while the mononuclear complex [Ni(H2O)6]2+ consists of another Ni ion surrounded by six coordinated water mol­ecules. The [Ni(tren)(H2O)2] and [Ni(H2O)6] subunits are connected to the SO42− counter-anions through hydrogen bonding, thus consolidating the crystal structure.




po

Crystal structure of poly[(μ3-4-amino-1,2,5-oxa­diazole-3-hydroxamato)thallium(I)]

The title compound represents the thallium(I) salt of a substituted 1,2,5-oxa­diazole, [Tl(C3H3N4O3)]n, with amino- and hydroxamate groups in the 4- and 3- positions of the oxa­diazole ring, respectively. In the crystal, the deprotonated hydroxamate group represents an inter­mediate between the keto/enol tautomers and forms a five-membered chelate ring with the thallium(I) cation. The coordination sphere of the cation is augmented to a distorted disphenoid by two monodentately binding O atoms from two adjacent anions, leading to the formation of zigzag chains extending parallel to the b axis. The cohesion within the chains is supported by π–π stacking [centroid–centroid distance = 3.746 (3) Å] and inter­molecular N—H⋯N hydrogen bonds.




po

Synthesis and crystal structure of NaCuIn(PO4)2

Single crystals of sodium copper(II) indium bis­[phosphate(V)], NaCuIn(PO4)2, were grown from the melt under atmospheric conditions. The title phosphate crystallizes in the space group P21/n and is isotypic with KCuFe(PO4)2. In the crystal, two [CuO5] trigonal bipyramids share an edge to form a dimer [Cu2O8] that is connected to two PO4 tetra­hedra. The obtained [Cu2P2O12] units are inter­connected through vertices to form sheets that are sandwiched between undulating layers resulting from the junction of PO4 tetra­hedra and [InO6] octa­hedra. The two types of layers are alternately stacked along [101] and are joined into a three-dimensional framework through vertex- and edge-sharing, leaving channels parallel to the stacking direction. The channels host the sodium cations that are surrounded by four oxygen atoms in form of a distorted disphenoid.




po

Synthesis, crystal structure, and thermal properties of poly[aqua­(μ5-2,5-di­carb­oxy­benzene-1,4-di­carboxyl­ato)strontium]

A coordination polymer formulated as [Sr(H2BTEC)(H2O)]n (H4BTEC = benzene-1,2,4,5-tetra­carb­oxy­lic acid, C10H6O8), was synthesized hydro­thermally and characterized by single-crystal and powder X-ray diffraction, scanning electron microscopy and thermal analysis. Its crystal structure is made up of a zigzag inorganic chain formed by edge-sharing of [SrO8] polyhedra running along [001]. Adjacent chains are connected to each other via the carboxyl­ate groups of the ligand, resulting in a double-layered network extending parallel to (100). O—H⋯O hydrogen bonds of medium-to-weak strength between the layers consolidate the three-dimensional structure. One of the carb­oxy­lic OH functions was found to be disordered over two sets of sites with half-occupancy.




po

Whole-mol­ecule disorder of the Schiff base compound 4-chloro-N-(4-nitro­benzyl­idene)aniline: crystal structure and Hirshfeld surface analysis

In the crystal of the title Schiff base compound, C13H9ClN2O2, [CNBA; systematic name: (E)-N-(4-chloro­phen­yl)-1-(4-nitro­phen­yl)methanimine], the CNBA mol­ecule shows whole-mol­ecule disorder (occupancy ratio 0.65:0.35), with the disorder components related by a twofold rotation about the shorter axis of the mol­ecule. The aromatic rings are inclined to each other by 39.3 (5)° in the major component and by 35.7 (9)° in the minor component. In the crystal, C—H⋯O hydrogen bonds predominate in linking the major components, while weak C—H⋯Cl inter­actions predominate in linking the minor components. The result is the formation of corrugated layers lying parallel to the ac plane. The crystal packing was analysed using Hirshfeld surface analysis and compared with related structures.




po

Polymorphism of 2-(5-benzyl-6-oxo-3-phenyl-1,6-di­hydro­pyridazin-1-yl)acetic acid with two monoclinic modifications: crystal structures and Hirshfeld surface analyses

Two polymorphs of the title compound, C19H16N2O3, were obtained from ethano­lic (polymorph I) and methano­lic solutions (polymorph II), respectively. Both polymorphs crystallize in the monoclinic system with four formula units per cell and a complete mol­ecule in the asymmetric unit. The main difference between the mol­ecules of (I) and (II) is the reversed position of the hy­droxy group of the carb­oxy­lic function. All other conformational features are found to be similar in the two mol­ecules. The different orientation of the OH group results in different hydrogen-bonding schemes in the crystal structures of (I) and (II). Whereas in (I) inter­molecular O—H⋯O hydrogen bonds with the pyridazinone carbonyl O atom as acceptor generate chains with a C(7) motif extending parallel to the b-axis direction, in the crystal of (II) pairs of inversion-related O—H⋯O hydrogen bonds with an R22(8) ring motif between two carb­oxy­lic functions are found. The inter­molecular inter­actions in both crystal structures were analysed using Hirshfeld surface analysis and two-dimensional fingerprint plots.




po

Syntheses and crystal structures of the one-dimensional coordination polymers formed by [Ni(cyclam)]2+ cations and 1,3-bis­(3-carb­oxy­prop­yl)tetra­methyl­disiloxane anions in different degrees of deprotonation

