ba

Research on construction of police online teaching platform based on blockchain and IPFS technology

Under the current framework of police online teaching, in order to effectively solve the lack of high-quality resources of the traditional platform, backward sharing technology, poor performance of the digital platform and the privacy problems faced by each subject in sharing. This paper designs and implements the online teaching platform based on blockchain and interplanetary file system (IPFS). Based on the architecture of a 'decentralised' police online teaching platform, the platform uses blockchain to store hashes of encrypted private information and user-set access control policies, while the real private information is stored in IPFS after encryption. In the realisation of privacy information security storage at the same time to ensure the effective control of the user's own information. In order to achieve flexible rights management, the system classifies private information. In addition, the difficulties of police online teaching and training reform in the era of big data are solved one by one from the aspects of communication mode, storage facilities, incentive mechanism and confidentiality system, which effectively improves the stability and security of police online teaching.




ba

Quantitative evaluation method of ideological and political teaching achievements based on collaborative filtering algorithm

In order to overcome the problems of large error, low evaluation accuracy and long evaluation time in traditional evaluation methods of ideological and political education, this paper designs a quantitative evaluation method of ideological and political education achievements based on collaborative filtering algorithm. First, the evaluation index system is constructed to divide the teaching achievement evaluation index data in a small scale; then, the quantised dataset is determined and the quantised index weight is calculated; finally, the collaborative filtering algorithm is used to generate a set with high similarity, construct a target index recommendation list, construct a quantitative evaluation function and solve the function value to complete the quantitative evaluation of teaching achievements. The results show that the evaluation error of this method is only 1.75%, the accuracy can reach 98%, and the time consumption is only 2.0 s, which shows that this method can improve the quantitative evaluation effect.




ba

The performance evaluation of teaching reform based on hierarchical multi-task deep learning

The research goal is to solve the problems of low accuracy and long time existing in traditional teaching reform performance evaluation methods, a performance evaluation method of teaching reform based on hierarchical multi-task deep learning is proposed. Under the principle of constructing the evaluation index system, the evaluation indicator system should be constructed. The weight of the evaluation index is calculated through the analytic hierarchy process, and the calculation result of the evaluation weight is taken as the model input sample. A hierarchical multi-task deep learning model for teaching reform performance evaluation is built, and the final teaching reform performance score is obtained. Through relevant experiments, it is proved that compared with the experimental comparison method, this method has the advantages of high evaluation accuracy and short time, and can be further applied in relevant fields.




ba

A risk identification method for abnormal accounting data based on weighted random forest

In order to improve the identification accuracy, accuracy and time-consuming of traditional financial risk identification methods, this paper proposes a risk identification method for financial abnormal data based on weighted random forest. Firstly, SMOTE algorithm is used to collect abnormal financial data; secondly, the original accounting data is decomposed into features, and the features of abnormal data are extracted through random forests; then, the index weight is calculated according to the entropy weight method; finally, the negative gradient fitting is used to determine the loss function, and the weighted random forest method is used to solve the loss function value, and the recognition result is obtained. The results show that the identification accuracy of this method can reach 99.9%, the accuracy rate can reach 96.06%, and the time consumption is only 6.8 seconds, indicating that the risk identification effect of this method is good.




ba

Research on evaluation method of e-commerce platform customer relationship based on decision tree algorithm

In order to overcome the problems of poor evaluation accuracy and long evaluation time in traditional customer relationship evaluation methods, this study proposes a new customer relationship evaluation method for e-commerce platform based on decision tree algorithm. Firstly, analyse the connotation and characteristics of customer relationship; secondly, the importance of customer relationship in e-commerce platform is determined by using decision tree algorithm by selecting and dividing attributes according to the information gain results. Finally, the decision tree algorithm is used to design the classifier, the weighted sampling method is used to obtain the training samples of the base classifier, and the multi-period excess income method is used to construct the customer relationship evaluation function to achieve customer relationship evaluation. The experimental results show that the accuracy of the customer relationship evaluation results of this method is 99.8%, and the evaluation time is only 51 minutes.




ba

Online allocation of teaching resources for ideological and political courses in colleges and universities based on differential search algorithm

In order to improve the classification accuracy and online allocation accuracy of teaching resources and shorten the allocation time, this paper proposes a new online allocation method of college ideological and political curriculum teaching resources based on differential search algorithm. Firstly, the feedback parameter model of teaching resources cleaning is constructed to complete the cleaning of teaching resources. Secondly, according to the results of anti-interference consideration, the linear feature extraction of ideological and political curriculum teaching resources is carried out. Finally, the online allocation objective function of teaching resources for ideological and political courses is constructed, and the differential search algorithm is used to optimise the objective function to complete the online allocation of resources. The experimental results show that this method can accurately classify the teaching resources of ideological and political courses, and can shorten the allocation time, with the highest allocation accuracy of 97%.




