as

Bev Priestman out as Canadian women's head soccer coach following Olympic drone scandal probe

The Canadian women's soccer team was implicated in a drone scandal this past summer. But, an investigation determined drone use against opponents, predated the Paris Olympics.



  • 784150bb-7367-54e1-a4e5-8ad141b4e55e
  • fnc
  • Fox News
  • fox-news/sports/soccer
  • fox-news/world/world-regions/canada
  • fox-news/sports
  • fox-news/sports
  • article

as

New Carrier Fluid Makes Hydrogen Way Easier to Transport



Imagine pulling up to a refueling station and filling your vehicle’s tank with liquid hydrogen, as safe and convenient to handle as gasoline or diesel, without the need for high-pressure tanks or cryogenic storage. This vision of a sustainable future could become a reality if a Calgary, Canada–based company, Ayrton Energy, can scale up its innovative method of hydrogen storage and distribution. Ayrton’s technology could make hydrogen a viable, one-to-one replacement for fossil fuels in existing infrastructure like pipelines, fuel tankers, rail cars, and trucks.

The company’s approach is to use liquid organic hydrogen carriers (LOHCs) to make it easier to transport and store hydrogen. The method chemically bonds hydrogen to carrier molecules, which absorb hydrogen molecules and make them more stable—kind of like hydrogenating cooking oil to produce margarine.

A researcher pours a sample of Ayrton’s LOHC fluid into a vial.Ayrton Energy

The approach would allow liquid hydrogen to be transported and stored in ambient conditions, rather than in the high-pressure, cryogenic tanks (to hold it at temperatures below -252 ºC) currently required for keeping hydrogen in liquid form. It would also be a big improvement on gaseous hydrogen, which is highly volatile and difficult to keep contained.

Founded in 2021, Ayrton is one of several companies across the globe developing LOHCs, including Japan’s Chiyoda and Mitsubishi, Germany’s Covalion, and China’s Hynertech. But toxicity, energy density, and input energy issues have limited LOHCs as contenders for making liquid hydrogen feasible. Ayrton says its formulation eliminates these trade-offs.

Safe, Efficient Hydrogen Fuel for Vehicles

Conventional LOHC technologies used by most of the aforementioned companies rely on substances such as toluene, which forms methylcyclohexane when hydrogenated. These carriers pose safety risks due to their flammability and volatility. Hydrogenious LOHC Technologies in Erlanger, Germany and other hydrogen fuel companies have shifted toward dibenzyltoluene, a more stable carrier that holds more hydrogen per unit volume than methylcyclohexane, though it requires higher temperatures (and thus more energy) to bind and release the hydrogen. Dibenzyltoluene hydrogenation occurs at between 3 and 10 megapascals (30 and 100 bar) and 200–300 ºC, compared with 10 MPa (100 bar), and just under 200 ºC for methylcyclohexane.

Ayrton’s proprietary oil-based hydrogen carrier not only captures and releases hydrogen with less input energy than is required for other LOHCs, but also stores more hydrogen than methylcyclohexane can—55 kilograms per cubic meter compared with methylcyclohexane’s 50 kg/m³. Dibenzyltoluene holds more hydrogen per unit volume (up to 65 kg/m³), but Ayrton’s approach to infusing the carrier with hydrogen atoms promises to cost less. Hydrogenation or dehydrogenation with Ayrton’s carrier fluid occurs at 0.1 megapascal (1 bar) and about 100 ºC, says founder and CEO Natasha Kostenuk. And as with the other LOHCs, after hydrogenation it can be transported and stored at ambient temperatures and pressures.

Judges described [Ayrton's approach] as a critical technology for the deployment of hydrogen at large scale.” —Katie Richardson, National Renewable Energy Lab

Ayrton’s LOHC fluid is as safe to handle as margarine, but it’s still a chemical, says Kostenuk. “I wouldn’t drink it. If you did, you wouldn’t feel very good. But it’s not lethal,” she says.

Kostenuk and fellow Ayrton cofounder Brandy Kinkead (who serves as the company’s chief technical officer) were originally trying to bring hydrogen generators to market to fill gaps in the electrical grid. “We were looking for fuel cells and hydrogen storage. Fuel cells were easy to find, but we couldn’t find a hydrogen storage method or medium that would be safe and easy to transport to fuel our vision of what we were trying to do with hydrogen generators,” Kostenuk says. During the search, they came across LOHC technology but weren’t satisfied with the trade-offs demanded by existing liquid hydrogen carriers. “We had the idea that we could do it better,” she says. The duo pivoted, adjusting their focus from hydrogen generators to hydrogen storage solutions.

“Everybody gets excited about hydrogen production and hydrogen end use, but they forget that you have to store and manage the hydrogen,” Kostenuk says. Incompatibility with current storage and distribution has been a barrier to adoption, she says. “We’re really excited about being able to reuse existing infrastructure that’s in place all over the world.” Ayrton’s hydrogenated liquid has fuel-cell-grade (99.999 percent) hydrogen purity, so there’s no advantage in using pure liquid hydrogen with its need for subzero temperatures, according to the company.

The main challenge the company faces is the set of issues that come along with any technology scaling up from pilot-stage production to commercial manufacturing, says Kostenuk. “A crucial part of that is aligning ourselves with the right manufacturing partners along the way,” she notes.