The asymmetric units of the title compounds, namely, catena-poly[[(1,4,8,11-tetra­aza­cyclo­tetra­decane-κ4N1,N4,N8,N11)nickel(II)]-μ-1,3-bis­(3-carboxyl­ato­prop­yl)tetra­methyl­disiloxane-κ2O:O'], [Ni(C10H24O5Si2)(C12H24N4)]n (I), and catena-poly[[[(1,4,8,11-tetra­aza­cyclo­tetra­decane-κ4N1,N4,N8,N11)nickel(II)]-μ-4-({[(3-carb­oxy­prop­yl)di­methyl­sil­yl]­oxy}di­methyl­sil­yl)butano­ato-κ2O:O'] per­chlorate], {[Ni(C10H25O5Si2)(C12H24N4)]ClO4}n (II), consist of one (in I) or two crystallographically non-equivalent (in II) centrosymmetric macrocyclic cations and one centrosymmetric dianion (in I) or two centrosymmetric monoanions (in II). In each compound, the metal ion is coordinated by the four secondary N atoms of the macrocyclic ligand, which adopts the most energetically stable trans-III conformation, and the mutually trans O atoms of the carboxyl­ate in a slightly tetra­gonally distorted trans-NiN4O2 octa­hedral coordination geometry. The crystals of both types of compounds are composed of parallel polymeric chains of the macrocyclic cations linked by the anions of the acid running along the [101] and [110] directions in I and II, respectively. In I, each polymeric chain is linked to four neighbouring ones by hydrogen bonding between the NH groups of the macrocycle and the carboxyl­ate O atoms, thus forming a three-dimensional supra­molecular network. In II, each polymeric chain contacts with only two neighbours, forming hydrogen bonds between the partially protonated carb­oxy­lic groups of the bridging ligand. As a result, a lamellar structure is formed with the layers oriented parallel to the (1overline{1}1) plane.




po

The first coordination compound of 6-fluoro­nicotinate: the crystal structure of a one-dimensional nickel(II) coordination polymer containing the mixed ligands 6-fluoro­nicotinate and 4,4'-bi­pyridine

A one-dimensional nickel(II) coordination polymer with the mixed ligands 6-fluoro­nicotinate (6-Fnic) and 4,4'-bi­pyridine (4,4'-bpy), namely, catena-poly[[di­aqua­bis­(6-fluoro­pyridine-3-carboxyl­ato-κO)nickel(II)]-μ-4,4'-bi­pyri­dine-κ2N:N'] trihydrate], {[Ni(6-Fnic)2(4,4'-bpy)(H2O)2]·3H2O}n, (1), was prepared by the reaction of nickel(II) sulfate hepta­hydrate, 6-fluoro­nicotinic acid (C6H4FNO2) and 4,4'-bi­pyridine (C10H8N2) in a mixture of water and ethanol. The nickel(II) ion in 1 is octa­hedrally coordinated by the O atoms of two water mol­ecules, two O atoms from O-monodentate 6-fluoro­nicotinate ligands and two N atoms from bridging 4,4'-bi­pyridine ligands, forming a trans isomer. The bridging 4,4'-bi­pyridine ligands connect symmetry-related nickel(II) ions into infinite one-dimensional polymeric chains running in the [1overline{1}0] direction. In the extended structure of 1, the polymeric chains and lattice water mol­ecules are connected into a three-dimensional hydrogen-bonded network via strong O—H⋯O and O—H⋯N hydrogen bonds, leading to the formation of distinct hydrogen-bond ring motifs: octa­meric R88(24) and hexa­meric R86(16) loops.




po

Silver(I) nitrate two-dimensional coordination polymers of two new pyrazine­thio­phane ligands: 5,7-di­hydro-1H,3H-dithieno[3,4-b:3',4'-e]pyrazine and 3,4,8,10,11,13-hexa­hydro-1H,6H-bis­([1,4]di­thio­cino)[6,7-b:6',7'-e

The two new pyrazine­ophanes, 5,7-di­hydro-1H,3H-dithieno[3,4-b:3',4'-e]pyrazine, C8H8N2S2, L1, and 3,4,8,10,11,13-hexa­hydro-1H,6H-bis­([1,4]di­thio­cino)[6,7-b:6',7'-e]pyrazine, C12H16N2S4, L2, both crystallize with half a mol­ecule in the asymmetric unit; the whole mol­ecules are generated by inversion symmetry. The mol­ecule of L1, which is planar (r.m.s. deviation = 0.008 Å), consists of two sulfur atoms linked by a rigid tetra-2,3,5,6-methyl­ene­pyrazine unit, forming planar five-membered rings. The mol­ecule of L2 is step-shaped and consists of two S–CH2–CH2–S chains linked by the central rigid tetra-2,3,5,6-methyl­ene­pyrazine unit, forming eight-membered rings that have twist-boat-chair con­fig­urations. In the crystals of both compounds, there are no significant inter­molecular inter­actions present. The reaction of L1 with silver nitrate leads to the formation of a two-dimensional coordination polymer, poly[(μ-5,7-di­hydro-1H,3H-dithieno[3,4-b;3',4'-e]pyrazine-κ2S:S')(μ-nitrato-κ2O:O')silver(I)], [Ag(NO3)(C8H8N2S2)]n, (I), with the nitrato anion bridging two equivalent silver atoms. The central pyrazine ring is situated about an inversion center and the silver atom lies on a twofold rotation axis that bis­ects the nitrato anion. The silver atom has a fourfold AgO2S2 coordination sphere with a distorted shape. The reaction of L2 with silver nitrate also leads to the formation of a two-dimensional coordination polymer, poly[[μ33,4,8,10,11,13-hexa­hydro-1H,6H-bis­([1,4]di­thio­cino)[6,7-b;6',7'-e]pyrazine-κ3S:S':S''](nitrato-κO)silver(I)], [Ag(NO3)(C12H16N2S4)]n, (II), with the nitrate anion coordinating in a monodentate manner to the silver atom. The silver atom has a fourfold AgOS3 coordination sphere with a distorted shape. In the crystals of both complexes, the networks are linked by C—H⋯O hydrogen bonds, forming supra­molecular frameworks. There are additional C—H⋯S contacts present in the supra­molecular framework of II.




