ine The Academic Discipline of Information Technology: A Systematic Literature Review By Published On :: 2023-06-12 Aim/Purpose. This paper aims to answer the research question, “What are the development phases of the academic discipline of information technology in the United States?” This is important to understand the reason for the growing talent gap in the information technology (IT) industry by reviewing the evolution of information technology across time, how the discipline was formed, evolved, and gained independence from other information and computing disciplines. Background. The COVID-19 pandemic has increased the shortage of IT professionals in the workplace. The root reason for this talent shortage requires understanding from both industry and academic perspectives in order to implement effective initiatives to prepare, recruit, and retain diverse IT professionals at an early stage. Methodology. This paper used a systematic literature review methodology and retrieved 143 primary studies from the ACM and IEEE Xplore digital libraries to review the development phases of the IT discipline as a contributing factor in understanding why, when, and how the population of professionals in IT and other relevant computing disciplines has changed and continues to fluctuate. Thematic analysis was applied to the abstracts of the primary studies, which spanned the period of 1982 to 2021. Contribution. This paper contributes to the understanding of the discipline of IT in the US and contributes foundations to researchers and educators who are working on strategies to fill the talent gap. Findings. Based on the thematic analysis in this paper, the academic discipline of IT has evolved over four phases across a timeline from 1982 to 2021. These phases were: Phase 1 (1982-1991) – Advent of Information Technology; Phase 2 (1992-2001) – Industry IT & DevOps; Phase 3 (2002-2011) – Information Technology and Management in Evolving Industry, Academia, and Research Areas; and Phase 4 (2011-2021) – Information Technology Research & Education. Recommendations for Practitioners. IT occupies an independent disciplinary space from computer science, computer engineering, and information systems. The paper suggests that practitioners seeking to fill the talent gap in IT invest in enabling its academic programs. Recommendations for Researchers. The depth of the IT disciplinary space and its continued evolution over time is ready for exploration. Continued research in this area may yield a better understanding of its role in society, the skills needed to succeed, and how to build programs to empower students with these skills. Impact on Society. Examining the discipline of IT and understanding its independence and interrelated connection with other computing disciplines will help address the shortfalls in academia across the nation by identifying the distinction between each discipline and creating comprehensive programs, degrees, and curricula suitable for various students and professionals across all educational levels. Future Research. Future research will integrate papers’ introductions and conclusions in addition to abstracts, increase the number of databases and reviewers, as well as incorporate papers that focus on other information and computing disciplines such as computer science and information systems to explore the possibility that IT as a discipline was initially practiced in an existing information or computing discipline before it gained independence. Full Article
ine Applicability of Process Maps for Simulation Modeling in Business Process Change Projects By Published On :: Full Article
ine Business Intelligence Systems in the Holistic Infrastructure Development Supporting Decision Making in Organisations By Published On :: Full Article
ine Predicting Internet-based Online Community Size and Time to Peak Membership Using the Bass Model of New Product Growth By Published On :: Full Article
ine An Improved Assessment of Personality Traits in Software Engineering By Published On :: Full Article
ine Approach to Building and Implementing Business Intelligence Systems By Published On :: Full Article
ine A Methodology for Increasing Business Process Maturity in Public Sector By Published On :: Full Article
ine Adaptive Innovation and a MOODLE-based VLE to Support a Fully Online MSc Business Information Technology (BIT) at the University of East London (UEL) By Published On :: Full Article
ine Factors Determining the Balance between Online and Face-to-Face Teaching: An Analysis using Actor-Network Theory By Published On :: Full Article
ine Secure Software Engineering: A New Teaching Perspective Based on the SWEBOK By Published On :: Full Article
ine The Effect of Static Visual Instruction on Students’ Online Learning: A Pilot Study By Published On :: Full Article
ine Using Research Techniques to Teach Management of IT Concepts to Postgraduate Business Students By Published On :: Full Article
ine Collective Creativity and Brokerage Functions in Heavily Cross-Disciplined Innovation Processes By Published On :: Full Article
ine Critical Success Factors for Implementing Business Intelligence Systems in Small and Medium Enterprises on the Example of Upper Silesia, Poland By Published On :: Full Article
ine Determinants of Intent to Continue Using Online Learning: A Tale of Two Universities By Published On :: Full Article
ine The Impact of Business Intelligence on Healthcare Delivery in the USA By Published On :: Full Article
ine Towards A Methodology for the Pre-Stage of Implementing a Reengineering Project By Published On :: 2016-09-20 In order to reduce cost, improve functionality and gain competitive advantages, organizations resort to reengineering projects by developing and making changes to organizational processes. The absence of a unified methodology and appropriate analytic approaches prior to the implementation of reengineering projects has made authorities not to adopt correct decision making approaches in this respect. The objective of this paper is to propose a methodology that has to be adopted prior to the implementation of reengineering projects. The statistical population here consists of 25 expert analysts with MA and PhD degrees who are subject to answering a questionnaire. In this proposed methodology the Multi Criterion Decision Making model is applied to allow the analysts to select appropriate models for better and accurate implementation through the least failure coefficient. The Neyriz White Cement Corporation is selected as the subject and the obtained results are compared with the results obtained from similar implemented projects. Full Article
ine To Read or Not to Read: Modeling Online Newspaper Reading Satisfaction and Its Impact on Revisit Intention and Word-Of-Mouth By Published On :: 2018-10-09 Aim/Purpose: In this research, we examined the influence of the information system (IS) quality dimensions proposed by Wixom and Todd on reading satisfaction of online newspaper readers in Bangladesh, especially the readers’ intention to revisit and recommendations through electronic word-of-mouth (eWOM). Background: We identified the top 50 most visited websites, of which 13 were online newspapers, although their ranking among Bangladesh online newspapers varies from month to month. The literature illustrates that, despite the wide availability of online news portals and the fluctuations in frequency of visits, little is known about the factors that affect the satisfaction, word-of-mouth, and frequency of visits of readers. An understanding of reader satisfaction will help to gain richer insights into the phenomenon of readers’ intention to revisit and recommendation by eWOM. Stakeholders of online newspapers can then focus on those factors to increase visits to their websites, which will help them attract online advertisements from different organisations. Methodology: Data were collected using a structured questionnaire, from 217 people who responded to the survey. We used SmartPLS 3 to analyze the data collected, as it is based on second-generation analysis, which in turn is based on structural equation modeling (SEM). Contribution: This research explores the impacts of technological dimensions on readers’ satisfaction, as most of the previous research has focused on cultural or social dimensions. Findings: The results supported all of the hypothesized relationships between technological dimensions and reader satisfaction with online newspapers, except for one. The first, information, was predicted with accuracy and completeness, while the second object-based belief, system quality, was predicted by its accessibility, flexibility, reliability, and timeliness. Overall, quality factors influencing readers’ satisfaction were shown to lead to word-of-mouth revisit intentions. Our proposed model was empirically tested and has contributed to a nascent body of knowledge about readers’ revisit intentions and eWOM recommendations regarding online newspapers. It was also shown that strong satisfaction leads to higher revisit intention and eWOM. Recommendations for Practitioners: To keep the users satisfied, online newspapers need to focus on improving information quality (IQ) and system quality (SQ). If they do this well, they will be rewarded with higher revisit intention and recommendations by eWOM. Recommendation for Researchers: This study extends Oh’s customer loyalty model by integrating the Wixom-Todd model. This study reinforces an alternative rationale of the construct satisfaction. Future Research: We ignored negative stimulus like technostress, which can have an impact on satisfaction. In future, we will test the relationship between technostress and its impact on online newspaper reading. Full Article
ine Multilevel Authentication System for Stemming Crime in Online Banking By Published On :: 2018-05-28 Aim/Purpose: The wide use of online banking and technological advancement has attracted the interest of malicious and criminal users with a more sophisticated form of attacks. Background: Therefore, banks need to adapt their security systems to effectively stem threats posed by imposters and hackers and to also provide higher security standards that assure customers of a secured environment to perform their financial transactions. Methodology : The use of authentication techniques that include the mutual secure socket layer authentication embedded with some specific features. Contribution: An approach was made through this paper towards providing a more reliable and complete solution for implementing multi-level user authentication in a banking environment. Findings: The use of soft token as the final stage of authentication provides ease of management with no additional hardware requirement. Recommendations for Practitioners : This work is an approach made towards providing a more reliable and complete solution for implementing multi-level user authentication in a banking environment to stem cybercrime. Recommendation for Researchers: With this approach, a reliable system of authentication is being suggested to stem the growing rate of hacking activities in the information technology sector. Impact on Society :This work if adopted will give the entire populace confidence in carrying out online banking without fear of any compromise. Future Research: This work can be adopted to model a real-life scenario. Full Article
ine Millennial Experience with Online Food Home Delivery: A Lesson from Indonesia By Published On :: 2019-09-19 Aim/Purpose: To examine millennial satisfaction towards online food delivery services, including e-service quality, food quality, and perceived value as the determinants and behavioral intention as the consequence. Background: Among the generational cohorts, millennials are a demanding target group for many retailers, including restaurants. Despite many studies examining millennial behavior in the restaurant context, almost no research on millennial attitudes and behavior in the context of online food home delivery service can be found. Methodology: For this research, 332 millennials completed a self-administered survey in Indonesia. To assess the associations between satisfaction and its determinants and consequences, this study employs Partial Least Square modeling. Contribution: This research extends existing knowledge of millennial satisfaction toward online food delivery service by highlighting that food quality, e-service quality and perceived value are the main determinants of satisfaction for online food purchasing among millennials. Further, this study offers support for the spillover theory in the online food home delivery service from millennial perspective. Findings: This study uncovers the important direct dual influences of e-service quality and food quality on millennial satisfaction with online food delivery services. Further, this study notes that e-service and food quality also have an indirect influence on satisfaction via perceived value. Moreover, satisfied millennial customers are more likely to re-purchase, recommend to others, and re-purchase at an increased price. Recommendations for Practitioners: For small and medium restaurants, it is suggested that they need to focus solely on their core business of providing food. If they want to offer an e-service, they should develop strategic cooperation with one or more online service providers. Recommendation for Researchers: Millennials tend to repurchase, recommend, and be willing to pay more in the future extends the existing models that look at the associations among quality, satisfaction and behavioral intention. Thus, in online restaurant purchasing services, both e-service quality and food quality should be included in the future research models. Impact on Society: This study could help restaurant industries to increase their business performance and, indirectly, impact on society as a whole by providing high quality food, employment opportunities, and tax revenues. Future Research: Future researchers can reassess the model in different countries and/or with other generation cohorts as well as including other variables such as trust, image, involvement, as well as socio-demographic factors. Full Article