Asked about how Ayrton is dealing with some other challenges common to LOHCs, Kostenuk says Ayrton has managed to sidestep them. “We stayed away from materials that are expensive and hard to procure, which will help us avoid any supply chain issues,” she says. By performing the reactions at such low temperatures, Ayrton can get its carrier fluid to withstand 1,000 hydrogenation-dehydrogenation cycles before it no longer holds enough hydrogen to be useful. Conventional LOHCs are limited to a couple of hundred cycles before the high temperatures required for bonding and releasing the hydrogen breaks down the fluid and diminishes its storage capacity, Kostenuk says.

Breakthrough in Hydrogen Storage Technology

In acknowledgement of what Ayrton’s nontoxic, oil-based carrier fluid could mean for the energy and transportation sectors, the U.S. National Renewable Energy Lab (NREL) at its annual Industry Growth Forum in May named Ayrton an “outstanding early-stage venture.” A selection committee of more than 180 climate tech and cleantech investors and industry experts chose Ayrton from a pool of more than 200 initial applicants, says Katie Richardson, group manager of NREL’s Innovation and Entrepreneurship Center, which organized the forum. The committee based its decision on the company’s innovation, market positioning, business model, team, next steps for funding, technology, capital use, and quality of pitch presentation. “Judges described Ayrton’s approach as a critical technology for the deployment of hydrogen at large scale,” Richardson says.

As a next step toward enabling hydrogen to push gasoline and diesel aside, “we’re talking with hydrogen producers who are right now offering their customers cryogenic and compressed hydrogen,” says Kostenuk. “If they offered LOHC, it would enable them to deliver across longer distances, in larger volumes, in a multimodal way.” The company is also talking to some industrial site owners who could use the hydrogenated LOHC for buffer storage to hold onto some of the energy they’re getting from clean, intermittent sources like solar and wind. Another natural fit, she says, is energy service providers that are looking for a reliable method of seasonal storage beyond what batteries can offer. The goal is to eventually scale up enough to become the go-to alternative (or perhaps the standard) fuel for cars, trucks, trains, and ships.




as

Video Friday: Trick or Treat, Atlas



Video Friday is your weekly selection of awesome robotics videos, collected by your friends at IEEE Spectrum robotics. We also post a weekly calendar of upcoming robotics events for the next few months. Please send us your events for inclusion.

Humanoids 2024: 22–24 November 2024, NANCY, FRANCE

Enjoy today’s videos!

We’re hoping to get more on this from Boston Dynamics, but if you haven’t seen it yet, here’s electric Atlas doing something productive (and autonomous!).

And why not do it in a hot dog costume for Halloween, too?

[ Boston Dynamics ]

Ooh, this is exciting! Aldebaran is getting ready to release a seventh generation of NAO!

[ Aldebaran ]

Okay I found this actually somewhat scary, but Happy Halloween from ANYbotics!

[ ANYbotics ]

Happy Halloween from the Clearpath!

[ Clearpath Robotics Inc. ]

Another genuinely freaky Happy Halloween, from Boston Dynamics!

[ Boston Dynamics ]

This “urban opera” by Compagnie La Machine took place last weekend in Toulouse, featuring some truly enormous fantastical robots.

[ Compagnie La Machine ]

Thanks, Thomas!

Impressive dismount from Deep Robotics’ DR01.

[ Deep Robotics ]

Cobot juggling from Daniel Simu.

[ Daniel Simu ]

Adaptive-morphology multirotors exhibit superior versatility and task-specific performance compared to traditional multirotors owing to their functional morphological adaptability. However, a notable challenge lies in the contrasting requirements of locking each morphology for flight controllability and efficiency while permitting low-energy reconfiguration. A novel design approach is proposed for reconfigurable multirotors utilizing soft multistable composite laminate airframes.

[ Environmental Robotics Lab paper ]

This is a pitching demonstration of new Torobo. New Torobo is lighter than the older version, enabling faster motion such as throwing a ball. The new model will be available in Japan in March 2025 and overseas from October 2025 onward.

[ Tokyo Robotics ]

I’m not sure what makes this “the world’s best robotic hand for manipulation research,” but it seems solid enough.

[ Robot Era ]

And now, picking a micro cat.

[ RoCogMan Lab ]

When Arvato’s Louisville, Ky. staff wanted a robotics system that could unload freight with greater speed and safety, Boston Dynamics’ Stretch robot stood out. Stretch is a first of its kind mobile robot designed specifically to unload boxes from trailers and shipping containers, freeing up employees to focus on more meaningful tasks in the warehouse. Arvato acquired its first Stretch system this year and the robot’s impact was immediate.

[ Boston Dynamics ]

NASA’s Perseverance Mars rover used its Mastcam-Z camera to capture the silhouette of Phobos, one of the two Martian moons, as it passed in front of the Sun on Sept. 30, 2024, the 1,285th Martian day, or sol, of the mission.

[ NASA ]

Students from Howard University, Moorehouse College, and Berea College joined University of Michigan robotics students in online Robotics 102 courses for the fall ‘23 and winter ‘24 semesters. The class is part of the distributed teaching collaborative, a co-teaching initiative started in 2020 aimed at providing cutting edge robotics courses for students who would normally not have access to at their current university.

[ University of Michigan Robotics ]

Discover the groundbreaking projects and cutting-edge technology at the Robotics and Automation Summer School (RASS) hosted by Los Alamos National Laboratory. In this exclusive behind-the-scenes video, students from top universities work on advanced robotics in disciplines such as AI, automation, machine learning, and autonomous systems.

[ Los Alamos National Laboratory ]

This week’s Carnegie Mellon University Robotics Institute Seminar is from Princeton University’s Anirudha Majumdar, on “Robots That Know When They Don’t Know.”