po

Synthesis and crystal structure of a 6-chloro­nicotinate salt of a one-dimensional cationic nickel(II) coordination polymer with 4,4'-bi­pyridine

A 6-chloro­nicotinate (6-Clnic) salt of a one-dimensional cationic nickel(II) coordination polymer with 4,4'-bi­pyridine (4,4'-bpy), namely, catena-poly[[[tetra­aqua­nickel(II)]-μ-4,4'-bi­pyridine-κ2N:N'] bis­(6-chloro­nicotinate) tetra­hydrate], {[Ni(C10H8N2)(H2O)4](C6H3ClNO2)2·4H2O}n or {[Ni(4,4'-bpy)(H2O)4](6-Clnic)2·4H2O}n, (1), was prepared by the reaction of nickel(II) sulfate hepta­hydrate, 6-chloro­nicotinic acid and 4,4'-bi­pyridine in a mixture of water and ethanol. The mol­ecular structure of 1 comprises a one-dimensional polymeric {[Ni(4,4'-bpy)(H2O)4]2+}n cation, two 6-chloro­nicotinate anions and four water mol­ecules of crystallization per repeating polymeric unit. The nickel(II) ion in the polymeric cation is octa­hedrally coordinated by four water mol­ecule O atoms and by two 4,4'-bi­pyridine N atoms in the trans position. The 4,4'-bi­pyridine ligands act as bridges and, thus, connect the symmetry-related nickel(II) ions into an infinite one-dimensional polymeric chain extending along the b-axis direction. In the extended structure of 1, the polymeric chains of {[Ni(4,4'-bpy)(H2O)4]2+}n, the 6-chloro­nicotinate anions and the water mol­ecules of crystallization are assembled into an infinite three-dimensional hydrogen-bonded network via strong O—H⋯O and O—H⋯N hydrogen bonds, leading to the formation of the representative hydrogen-bonded ring motifs: tetra­meric R24(8) and R44(10) loops, a dimeric R22(8) loop and a penta­meric R45(16) loop.




po

Ni3Te2O2(PO4)2(OH)4, an open-framework structure isotypic with Co3Te2O2(PO4)2(OH)4

Single crystals of Ni3(TeO(OH)2)2(PO4)2, trinickel(II) bis[(oxidodihydoxidotellurate(IV)] bis(phosphate),were obtained by hydro­thermal synthesis at 483 K, starting from NiCO3·2Ni(OH)2, TeO2 and H3PO4 in a molar ratio of 1:2:2. The crystal structure of Ni3Te2O2(PO4)2(OH)4 is isotypic with that of Co3Te2O2(PO4)2(OH)4 [Zimmermann et al. (2011). J. Solid State Chem. 184, 3080–3084]. The asymmetric unit comprises two Ni (site symmetries overline{1}, 2/m) one Te (m), one P (m), five O (three m, two 1) and one H (1) sites. The tellurium(IV) atom shows a coordination number of five, with the corresponding [TeO3(OH)2] polyhedron having a distorted square-pyramidal shape. The two NiII atoms are both octa­hedrally coordinated but form different structural elements: one constitutes chains made up from edge-sharing [NiO6] octa­hedra extending parallel to [010], and the other isolated [NiO2(OH)4] octa­hedra. The two kinds of nickel/oxygen octa­hedra are connected by the [TeO3(OH)2] pyramids and the [PO4] tetra­hedra through edge- and corner-sharing into a three-dimensional framework structure with channels extending parallel to [010]. Hydrogen bonds of medium strength between the hy­droxy groups and one of the phosphate O atoms consolidate the packing. A qu­anti­tative structure comparison between Ni3Te2O2(PO4)2(OH)4 and Co3Te2O2(PO4)2(OH)4 is made.




po

Equatorial aberration of powder diffraction data collected with an Si strip X-ray detector by a continuous-scan integration method

Exact and approximate mathematical formulas of equatorial aberration for powder diffraction data collected with an Si strip X-ray detector in continuous-scan integration mode are presented. An approximate formula is applied to treat the experimental data measured with a commercial powder diffractometer.




po

Full reciprocal-space mapping up to 2000 K under controlled atmosphere: the multipurpose QMAX furnace

A furnace that covers the temperature range from room temperature up to 2000 K has been designed, built and implemented on the D2AM beamline at the ESRF. The QMAX furnace is devoted to the full exploration of the reciprocal hemispace located above the sample surface. It is well suited for symmetric and asymmetric 3D reciprocal space mapping. Owing to the hemispherical design of the furnace, 3D grazing-incidence small- and wide-angle scattering and diffraction measurements are possible. Inert and reactive experiments can be performed at atmospheric pressure under controlled gas flux. It is demonstrated that the QMAX furnace allows monitoring of structural phase transitions as well as microstructural evolution at the nanoscale, such as self-organization processes, crystal growth and strain relaxation. A time-resolved in situ oxidation experiment illustrates the capability to probe the high-temperature reactivity of materials.




po

Energetics of interactions in the solid state of 2-hydroxy-8-X-quinoline derivatives (X = Cl, Br, I, S-Ph): comparison of Hirshfeld atom, X-ray wavefunction and multipole refinements