ine The Role of Social Network in Family Business Diversification: Evidence from South Eastern Nigeria By Published On :: 2019-06-10 Aim/Purpose: This study seeks to investigate if participation in business association’s programs through the traditional and new media platforms influences family businesses in South Eastern Nigeria to diversify into similar or different businesses. Background: Before the advances in information and communication technology, businesses were carried on via the traditional media. The application of these advances has changed the way business communications and transactions are conducted globally in both family and non-family businesses. Businesses are adapting to today’s turbulent environment by opening similar or different businesses in the same or different locations that are hinged on the traditional and new media platforms. Nigerians are largely involved in social network through the traditional (face-to-face contact) and new media (e.g., Facebook, WhatsApp, Twitter, YouTube and Instagram). Moreover, in spite of the commonplaceness of family businesses in Nigeria, these businesses still experience weak diversification, bankruptcy and loss of socio-emotional wealth. Consequent upon the foregoing, this paper specifically investigates if involvement in social network via the traditional media (i.e., participation in business association’s meetings, workshops, seminars) and the new media (i.e., participation in the business association’s interactive sessions on trending business issues through the association’s online social platform like WhatsApp, Twitter), influence family businesses in South Eastern Nigeria to diversify into similar or different businesses. Methodology: The study adopted a qualitative methodology. The qualitative data were generated via interview involving 30 purposively selected businesses from South Eastern Nigeria. This comprises 15 family businesses each that have respectively adopted related and unrelated diversification strategies. Two respondents (i.e., the business owner and a top level manager) each were drawn from the selected businesses. In all, 60 respondents were interviewed. Since the unit of analysis is the family business, the interview transcriptions from all the respondents were subjected to thematic content analysis on the basis of the family businesses. Contribution: Active involvement and participation in all the meetings, discussions, workshops and seminars of the social network via the traditional and new media platforms facilitates the adoption of related or unrelated diversification in family businesses. Moreover, the adoption of similar social network platforms like WhatsApp and Twitter in all the relationships among and between employees and managers, and the transactions of the businesses is one of the key factors for achieving successful related or unrelated diversification in family businesses. Findings: In spite of the risky nature of the business environment, the adoption of related diversification strategies is significantly influenced by resources such as business consultancy services garnered through the traditional and new media platforms of the social network. Also, family businesses that are actively involved in a social network where the actors interact through the traditional and new media are influenced by the resources acquired to consider adopting unrelated diversification. These resources include: better understanding of the nature of business challenges, environments and experiences; and different lines of businesses. Thus, the traditional and new media platforms are complementary in their roles. Recommendations for Practitioners: Family business owner-managers could use the findings to develop related or unrelated strategies for diversifying into existing or new markets. This can be through the localization of manufacturing plant, improvement of product packaging, sitting of sales outlet closer to the consumers, introduction of lower prices for products/services, introduction of new and better ways of service delivery, or development of more compelling promotion strategies. Recommendation for Researchers: As a veritable guide, this study could guide future researchers in the formulation of their objectives, selection of instrument for data collection and respondents, and adoption of method of data analysis. Impact on Society: Successful diversification suggests the establishment of new or more businesses. Consequently, these new or more family businesses are expected to translate to more employment opportunities and by extension reduction in unemployment and poverty rates in the society. Future Research: Further studies should be carried out to enhance the development of family businesses, contribute to the existing literature and ensure the generalization of the findings. Full Article
ine Effects of Advocacy Banners after Abandoning Products in Online Shopping Carts By Published On :: 2019-05-02 Aim/Purpose: This study empirically analyzed and examined the effectiveness of the online advocacy banners on customers’ reactions to make replacements with the similar products in their shopping carts. Background: When a product in a shopping cart is removed, it might be put back into the cart again during the same purchase or it may be bought in the future. Otherwise, it might be abandoned and replaced with a similar item based on the customer’s enquiry list or on the recommendation of banners. There is a lack of understanding of this phenomenon in the existing literature, pointing to the need for this study. Methodology: With a database from a Taiwanese e-retailer, data were the tracks of empirical webpage clickstreams. The used data for analyses were particularly that the products were purchased again or replaced with the similar ones upon the advocacy banners being shown when they were removed from customers’ shopping carts. Few pre-defined Apriori rules as well as similarity algorithm, Jaccard index, were applied to derive the effectiveness. Contribution: This study addressed a measurement challenge by leveraging the information from clickstream data – particularly clickstream data behavior. These data are most useful to observe the real-time behavior of consumers on websites and also are applied to studying click-through behavior, but not click-through rates, for web banners. The study develops a new methodology to aid advertisers in evaluating the effectiveness of their banner campaign. Findings: The recommending/advocating titles of “you probably are interested” and “the most viewed” are not significantly effective on saving back customers’ removed products or repurchasing similar items. For the banners entitled “most buy”, “the most viewed” might only show popularity of the items, but is not enough to convince them to buy. At the current stage on the host website, customers may either not trust in the host e-retailer or in such mechanism. Additionally, the advocating/recommending banners only are effective on the same customer visits and their effects fade over time. As time passes, customers’ impressions of these banners may become vague. Recommendations for Practitioners: One managerial implication is more effective adoption of advocacy/recommendation banners on e-retailing websites. Another managerial implication is the evaluation of the advocacy/recommendation banners. By using a data mining technique to find the association between removed products and restored ones in e-shoppers’ shopping carts, the approach and findings of this study, which are important for e-retailing marketers, reflect the connection between the usage of banners and the personalized purchase changes in an individual customer’s shopping cart. Recommendation for Researchers: This study addressed a new measurement which challenges to leverage the information from clickstream data instead of click-through rates – particularly retailing webpages browsing behavior. These data are most useful to observe the real-time behavior of consumers on websites and also are applied to studying click-through behavior. Impact on Society: Personalization has become an important technique that allows businesses to improve both sales and service relationships with their online customers. This personalization gives e-marketers the ability to deliver real effectiveness in the use of banners. Future Research: The effectiveness is time- and case-sensible. Business practitioners and academic researchers are encouraged to apply the mining methodology to longevity studies, specific marketing campaigns of advertising and personal recommendations, and any further recommendation algorithms. Full Article
ine Prosumers’ Engagement in Business Process Innovation – The Case of Poland and the UK By Published On :: 2019-04-26 Aim/Purpose: The main purpose of this paper is to identify prosumers’ engagement in business process innovation through knowledge sharing. Background: In the increasingly competitive knowledge-based economy, companies must seek innovative methods of doing business, quickly react to consumer demand, and provide superior value to consumers. Simultaneously, contemporary consumers, named “prosumers”, want to be active co-creators of value and satisfy their consumption needs through collaboration with companies for co-creation, co-design, co-production, co-promotion, co-pricing, co-distribution, co-consumption, and co-maintenance. Consequently, consumer involvement in development and improvement of products and business process must be widely analyzed in various contexts. Methodology: The research is a questionnaire survey study of 388 prosumers in Poland and 76 in the UK. Contribution The contribution of this research is twofold. First, it identifies how prosumers can be engaged in business processes through knowledge sharing. Second, it investigates the differences between Poland- and UK-based prosumers in engagement in business process. Findings: The study found that prosumers are engaged in knowledge sharing at each stage of the business process innovation framework. However, there are differences in the types of processes that draw on prosumers’ engagement. Prosumers in Poland are found to engage mostly in the business process of developing and managing products, whereas prosumers in the UK engage mostly in the business process of managing customer services. Recommendations for Practitioners: This study provides practitioners with guidelines for engaging prosumers and their knowledge sharing to improve process innovation. Companies gain new insight from these findings about prosumers’ knowledge sharing for process innovation, which may help them make better decisions about which projects and activities they can engage with prosumers for future knowledge sharing and creating prospective innovations. Recommendations for Researchers: Researchers may use this methodology and do similar analysis with different samples in Poland, the UK, and other countries, for many additional comparisons between different groups and countries. Moreover, a different methodology may be used for identifying prosumers’ engagement and knowledge sharing for processes improvement. Future Research: This study examined prosumers’ engagement from the prosumers’ standpoint. Therefore prosumers’ engagement from the company perspective should be explored in future research. Full Article
ine A New Typology Design of Performance Metrics to Measure Errors in Machine Learning Regression Algorithms By Published On :: 2019-01-24 Aim/Purpose: The aim of this study was to analyze various performance metrics and approaches to their classification. The main goal of the study was to develop a new typology that will help to advance knowledge of metrics and facilitate their use in machine learning regression algorithms Background: Performance metrics (error measures) are vital components of the evaluation frameworks in various fields. A performance metric can be defined as a logical and mathematical construct designed to measure how close are the actual results from what has been expected or predicted. A vast variety of performance metrics have been described in academic literature. The most commonly mentioned metrics in research studies are Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), etc. Knowledge about metrics properties needs to be systematized to simplify the design and use of the metrics. Methodology: A qualitative study was conducted to achieve the objectives of identifying related peer-reviewed research studies, literature reviews, critical thinking and inductive reasoning. Contribution: The main contribution of this paper is in ordering knowledge of performance metrics and enhancing understanding of their structure and properties by proposing a new typology, generic primary metrics mathematical formula and a visualization chart Findings: Based on the analysis of the structure of numerous performance metrics, we proposed a framework of metrics which includes four (4) categories: primary metrics, extended metrics, composite metrics, and hybrid sets of metrics. The paper identified three (3) key components (dimensions) that determine the structure and properties of primary metrics: method of determining point distance, method of normalization, method of aggregation of point distances over a data set. For each component, implementation options have been identified. The suggested new typology has been shown to cover a total of over 40 commonly used primary metrics Recommendations for Practitioners: Presented findings can be used to facilitate teaching performance metrics to university students and expedite metrics selection and implementation processes for practitioners Recommendation for Researchers: By using the proposed typology, researchers can streamline development of new metrics with predetermined properties Impact on Society: The outcomes of this study could be used for improving evaluation results in machine learning regression, forecasting and prognostics with direct or indirect positive impacts on innovation and productivity in a societal sense Future Research: Future research is needed to examine the properties of the extended metrics, composite metrics, and hybrid sets of metrics. Empirical study of the metrics is needed using R Studio or Azure Machine Learning Studio, to find associations between the properties of primary metrics and their “numerical” behavior in a wide spectrum of data characteristics and business or research requirements Full Article