Foundation models from machine learning have enabled rapid advances in perception, planning, and natural language understanding for robots. However, current systems lack any rigorous assurances when required to generalize to novel scenarios. For example, perception systems can fail to identify or localize unfamiliar objects, and large language model (LLM)-based planners can hallucinate outputs that lead to unsafe outcomes when executed by robots. How can we rigorously quantify the uncertainty of machine learning components such that robots know when they don’t know and can act accordingly?

[ Carnegie Mellon University Robotics Institute ]




as

Katherine Bennell-Pegg: Australia’s First Astronaut Makes History



This is a sponsored article brought to you by BESydney.

In July 2024, Sydney woman Katherine Bennell-Pegg made history as the first astronaut to graduate under the Australian flag and the first female astronaut in Australia. Her journey, marked by determination and discipline, showcases Australia’s growing prominence in space exploration and research.

From her academic achievements at the University of Sydney (USYD) to her rigorous training at the European Space Agency (ESA), Bennell-Pegg’s success has paved a path forward for aspiring space and aerospace professionals in Australia and globally.

A journey to the stars begins in Sydney

Katherine Bennell-Pegg was born in Sydney, New South Wales, and grew up in the Northern Beaches area. Her fascination with space began at an early age.

“I always dreamed of being an astronaut,” Bennell-Pegg shared in her “Insights from an Australian Astronaut” Space Forum Speech in July 2024. “When I was young, it was for the adventure, but after more than a decade working in space, it’s now because I know the role it plays in tackling real-world problems and developing new knowledge that can benefit our society, environment and science.”

Sydney: A Hub for Space Innovation


Sydney, the vibrant heart of the state of New South Wales (NSW), stands at the forefront of aerospace innovation in Australia. With its world-class research facilities, leading academic institutions and strategic geographic positioning, Sydney is not only Australia’s gateway to the Indo-Pacific but also a burgeoning hub for international aerospace endeavours.

NSW is home to more than 40 per cent of Australia’s aerospace industry. Substantial investments from both the state and federal governments support this concentration of capabilities, underpinning Sydney’s role as a leader in aerospace. From advanced manufacturing and cybersecurity to quantum technologies and space exploration, this progressive city is truly thriving.

Sydney’s appeal as a desirable location for hosting aerospace conferences and business events is bolstered by its comprehensive infrastructure, vibrant startup community and strategic position as a transport hub.

Sydney’s track record of successfully hosting events highlights the city’s ability to organise impactful international gatherings, including:

  • Australian Space Summit
  • New Horizons Summit
  • CubeSatPlus2024 - NEW SPACE: Unbounded Skies

Sydney will also host the 76th International Astronautical Congress from 29 September to 3 October 2025 and the 34th Congress of the International Council for the Aeronautical Sciences (ICAS) to be held 13 to 17 September 2026. Both will take place at ICC Sydney, further solidifying Sydney’s status as a central hub for aerospace events.

Would you like to know more about Sydney’s credentials in Aerospace? Download our Aerospace eBook or visit besydney.com.au

Sydney proved to be the ideal location for Bennell-Pegg’s journey to begin. She studied at the University of Sydney, where she earned a Bachelor of Engineering (Honors) in Aeronautical Engineering (Space) and a Bachelor of Science (Advanced) in Physics.

Sydney’s universities are at the forefront of aerospace education and research. Institutions such as the University of Sydney (USYD), the University of New South Wales (UNSW Sydney) and the University of Technology Sydney (UTS) attract students from around the world. UNSW Sydney, with its School of Aerospace, Mechanical, and Mechatronic Engineering, is renowned for its innovative research in space technology and satellite systems, while UTS provides cutting-edge programs in aerospace engineering and physics, emphasizing practical applications and industry partnerships. USYD excels in aeronautical engineering and space science, supported by advanced facilities and strong ties to major aerospace organisations. Together, these universities offer comprehensive programs that integrate theoretical knowledge with hands-on experience, preparing students for dynamic careers in the rapidly evolving aerospace and space sectors.

Having excelled in her studies at USYD, Bennell-Pegg was awarded the Charles Kuller Graduation Prize for her top-placed undergraduate thesis. Subsequently, her quest for knowledge took her to Europe, where she earned two Master of Science degrees: one in Astronautics and Space Engineering from Cranfield University and another in Space Technology from Luleå University of Technology.

Reflecting on her educational path, Bennell-Pegg stated, “With the encouragement of my parents, I researched what it would take to become an astronaut and worked hard at school, participating in everything from aerobatic flying lessons to amateur astronomy.”

Inside the rigorous training regimen of an astronaut

Bennell-Pegg’s professional career began with roles at Airbus UK, where she contributed to numerous space missions and concept studies, such as Martian in-situ resource utilisation and space debris removal. Her expertise led her to the Australian Space Agency, where she became the Director of Space Technology.

In 2021, Bennell-Pegg was invited by the European Space Agency (ESA) to undertake Basic Astronaut Training at the European Astronaut Centre in Germany. When the ESA application opened in 2021, it was the first opening in 15 years. Bennell-Pegg jumped at the opportunity to apply alongside over 22,000 others from 22 countries. She endured six knock-out rounds, including medical, psychometrics, psychology and technical tests and made it to the group of 25 who passed.

This historic invitation marked the first time an international astronaut candidate was offered training by the ESA.