In this work, two methods of high-resolution X-ray data refinement: multipole refinement (MM) and Hirshfeld atom refinement (HAR) – together with X-ray wavefunction refinement (XWR) – are applied to investigate the refinement of positions and anisotropic thermal motion of hydrogen atoms, experiment-based reconstruction of electron density, refinement of anharmonic thermal vibrations, as well as the effects of excluding the weakest reflections in the refinement. The study is based on X-ray data sets of varying quality collected for the crystals of four quinoline derivatives with Cl, Br, I atoms and the -S-Ph group as substituents. Energetic investigations are performed, comprising the calculation of the energy of intermolecular interactions, cohesive and geometrical relaxation energy. The results obtained for experimentally derived structures are verified against the values calculated for structures optimized using dispersion-corrected periodic density functional theory. For the high-quality data sets (the Cl and -S-Ph compounds), both MM and XWR could be successfully used to refine the atomic displacement parameters and the positions of hydrogen atoms; however, the bond lengths obtained with XWR were more precise and closer to the theoretical values. In the application to the more challenging data sets (the Br and I compounds), only XWR enabled free refinement of hydrogen atom geometrical parameters, nevertheless, the results clearly showed poor data quality. For both refinement methods, the energy values (intermolecular interactions, cohesive and relaxation) calculated for the experimental structures were in similar agreement with the values associated with the optimized structures – the most significant divergences were observed when experimental geometries were biased by poor data quality. XWR was found to be more robust in avoiding incorrect distortions of the reconstructed electron density as a result of data quality issues. Based on the problem of anharmonic thermal motion refinement, this study reveals that for the most correct interpretation of the obtained results, it is necessary to use the complete data set, including the weak reflections in order to draw conclusions.




po

Screening topological materials with a CsCl-type structure in crystallographic databases

CsCl-type materials have many outstanding characteristics, i.e. simple in structure, ease of synthesis and good stability at room temperature, thus are an excellent choice for designing functional materials. Using high-throughput first-principles calculations, a large number of topological semimetals/metals (TMs) were designed from CsCl-type materials found in crystallographic databases and their crystal and electronic structures have been studied. The CsCl-type TMs in this work show rich topological character, ranging from triple nodal points, type-I nodal lines and critical-type nodal lines, to hybrid nodal lines. The TMs identified show clean topological band structures near the Fermi level, which are suitable for experimental investigations and future applications. This work provides a rich data set of TMs with a CsCl-type structure.




po

Cryo-EM structure of Neurospora crassa respiratory complex IV

In fungi, the mitochondrial respiratory chain complexes (complexes I–IV) are responsible for oxidative phosphorylation, as in higher eukaryotes. Cryo-EM was used to identify a 200 kDa membrane protein from Neurospora crassa in lipid nanodiscs as cytochrome c oxidase (complex IV) and its structure was determined at 5.5 Å resolution. The map closely resembles the cryo-EM structure of complex IV from Saccharomyces cerevisiae. Its ten subunits are conserved in S. cerevisiae and Bos taurus, but other transmembrane subunits are missing. The different structure of the Cox5a subunit is typical for fungal complex IV and may affect the interaction with complex III in a respiratory supercomplex. Additional density was found between the matrix domains of the Cox4 and Cox5a subunits that appears to be specific to N. crassa.




po

Catalytically important damage-free structures of a copper nitrite reductase obtained by femtosecond X-ray laser and room-temperature neutron crystallography

Copper-containing nitrite reductases (CuNiRs) that convert NO2− to NO via a CuCAT–His–Cys–CuET proton-coupled redox system are of central importance in nitrogen-based energy metabolism. These metalloenzymes, like all redox enzymes, are very susceptible to radiation damage from the intense synchrotron-radiation X-rays that are used to obtain structures at high resolution. Understanding the chemistry that underpins the enzyme mechanisms in these systems requires resolutions of better than 2 Å. Here, for the first time, the damage-free structure of the resting state of one of the most studied CuNiRs was obtained by combining X-ray free-electron laser (XFEL) and neutron crystallography. This represents the first direct comparison of neutron and XFEL structural data for any protein. In addition, damage-free structures of the reduced and nitrite-bound forms have been obtained to high resolution from cryogenically maintained crystals by XFEL crystallography. It is demonstrated that AspCAT and HisCAT are deprotonated in the resting state of CuNiRs at pH values close to the optimum for activity. A bridging neutral water (D2O) is positioned with one deuteron directed towards AspCAT Oδ1 and one towards HisCAT N∊2. The catalytic T2Cu-ligated water (W1) can clearly be modelled as a neutral D2O molecule as opposed to D3O+ or OD−, which have previously been suggested as possible alternatives. The bridging water restricts the movement of the unprotonated AspCAT and is too distant to form a hydrogen bond to the O atom of the bound nitrite that interacts with AspCAT. Upon the binding of NO2− a proton is transferred from the bridging water to the Oδ2 atom of AspCAT, prompting electron transfer from T1Cu to T2Cu and reducing the catalytic redox centre. This triggers the transfer of a proton from AspCAT to the bound nitrite, enabling the reaction to proceed.




po

Charge densities in actinide compounds: strategies for data reduction and model building

The data quality requirements for charge density studies on actinide compounds are extreme. Important steps in data collection and reduction required to obtain such data are summarized and evaluated. The steps involved in building an augmented Hansen–Coppens multipole model for an actinide pseudo-atom are provided. The number and choice of radial functions, in particular the definition of the core, valence and pseudo-valence terms are discussed. The conclusions in this paper are based on a re-examination and improvement of a previously reported study on [PPh4][UF6]. Topological analysis of the total electron density shows remarkable agreement between experiment and theory; however, there are significant differences in the Laplacian distribution close to the uranium atoms which may be due to the effective core potential employed for the theoretical calculations.




po

Conformational characterization of full-length X-chromosome-linked inhibitor of apoptosis protein (XIAP) through an integrated approach