ine Critical Success Factors for Implementing Business Intelligence Projects (A BI Implementation Methodology Perspective) By Published On :: 2020-08-27 Aim/Purpose: The purpose of this paper is to identify Critical Success Factors (CSFs) for Business Intelligence (BI) implementation projects by studying the existing BI project implementation methodologies and to compare these methodologies based on the identified CSFs. Background: The implementation of BI project has become one of the most important technological and organizational innovations in modern organizations. The BI project implementation methodology provides a framework for demonstrating knowledge, ideas and structural techniques. It is defined as a set of instructions and rules for implementing BI projects. Identifying CSFs of BI implementation project can help the project team to concentrate on solving prior issues and needed resources. Methodology: Firstly, the literature review was conducted to find the existing BI project implementation methodologies. Secondly, the content of the 13 BI project implementation methodologies was analyzed by using thematic analysis method. Thirdly, for examining the validation of the 20 identified CSFs, two questionnaires were distributed among BI experts. The gathered data of the first questionnaire was analyzed by content validity ratio (CVR) and 11 of 20 CSFs were accepted as a result. The gathered data of the second questionnaire was analyzed by fuzzy Delphi method and the results were the same as CVR. Finally, 13 raised BI project implementation methodologies were compared based on the 11 validated CSFs. Contribution: This paper contributes to the current theory and practice by identifying a complete list of CSFs for BI projects implementation; comparison of existing BI project implementation methodologies; determining the completeness degree of existing BI project implementation methodologies and introducing more complete ones; and finding the new CSF “Expert assessment of business readiness for successful implementation of BI project” that was not expressed in previous studies. Findings: The CSFs that should be considered in a BI project implementation include: “Obvious BI strategy and vision”, “Business requirements definition”, “Business readiness assessment”, “BI performance assessment”, “Establishing BI alignment with business goals”, “Management support”, “IT support for BI”, “Creating data resources and source data quality”, “Installation and integration BI programs”, “BI system testing”, and “BI system support and maintenance”. Also, all the 13 BI project implementation methodologies can be divided into four groups based on their completeness degree. Recommendations for Practitioners: The results can be used to plan BI project implementation and help improve the way of BI project implementation in the organizations. It can be used to reduce the failure rate of BI implementation projects. Furthermore, the 11 identified CSFs can give a better understanding of the BI project implementation methodologies. Recommendation for Researchers: The results of this research helped researchers and practitioners in the field of business intelligence to better understand the methodology and approaches available for the implementation and deployment of BI systems and thus use them. Some methodologies are more complete than other studied methodologies. Therefore, organizations that intend to implement BI in their organization can select these methodologies according to their goals. Thus, Findings of the study can lead to reduce the failure rate of implementation projects. Future Research: Future researchers may add other BI project implementation methodologies and repeat this research. Also, they can divide CSFs into three categories including required before BI project implementation, required during BI project implementation and required after BI project implementation. Moreover, researchers can rank the BI project implementation CSFs. As well, Critical Failure Factors (CFFs) need to be explored by studying the failed implementations of BI projects. The identified CSFs probably affect each other. So, studying the relationship between them can be a topic for future research. Full Article
ine Consumer Engagement in Online Brand Communities: Community Values, Brand Symbolism and Social Strategies By Published On :: 2020-04-21 Aim/Purpose: This study examines the kind of community value companies should provide when strengthening the relationship between customers and brands through the establishment of an online brand community, and how this kind of community value promotes customers’ sense of community engagement and willingness to spread brand reputation. The paper also discusses how an enterprise’s brand symbolism affects the relationship between community value and customers’ engagement in online brand community. This study explored the important role of brand symbolism in the establishment of an online brand community. Background: Many companies want to create online brand communities to strengthen their relationships with consumers as well as to provide better service and value to consumers, for example, Huawei’s Huafen community (club.huawei.com), Apple’s support community (support.apple.com/zh-cn), and Samsung’s Galaxy community (samsungmembers.cn). However, these brand communities may have different interests and consumer engagement about the kind of community value to offer to their customers. Methodology: This study uses data collection from questionnaire surveys to design a quantitative research method. An online questionnaire survey of mobile phone users in China was conducted to collect data on social value, cognitive value, brand symbolism, customer community engagement, and brand recommendation. The brands of mobile phone include Apple, Huawei, Samsung, OPPO, VIVO, MI, and Meizu. The researcher purchased a sample service of WJX, an online survey company (www.wjx.cn), and WJX company distributed the questionnaire to research participants. The WJX company randomly selected 240 subjects from their sample database and then sent the questionnaire link to research participants’ mobile phones. Among the 240 research participants, the researcher excluded participants who lacked online brand community experience or had invalid data to qualify for data collection. After the researcher excluded participants who did not qualify for data collection, only 203 qualified questionnaire surveys advanced to the data collection and analysis phase, which was the questionnaire recovery rate of 84.58%. For the model analysis and hypotheses testing, the researcher used statistical software IBM SPSS Statistics and AMOS 21 and Smartpls3. Contribution: This study deepens the body of literature knowledge by combining online brand community value and brand symbolic value to explore issues that companies should consider when establishing an online brand community for their products and services. This study confirms that brands with high symbolic value establish communities and strengthen social values in the online brand community rather than reducing brand symbolism. Online brand community involves a horizontal interaction (peer interaction) among peers, which can have an effect on the symbolic value of brand (social distance). Findings: First, online brand community value (both cognitive and social value) has a positive impact on customer community engagement. Second, customer community engagement has a positive impact on customers’ brand recommend intention. Third, the customer community engagement is a mediator between the online brand community value and the customer brand recommend intention. Most importantly, fourth, the symbolic value of the brand controls the relationship between community value and customer community engagement. For brands with high symbolic value, the community value should emphasize cognitive value rather than social value. For brands with a low symbolic value, the community provides cognitive or social value, which is not affected by the symbolism of the brand. Recommendations for Practitioners: Practitioners can share best practices with the corporate sectors. Brand owners can work with researchers to explore the characteristics of their online brand communities. On this basis, brand owners and researchers can jointly build and manage online brand communities. Recommendation for Researchers: Researchers can explore different perspectives and factors of brand symbolism that involve brand owners when establishing an online brand community to advance consumer engagement, community value, and brand symbolism. Impact on Society: Online brand community is relevant for brand owners to establish brand symbolism, community value, and customer engagement. Readers of this paper can gain an understanding that cognitive and social values are two important drivers of individual participation in online brand communities. The discussion of these two factors can give readers and brand owners the perception to gain more understanding on social and behavior activities in online brand communities. Future Research: Practitioners and researchers could follow-up in the future with a study to provide more understanding and updated research information from different perspectives of research samples and hypotheses on online brand community. Full Article
ine Getting in Synch: Understanding Student Perceptions of Synchronous Online Instruction By Published On :: 2022-12-09 Aim/Purpose: This study examines the impact of transitioning from in-person classrooms to remote online business education and provides analysis of key factors impacting course and instructor ratings as well as strategies for higher education institutions to provide engaging instruction. Background: “Zoom”ing into teaching and moving out of traditional classrooms during the COVID-19 pandemic has been a path full of twists and has impacted student perceptions of courses as well as instructors. One challenge has been to make the quality of synchronous online instruction perceived by students as positive as classroom-delivered ones. Methodology: We analyze primary data collected in the course evaluation process from Business & Accounting students over six semesters between Fall 2019 to Spring 2022, covering pre-pandemic instruction in the classroom and the conversion to virtual instruction via Zoom. A total of 1782 observations for 38 courses were examined using mean comparison, regression and correlation analyses, and pairwise comparisons. Contribution: We provide insights from the evaluation of those instructors who were able to make their Zoom-delivered courses perceived by students as equivalent or better than room-delivered ones. Specifically, clear presentation, stimulating delivery, providing feedback and encouraging discussion were positively correlated with successful online classes. Findings: We find that there is a clear downward shift in course and instructor ratings as the change to synchronous online delivery was made. However, in the Spring of 2022, even though instructors and students were still not completely back in the classroom, both instructor and course ratings moved back closer to the pre-pandemic levels. The parameters associated with instructor ratings, such as providing feedback, clear presentations, stimulating sessions, and encouraging discussion, showed similar downward fluctuations. Also, aspects related to course content were affected by the transition to online modality, including training on critical thinking quantitative analysis, research and writing abilities, and overall usefulness of the content. Moore’s model of Transactional Distance helps explain these changes. Recommendations for Practitioners: We recommend that practitioners allow sufficient time for students and faculty to learn through online instruction delivery and supply training for both populations in adapting to learning in this delivery mode. Recommendation for Researchers: The disruption in higher education caused by COVID-19 has provided a wealth of information on the pluses and minuses of online delivery. Careful inspection of trends can help provide guidance to higher education leaders. Impact on Society: One of the many changes the COVID-19 pandemic brought was the opportunity to try alternate ways of connecting and learning. This study shows how this experience can be used to guide the future of higher education. Future Research: Further research is needed to explore the in-depth reactions of students and faculty to the switch from classroom to online delivery, to explore whether these findings can be more broadly applied to other subjects and other types of universities. Full Article
ine A Framework for Ranking Critical Success Factors of Business Intelligence Based on Enterprise Architecture and Maturity Model By Published On :: 2022-12-03 Aim/Purpose: The aim of this study is to identify Critical Success Factors (CSF) of Business Intelligence (BI) and provide a framework to classify CSF into layers or perspectives using an enterprise architecture approach, then rank CSF within each perspective and evaluate the importance of each perspective at different BI maturity levels as well. Background: Although the implementation of the BI project has a significant impact on creating analytical and competitive capabilities, the lack of evaluation of CSF holistically is still a challenge. Moreover, the BI maturity level of the organization has not been considered in the BI implementation project. Identifying BI critical success factors and their importance can help the project team to move to a higher maturity level in the organization. Methodology: First, a list of distinct CSF is identified through a literature review. Second, a framework is provided for categorizing these CSF using enterprise architecture. Interviewing is the research method used to evaluate the importance of CSF and framework layers with two questionnaires among experts. The first questionnaire was done by Analytical Hierarchy Process (AHP), a quantitative method of decision-making to calculate the weight of the CSF according to the importance of CSF in each of the framework layers. The second one was conducted to evaluate framework layers at different BI maturity levels using a Likert scale. Contribution: This paper contributes to the implementation of BI projects by identifying a comprehensive list of CSF in the form of a holistic multi-layered framework and ranking the importance of CSF and layers at BI maturity levels. Findings: The most important CSF in BI implementation projects include senior management support, process identification, data quality, analytics quality, hardware quality, security standards, scope management, documentation, project team skills, and customer needs transformation, which received the highest scores in framework layers. In addition, it was observed that as the organization moves to higher levels of maturity, the average importance of strategic business and security perspectives or layers increases. But the average importance of data, applications, infrastructure, and network, the project management layers in the proposed framework is the same regardless of the level of business intelligence maturity. Recommendations for Practitioners: The results of this paper can be used by academicians and practitioners to improve BI project implementation through understanding a comprehensive list of CSF and their importance. This awareness causes us to focus on the most important CSF and have better planning to reach higher levels of maturity according to the maturity level of the organization. Future Research: For future research, the interaction of critical success factors of business intelligence and framework layers can be examined with different methods. Full Article