“The training was demanding, but it was also an incredible opportunity to learn from some of the best minds in the field and to be part of a team that is pushing the boundaries of human exploration.”—Katherine Bennell-Pegg

Bennell-Pegg’s training regimen was intense, encompassing physical conditioning, complex simulations, and theoretical classes designed to prepare candidates for long-duration missions to the International Space Station (ISS) and beyond. This included:

  • Studies in biology, astronomy, earth sciences, meteorology, materials, medical and fluids, both in theory and in labs.
  • Radiation research – an area of expertise for Australia. This will increase as humans travel back to the Moon.
  • Medical operations: Astronauts need to be able to perform medical procedures on themselves and others.
  • Training for expeditions: This included honing team dynamics through behavioral training, ocean and winter survival training, rescue and firefighting.

Sharing her thoughts on this transformative experience, Bennell-Pegg said, “The training was demanding, but it was also an incredible opportunity to learn from some of the best minds in the field and to be part of a team that is pushing the boundaries of human exploration.”

In April 2024, Bennell-Pegg completed her training, graduating with her ESA classmates from “The Hoppers” group. Upon graduation, she became fully qualified for assignments on long-duration missions to the ISS, making her the first Australian female astronaut and the first person to train as an astronaut under the Australian flag.

“I want to use this experience to open doors for Australian scientists and engineers to utilize space for their discoveries,” Bennell-Pegg said. “I hope to inspire the pursuit of STEM careers and show all Australians that they too can reach for the stars.”

Elevating Australia’s role in space exploration

Katherine Bennell-Pegg’s achievements represent a significant milestone. Her journey from the University of Sydney to the rigorous training programs at the European Astronaut Centre showcases the potential of Australian talent in the global space community.

“Being the first astronaut trained under the Australian flag is an incredible honor,” Bennell-Pegg said. “I’m grateful for the support that has fueled me through intense training and opened doors for more Australians in space exploration. Whether I fly or not, there is much to accomplish here on Earth. I’m excited to leverage this experience to inspire future generations in STEM and elevate Australia’s presence in the global space community. Becoming an astronaut is just the beginning.”

Bennell-Pegg’s dream to become an Australian astronaut is more than just a personal triumph; it is a win for anyone who aspires to a career in space or aerospace. Sydney, with its world-class educational institutions, advanced manufacturing facilities scheduled for the Western Sydney Aerotropolis and expanding opportunities in aerospace and defence, is an ideal starting point for anyone looking to make their mark in these sectors.

Would you like to know more about Sydney’s credentials in Aerospace? Download our Aerospace eBook or visit besydney.com.au




as

Boston Dynamics’ Latest Vids Show Atlas Going Hands On



Boston Dynamics is the master of dropping amazing robot videos with no warning, and last week, we got a surprise look at the new electric Atlas going “hands on” with a practical factory task.

This video is notable because it’s the first real look we’ve had at the new Atlas doing something useful—or doing anything at all, really, as the introductory video from back in April (the first time we saw the robot) was less than a minute long. And the amount of progress that Boston Dynamics has made is immediately obvious, with the video showing a blend of autonomous perception, full body motion, and manipulation in a practical task.

We sent over some quick questions as soon as we saw the video, and we’ve got some extra detail from Scott Kuindersma, senior director of Robotics Research at Boston Dynamics.


If you haven’t seen this video yet, what kind of robotics person are you, and also here you go:

Atlas is autonomously moving engine covers between supplier containers and a mobile sequencing dolly. The robot receives as input a list of bin locations to move parts between.

Atlas uses a machine learning (ML) vision model to detect and localize the environment fixtures and individual bins [0:36]. The robot uses a specialized grasping policy and continuously estimates the state of manipulated objects to achieve the task.

There are no prescribed or teleoperated movements; all motions are generated autonomously online. The robot is able to detect and react to changes in the environment (e.g., moving fixtures) and action failures (e.g., failure to insert the cover, tripping, environment collisions [1:24]) using a combination of vision, force, and proprioceptive sensors.

Eagle-eyed viewers will have noticed that this task is very similar to what we saw hydraulic Atlas (Atlas classic?) working on just before it retired. We probably don’t need to read too much into the differences between how each robot performs that task, but it’s an interesting comparison to make.

For more details, here’s our Q&A with Kuindersma:

How many takes did this take?

Kuindersma: We ran this sequence a couple times that day, but typically we’re always filming as we continue developing and testing Atlas. Today we’re able to run that engine cover demo with high reliability, and we’re working to expand the scope and duration of tasks like these.

Is this a task that humans currently do?

Kuindersma: Yes.

What kind of world knowledge does Atlas have while doing this task?

Kuindersma: The robot has access to a CAD model of the engine cover that is used for object pose prediction from RGB images. Fixtures are represented more abstractly using a learned keypoint prediction model. The robot builds a map of the workcell at startup which is updated on the fly when changes are detected (e.g., moving fixture).

Does Atlas’s torso have a front or back in a meaningful way when it comes to how it operates?

Kuindersma: Its head/torso/pelvis/legs do have “forward” and “backward” directions, but the robot is able to rotate all of these relative to one another. The robot always knows which way is which, but sometimes the humans watching lose track.

Are the head and torso capable of unlimited rotation?

Kuindersma: Yes, many of Atlas’s joints are continuous.

How long did it take you folks to get used to the way Atlas moves?

Kuindersma: Atlas’s motions still surprise and delight the team.

OSHA recommends against squatting because it can lead to workplace injuries. How does Atlas feel about that?

Kuindersma: As might be evident by some of Atlas’s other motions, the kinds of behaviors that might be injurious for humans might be perfectly fine for robots.