The X-chromosome-linked inhibitor of apoptosis protein (XIAP) is a multidomain protein whose main function is to block apoptosis by caspase inhibition. XIAP is also involved in other signalling pathways, including NF-κB activation and copper homeostasis. XIAP is overexpressed in tumours, potentiating cell survival and resistance to chemotherapeutics, and has therefore become an important target for the treatment of malignancy. Despite the fact that the structure of each single domain is known, the conformation of the full-length protein has never been determined. Here, the first structural model of the full-length XIAP dimer, determined by an integrated approach using nuclear magnetic resonance, small-angle X-ray scattering and electron paramagnetic resonance data, is presented. It is shown that XIAP adopts a compact and relatively rigid conformation, implying that the spatial arrangement of its domains must be taken into account when studying the interactions with its physiological partners and in developing effective inhibitors.




po

A new small-angle X-ray scattering model for polymer spherulites with a limited lateral size of the lamellar crystals

As is well known, polymers commonly form lamellar crystals, and these assemble further into lamellar stacks and spherulites during quiescent crystallization. Fifty years ago, Vonk and Kortleve constructed the classical small-angle X-ray scattering theory (SAXS) for a lamellar system, in which it was assumed that the lamellar stack had an infinite lateral size [Vonk & Kortleve (1967), Kolloid Z. Z. Polym. 220, 19–24]. Under this assumption, only crystal planes satisfying the Bragg condition can form strong scattering, and the scattering from the lamellar stack arises from the difference between the scattering intensities in the amorphous and crystalline layers, induced by the incident X-ray beam. This assumption is now deemed unreasonable. In a real polymer spherulite, the lamellar crystal commonly has dimensions of only a few hundred nanometres. At such a limited lateral size, lamellar stacks in a broad orientation have similar scattering, so interference between these lamellar stacks must be considered. Scattering from lamellar stacks parallel to the incident X-ray beam also needs to be considered when total reflection occurs. In this study, various scattering contributions from lamellar stacks in a spherulite are determined. It is found that, for a limited lateral size, the scattering induced by the incident X-ray beam is not the main origin of SAXS. It forms double peaks, which are not observed in real scattering because of destructive interference between the lamellar stacks. The scattering induced by the evanescent wave is the main origin. It can form a similar interference pattern to that observed in a real SAXS measurement: a Guinier region in the small-q range, a signal region in the intermediate-q range and a Porod region in the high-q range. It is estimated that, to avoid destructive interference, the lateral size needs to be greater than 11 µm, which cannot be satisfied in a real lamellar system. Therefore, SAXS in a real polymer system arises largely from the scattering induced by the evanescent wave. Evidence for the existence of the evanescent wave was identified in the scattering of isotactic polypropyl­ene. This study corrects a long-term misunderstanding of SAXS in a polymer lamellar system.




po

Diversifying molecular and topological space via a supramolecular solid-state synthesis: a purely organic mok net sustained by hydrogen bonds

A three-dimensional hydrogen-bonded network based on a rare mok topology has been constructed using an organic molecule synthesized in the solid state. The molecule is obtained using a supramolecular protecting-group strategy that is applied to a solid-state [2+2] photodimerization. The photodimerization affords a novel head-to-head cyclo­butane product. The cyclo­butane possesses tetrahedrally disposed cis-hydrogen-bond donor (phenolic) and cis-hydrogen-bond acceptor (pyridyl) groups. The product self-assembles in the solid state to form a mok network that exhibits twofold interpenetration. The cyclo­butane adopts different conformations to provide combinations of hydrogen-bond donor and acceptor sites to conform to the structural requirements of the mok net.




po

Consistency and variability of cocrystals containing positional isomers: the self-assembly evolution mechanism of supramolecular synthons of cresol–piperazine

The disposition of functional groups can induce variations in the nature and type of interactions and hence affect the molecular recognition and self-assembly mechanism in cocrystals. To better understand the formation of cocrystals on a molecular level, the effects of disposition of functional groups on the formation of cocrystals were systematically and comprehensively investigated using cresol isomers (o-, m-, p-cresol) as model compounds. Consistency and variability in these cocrystals containing positional isomers were found and analyzed. The structures, molecular recognition and self-assembly mechanism of supramolecular synthons in solution and in their corresponding cocrystals were verified by a combined experimental and theoretical calculation approach. It was found that the heterosynthons (heterotrimer or heterodimer) combined with O—H⋯N hydrogen bonding played a significant role. Hirshfeld surface analysis and computed interaction energy values were used to determine the hierarchical ordering of the weak interactions. The quantitative analyses of charge transfers and molecular electrostatic potential were also applied to reveal and verify the reasons for consistency and variability. Finally, the molecular recognition, self-assembly and evolution process of the supramolecular synthons in solution were investigated. The results confirm that the supramolecular synthon structures formed initially in solution would be carried over to the final cocrystals, and the supramolecular synthon structures are the precursors of cocrystals and the information memory of the cocrystallization process, which is evidence for classical nucleation theory.




po

Crystal structure of the putative cyclase IdmH from the indanomycin nonribosomal peptide synthase/polyketide synthase

Indanomycin is biosynthesized by a hybrid nonribosomal peptide synthase/polyketide synthase (NRPS/PKS) followed by a number of `tailoring' steps to form the two ring systems that are present in the mature product. It had previously been hypothesized that the indane ring of indanomycin was formed by the action of IdmH using a Diels–Alder reaction. Here, the crystal structure of a selenomethionine-labelled truncated form of IdmH (IdmH-Δ99–107) was solved using single-wavelength anomalous dispersion (SAD) phasing. This truncated variant allows consistent and easy crystallization, but importantly the structure was used as a search model in molecular replacement, allowing the full-length IdmH structure to be determined to 2.7 Å resolution. IdmH is a homodimer, with the individual protomers consisting of an α+β barrel. Each protomer contains a deep hydrophobic pocket which is proposed to constitute the active site of the enzyme. To investigate the reaction catalysed by IdmH, 88% of the backbone NMR resonances were assigned, and using chemical shift perturbation of [15N]-labelled IdmH it was demonstrated that indanomycin binds in the active-site pocket. Finally, combined quantum mechanical/molecular mechanical (QM/MM) modelling of the IdmH reaction shows that the active site of the enzyme provides an appropriate environment to promote indane-ring formation, supporting the assignment of IdmH as the key Diels–Alderase catalysing the final step in the biosynthesis of indanomycin through a similar mechanism to other recently characterized Diels–Alderases involved in polyketide-tailoring reactions. An animated Interactive 3D Complement (I3DC) is available in Proteopedia at https://proteopedia.org/w/Journal:IUCrJ:S2052252519012399.