ine A Systematic Literature Review of Business Intelligence Framework for Tourism Organizations: Functions and Issues By Published On :: 2022-10-09 Aim/Purpose: The main goal of this systematic literature review was to look for studies that provide information relevant to business intelligence’s (BI) framework development and implementation in the tourism sector. This paper tries to classify the tourism sectors where BI is implemented, group various BI functionalities, and identify common problems encountered by previous research. Background: There has been an increased need for BI implementation to support decision-making in the tourism sector. Tourism stakeholders such as management of destination, accommodation, transportation, and public administration need a guideline to understand functional requirements before implementation. This paper addresses the problem by comprehensively reviewing the functionalities and issues that need to be considered based on previous business intelligence framework development and implementation in tourism sectors. Methodology: We have conducted a systematic literature review using the Preferred Reporting Items for Systematic Reviews and Guidelines for Meta-Analysis (PRISMA) method. The search is conducted using online academic database platforms, resulting in 543 initial articles published from 2002 to 2022. Contribution: The paper could be of interest to relevant stakeholders in the tourism industry because it provides an overview of the capabilities and limitations of business intelligence for tourism. To our knowledge, this is the first study to identify and classify the BI functionalities needed for tourism sectors and implementation issues related to organizations, people, and technologies that need to be considered. Findings: BI functionalities identified in this study include basic functions such as data analysis, reports, dashboards, data visualization, performance metrics, and key performance indicator, and advanced functions such as predictive analytics, trend indicators, strategic planning tools, profitability analysis, benchmarking, budgeting, and forecasting. When implementing BI, the issues that need to be considered include organizational, people and process, and technological issues. Recommendations for Practitioners: As data is a major issue in BI implementation, tourism stakeholders, especially in developing countries, may need to build a tourism data center or centralized coordination regulated by the government. They can implement basic functions first before implementing more advanced features later. Recommendation for Researchers: We recommend further studying the BI implementation barriers by employing a perspective of an adoption framework such as the technology, organization, and environment (TOE) framework. Impact on Society: This research has a potential impact on improving the tourism industry’s performance by providing insight to stakeholders about what is needed to help them make more accurate decisions using business intelligence. Future Research: Future research may involve collaboration between practitioners and academics in developing various BI architectures specific to each tourism industry, such as destination management, hospitality, or transportation. Full Article
ine Determinants of Online Behavior Among Jordanian Consumers: An Empirical Study of OpenSooq By Published On :: 2022-07-04 Aim/Purpose: This study identifies the elements that influence intentions to purchase from the most popular Arabic online classifieds platform, OpenSooq.com. Background: Online purchasing has become popular among consumers in the past two decades, with perceived risk and trust playing key roles in consumers’ intention to purchase online. Methodology: A questionnaire survey was conducted of Internet users from three Jordanian districts to investigate how they used the OpenSooq platform in their e-commerce activities. In total, 202 usable responses were collected, and the data were analyzed with PLS-SEM for hypothesis testing and model validation. Contribution: Though online trading is increasingly popular, the factors that impact the behavior of consumers when purchasing high-value products have not been adequately investigated. Therefore, this study examined the factors affecting perceived risk, and the potential impact of privacy concerns on the perceived risk of online smartphone buyers. The study framework can help explore online behavior in various situations to ascertain similarities and differences and probe other aspects of online buying. Findings: Perceived risk negatively correlates with online purchasing behavior and trust. However, privacy concern and perceived risk, transaction security and trust, and trust and online purchasing behavior exhibited positive correlations. Recommendations for Practitioners: Customers can complete and retain online purchases in a range of settings illuminated in this study’s methods and procedures. Moreover, businesses can manage their IT arrangements to make Internet shopping more convenient and build processes for online shopping that allow for engagement, training, and ease of use, thus improving their customers’ online purchasing behavior. Recommendation for Researchers: Given the insight into the understanding and integration of variables including perceived risk, privacy issues, trust, transaction security, and online purchasing behavior, academics can build on the groundwork of this research paradigm to investigate underdeveloped countries, particularly Jordan, further. Impact on Society: Understanding the characteristics that influence online purchasing behavior can help countries realize the full potential of online shopping, particularly the benefits of safe, fast, and low-cost financial transactions without the need for an intermediary. Future Research: Future research can examine the link between online purchase intent, perceived risk, privacy concerns, trust, and transaction security to see if the findings of this study in Jordan can be applied to a broader context in other countries. Full Article
ine Predicting Software Change-Proneness From Software Evolution Using Machine Learning Methods By Published On :: 2023-10-08 Aim/Purpose: To predict the change-proneness of software from the continuous evolution using machine learning methods. To identify when software changes become statistically significant and how metrics change. Background: Software evolution is the most time-consuming activity after a software release. Understanding evolution patterns aids in understanding post-release software activities. Many methodologies have been proposed to comprehend software evolution and growth. As a result, change prediction is critical for future software maintenance. Methodology: I propose using machine learning methods to predict change-prone classes. Classes that are expected to change in future releases were defined as change-prone. The previous release was only considered by the researchers to define change-proneness. In this study, I use the evolution of software to redefine change-proneness. Many snapshots of software were studied to determine when changes became statistically significant, and snapshots were taken biweekly. The research was validated by looking at the evolution of five large open-source systems. Contribution: In this study, I use the evolution of software to redefine change-proneness. The research was validated by looking at the evolution of five large open-source systems. Findings: Software metrics can measure the significance of evolution in software. In addition, metric values change within different periods and the significance of change should be considered for each metric separately. For five classifiers, change-proneness prediction models were trained on one snapshot and tested on the next. In most snapshots, the prediction performance was excellent. For example, for Eclipse, the F-measure values were between 80 and 94. For other systems, the F-measure values were higher than 75 for most snapshots. Recommendations for Practitioners: Software change happens frequently in the evolution of software; however, the significance of change happens over a considerable length of time and this time should be considered when evaluating the quality of software. Recommendation for Researchers: Researchers should consider the significance of change when studying software evolution. Software changes should be taken from different perspectives besides the size or length of the code. Impact on Society: Software quality management is affected by the continuous evolution of projects. Knowing the appropriate time for software maintenance reduces the costs and impacts of software changes. Future Research: Studying the significance of software evolution for software refactoring helps improve the internal quality of software code. Full Article
ine Content-Rating Consistency of Online Product Review and Its Impact on Helpfulness: A Fine-Grained Level Sentiment Analysis By Published On :: 2023-09-22 Aim/Purpose: The objective of this research is to investigate the effect of review consistency between textual content and rating on review helpfulness. A measure of review consistency is introduced to determine the degree to which the review sentiment of textual content conforms with the review rating score. A theoretical model grounded in signaling theory is adopted to explore how different variables (review sentiment, review rating, review length, and review rating variance) affect review consistency and the relationship between review consistency and review helpfulness. Background: Online reviews vary in their characteristics and hence their different quality features and degrees of helpfulness. High-quality online reviews offer consumers the ability to make informed purchase decisions and improve trust in e-commerce websites. The helpfulness of online reviews continues to be a focal research issue regardless of the independent or joint effects of different factors. This research posits that the consistency between review content and review rating is an important quality indicator affecting the helpfulness of online reviews. The review consistency of online reviews is another important requirement for maintaining the significance and perceived value of online reviews. Incidentally, this parameter is inadequately discussed in the literature. A possible reason is that review consistency is not a review feature that can be readily monitored on e-commerce websites. Methodology: More than 100,000 product reviews were collected from Amazon.com and preprocessed using natural language processing tools. Then, the quality reviews were identified, and relevant features were extracted for model training. Machine learning and sentiment analysis techniques were implemented, and each review was assigned a consistency score between 0 (not consistent) and 1 (fully consistent). Finally, signaling theory was employed, and the derived data were analyzed to determine the effect of review consistency on review helpfulness, the effect of several factors on review consistency, and their relationship with review helpfulness. Contribution: This research contributes to the literature by introducing a mathematical measure to determine the consistency between the textual content of online reviews and their associated ratings. Furthermore, a theoretical model grounded in signaling theory was developed to investigate the effect on review helpfulness. This work can considerably extend the body of knowledge on the helpfulness of online reviews, with notable implications for research and practice. Findings: Empirical results have shown that review consistency significantly affects the perceived helpfulness of online reviews. The study similarly finds that review rating is an important factor affecting review consistency; it also confirms a moderating effect of review sentiment, review rating, review length, and review rating variance on the relationship between review consistency and review helpfulness. Overall, the findings reveal the following: (1) online reviews with textual content that correctly explains the associated rating tend to be more helpful; (2) reviews with extreme ratings are more likely to be consistent with their textual content; and (3) comparatively, review consistency more strongly affects the helpfulness of reviews with short textual content, positive polarity textual content, and lower rating scores and variance. Recommendations for Practitioners: E-commerce systems should incorporate a review consistency measure to rank consumer reviews and provide customers with quick and accurate access to the most helpful reviews. Impact on Society: Incorporating a score of review consistency for online reviews can help consumers access the best reviews and make better purchase decisions, and e-commerce systems improve their business, ultimately leading to more effective e-commerce. Future Research: Additional research should be conducted to test the impact of review consistency on helpfulness in different datasets, product types, and different moderating variables. Full Article
ine Antecedents of Business Analytics Adoption and Impacts on Banks’ Performance: The Perspective of the TOE Framework and Resource-Based View By Published On :: 2023-09-18 Aim/Purpose: This study utilized a comprehensive framework to investigate the adoption of Business Analytics (BA) and its effects on performance in commercial banks in Jordan. The framework integrated the Technological-Organizational-Environmental (TOE) model, the Diffusion of Innovation (DOI) theory, and the Resource-Based View (RBV). Background: The recent trend of utilizing data for business operations and decision-making has positively impacted organizations. Business analytics (BA) is a leading technique that generates valuable insights from data. It has gained considerable attention from scholars and practitioners across various industries. However, guidance is lacking for organizations to implement BA effectively specific to their business contexts. This research aims to evaluate factors influencing BA adoption by Jordanian commercial banks and examine how its implementation impacts bank performance. The goal is to provide needed empirical evidence surrounding BA adoption and outcomes in the Jordanian banking sector. Methodology: The study gathered empirical data by conducting an online questionnaire survey with senior and middle managers from 13 commercial banks in Jordan. The participants were purposefully selected, and the questionnaire was designed based on relevant and well-established literature. A total of 307 valid questionnaires were collected and considered for data analysis. Contribution: This study makes a dual contribution to the BA domain. Firstly, it introduces a research model that comprehensively examines the factors that influence the adoption of BA. The proposed model integrates the TOE framework, DOI theory, and RBV theory. Combining these frameworks allows for a comprehensive examination of BA adoption in the banking industry. By analyzing the technological, organizational, and environmental factors through the TOE framework, understanding the diffusion process through the DOI theory, and assessing the role of resources and capabilities through the RBV theory, researchers and practitioners can better understand the complex dynamics involved. This integrated approach enables a more nuanced assessment of the factors that shape BA adoption and its subsequent impact on business performance within the banking industry. Secondly, it uncovers the effects of BA adoption on business performance. These noteworthy findings stem from a rigorous analysis of primary data collected from commercial banks in Jordan. By presenting a holistic model and delving into the implications for business performance, this research offers valuable insights to researchers and practitioners alike in the field of BA. Findings: The findings revealed that various technological (data quality, complexity, compatibility, relative advantage), organizational (top management support, organizational readiness), and environmental (external support) factors are crucial in shaping the decision to adopt BA. Furthermore, the study findings demonstrated a positive relationship between BA adoption and performance outcomes in Jordanian commercial