Can you describe exactly what process Atlas goes through at 1:22?

Kuindersma: The engine cover gets caught on the fabric bins and triggers a learned failure detector on the robot. Right now this transitions into a general-purpose recovery controller, which results in a somewhat jarring motion (we will improve this). After recovery, the robot retries the insertion using visual feedback to estimate the state of both the part and fixture.

Were there other costume options you considered before going with the hot dog?

Kuindersma: Yes, but marketing wants to save them for next year.

How many important sensors does the hot dog costume occlude?

Kuindersma: None. The robot is using cameras in the head, proprioceptive sensors, IMU, and force sensors in the wrists and feet. We did have to cut the costume at the top so the head could still spin around.

Why are pickles always causing problems?

Kuindersma: Because pickles are pesky, polarizing pests.




as

Wireless Signals That Predict Flash Floods



Like many innovators, Hagit Messer-Yaron had a life-changing idea while doing something mundane: Talking with a colleague over a cup of coffee. The IEEE Life Fellow, who in 2006 was head of Tel Aviv University’s Porter School of Environmental Studies, was at the school’s cafeteria with a meteorological researcher. He shared his struggles with finding high-resolution weather data for his climate models, which are used to forecast and track flash floods.

Predicting floods is crucial for quickly evacuating residents in affected areas and protecting homes and businesses against damage.

Hagit Messer-Yaron


Employer Tel Aviv University

Title Professor emerita

Member grade Life Fellow

Alma mater Tel Aviv University

Her colleague “said researchers in the field had limited measurements because the equipment meteorologists used to collect weather data—including radar satellites—is expensive to purchase and maintain, especially in developing countries,” Messer-Yaron says.

Because of that, she says, high-resolution data about temperature, air quality, wind speed, and precipitation levels is often inconsistent—which is a problem when trying to produce accurate models and predictions.

An expert in signal processing and cellular communication, Messer-Yaron came up with the idea of using existing wireless communication signals to collect weather data, as communication networks are spread across the globe.

In 2006 she and her research team developed algorithms that process and analyze data collected by communication networks to monitor rainfall. They measure the difference in amplitude of the signals transmitted and received by the systems to extract data needed to predict flash floods.

The method was first demonstrated in Israel. Messer-Yaron is working to integrate it into communication networks worldwide.

For her work, she received this year’s IEEE Medal for Environmental and Safety Technologies for “contributions to sensing of the environment using wireless communication networks.” The award is sponsored by Toyota.

“Receiving an IEEE medal, which is the highest-level award you can get within the organization, was really a surprise, and I was extremely happy to [receive] it,” she says. “I was proud that IEEE was able to evaluate and see the potential in our technology for public good and to reward it.”

A passion for teaching

Growing up in Israel, Messer-Yaron was interested in art, literature, and science. When it came time to choose a career, she found it difficult to decide, she says. Ultimately, she chose electrical engineering, figuring it would be easier to enjoy art and literature as hobbies.

After completing her mandatory service in the Israel Defense Forces in 1973, she began her undergraduate studies at Tel Aviv University, where she found her passion: Signal processing.

“Electrical engineering is a very broad topic,” she says. “As an undergrad, you learn all the parts that make up electrical engineering, including applied physics and applied mathematics. I really enjoyed applied mathematics and soon discovered signal processing. I found it quite amazing how, by using algorithms, you can direct signals to extract information.”

She graduated with a bachelor’s degree in EE in 1977 and continued her education there, earning master’s and doctoral degrees in 1979 and 1984. She moved to the United States for a postdoctoral position at Yale. There she worked with IEEE Life Fellow Peter Schultheiss, who was known for his research in using sensor array systems in underwater acoustics.

Inspired by Schultheiss’s passion for teaching, Messer-Yaron decided to pursue a career in academia. She was hired by Tel Aviv University as an electrical engineering professor in 1986. She was the first woman in Israel to become a full professor in the subject.

“Being a faculty member at a public university is the best job you can do. I didn’t make a lot of money, but at the end of each day, I looked back at what I did [with pride].”

For the next 14 years, she conducted research in statistical signal processing, time-delay estimation, and sensor array processing.

Her passion for teaching took her around the world as a visiting professor at Yale, the New Jersey Institute of Technology, the Institut Polytechnique de Paris, and other schools. She collaborated with colleagues from the universities on research projects.

In 1999 she was promoted to director of Tel Aviv University’s undergraduate electrical engineering program.

A year later, she was offered an opportunity she couldn’t refuse: Serving as chief scientist for the Israeli Ministry of Science, Culture, and Sports. She took a sabbatical from teaching and for the next three years oversaw the country’s science policy.

“I believe [working in the public sector] is part of our duty as faculty members, especially in public universities, because that makes you a public intellectual,” she says. “Working for the government gave me a broad view of many things that you don’t see as a professor, even in a large university.”

When she returned to the university in 2004, Messer-Yaron was appointed as the director of the new school of environmental studies. She oversaw the allocation of research funding and spoke with researchers individually to better understand their needs. After having coffee with one researcher, she realized there was a need to develop better weather-monitoring technology.

Hagit Messer-Yaron proudly displays her IEEE Medal for Environmental and Safety Technologies at this year’s IEEE Honors Ceremony. She is accompanied by IEEE President-Elect Kathleen Kramer and IEEE President Tom Couglin.Robb Cohen

Using signal processing to monitor weather

Because the planet is warming, the risk of flash floods is steadily increasing. Warmer air holds more water—which leads to heavier-than-usual rainfall and results in more flooding, according to the U.S. Environmental Protection Agency.