po

R3c-type LnNiO3 (Ln = La, Ce, Nd, Pm, Gd, Tb, Dy, Ho, Er, Lu) half-metals with multiple Dirac cones: a potential class of advanced spintronic materials

In the past three years, Dirac half-metals (DHMs) have attracted considerable attention and become a high-profile topic in spintronics becuase of their excellent physical properties such as 100% spin polarization and massless Dirac fermions. Two-dimensional DHMs proposed recently have not yet been experimentally synthesized and thus remain theoretical. As a result, their characteristics cannot be experimentally confirmed. In addition, many theoretically predicted Dirac materials have only a single cone, resulting in a nonlinear electromagnetic response with insufficient intensity and inadequate transport carrier efficiency near the Fermi level. Therefore, after several attempts, we have focused on a novel class of DHMs with multiple Dirac crossings to address the above limitations. In particular, we direct our attention to three-dimensional bulk materials. In this study, the discovery via first principles of an experimentally synthesized DHM LaNiO3 with many Dirac cones and complete spin polarization near the Fermi level is reported. It is also shown that the crystal structures of these materials are strongly correlated with their physical properties. The results indicate that many rhombohedral materials with the general formula LnNiO3 (Ln = La, Ce, Nd, Pm, Gd, Tb, Dy, Ho, Er, Lu) in the space group R3c are potential DHMs with multiple Dirac cones.




po

Charge density view on bicalutamide molecular interactions in the monoclinic polymorph and androgen receptor binding pocket

High-resolution single-crystal X-ray measurements of the monoclinic polymorph of bicalutamide and the aspherical atom databank approach have served as a basis for a reconstruction of the charge density distribution of the drug and its androgen receptor (AR) and albumin complexes. The contributions of various types of intermolecular interactions to the total crystal energy or ligand:AR energy were estimated. The cyan and amide groups secured the ligand placement in the albumin (Lys-137) and the AR binding pocket (Leu-704, Asn-705, Arg-752), and also determined the packing of the small-molecule crystals. The total electrostatic interaction energy on average was −230 kJ mol−1, comparable with the electrostatic lattice energy of the monoclinic bicalutamide polymorph. This is the result of similar distributions of electropositive and electronegative regions on the experimental and theoretical molecular electrostatic potential maps despite differences in molecular conformations. In general, bicalutamide interacted with the studied proteins with similar electrostatic interaction energies and adjusted its conformation and electrostatic potential to fit the binding pocket in such a way as to enhance the interactions, e.g. hydrogen bonds and π⋯π stacking.




po

Structural and kinetic insights into flavin-containing monooxygenase and calponin-homology domains in human MICAL3

MICAL is an oxidoreductase that participates in cytoskeleton reorganization via actin disassembly in the presence of NADPH. Although three MICALs (MICAL1, MICAL2 and MICAL3) have been identified in mammals, only the structure of mouse MICAL1 has been reported. Here, the first crystal structure of human MICAL3, which contains the flavin-containing monooxygenase (FMO) and calponin-homology (CH) domains, is reported. MICAL3 has an FAD/NADP-binding Rossmann-fold domain for mono­oxygenase activity like MICAL1. The FMO and CH domains of both MICAL3 and MICAL1 are highly similar in structure, but superimposition of the two structures shows a different relative position of the CH domain in the asymmetric unit. Based on kinetic analyses, the catalytic efficiency of MICAL3 dramatically increased on adding F-actin only when the CH domain was available. However, this did not occur when two residues, Glu213 and Arg530, were mutated in the FMO and CH domains, respectively. Overall, MICAL3 is structurally highly similar to MICAL1, which suggests that they may adopt the same catalytic mechanism, but the difference in the relative position of the CH domain produces a difference in F-actin substrate specificity.




po

Investigation of growth characteristics and semimetal–semiconductor transition of polycrystalline bis­muth thin films

The preferred orientation growth characteristics and surface roughness of polycrystalline bis­muth (Bi) thin films fabricated on glass substrates using the molecular beam epitaxy method were investigated at temperatures ranging from 18 to 150°C. The crystallization and morphology were analyzed in detail and the polycrystalline metal film structure-zone model (SZM) was modified to fit the polycrystalline Bi thin film. The boundary temperature between Zone T and Zone II in the SZM shifted to higher temperatures with the increase in film thickness or the decrease of growth rate. Furthermore, the effect of the thickness and surface roughness on the transport properties was investigated, especially for Bi thin films in Zone II. A two-transport channels model was adopted to reveal the influence of the film thickness on the competition between the metallic surface states and the semiconducting bulk states, which is consistent with the results of Bi single-crystal films. Therefore, the polycrystalline Bi thin films are expected to replace the single-crystal films in the application of spintronic devices.