banks. Recommendations for Practitioners: The findings suggest that Jordanian commercial banks should enforce data quality practices, provide clear standards, invest in data quality tools and technologies, and conduct regular data audits. Top management support is crucial for fostering a data-driven decision-making culture. Organizational readiness involves having the necessary resources and skilled personnel, as well as promoting continuous learning and improvement. Highlighting the benefits of BA helps overcome resistance to technological innovation and encourages adoption by demonstrating improved decision-making processes and operational efficiency. Furthermore, external support is crucial for banks to adopt Business Analytics (BA). Banks should partner with experienced vendors to gain expertise and incorporate best practices. Vendors also provide training and technical support to overcome technological barriers. Compatibility is essential for optimal performance, requiring managers to modify workflows and IT infrastructure. Complexity, including data, organizational, and technical complexities, is a major obstacle to BA adoption. Banks should take a holistic approach, focusing on people, processes, and technology, and prioritize data quality and governance. Building a skilled team, fostering a data-driven culture, and investing in technology and infrastructure are essential. Recommendation for Researchers: The integration of the TOE framework, the DOI theory, and the RBV theory can prove to be a powerful approach for comprehensively analyzing the various factors that influence BA adoption within the dynamic banking industry. Furthermore, this combined framework enables us to gain deeper insights into the subsequent impact of BA adoption on overall business performance. Impact on Society: Examining the factors influencing BA adoption in the banking industry and its subsequent impact on business performance can have wide-ranging societal implications. It can promote data-driven decision-making, enhance customer experiences, strengthen fraud detection, foster financial inclusion, contribute to economic growth, and trigger discussions on ethical considerations. Future Research: To further advance future research, there are several avenues to consider. One option is to broaden the scope by including a larger sample size, allowing for a more comprehensive analysis. Another possibility is to investigate the impact of BA adoption on various performance indicators beyond the ones already examined. Additionally, incorporating qualitative research methods would provide a more holistic understanding of the organizational dynamics and challenges associated with the adoption of BA in Jordanian commercial banks. Full Article
ine Medicine Recommender System Based on Semantic and Multi-Criteria Filtering By Published On :: 2023-07-21 Aim/Purpose: This study aims to devise a personalized solution for online healthcare platforms that can alleviate problems arising from information overload and data sparsity by providing personalized healthcare services to patients. The primary focus of this paper is to develop an effective medicine recommendation approach for recommending suitable medications to patients based on their specific medical conditions. Background: With a growing number of people becoming more conscious about their health, there has been a notable increase in the use of online healthcare platforms and e-services as a means of diagnosis. As the internet continues to evolve, these platforms and e-services are expected to play an even more significant role in the future of healthcare. For instance, WebMD and similar platforms offer valuable tools and information to help manage patients’ health, such as searching for medicines based on their medical conditions. Nonetheless, patients often find it arduous and time-consuming to sort through all the available medications to find the ones that match their specific medical conditions. To address this problem, personalized recommender systems have emerged as a practical solution for mitigating the burden of information overload and data sparsity-related issues that are frequently encountered on online healthcare platforms. Methodology: The study utilized a dataset of MC ratings obtained from WebMD, a popular healthcare website. Patients on this website can rate medications based on three criteria, including medication effectiveness, ease of use, and satisfaction, using a scale of 1 to 5. The WebMD MC rating dataset used in this study contains a total of 32,054 ratings provided by 2,136 patients for 845 different medicines. The proposed HSMCCF approach consists of two primary modules: a semantic filtering module and a multi-criteria filtering module. The semantic filtering module is designed to address the issues of data sparsity and new item problems by utilizing a medicine taxonomy that sorts medicines according to medical conditions and makes use of semantic relationships between them. This module identifies the medicines that are most likely to be relevant to patients based on their current medical conditions. The multi-criteria filtering module, on the other hand, enhances the approach’s ability to capture the complexity of patient preferences by considering multiple criteria and preferences through a unique similarity metric that incorporates both distance and structural similarities. This module ensures that patients receive more accurate and personalized medication recommendations. Moreover, a medicine reputation score is employed to ensure that the approach remains effective even when dealing with limited ratings or new items. Overall, the combination of these modules makes the proposed approach more robust and effective in providing personalized medicine recommendations for patients. Contribution: This study addresses the medicine recommendation problem by proposing a novel approach called Hybrid Semantic-based Multi-Criteria Collaborative Filtering (HSMCCF). This approach effectively recommends medications for patients based on their medical conditions and is specifically designed to overcome issues related to data sparsity and new item recommendations that are commonly encountered on online healthcare platforms. The proposed approach addresses data sparsity and new item issues by incorporating a semantic filtering module and a multi-criteria filtering module. The semantic filtering module sorts medicines based on medical conditions and uses semantic relationships to identify relevant ones. The multi-criteria filtering module accurately captures patient preferences and provides precise recommendations using a novel similarity metric. Additionally, a medicine reputation score is also employed to further expand potential neighbors, improving predictive accuracy and coverage, particularly in sparse datasets or new items with few ratings. With the HSMCCF approach, patients can receive more personalized recommendations that are tailored to their unique medical needs and conditions. By leveraging a combination of semantic-based and multi-criteria filtering techniques, the proposed approach can effectively address the challenges associated with medicine recommendations on online healthcare platforms. Findings: The proposed HSMCCF approach demonstrated superior effectiveness compared to benchmark recommendation methods in multi-criteria rating datasets in terms of enhancing both prediction accuracy and coverage while effectively addressing data sparsity and new item challenges. Recommendations for Practitioners: By applying the proposed medicine recommendation approach, practitioners can develop a medicine recommendation system that can be integrated into online healthcare platforms. Patients can then utilize this system to make better-informed decisions regarding the medications that are most suitable for their specific medical conditions. This personalized approach to medication recommendations can ultimately lead to improved patient satisfaction. Recommendation for Researchers: Integrating patient medicine reviews is a promising way for researchers to elevate the proposed medicine recommendation approach. By leveraging patient reviews, the approach can gain a more comprehensive understanding of how certain medications perform for specific medical conditions. Additionally, exploring the relationship between MC-based ratings using an improved aggregation function can potentially enhance the accuracy of medication predictions. This involves analyzing the relationship between different criteria, such as medication effectiveness, ease of use, and satisfaction of the patients, and determining the optimal weighting for each criterion based on patient feedback. A more holistic approach that incorporates patient reviews and an improved aggregation function can enable the proposed medicine recommendation approach to provide more personalized and accurate recommendations to patients. Impact on Society: To mitigate the risk of infection during the COVID-19 pandemic, the promotion of online healthcare services was actively encouraged. This allowed patients to continue accessing care and receiving treatment while adhering to physical distancing guidelines and shielding measures where necessary. As a result, the implementation of personalized healthcare services for patients is expected to be a major disruptive force in healthcare in the coming years. This study proposes a personalized medicine recommendation approach that can effectively address this issue and aid patients in making informed decisions about the medications that are most suitable for their specific medical conditions. Future Research: One way that may enhance the proposed medicine recommendation approach is to incorporate patient medicine reviews. Furthermore, the analysis of MC-based ratings using an improved aggregation function can also potentially enhance the accuracy of medication predictions. Full Article
ine The Role of Corporate Social Responsibility in Business Performance: The Moderation Influence of Blockchain Technology By Published On :: 2023-07-09 Aim/Purpose: The major challenges for firms to initiate corporate social responsibility (CSR) arise from resource constraints, complexity, and uncertainty. Consuming considerable financial and human resources is the main difficulty for smaller firms or those operating in less profitable industries, and the lack of immediate outputs from CSR initiatives poses a challenge for firms in prioritizing and assessing their effectiveness. Background: To better integrate CSR management into overall business strategy and decision-making processes, Blockchain technology (BCT) could potentially offer a feasible and optimal alternative to CSR reports. Methodology: This study uses the fixed effects regression by way of the Least Squares Dummy Variable (LSDV) approach in STATA to analyze the direct effect of CSR management on business performance and the moderating effect of BCT adoption on this relationship with a panel data set of 5810 observations collected from the 874 listed companies in 2015 in Taiwan Stock Exchange through 2021. Contribution: This study contributes to the literature by shedding light on the organizational factors that influence BCT adoption. Findings: The findings show that firms with high levels of CSR management have better business performance. Additionally, the adoption of BCT strengthens the positive relationship between CSR management and business performance, but it cannot replace the fundamental principles of CSR. Finally, firm size does not significantly affect BCT adoption, indicating that companies of all sizes have an equal opportunity to adopt BCT, which can help to level the playing field in terms of resources available to different firms. Recommendations for Practitioners: This study suggests that firms managing CSR practices have better business performance, and the adoption of BCTs further enhances this positive relationship. However, BCT adoption does not have the same positive effect on business performance as CSR practices. Additionally, this research can help to inform public policy related to BCT adoption and diffusion. Recommendation for Researchers: By exploring the factors that influence BCT adoption, future researchers can provide insights into the key challenges and opportunities faced by organizations of different sizes and help to develop strategies for promoting the effective adoption of BCT. Impact on Society: Given the limitations of current CSR reporting, the understanding gained from BCT applications can provide companies with an alternative mechanism to foster progress in CSR implementation. Future Research: Firstly, while the fixed-effects model might have dampened the power of explanation because it only captures within-unit variation and ignores between-unit variation, the explanatory power is further limited due to only integrating two independent variables in this model. Because of limited data availability, this study only utilizes CSR_Report and firm_size as independent variables. Future studies can consider more key factors and may lead to different results. Additionally, panel data is collected from Taiwan and, therefore, may not be representative of the broader population. Future researchers integrating the Stock Exchange of different countries are recommended. Full Article
ine Customer Churn Prediction in the Banking Sector Using Machine Learning-Based Classification Models By Published On :: 2023-02-28 Aim/Purpose: Previous research has generally concentrated on identifying the variables that most significantly influence customer churn or has used customer segmentation to identify a subset of potential consumers, excluding its effects on forecast accuracy. Consequently, there are two primary research goals in this work. The initial goal was to examine the impact of customer segmentation on the accuracy of customer churn prediction in the banking sector using machine learning models. The second objective is to experiment, contrast, and assess which machine learning approaches are most effective in predicting customer churn. Background: This paper reviews the theoretical basis of customer churn, and customer segmentation, and suggests using supervised machine-learning techniques for customer attrition prediction. Methodology: In this study, we use different machine learning models such as k-means clustering to segment customers, k-nearest neighbors, logistic regression, decision tree, random forest, and support vector machine to apply to the dataset to predict customer churn. Contribution: The results demonstrate that the dataset performs well with the random forest model, with an accuracy of about 97%, and that, following customer segmentation, the mean accuracy of each model performed well, with logistic regression having the lowest accuracy (87.27%) and random forest having the best (97.25%). Findings: Customer segmentation does not have much impact on the precision of predictions. It is dependent on the dataset and the models we choose. Recommendations for Practitioners: The practitioners can apply the proposed solutions to build a predictive system or apply them in other fields such as education, tourism, marketing, and human resources. Recommendation for Researchers: The research paradigm is also applicable in other areas such as artificial intelligence, machine learning, and churn prediction. Impact on Society: Customer churn will cause the value flowing from customers to enterprises to decrease. If customer churn continues to occur, the enterprise will gradually lose its competitive advantage. Future Research: Build a real-time or near real-time application to provide close information to make good decisions. Furthermore, handle the imbalanced data using new techniques. Full Article