Data about rainfall is typically collected by satellite radar and ground-based rain gauges. However, radar images don’t provide researchers with precise readings of what’s happening on the ground, according to an Ensia article. Rain gauges are accurate but provide data from small areas only.

So Messer-Yaron set her sights on developing technology that connects to cellular networks close to the ground to provide more accurate measurements, she says. Using existing infrastructure eliminates the need to build new weather radars and weather stations.

Communication systems automatically record the transmitted signal level and the received signal level, but rain can alter otherwise smooth wave patterns. By measuring the difference in the amplitude, meteorologists could extract the data necessary to track rainfall using the signal processing algorithms.

In 2005 Messer-Yaron and her group successfully tested the technology. The following year, their “Environmental Monitoring by Wireless Communication Networks” paper was published in Science.

The algorithm is being used in Israel in partnership with all three of the country’s major cellular service providers. Messer-Yaron acknowledges, however, that negotiating deals with cellular service companies in other countries has been difficult.

To expand the technology’s use worldwide, Messer-Yaron launched a research network through the European Cooperation in Science and Technology (COST), called an opportunistic precipitation sensing network known as OPENSENSE. The group connects researchers, meteorologists, and other experts around the world to collaborate on integrating the technology in members’ communities.

Monitoring the effects of climate change

Since developing the technology, Messer-Yaron has held a number of jobs including president of the Open University of Israel and vice chair of the country’s Council for Higher Education, which accredits academic institutions.

She is maintaining her link with Tel Aviv University today as a professor emerita.

“Being a faculty member at a public university is the best job you can do,” she says. “I didn’t make a lot of money, but at the end of each day, I looked back at what I did [with pride]. Because of the academic freedom and the autonomy I had, I was able to do many things in addition to teaching, including research.”

To continue her work in developing technology to monitor weather events, in 2016, she helped found ClimaCell, now Tomorrow.io, based in Boston. The startup aims to use wireless communication infrastructure and IoT devices to collect real-time weather data. Messer-Yaron served as its chief scientist until 2017.

She continues to update the original algorithms with her students, most recently with machine learning capabilities to extract data from physical measurements of the signal level in communication networks.

A global engineering community

When Messer-Yaron was an undergraduate student, she joined IEEE at the suggestion of one of her professors.

“I didn’t think much about the benefits of being a member until I became a graduate student,” she says. “I started attending conferences and publishing papers in IEEE journals, and the organization became my professional community.”

She is an active volunteer and a member of the IEEE Signal Processing Society. From 1994 to 2010 she served on the society’s Signal Processing Theory and Methods technical committee. She was associate editor of IEEE Signal Processing Letters and IEEE Transactions on Signal Processing. She is a member of the editorial boards of the IEEE Journal of Selected Topics in Signal Processing and IEEE Transactions on Signal Processing.

In the past 10 years, she’s been involved with other IEEE committees including the conduct review, ethics and member conduct, and global public policy bodies.

“I don’t see my career or my professional life without the IEEE,” she says




as

Azerbaijan Plans Caspian-Black Sea Energy Corridor



Azerbaijan next week will garner much of the attention of the climate tech world, and not just because it will host COP29, the United Nation’s giant annual climate change conference. The country is promoting a grand, multi-nation plan to generate renewable electricity in the Caucasus region and send it thousands of kilometers west, under the Black Sea, and into energy–hungry Europe.

The transcontinental connection would start with wind, solar, and hydropower generated in Azerbaijan and Georgia, and off-shore wind power generated in the Caspian Sea. Long-distance lines would carry up to 1.5 gigawatts of clean electricity to Anaklia, Georgia, at the east end of the Black Sea. An undersea cable would move the electricity across the Black Sea and deliver it to Constanta, Romania, where it could be distributed further into Europe.

The scheme’s proponents say this Caspian-Black Sea energy corridor will help decrease global carbon emissions, provide dependable power to Europe, modernize developing economies at Europe’s periphery, and stabilize a region shaken by war. Organizers hope to build the undersea cable within the next six years at an estimated cost of €3.5 billion (US $3.8 billion).

To accomplish this, the governments of the involved countries must quickly circumvent a series of technical, financial, and political obstacles. “It’s a huge project,” says Zviad Gachechiladze, a director at Georgian State Electrosystem, the agency that operates the country’s electrical grid, and one of the architects of the Caucasus green-energy corridor. “To put it in operation [by 2030]—that’s quite ambitious, even optimistic,” he says.

Black Sea Cable to Link Caucasus and Europe

The technical lynchpin of the plan falls on the successful construction of a high voltage direct current (HVDC) submarine cable in the Black Sea. It’s a formidable task, considering that it would stretch across nearly 1,200 kilometers of water, most of which is over 2 km deep, and, since Russia’s invasion of Ukraine, littered with floating mines. By contrast, the longest existing submarine power cable—the North Sea Link—carries 1.4 GW across 720 km between England and Norway, at depths of up to 700 meters.

As ambitious as Azerbaijan’s plans sound, longer undersea connections have been proposed. The Australia-Asia PowerLink project aims to produce 6 GW at a vast solar farm in Northern Australia and send about a third of it to Singapore via a 4,300-km undersea cable. The Morocco-U.K. Power Project would send 3.6 GW over 3,800 km from Morocco to England. A similar attempt by Desertec to send electricity from North Africa to Europe ultimately failed.