ba

Evaluation method of cross-border e-commerce supply chain innovation mode based on blockchain technology

In view of the low evaluation accuracy of the effectiveness of cross-border e-commerce supply chain innovation model and the low correlation coefficient of innovation model influencing factors, the evaluation method of cross-border e-commerce supply chain innovation model based on blockchain technology is studied. First, analyse the operation mode of cross-border e-commerce supply chain, and determine the key factors affecting the innovation mode; Then, the comprehensive integration weighting method is used to analyse the factors affecting innovation and calculate the weight value; Finally, the blockchain technology is introduced to build an evaluation model for the supply chain innovation model and realise the evaluation of the cross-border e-commerce supply chain innovation model. The experimental results show that the evaluation accuracy of the proposed method is high, and the highest correlation coefficient of the influencing factors of innovation mode is about 0.99, which is feasible.




ba

Risk assessment method of power grid construction project investment based on grey relational analysis

In view of the problems of low accuracy, long time consuming and low efficiency of the existing engineering investment risk assessment method; this paper puts forward the investment risk assessment method of power grid construction project based on grey correlation analysis. Firstly, classify the risks of power grid construction project; secondly, determine the primary index and secondary index of investment risk assessment of power grid construction project; then construct the correlation coefficient matrix of power grid project investment risk to calculate the correlation degree and weight of investment risk index; finally, adopt the grey correlation analysis method to construct investment risk assessment function to realise investment risk assessment. The experimental results show that the average accuracy of evaluating the investment risk of power grid construction projects using the method is 95.08%, and the maximum time consuming is 49 s, which proves that the method has high accuracy, short time consuming and high evaluation efficiency.




ba

Student's classroom behaviour recognition method based on abstract hidden Markov model

In order to improve the standardisation of mutual information index, accuracy rate and recall rate of student classroom behaviour recognition method, this paper proposes a student's classroom behaviour recognition method based on abstract hidden Markov model (HMM). After cleaning the students' classroom behaviour data, improve the data quality through interpolation and standardisation, and then divide the types of students' classroom behaviour. Then, in support vector machine, abstract HMM is used to calculate the output probability density of support vector machine. Finally, according to the characteristic interval of classroom behaviour, we can judge the category of behaviour characteristics. The experiment shows that normalised mutual information (NMI) index of this method is closer to one, and the maximum AUC-PR index can reach 0.82, which shows that this method can identify students' classroom behaviour more effectively and reliably.




ba

A data mining method based on label mapping for long-term and short-term browsing behaviour of network users

In order to improve the speedup and recognition accuracy of the recognition process, this paper designs a data mining method based on label mapping for long-term and short-term browsing behaviour of network users. First, after removing the noise information in the behaviour sequence, calculate the similarity of behaviour characteristics. Then, multi-source behaviour data is mapped to the same dimension, and a behaviour label mapping layer and a behaviour data mining layer are established. Finally, the similarity of the tag matrix is calculated based on the similarity calculation results, and the mining results are output using SVM binary classification process. Experimental results show that the acceleration ratio of this method exceeds 0.9; area under curve receiver operating characteristic curve (AUC-ROC) value increases rapidly in a short time, and the maximum value can reach 0.95, indicating that the mining precision of this method is high.




ba

Research on fast mining of enterprise marketing investment databased on improved association rules

Because of the problems of low mining precision and slow mining speed in traditional enterprise marketing investment data mining methods, a fast mining method for enterprise marketing investment databased on improved association rules is proposed. First, the enterprise marketing investment data is collected through the crawler framework, and then the collected data is cleaned. Then, the cleaned data features are extracted, and the correlation degree between features is calculated. Finally, according to the calculation results, all data items are used as constraints to reduce the number of frequent itemsets. A pruning strategy is designed in advance. Combined with the constraints, the Apriori algorithm of association rules is improved, and the improved algorithm is used to calculate all frequent itemsets, Obtain fast mining results of enterprise marketing investment data. The experimental results show that the proposed method is fast and accurate in data mining of enterprise marketing investment.




ba

An evaluation of customer trust in e-commerce market based on entropy weight analytic hierarchy process

In order to solve the problems of large generalisation error, low recall rate and low retrieval accuracy of customer evaluation information in traditional trust evaluation methods, an evaluation method of customer trust in e-commerce market based on entropy weight analytic hierarchy process was designed. Firstly, build an evaluation index system of customer trust in e-commerce market. Secondly, the customer trust matrix is established, and the index weight is calculated by using the analytic hierarchy process and entropy weight method. Finally, five-scale Likert method is used to analyse the indicator factors and establish a comment set, and the trust evaluation value is obtained by combining the indicator membership. The experiment shows that the maximum generalisation error of this method is only 0.029, the recall rate is 97.5%, and the retrieval accuracy of customer evaluation information is closer to 1.