po

High-pressure polymorphism in pyridine

Single crystals of the high-pressure phases II and III of pyridine have been obtained by in situ crystallization at 1.09 and 1.69 GPa, revealing the crystal structure of phase III for the first time using X-ray diffraction. Phase II crystallizes in P212121 with Z' = 1 and phase III in P41212 with Z' = ½. Neutron powder diffraction experiments using pyridine-d5 establish approximate equations of state of both phases. The space group and unit-cell dimensions of phase III are similar to the structures of other simple compounds with C2v molecular symmetry, and the phase becomes stable at high pressure because it is topologically close-packed, resulting in a lower molar volume than the topologically body-centred cubic phase II. Phases II and III have been observed previously by Raman spectroscopy, but have been mis-identified or inconsistently named. Raman spectra collected on the same samples as used in the X-ray experiments establish the vibrational characteristics of both phases unambiguously. The pyridine molecules interact in both phases through CH⋯π and CH⋯N interactions. The nature of individual contacts is preserved through the phase transition between phases III and II, which occurs on decompression. A combination of rigid-body symmetry mode analysis and density functional theory calculations enables the soft vibrational lattice mode which governs the transformation to be identified.




po

Synthesis, structure, magnetic and half-metallic properties of Co2−xRuxMnSi (x = 0, 0.25, 0.5, 0.75, 1) compounds

A series of Co2−xRuxMnSi (x = 0, 0.25, 0.5, 0.75, 1) Heusler compounds were successfully synthesized. The heat-treatment conditions were crucial to make the materials form a single phase with a Heusler structure. With increasing Ru content, the half-metallic gap, lattice parameters and magnetization are continuously adjustable in a wide range. The Co2−xRuxMnSi (x = 0, 0.25) compounds are rigorous half-metals and show a T3 dependence of resistance at low temperature. The Co2−xRuxMnSi (x = 0.5, 0.75, 1) Heusler compounds are the nearly half-metallic materials and show a semiconductive dependence of resistance at low temperature. The experimental magnetization is consistent with that in theory and follows the Slater–Pauling rule. The Curie temperature is higher than 750 K for all Co2−xRuxMnSi Heusler compounds.




po

fragHAR: towards ab initio quantum-crystallographic X-ray structure refinement for polypeptides and proteins

The first ab initio aspherical structure refinement against experimental X-ray structure factors for polypeptides and proteins using a fragmentation approach to break up the protein into residues and solvent, thereby speeding up quantum-crystallographic Hirshfeld atom refinement (HAR) calculations, is described. It it found that the geometric and atomic displacement parameters from the new fragHAR method are essentially unchanged from a HAR on the complete unfragmented system when tested on dipeptides, tripeptides and hexapeptides. The largest changes are for the parameters describing H atoms involved in hydrogen-bond interactions, but it is shown that these discrepancies can be removed by including the interacting fragments as a single larger fragment in the fragmentation scheme. Significant speed-ups are observed for the larger systems. Using this approach, it is possible to perform a highly parallelized HAR in reasonable times for large systems. The method has been implemented in the TONTO software.




po

Isomorphism: `molecular similarity to crystal structure similarity' in multicomponent forms of analgesic drugs tolfenamic and mefenamic acid

The non-steroidal anti-inflammatory drugs mefenamic acid (MFA) and tolfenamic acid (TFA) have a close resemblance in their molecular scaffold, whereby a methyl group in MFA is substituted by a chloro group in TFA. The present study demonstrates the isomorphous nature of these compounds in a series of their multicomponent solids. Furthermore, the unique nature of MFA and TFA has been demonstrated while excavating their alternate solid forms in that, by varying the drug (MFA or TFA) to coformer [4-di­methyl­amino­pyridine (DMAP)] stoichiometric ratio, both drugs have produced three different types of multicomponent crystals, viz. salt (1:1; API to coformer ratio), salt hydrate (1:1:1) and cocrystal salt (2:1). Interestingly, as anticipated from the close similarity of TFA and MFA structures, these multicomponent solids have shown an isomorphous relation. A thorough characterization and structural investigation of the new multicomponent forms of MFA and TFA revealed their similarity in terms of space group and structural packing with isomorphic nature among the pairs. Herein, the experimental results are generalized in a broader perspective for predictably identifying any possible new forms of comparable compounds by mapping their crystal structure landscapes. The utility of such an approach is evident from the identification of polymorph VI of TFA from hetero-seeding with isomorphous MFA form I from acetone–methanol (1:1) solution. That aside, a pseudopolymorph of TFA with di­methyl­formamide (DMF) was obtained, which also has some structural similarity to that of the solvate MFA:DMF. These new isostructural pairs are discussed in the context of solid form screening using structural landscape similarity.




po

Polymorph evolution during crystal growth studied by 3D electron diffraction

3D electron diffraction (3DED) has been used to follow polymorph evolution in the crystallization of glycine from aqueous solution. The three polymorphs of glycine which exist under ambient conditions follow the stability order β < α < γ. The least stable β polymorph forms within the first 3 min, but this begins to yield the α-form after only 1 min more. Both structures could be determined from continuous rotation electron diffraction data collected in less than 20 s on crystals of thickness ∼100 nm. Even though the γ-form is thermodynamically the most stable polymorph, kinetics favour the α-form, which dominates after prolonged standing. In the same sample, some β and one crystallite of the γ polymorph were also observed.




po

The predictive power of data-processing statistics

This study describes a method to estimate the likelihood of success in determining a macromolecular structure by X-ray crystallography and experimental single-wavelength anomalous dispersion (SAD) or multiple-wavelength anomalous dispersion (MAD) phasing based on initial data-processing statistics and sample crystal properties. Such a predictive tool can rapidly assess the usefulness of data and guide the collection of an optimal data set. The increase in data rates from modern macromolecular crystallography beamlines, together with a demand from users for real-time feedback, has led to pressure on computational resources and a need for smarter data handling. Statistical and machine-learning methods have been applied to construct a classifier that displays 95% accuracy for training and testing data sets compiled from 440 solved structures. Applying this classifier to new data achieved 79% accuracy. These scores already provide clear guidance as to the effective use of computing resources and offer a starting point for a personalized data-collection assistant.