Building such cables involves laying and stitching together lengths of heavy submarine power cables from specialized ships—the expertise for which lies with just two companies in the world. In an assessment of the Black Sea project’s feasibility, the Milan-based consulting and engineering firm CESI determined that the undersea cable could indeed be built, and estimated that it could carry up to 1.5 GW—enough to supply over 2 million European households.

But to fill that pipe, countries in the Caucasus region would have to generate much more green electricity. For Georgia, that will mostly come from hydropower, which already generates over 80 percent of the nation’s electricity. “We are a hydro country. We have a lot of untapped hydro potential,” says Gachechiladze.

Azerbaijan and Georgia Plan Green Energy Corridor

Generating hydropower can also generate opposition, because of the way dams alter rivers and landscapes. “There were some cases when investors were not able to construct power plants because of opposition of locals or green parties” in Georgia, says Salome Janelidze, a board member at the Energy Training Center, a Georgian government agency that promotes and educates around the country’s energy sector.

“It was definitely a problem and it has not been totally solved,” says Janelidze. But “to me it seems it is doable,” she says. “You can procure and construct if you work closely with the local population and see them as allies rather than adversaries.”

For Azerbaijan, most of the electricity would be generated by wind and solar farms funded by foreign investment. Masdar, the renewable-energy developer of the United Arab Emirates government, has been investing heavily in wind power in the country. In June, the company broke ground on a trio of wind and solar projects with 1 GW capacity. It intends to develop up to 9 GW more in Azerbaijan by 2030. ACWA Power, a Saudi power-generation company, plans to complete a 240-MW solar plant in the Absheron and Khizi districts of Azerbaijan next year and has struck a deal with the Azerbaijani Ministry of Energy to install up to 2.5 GW of offshore and onshore wind.

CESI is currently running a second study to gauge the practicality of the full breadth of the proposed energy corridor—from the Caspian Sea to Europe—with a transmission capacity of 4 to 6 GW. But that beefier interconnection will likely remain out of reach in the near term. “By 2030, we can’t claim our region will provide 4 GW or 6 GW,” says Gachechiladze. “1.3 is realistic.”

COP29: Azerbaijan’s Renewable Energy Push

Signs of political support have surfaced. In September, Azerbaijan, Georgia, Romania, and Hungary created a joint venture, based in Romania, to shepherd the project. Those four countries in 2022 inked a memorandum of understanding with the European Union to develop the energy corridor.

The involved countries are in the process of applying for the cable to be selected as an EU “project of mutual interest,” making it an infrastructure priority for connecting the union with its neighbors. If selected, “the project could qualify for 50 percent grant financing,” says Gachechiladze. “It’s a huge budget. It will improve drastically the financial condition of the project.” The commissioner responsible for EU enlargement policy projected that the union would pay an estimated €2.3 billion ($2.5 billion) toward building the cable.

Whether next week’s COP29, held in Baku, Azerbaijan, will help move the plan forward remains to be seen. In preparation for the conference, advocates of the energy corridor have been taking international journalists on tours of the country’s energy infrastructure.

Looming over the project are the security issues threaten to thwart it. Shipping routes in the Black Sea have become less dependable and safe since Russia’s invasion of Ukraine. To the south, tensions between Armenia and Azerbaijan remain after the recent war and ethnic violence.

In order to improve relations, many advocates of the energy corridor would like to include Armenia. “The cable project is in the interests of Georgia, it’s in the interests of Armenia, it’s in the interests of Azerbaijan,” says Agha Bayramov, an energy geopolitics researcher at the University of Groningen, in the Netherlands. “It might increase the chance of them living peacefully together. Maybe they’ll say, ‘We’re responsible for European energy. Let’s put our egos aside.’”




as

Stranded Astronauts Set to Come Home After SpaceX Capsule With Extra Seats Reaches ISS

Two astronauts relinquished their seats on a four-person spacecraft so that their colleagues could return to Earth from the ISS, where they’ve been stuck since June.




as

We Can Thank Deep-Space Asteroids for Helping Start Life on Earth

Samples from the asteroid Ryugu contain key ingredients in the biological cookbook.




as

The Elegance and Awkwardness of NASA’s New Moon Suit, Designed by Axiom and Prada

A collaboration between a space company and a fashion company yields something elegant.




as

4 Astronauts Return to Earth After Being Delayed by Boeing’s Capsule Trouble and Hurricane Milton

A SpaceX capsule carrying the crew parachuted before dawn into the Gulf of Mexico just off the Florida coast.





as

Comment on Diwali Gift Ideas: Feasts For Everyone On Your Checklist by Emlakçılık Belgesi

https://images.google.co.uk/url?q=https://yukselenakademi.com/kurs/detay/emlakcilik-belgesi-seviye-5




as

Comment on Case Study: Premature Baby Overcomes Life-Threatening Complications by Blue Techker

<a href="https://bluetechker.com/" rel="nofollow ugc">Blue Techker</a> Nice post. I learn something totally new and challenging on websites




as

Comment on Keep Your Heart Safe This Chhath Puja: Expert Fasting Tips For A Healthy Celebration by Blue Techker

<a href="https://bluetechker.com/" rel="nofollow ugc">Blue Techker</a> naturally like your web site however you need to take a look at the spelling on several of your posts. A number of them are rife with spelling problems and I find it very bothersome to tell the truth on the other hand I will surely come again again.




as

Comment on Unmasking Confidence: 5 Reasons Why Skin Health Can Impact Your Emotional And Mental Health by airhostess