ine Factors Affecting Individuals’ Behavioral Intention to Use Online Capital Market Investment Platforms in Indonesia By Published On :: 2023-01-16 Aim/Purpose: This study aims to examine the ten factors from the Technology Acceptance Model (TAM), Theory of Planned Behavior (TPB), and Unified Theory of Acceptance and Use of Technology (UTAUT) theories in order to analyze behavioral intentions to use the Indonesian online capital market investment platforms and the effect of behavioral intentions on actual usage. Background: The potential growth of capital market investors in Indonesia is large, and the low use of the Internet for investment purposes makes it necessary for stakeholders to understand the factors that affect people’s intentions to invest, especially through online platforms. Several previous studies have explained the intention to use online investment platforms using the TAM and TPB theories. This study tries to combine TAM, TPB, and UTAUT theories in analyzing behavioral intentions to use an online capital market investment platform in Indonesia. Methodology: The research approach employed is a mixed method, particularly explanatory research, which employs quantitative methods first, followed by qualitative methods. Data were collected by conducting interviews and sending online surveys. This study was successful in collecting information on the users of online capital market investment platforms in Indonesia from 1074 respondents, which was then processed and analyzed using Covariance-Based Structural Equation Modeling (CB-SEM) with the IBM AMOS 26.0 application. Contribution: This study complements earlier theories like TAM, TPB, and UTAUT by looking at the intention to use online capital market investment platforms from technological, human, and environmental viewpoints. This study looks at the intention to use the online capital market investing platform as a whole rather than separately depending on investment instruments. This study also assists practitioners including regulators, the government, developers, and investors by offering knowledge of the phenomena and factors that can increase the capital market’s investment intention in Indonesia. Findings: Attitudes, perceived ease of use, perceived behavioral control, subjective norm, and national pride were found to be significant predictors of the intention to use online investment platforms in Indonesia, whereas perceived usefulness, perceived risk, perceived trust, perceived privacy, and price value were not. Recommendations for Practitioners: All practitioners must be able to take steps and strategies that focus on factors that have a significant impact on increasing usage intentions. The government can enact legislation that emphasizes the simplicity and convenience of investment, as well as launch campaigns that encourage people to participate in economic recovery by investing in the capital market. Meanwhile, the developers are concentrating on facilitating the flow of investment transactions through the platform, increasing education and awareness of the benefits of investing in the capital market, and providing content that raises awareness that investing in the capital market can help to restore the national economy. Recommendation for Researchers: Further research is intended to include other variables such as perceived benefits and perceived security, as well as other frameworks such as TRA, to better explain individuals’ behavioral intentions to use online capital investment platforms. Impact on Society: This study can help all stakeholders understand what factors can increase Indonesians’ interest in investing in the capital market, particularly through online investment platforms. This understanding is expected to increase the number of capital market participants and, as a result, have an impact on economic recovery following the COVID-19 pandemic. Future Research: Future research is expected to investigate additional factors that can influence individuals’ behavioral intention to use an online capital market investment platform, such as perceived benefits and perceived security, as well as the addition of control variables such as age, gender, education, and income. International research across nations is also required to build a larger sample size in order to examine the behavior of investors in developing and developed countries and acquire a more thorough understanding of the online capital market investment platform. Full Article
ine Investigating the Determinants of Online Shopping Repurchase Intention in Generation Z Customers in India: An Exploratory Study By Published On :: 2024-11-11 Aim/Purpose: This study investigates the factors that affect the repurchase intentions of Generation Z consumers in India’s online shopping industry, focusing on combining the Expectation-Confirmation Model (ECM) and Extended Technology Acceptance Model (E-TAM). The aim is to understand the intricate behaviors that shape technology adoption and sustained usage, which are essential for retaining customers in e-commerce. Background: Social media and other online platforms have significantly influenced daily life and become essential communication tools owing to technological advancements. Online shopping is no exception, offering a range of product choices, information, and convenience compared with traditional commerce. Indian retailers recognize this trend as an opportunity to promote their brands through e-shopping platforms, leading to increased competition. Generation Z comprises 32% of the world’s population and is a significant emerging customer base in India. Numerous studies have been conducted to study customers’ repurchase intention in the online shopping domain, but few studies have explicitly focused on Generation Z as a customer base. This study aims to comprehensively understand the topic and investigate the variables that impact consumers’ online repurchase intention by examining their post-adoption behavioral processes. Methodology: The study employed a quantitative research design with structural equation modeling using AMOS to analyze responses from 410 participants. This method thoroughly examined hypotheses regarding factors affecting repurchase intention (security, ease of use, privacy, and internet self-efficacy) and the mediating role of e-satisfaction. Contribution: This study makes a unique contribution to the field of e-commerce by focusing on Generation Z in India, a rapidly growing demographic in the e-commerce industry. The results on the mediating role of e-satisfaction have significant implications for e-retailers seeking to enhance customer retention strategies and gain a competitive edge in the market. Findings: The research findings underscore the significant influence of security, ease of use, and internet self-efficacy on repurchase intentions, with e-satisfaction playing a pivotal role as a mediating factor. Notably, while privacy concerns did not directly impact repurchase intentions, they displayed considerable influence when mediated by e-satisfaction, highlighting the intricate interplay between these variables in the context of online shopping, which is the unique finding of this study. Recommendations for Practitioners: This study has several significant implications for practitioners. Effectively addressing computer-related individual differences, such as computer self-efficacy, is crucial for boosting online customers’ repurchase intention. For instance, if an e-retailer intends to target Generation Z customers, they should collaborate with IT professionals and develop various computer literacy programs on online streaming platforms, such as YouTube. These programs will enhance target customers’ confidence in online shopping portals and increase their online repeat purchases. Additionally, practitioners should strive to improve the online shopping experience by making the portal user-friendly. Generation Z is accustomed to a fast Internet experience, so they prefer that the process of completing online transactions is swift with fewer clicks. The search for products, payments, and redress should not be tedious. Furthermore, the primary objective of the e-retailer should be to satisfy customers, as satisfied customers repeat their purchases and increase overall profitability. Recommendation for Researchers: The current study was conducted in the Delhi-NCR region of India, and its findings could serve as a basis for future research. For instance, the scale devised in this study could be utilized to examine the impact of cash-on-delivery as a payment method on purchase intention across the country. Alternatively, a comparative analysis could be conducted to compare cash-on-delivery effects in various countries. Impact on Society: The study’s findings enable stakeholders in the online shopping industry to comprehend the post-adoption behavior of Generation Z users and augment existing literature by establishing a correlation between determinants that impact repurchase intention and e-satisfaction, which serves as a mediator. Future Research: This study examines the factors that impact the propensity of Generation Z shoppers to engage in repeat online purchases. This study focuses on India, where the Generation Y (millennial) customer base is also substantial within the online shopping market. Future research could compare the shopping habits of Generation Z and Generation Y customers, as the latter may place greater importance on privacy and security. Additional studies could broaden the scope of this research and explore the comparative viewpoints of both generations. Also, it would be advantageous to conduct in-depth interviews and longitudinal studies to acquire a more in-depth comprehension of the evolving digitalization of shopping. Full Article
ine A Learn-to-Rank Approach to Medicine Selection for Patient Treatments By Published On :: 2024-10-20 Aim/Purpose: This research utilized a learn-to-rank algorithm to provide medical recommendations to prescribers. The algorithm has been utilized in other domains, such as information retrieval and recommender systems. Background: Ranking the possible medical treatments according to diagnoses of the medical cases is very beneficial for doctors, especially during the coding process. Methodology: We developed two deep learning pointwise learn-to-rank models within one prediction pipeline: one for predicting the top possible active ingredients from disease features, the other for ranking actual medicines codes from diseases and the ingredients features. Contribution: A new learn-to-rank deep learning model has been developed to rank medical procedures based on datasets collected from insurance companies. Findings: We ran 18 cross-validation trials on a confidential dataset from an insurance company. We obtained an average normalized discounted cumulative gain (NDCG@8) of 74% with a 5% standard deviation as a result of all 18 experiments. Our approach outperformed a known approach used in the information retrieval domain in which data is represented in LibSVM format. Then, we ran the same trials using three learn-to-rank models – pointwise, pairwise, and listwise – which yielded average NDCG@8 of 71%, 72%, and 72%, respectively. Recommendations for Practitioners: The proposed model provides an insightful approach to helping to manage the patient’s treatment process. Recommendation for Researchers: This research lays the groundwork for exploring various applications of data science techniques and machine learning algorithms in the medical field. Future studies should focus on the significant potential of learn-to-rank algorithms across different medical domains, including their use in cost-effectiveness models. Emphasizing these algorithms could enhance decision-making processes and optimize resource allocation in healthcare settings. Impact on Society: This will help insurance companies and end users reduce the cost associated with patient treatment. It also helps doctors to choose the best procedure and medicines for their patients. Future Research: Future research is required to investigate the impact of medicine data at a granular level. Full Article
ine Investigating Intention to Invest in Online Peer-to-Peer Lending Platforms Among the Bottom 40 Group in Malaysia By Published On :: 2024-09-20 Aim/Purpose: This study investigates the intention to invest in online peer-to-peer (P2P) lending platforms among the bottom 40% (B40) Malaysian households by income. Background: The B40 group citizens earn less than USD 1,096.00 (i.e., RM 4,850.00) in monthly household income, thereby possessing relatively small capital investments suitable for online P2P lending. Methodology: Drawing on the technology acceptance model (TAM), this research developed and tested the relevant hypotheses with data collected from 216 respondents. The partial least square structural equation modelling (PLS-SEM) technique was employed to analyse the collected data. Contribution: This study contributes to the body of knowledge on financial inclusion by demonstrating the relevance of modified TAM in explaining the intention to invest in online P2P lending platforms among investors with lower disposable income (i.e., the B40 group in Malaysia). Findings: The findings revealed that information quality, perceived risk, and perceived ease of use are relevant to B40 investment intention in P2P online lending platforms. However, contrary to expectations, trust and financial literacy are insignificant predictors of B40 investment intention. Recommendations for Practitioners: The P2P lending platform operators could enhance financial inclusion among the B40 group by ensuring borrowers provide sufficient, relevant, and reliable information with adequate security measures to minimise risk exposure. The financial regulators should also conduct periodic audits to ensure that the operators commit to enhancing information quality, platform security, and usability. Recommendation for Researchers: The intention to invest in online P2P lending platforms among the B40 group could be enhanced by improving information quality and user experience, addressing perceived risks, reassessing trust-building strategies and financial literacy initiatives, and adopting holistic, interdisciplinary approaches. These findings suggest targeted strategies to enhance financial inclusion and investment participation among B40 investors. Impact on Society: The study’s findings hold significant implications for financial regulators and institutions, such as the Securities Commission Malaysia, Bank Negara Malaysia, commercial and investment banks, and insurance companies. By focusing on these key determinants, policymakers can design targeted interventions to improve the accessibility and attractiveness of P2P lending platforms for B40 investors. Enhanced information quality and ease of use can be mandated through regulatory frameworks, while effective risk communication and mitigation strategies can be developed to build investor confidence. These measures can collectively promote financial growth and inclusion, supporting broader economic development goals. Future Research: Future research could expand the sample size to consider older B40 individuals across different countries and use a longitudinal survey to assess the actual investment decision of the B40 investors. Full Article