po

Comparing the backfilling of mesoporous titania thin films with hole conductors of different sizes sharing the same mass density

Efficient infiltration of a mesoporous titania matrix with conducting organic polymers or small molecules is one key challenge to overcome for hybrid photovoltaic devices. A quantitative analysis of the backfilling efficiency with time-of-flight grazing incidence small-angle neutron scattering (ToF-GISANS) and scanning electron microscopy (SEM) measurements is presented. Differences in the morphology due to the backfilling of mesoporous titania thin films are compared for the macromolecule poly[4,8-bis­(5-(2-ethyl­hexyl)­thio­phen-2-yl)benzo[1,2-b;4,5-b']di­thio­phene-2,6-diyl-alt-(4-(2-ethyl­hexyl)-3-fluoro­thieno[3,4-b]thio­phene-)-2-carboxyl­ate-2-6-diyl)] (PTB7-Th) and the heavy-element containing small molecule 2-pinacol­boronate-3-phenyl­phen­anthro[9,10-b]telluro­phene (PhenTe-BPinPh). Hence, a 1.7 times higher backfilling efficiency of almost 70% is achieved for the small molecule PhenTe-BPinPh compared with the polymer PTB7-Th despite sharing the same volumetric mass density. The precise characterization of structural changes due to backfilling reveals that the volumetric density of backfilled materials plays a minor role in obtaining good backfilling efficiencies and interfaces with large surface contact.




po

Probing the structural pathway of conformational polymorph nucleation by comparing a series of α,ω-alkanedicarboxylic acids

Herein the nucleation pathway of conformational polymorphs was revealed by studying the relationships and distinctions among a series of α,ω-alkanedicarboxylic acids [HOOC–(CH2)n−2–COOH, named DAn, where n = 5, 7, 9, 11, 13, 15] in the solid state and in solution. Their polymorphic outcomes, with the exception of DA5, show solvent dependence: form I with conformation I crystallizes from solvents with hydrogen-bond donating (HBD) ability, whereas form II with conformation II crystallizes preferentially from solvents with no HBD ability. In contrast, form II of DA5 does not crystallize in any of the solvents used. Quantum mechanical computation showed that there is no direct conformational link between the solvents and the resultant polymorphic outcomes. Surprisingly, solute aggregates were found in no-HBD solvents by Fourier transform infrared spectroscopy, and only monomers could be detected in HBD solvents, suggesting stronger solvation. Furthermore, it was found that all six compounds including DA5 followed the same pattern in solution. Moreover, crystal-packing efficiency calculations and stability tests stated that dimorphs of DA5 bear a greater stability difference than others. These suggest that the rearrangement from conformation II to I could not be limited by hard desolvation in HBD solvents, where form I was also obtained. In other systems, metastable II was produced in the same solvents, probably as a result of the rearrangement being limited by hard desolvation. In this work, a comparative study uncovers the proposed nucleation pathway: difficulty in desolvation has a remarkable effect on the result of rearrangement and nucleation outcome.




po

Hypothesis for a mechanism of beam-induced motion in cryo-electron microscopy

Estimates of heat-transfer rates during plunge-cooling and the patterns of ice observed in cryo-EM samples indicate that the grid bars cool much more slowly than do the support foil and sample near the middle of the grid openings. The resulting transient temperature differences generate transient tensile stresses in the support foil. Most of this foil stress develops while the sample is liquid and cooling toward its glass transition Tg, and so does not generate tensile sample stress. As the grid bars continue cooling towards the cryogen temperature and contracting, the tensile stress in the foil is released, placing the sample in compressive stress. Radiation-induced creep in the presence of this compressive stress should generate a doming of the sample in the foil openings, as is observed experimentally. Crude estimates of the magnitude of the doming that may be generated by this mechanism are consistent with observation. Several approaches to reducing beam-induced motion are discussed.




po

Prediction of models for ordered solvent in macromolecular structures by a classifier based upon resolution-independent projections of local feature data

Current software tools for the automated building of models for macro­molecular X-ray crystal structures are capable of assembling high-quality models for ordered macromolecule and small-molecule scattering components with minimal or no user supervision. Many of these tools also incorporate robust functionality for modelling the ordered water molecules that are found in nearly all macromolecular crystal structures. However, no current tools focus on differentiating these ubiquitous water molecules from other frequently occurring multi-atom solvent species, such as sulfate, or the automated building of models for such species. PeakProbe has been developed specifically to address the need for such a tool. PeakProbe predicts likely solvent models for a given point (termed a `peak') in a structure based on analysis (`probing') of its local electron density and chemical environment. PeakProbe maps a total of 19 resolution-dependent features associated with electron density and two associated with the local chemical environment to a two-dimensional score space that is independent of resolution. Peaks are classified based on the relative frequencies with which four different classes of solvent (including water) are observed within a given region of this score space as determined by large-scale sampling of solvent models in the Protein Data Bank. Designed to classify peaks generated from difference density maxima, PeakProbe also incorporates functionality for identifying peaks associated with model errors or clusters of peaks likely to correspond to multi-atom solvent, and for the validation of existing solvent models using solvent-omit electron-density maps. When tasked with classifying peaks into one of four distinct solvent classes, PeakProbe achieves greater than 99% accuracy for both peaks derived directly from the atomic coordinates of existing solvent models and those based on difference density maxima. While the program is still under development, a fully functional version is publicly available. PeakProbe makes extensive use of cctbx libraries, and requires a PHENIX licence and an up-to-date phenix.python environment for execution.