ba

Kindura: Repository services for researchers based on hybrid clouds

The paper describes the investigations and outcomes of the JISC-funded Kindura project, which is piloting the use of hybrid cloud infrastructure to provide repository-focused services to researchers. The hybrid cloud services integrate external commercial cloud services with internal IT infrastructure, which has been adapted to provide cloud-like interfaces. The system provides services to manage and process research outputs, primarily focusing on research data. These services include both repository services, based on use of the Fedora Commons repository, as well as common services such as preservation operations that are provided by cloud compute services. Kindura is piloting the use of the DuraCloud2, open source software developed by DuraSpace, to provide a common interface to interact with cloud storage and compute providers. A storage broker integrates with DuraCloud to optimise the usage of available resources, taking into account such factors as cost, reliability, security and performance. The development is focused on the requirements of target groups of researchers.




ba

The role of shopping apps and their impact on the online purchasing behaviour patterns of working women in Bangalore

The study aims to analyse the impact of shopping applications on the shopping behaviour of the working women community in Bangalore, a city known as the IT hub. The research uses a quantitative analysis with SPSS version 23 software and a structured questionnaire survey technique to gather data from the working women community. The study uses descriptive statistics, ANOVA, regression, and Pearson correlation analysis to evaluate the perception of working women regarding the significance of online shopping applications. The results show that digital shopping applications are more prevalent among the working women community in Bangalore. The study also evaluates the socio-economic and psychological factors that influence their purchasing behaviour. The findings suggest that online marketers should enhance their strategies to improve their business on digital platforms. The research provides valuable insights into the shopping habits of the working women community in Bangalore.




ba

Returning the ‘I’ in the ‘IT’ Education of MScIS/MBA Professionals




ba

Higher Education Course Content: Paper-Based, Online or Hybrid Course Delivery?




ba

A Data Model Validation Approach for Relational Database Design Courses




ba

Restructuring an Undergraduate Database Management Course for Business Students




ba

Project-Based Learning in Online Postgraduate Education




ba

Web Based vs. Web Supported Learning Environment – A Distinction of Course Organizing or Learning Style?




ba

Online Handwritten Character Recognition Using an Optical Backpropagation Neural Network




ba

The Performance of Web-based 2-tier Middleware Systems




ba

Sarbanes-Oxley Act of 2002 and IT Education




ba

Design, Development and Deployment Considerations when Applying Native XML Database Technology to the Programme Management Function of an SME




ba

Resistance to Electronic Medical Records (EMRs): A Barrier to Improved Quality of Care




ba

An Overview: Approaches for the Development of Basic IT Skills




ba

Exploring the Key Informational, Ethical and Legal Concerns to the Development of Population Genomic Databases for Pharmacogenomic Research




ba

Time and the Design of Web-Based Learning Environments




ba

Formative Assessment Visual Feedback in Computer Graded Essays




ba

Quality of Informing: Bias and Disinformation Philosophical Background and Roots




ba

Integrating Industrial Practices in Software Development through Scenario-Based Design of PBL Activities: A Pedagogical Re-Organization Perspective




ba

Concept and Rule Based Naming System




ba

Oracle Database Workload Performance Measurement and Tuning Toolkit




ba

Getting Practical With Learning Styles In “Live” and Computer-based Training Settings 




ba

Reflecting on an Adventure-Based Data Communications Assignment: The ‘Cryptic Quest’ 




ba

Adding a new Language to VB .NET Globalization: Making the Case for the Kurdish Languages




ba

Performance Modeling of UDP Over IP-Based Wireline and Wireless Networks




ba

A Multi-Criteria Based Approach to Prototyping Urban Road Networks




ba

Project Based Learning and Learning Environments




ba

Using an Outcome-Based Information Technology Curriculum and an E-Learning Platform to Facilitate Student Learning




ba

It is Time to Add Kurdish Culture to VS .NET Globalization




ba

SMS Banking Services: A 21st Century Innovation in Banking Technology




ba

Is There a Value Paradox of E-learning in MBA Programs?




ba

An Information System for a Bauxite Mine




ba

Object-Oriented Hypermedia Design and J2EE Technology for Web-based Applications




ba

IS Strategic Decision-Making: A Garbage Can View




ba

The Effect of Student Background in E-Learning — Longitudinal Study




ba

A Framework for Information Security Management Based on Guiding Standards: A United States Perspective




ba

SMS Based Wireless Home Appliance Control System (HACS) for Automating Appliances and Security




ba

Evaluation of a Suite of Metrics for Component Based Software Engineering (CBSE)