ine Recommendation System for an Online Shopping Pay-Later System Using a Multistage Approach: A Case Study from Indonesia By Published On :: 2024-08-29 Aim/Purpose: In this study, we developed a recommendation system model designed to support decision-makers in identifying consumers eligible for pay-later options via consensus-based decision-making. This approach was chosen due to the high and complex risks involved, such as delayed payments, challenges in reaching consumers, and issues of bad credit. Background: The “pay-later” option, which allows consumers to postpone payment for e-commerce purchases, offers convenience and flexibility but also introduces several challenges: (i) by enabling payment deferral, merchants face financial risks, including potential delays or defaults in payment, adversely affecting their cash flow and profitability; and (ii) this payment delay can also heighten the risk of fraud, including identity theft and unauthorized transactions. Methodology: This study initiated a risk analysis utilizing the ROAD process. Considering contemporary economic developments and advancements in neural networks, integrating these networks into risk assessment has become crucial. Consequently, model development involved the amalgamation of three deep learning methods – CNN (Convolutional Neural Networks), RNN (Recurrent Neural Networks), and LSTM (Long Short-Term Memory) – to address various risk alternatives and facilitate multi-stage decision-making recommendations. Contribution: Our primary contribution is threefold. First, our study identified potential consumers by prioritizing those with the smallest associated problem consequence values. Second, we achieved an optimal recall value using a candidate generator. Last, we categorized consumers to assess their eligibility for pay-later rights. Findings: The findings from this study indicate that our multi-stage recommendation model is effective in minimizing the risk associated with consumer debt repayment. This method of consumer selection empowers policymakers to make informed decisions regarding which consumers should be granted pay-later privileges. Recommendations for Practitioners: This recommendation system is proposed to several key parties involved in the development, implementation, and use of pay-later systems. These parties include E-commerce Executive Management for financial analysis and risk evaluation, the Risk Management Team to assess and manage risks related to users utilizing Pay-Later services, and Sales Managers to integrate Pay-Later services into sales strategies. Recommendation for Researchers: Advanced fraud detection mechanisms were implemented to prevent unauthorized transactions effectively. The goal was to cultivate user confidence in the safety of their financial data by ensuring secure payment processing. Impact on Society: Ensuring consumers understand the terms and conditions of pay-later arrangements, including interest rates, repayment schedules, and potential fees, is crucial. Providing clear and transparent information, along with educating consumers about their financial responsibilities, helps prevent misunderstandings and disputes. Future Research: Our future development plans involve the ongoing assessment of the system’s performance to enhance prediction accuracy. This includes updating models and criteria based on feedback and changes in economic or market conditions. Upholding compliance with security and data privacy regulations necessitates the implementation of protective measures to safeguard consumer information. The implementation of such a system requires careful consideration to ensure fairness and adherence to legal standards. Additionally, it is important to acknowledge that algorithms and models may evolve over time through the incorporation of additional data and continuous evaluations. Full Article
ine Unveiling the Secrets of Big Data Projects: Harnessing Machine Learning Algorithms and Maturity Domains to Predict Success By Published On :: 2024-08-19 Aim/Purpose: While existing literature has extensively explored factors influencing the success of big data projects and proposed big data maturity models, no study has harnessed machine learning to predict project success and identify the critical features contributing significantly to that success. The purpose of this paper is to offer fresh insights into the realm of big data projects by leveraging machine-learning algorithms. Background: Previously, we introduced the Global Big Data Maturity Model (GBDMM), which encompassed various domains inspired by the success factors of big data projects. In this paper, we transformed these maturity domains into a survey and collected feedback from 90 big data experts across the Middle East, Gulf, Africa, and Turkey regions regarding their own projects. This approach aims to gather firsthand insights from practitioners and experts in the field. Methodology: To analyze the feedback obtained from the survey, we applied several algorithms suitable for small datasets and categorical features. Our approach included cross-validation and feature selection techniques to mitigate overfitting and enhance model performance. Notably, the best-performing algorithms in our study were the Decision Tree (achieving an F1 score of 67%) and the Cat Boost classifier (also achieving an F1 score of 67%). Contribution: This research makes a significant contribution to the field of big data projects. By utilizing machine-learning techniques, we predict the success or failure of such projects and identify the key features that significantly contribute to their success. This provides companies with a valuable model for predicting their own big data project outcomes. Findings: Our analysis revealed that the domains of strategy and data have the most influential impact on the success of big data projects. Therefore, companies should prioritize these domains when undertaking such projects. Furthermore, we now have an initial model capable of predicting project success or failure, which can be invaluable for companies. Recommendations for Practitioners: Based on our findings, we recommend that practitioners concentrate on developing robust strategies and prioritize data management to enhance the outcomes of their big data projects. Additionally, practitioners can leverage machine-learning techniques to predict the success rate of these projects. Recommendation for Researchers: For further research in this field, we suggest exploring additional algorithms and techniques and refining existing models to enhance the accuracy and reliability of predicting the success of big data projects. Researchers may also investigate further into the interplay between strategy, data, and the success of such projects. Impact on Society: By improving the success rate of big data projects, our findings enable organizations to create more efficient and impactful data-driven solutions across various sectors. This, in turn, facilitates informed decision-making, effective resource allocation, improved operational efficiency, and overall performance enhancement. Future Research: In the future, gathering additional feedback from a broader range of big data experts will be valuable and help refine the prediction algorithm. Conducting longitudinal studies to analyze the long-term success and outcomes of Big Data projects would be beneficial. Furthermore, exploring the applicability of our model across different regions and industries will provide further insights into the field. Full Article
ine Data Lost, Decisions Made: Teachers in Routine and Emergency Remote Teaching By Published On :: 2024-07-15 Aim/Purpose: This study explored teachers’ data-driven decision-making processes during routine and emergency remote teaching, as experienced during the COVID-19 pandemic. Background: Decision-making is essential in teaching, with informed decisions promoting student learning and teachers’ professional development most effectively. However, obstacles to the use of data have been identified in many studies. Methodology: Using a qualitative methodology (N=20), we studied how teachers make decisions, what data is available, and what data they would like to have to improve their decision-making. We used an inductive approach (bottom-up), utilizing teachers’ statements related to decision-making as the unit of analysis. Contribution: Our findings shed an important light on teachers’ Data-Driven Decision-Making (DDDM), highlighting the differences between routine and Emergency Remote Teaching (ERT). Findings: Overall, we found that teachers make teaching decisions in three main areas: pedagogy, discipline-related issues, and appearance and behavior. They shift between making decisions based on data and making decisions based on intuition. Academic-related decisions are the most prominent in routine teaching, and during ERT, they were almost the only area in which teachers’ decisions were made. Teachers reported collecting data about students’ academic achievements and emotional state and considered the organizational culture, consultation with colleagues, and parents’ involvement before decision-making. Recommendations for Practitioners: Promote a culture of data-driven decision-making across the education system; Make diverse and rich data of different types accessible to teachers; Increase professional and emotional support for teachers. Recommendation for Researchers: Researchers have the potential to expand the scope of this study by conducting research using other methodologies and in different countries. Impact on Society: This study highlights the importance of teachers’ data-driven decision-making in improving teaching practices and promoting students’ achievement. Future Research: Additional research is required to examine data-driven decision-making in diverse circumstances. Full Article
ine Navigating the Future: Exploring AI Adoption in Chinese Higher Education Through the Lens of Diffusion Theory By Published On :: 2024-04-23 Aim/Purpose: This paper aims to investigate and understand the intentions of management undergraduate students in Hangzhou, China, regarding the adoption of Artificial Intelligence (AI) technologies in their education. It addresses the need to explore the factors influencing AI adoption in the educational context and contribute to the ongoing discourse on technology integration in higher education. Background: The paper addresses the problem by conducting a comprehensive investigation into the perceptions of management undergraduate students in Hangzhou, China, regarding the adoption of AI in education. The study explores various factors, including Perceived Relative Advantage and Trialability, to shed light on the nuanced dynamics influencing AI technology adoption in the context of higher education. Methodology: The study employs a quantitative research approach, utilizing the Confirmatory Tetrad Analysis (CTA) and Partial Least Squares Structural Equation Modeling (PLS-SEM) methodologies. The research sample consists of management undergraduate students in Hangzhou, China, and the methods include data screening, principal component analysis, confirmatory tetrad analysis, and evaluation of the measurement and structural models. We used a random sampling method to distribute 420 online, self-administered questionnaires among management students aged 18 to 21 at universities in Hangzhou. Contribution: This paper explores how management students in Hangzhou, China, perceive the adoption of AI in education. It identifies factors that influence AI adoption intention. Furthermore, the study emphasizes the complex nature of technology adoption in the changing educational technology landscape. It offers a thorough comprehension of this process while challenging and expanding the existing literature by revealing the insignificant impacts of certain factors. This highlights the need for an approach to AI integration in education that is context-specific and culturally sensitive. Findings: The study highlights students’ positive attitudes toward integrating AI in educational settings. Perceived relative advantage and trialability were found to impact AI adoption intention significantly. AI adoption is influenced by social and cultural contexts rather than factors like compatibility, complexity, and observability. Peer influence, instructor guidance, and the university environment were identified as pivotal in shaping students’ attitudes toward AI technologies. Recommendations for Practitioners: To promote the use of AI among management students in Hangzhou, practitioners should highlight the benefits and the ease of testing these technologies. It is essential to create communication strategies tailored to the student’s needs, consider cultural differences, and utilize the influence of peers and instructors. Establishing a supportive environment within the university that encourages innovation through policies and regulations is vital. Additionally, it is recommended that students’ attitudes towards AI be monitored constantly, and strategies adjusted accordingly to keep up with the changing technological landscape. Recommendation for Researchers: Researchers should conduct cross-disciplinary and cross-cultural studies with qualitative and longitudinal research designs to understand factors affecting AI adoption in education. It is essential to investigate compatibility, complexity, observability, individual attitudes, prior experience, and the evolving role of peers and instructors. Impact on Society: The study’s insights into the positive attitudes of management students in Hangzhou, China, toward AI adoption in education have broader societal implications. It reflects a readiness for transformative educational experiences in a region known for technological advancements. However, the study also underscores the importance of cautious integration, considering associated risks like data privacy and biases to ensure equitable benefits and uphold educational values. Future Research: Future research should delve into AI adoption in various academic disciplines and regions, employing longitudinal designs and qualitative methods to understand cultural influences and the roles of peers and instructors. Investigating moderating factors influencing specific factors’ relationship with AI adoption intention is essential for a comprehensive understanding. Full Article