Thank you for the auspicious writeup It in fact was a amusement account it Look advanced to more added agreeable from you By the way how could we communicate




as

Comment on Unmasking Confidence: 5 Reasons Why Skin Health Can Impact Your Emotional And Mental Health by eco flow

helloI really like your writing so a lot share we keep up a correspondence extra approximately your post on AOL I need an expert in this house to unravel my problem May be that is you Taking a look ahead to see you





as

Microsoft reports big profits amid massive AI investments

Xbox hardware sales dropped 29 percent, but that barely made a dent.








as

The Arctic League kicked off its 2024 Christmas season today




as

Photos of bus crash in India misrepresented as 'road accident in Bangladesh'




as

In a Landmark Study, Scientists Discover Just How Much Earth's Temperature Has Changed Over Nearly 500 Million Years

Researchers show the average surface temperature on our planet has shifted between 51.8 to 96.8 degrees Fahrenheit




as

NASA Launches Europa Clipper to Search for Signs of Life on Jupiter’s Moon

The huge spacecraft is headed toward the icy moon Europa, where it will use an array of instruments to survey for geologic activity, magnetism and more




as

Even as A.I. Technology Races Ahead, the Prehistoric Science of Wildlife Tracking Is Making a Comeback

Humans perfected how to identify wild animals over millennia, and now biologists are rediscovering the exceptional worth of the tracks and marks left behind




as

This Parasitic Fungus Turns Flies Into Zombie Insects

The pathogen takes over the brains of its hosts and controls them for its own sinister ends










as

The New SKIMS Mesh Foundations Collection and More Pieces in Stock from Kim Kardashian's Shapewear Line

Shop now to sculpt your midsection comfortably with soft, breathable fabric.

[[ This is a content summary only. Visit my website for full links, other content, and more! ]]




as

Maya Rudolph Has the Best Reaction to Kamala Harris' VP Nomination

The comedian is more than ready to reprise her Emmy-nominated 'SNL' guest role.

[[ This is a content summary only. Visit my website for full links, other content, and more! ]]




as

Justin Hartley's Ex-Wife and Daughter Support Him As Chrishell Stause Split Plays Out on 'Selling Sunset'

The actor is getting some support from his ex-wife, Lindsay Hartley, and daughter, Bella.

[[ This is a content summary only. Visit my website for full links, other content, and more! ]]




as

Daniel Khalife pleads guilty to escaping Wandsworth prison last year

The former soldier Daniel Khalife has changed his plea to guilty and admitted escaping from Wandsworth prison.




as

What is Justin Welby’s legacy as Archbishop of Canterbury?

From women bishops to same-sex marriage, Justin Welby spent his eleven years as head of the Church of England brokering compromises between deeply divided factions in the Anglican church. 




as

‘Justin Welby was absolutely right to resign’ says Dean of Chapel at King’s College Cambridge

We spoke to Reverend Doctor Stephen Cherry, Dean of Chapel at King's College, Cambridge.




as

‘Fashion shows have a purpose,’ says British Vogue editor Chioma Nnadi

The huge four-storey walls of the Lightroom in London are showing ‘Vogue: Inventing the Runway'.




as

Why Fake College Diplomas Are the Latest Comedy Trend in Graduation Gifts

We’ve all been there. You’ve gone to the store or scrolled through countless online sites, desperately searching for a graduation gift that’s unique, funny, and something your friend won’t toss in a drawer and forget about. Well, it turns out there’s a new trend catching fire, and it’s a fake college diploma. Yes, you heard […]

The post Why Fake College Diplomas Are the Latest Comedy Trend in Graduation Gifts appeared first on Chart Attack.




as

How Signal Decoders Are Used in Radio Broadcasting

Signal decoders are vital components in radio broadcasting. Without them, the transmission and reception of clear audio or data would be impossible. They take what is essentially noise and turn it into coherent, useful information. Having worked with radio broadcasting systems for some time, I’ve seen firsthand how essential decoders are to maintaining communication networks. […]

The post How Signal Decoders Are Used in Radio Broadcasting appeared first on Chart Attack.




as

Looking for Low-Maintenance Grasses? Discover the Best Choices for Busy Gardeners

Imagine walking into your yard with a coffee in one hand, no lawn mower in sight, and the kind of lush greenery that looks effortlessly perfect. No frantic trimming or sweating under the summer sun. Sounds too good to be true? It’s possible when you pick the right low-maintenance grass. Let’s walk through some game-changing […]

The post Looking for Low-Maintenance Grasses? Discover the Best Choices for Busy Gardeners appeared first on Chart Attack.




as

Robotic Precision in Manufacturing: Achieving High Accuracy for Complex Tasks

From assembling delicate electronics to constructing safety-critical aerospace components, the margin for error has shrunk to almost nothing. To meet these rigorous standards, the manufacturing industry increasingly relies on robotic precision. Modern robotics, equipped with advanced sensors, grippers, and AI, allow manufacturers to complete intricate tasks with extraordinary accuracy. Technological Innovations Driving Robotic Precision Today’s […]

The post Robotic Precision in Manufacturing: Achieving High Accuracy for Complex Tasks appeared first on Chart Attack.




as

NASA completes spacecraft for TRACERS mission to investigate hazardous solar storms

Solar storms have the ability to harm astronauts and force massive blackouts




as

After 31 cargo missions, NASA finds Dragon still has some new tricks

Typically, most of the ISS propulsion comes from the Russian segment of the space station.




as

Nearly three years since launch, Webb is a hit among astronomers

Demand for observing time on Webb outpaces supply by a factor of nine.