ine Decoding YouTube Video Reviews: Uncovering The Factors That Determine Video Review Helpfulness By Published On :: 2024-04-21 Aim/Purpose: This study aims to identify the characteristics of YouTube video reviews that consumers utilize to evaluate review helpfulness and explores how they process such information. This study aims to investigate the effect of argument quality, review popularity, number of likes, and source credibility on consumers’ perception of YouTube’s video review helpfulness. Background: Video reviews posted on YouTube are an emerging form of online reviews, which have the potential to be more helpful than textual reviews due to their visual and audible cues that deliver more vivid information about product features and specifications. With the availability of an enormous number of video reviews with unpredictable quality, it becomes challenging for consumers to find helpful reviews without consuming significant time and effort. In addition, YouTube does not provide a specific feature that indicates a review helpfulness similar to the one found on e-commerce websites. Consequently, consumers have to examine the characteristics of video reviews that are readily available on YouTube, evaluate them, and form a perception of whether a review is helpful or not. Despite the increasing popularity of YouTube’s video reviews, video reviews’ helpfulness received inadequate attention in the literature. The antecedents of the helpfulness of online video reviews are still underinvestigated, and more research is needed to identify the characteristics that consumers depend upon to assess video review helpfulness. Furthermore, it is important to understand how consumers process the information they gain from these characteristics to form a perception of their helpfulness. Methodology: Following an extended investigation of the relevant literature, we identified four key video characteristics that consumers presumably utilize to evaluate review helpfulness on YouTube (i.e., review popularity, number of likes, source credibility, and argument quality). By employing the Elaboration Likelihood Model (ELM), we classified these characteristics along the central and peripheral routes. The central route characteristics require a high cognitive effort by consumers to process the review’s message and reach a logical decision. In contrast, the peripheral route assumes that consumers judge the review’s message based on superficial qualities without substantial cognitive effort. A research model is introduced to investigate the effect of central and peripheral cues and their corresponding video review characteristics on review helpfulness. Accordingly, argument quality is proposed in the central route of the model, while review popularity, number of likes, and source credibility are proposed in the peripheral route. Furthermore, the study investigates how consumers process the information they obtain from these routes jointly or independently. To empirically test the proposed model, a convenient sample of 361 YouTube users was obtained through an online survey. The partial least squares method was used to investigate the effect of the proposed characteristics on video review helpfulness. Contribution: This study contributes to the literature in several ways. First, it is one of the few studies that investigate online video reviews’ helpfulness. Second, this study identifies several unique characteristics of YouTube’s video reviews that span peripheral and central routes, which potentially contribute to review helpfulness. Third, this study proposes a conceptual model based on the ELM to explore the effect of central and peripheral cues and their corresponding review characteristics on review helpfulness. Fourth, the research findings provide implications for research and practice that advance the theoretical understanding of video reviews’ helpfulness and serve as guidelines to create more helpful video reviews by better understanding the consumer’s cognitive processes. Findings: The results show that among the four characteristics proposed in the research model, argument quality in the central route is the strongest determinant factor affecting video review helpfulness. Results also show that review popularity, source credibility, and the number of likes in the peripheral route have significant effects on video review helpfulness. Altogether, our results show that the effect of the peripheral route adds up to 0.463 compared to 0.430, which is the impact magnitude of the argument quality construct in the central route. Based on the comparable effect magnitude of the central and peripheral routes of the model on video review helpfulness, our results indicate that both peripheral and central cues significantly affect consumers’ perception of video review helpfulness. The two routes are not mutually exclusive, and their cues can be processed in parallel or consecutive ways. Recommendations for Practitioners: The study recommends creating a dedicated category for reviews on YouTube with a specific feature for consumers to indicate the helpfulness of a video review, similar to the helpful vote button in textual reviews. The study also recommends that reviewers deliver more appealing and convincing argument quality, work toward improving their credibility, and understand the factors that contribute to video popularity. Impact on Society: Identifying the characteristics that affect video review helpfulness on YouTube helps consumers access helpful reviews more efficiently and improves their purchase decisions. Future Research: Future research could look into different types of data that could be extracted from YouTube to investigate the helpfulness of online video reviews. Future studies could employ machine learning and sentiment analysis techniques to reach more insights. Future research could also investigate the effect of product types in the context of online video reviews. Full Article
ine The Influence of Augmented Reality Face Filter Addiction on Online Social Anxiety: A Stimulus-Organism-Response Perspective By Published On :: 2024-04-18 Aim/Purpose: This study aims to analyze the factors that influence user addiction to AR face filters in social network applications and their impact on the online social anxiety of users in Indonesia. Background: To date, social media users have started to use augmented reality (AR) face filters. However, AR face filters have the potential to create positive and negative effects for social media users. The study combines the Big Five Model (BFM), Sense of Virtual Community (SVOC), and Stimuli, Organism, and Response (SOR) frameworks. We adopted the SOR theory by involving the personality factors and SOVC factors as stimuli, addiction as an organism, and social anxiety as a response. BFM is the most significant theory related to personality. Methodology: We used a quantitative approach for this study by using an online survey. We conducted research on 903 Indonesian respondents who have used an AR face filter feature at least once. The respondents were grouped into three categories: overall, new users, and old users. In this study, group classification was carried out based on the development timeline of the AR face filter in the social network application. This grouping was carried out to facilitate data analysis as well as to determine and compare the different effects of the factors in each group. The data were analyzed using the covariance-based structural equation model through the AMOS 26 program. Contribution: This research fills the gap in previous research which did not discuss much about the impact of addiction in using AR face filters on online social anxiety of users of social network applications. Findings: The results of this study indicated neuroticism, membership, and immersion influence AR face filter addiction in all test groups. In addition, ARA has a significant effect on online social anxiety. Recommendations for Practitioners: The findings are expected to be valuable to social network service providers and AR creators in improving their services and to ensure policies related to the list of AR face filters that are appropriate for use by their users as a form of preventing addictive behavior of that feature. Recommendation for Researchers: This study suggested other researchers consider other negative impacts of AR face filters on aspects such as depression, life satisfaction, and academic performance. Impact on Society: AR face filter users may experience changes in their self-awareness in using face filters and avoid the latter’s negative impacts. Future Research: Future research might explore other impacts from AR face filter addiction behavior, such as depression, life satisfaction, and so on. Apart from that, future research might investigate the positive impact of AR face filters to gain a better understanding of the impact of AR face filters. Full Article
ine Barriers of Agile Requirements Engineering in the Public Sector: A Systematic Literature Review By Published On :: 2024-03-28 Aim/Purpose: The objective of this study is to summarize the challenges of Agile Requirements Engineering (Agile RE) in the public sector in republican and constitutional monarchy nations. Additionally, it offers recommendations to address these challenges. Background: Failure of IT projects in the public sector results in financial losses for the state and loss of public trust, often attributed to issues in requirements engineering such as prioritization of user needs and excessive scope of requirements. IT projects can have a higher success rate with Agile RE, but there are also drawbacks. Therefore, this study holds significance by presenting a thorough framework designed to pinpoint and overcome the challenges associated with Agile RE to increase the success rate of IT projects. Methodology: This study employs a Systematic Literature Review (SLR) protocol in the field of software engineering or related domains, which consists of three main phases: planning the review, conducting the review with a snowballing approach, and reporting the review. Furthermore, the authors perform open coding to categorize challenges based on the Agile methodologies adoption factor model and axial coding to map potential solutions. Contribution: The authors assert that this research enriches the existing literature on Agile RE, specifically within the public sector context, by mapping out challenges and possible solutions that contribute to creating a foundation for future studies to conduct a more in-depth analysis of Agile adoption in the public sector. Furthermore, it compares the barriers of Agile RE in the public sector with the general context, leading to the discovery of new theories specifically for this field. Findings: Most challenges related to Agile RE in the public sector are found in the people and process aspects. Project and organizational-related are subsequent aspects. Therefore, handling people and processes proficiently is imperative within Agile RE to prevent project failure. Recommendations for Practitioners: Our findings offer a comprehensive view of Agile RE in the public sector in republican and constitutional monarchy nations. This study maps the challenges encountered by the public sector and provides potential solutions. The authors encourage practitioners to consider our findings as a foundation for adopting Agile methodology in the public sector. Furthermore, this study can assist practitioners in identifying existing barriers related to Agile RE, pinpointing elements that contribute to overcoming those challenges, and developing strategies based on the specific needs of the organizations. Recommendation for Researchers: Researchers have the potential to expand the scope of this study by conducting research in other countries, especially African countries, as this study has not yet encompassed this geographic region. Additionally, they can strengthen the evidence linking Agile RE challenges to the risk of Agile project failure by performing empirical validation in a specific country. Impact on Society: This research conducts a comprehensive exploration of Agile RE within the public sector, serving as a foundation for the successful adoption of Agile methodology by overcoming obstacles related to Agile RE. This study highlights the importance of managing people, processes, projects, and organizational elements to increase the success of Agile adoption in the public sector. Future Research: In the future, researchers should work towards resolving the limitations identified in this study. This study has not provided a clear prioritization of challenges and solutions according to their significance. Therefore, future researchers can perform a Fuzzy Analytical Hierarchical Process (F-AHP) to prioritize the proposed solutions. Full Article
ine Exploring business students' Perry cognitive development position and implications at teaching universities in the USA By www.inderscience.com Published On :: 2024-03-06T23:20:50-05:00 In the context of US universities where student evaluations of teaching play an important role in the retention and promotion of faculty, it is important to understand what a student expects in the classroom. This study took the perspective of Perry's cognitive development scheme with the following research question: what is the Perry level of cognitive development of business students? An established survey was used at two different universities. It was found that the median was position 3, and that there was large variation in three dimensions. First is the variation across program levels. Second, there was variation across universities. This becomes an issue when instructors move to a different university and questions the possibility to transfer 'best practices'. Third, variation was found within a specific program level. This means that instructors are faced with students who, from a cognitive perspective, have different demands which are unlikely to be simultaneously met. Full Article
ine Data as a potential path for the automotive aftersales business to remain active through and after the decarbonisation By www.inderscience.com Published On :: 2024-04-30T23:20:50-05:00 This study aims to identify and understand the perspectives of automotive aftersales stakeholders regarding current challenges posed by decarbonisation strategies. It examines potential responses that the automotive aftersales business could undertake to address these challenges. Semi-structured interviews were undertaken with automotive industry experts from Europe and Latin America. This paper focuses primarily on impacts of decarbonisation upon automotive aftersales and the potential role of data in that business. Results show that investment in technology will be a condition for businesses that want to remain active in the industry. Furthermore, experts agree that incumbent manufacturers are not filling the technology gap that the energy transition is creating in the automotive sector, a consequence of which will be the entrance of new players from other sectors. The current aftersales businesses will potentially lose bargaining control. Moreover, policy makers are seen as unreliable leaders of the transition agenda. Full Article