ea

How Early Career Family Medicine Women Physicians Negotiate Their First Job After Residency

Background:

Nested within a growing body of evidence of a gender pay gap in medicine are more alarming recent findings from family medicine: a gender pay gap of 16% can be detected at a very early career stage. This article explores qualitative evidence of women’s experiences negotiating for their first job out of residency to ascertain women’s engagement with and approach to the negotiation process.

Methods:

We recruited family physicians who graduated residency in 2019 and responded to the American Board of Family Medicine 2022 graduate survey. We developed a semistructured interview guide following a modified life history approach to uncover women’s experiences through the transitory stages from residency to workforce. A qualitative researcher used Zoom to interview 19 geographically and racially diverse early career women physicians. Interviews were transcribed verbatim and analyzed using NVivo software following an Inductive Content Analysis approach.

Results:

Three main themes emerged from the data. First, salary was found to be nonnegotiable, exemplified by participants’ inability to change initial salary offers. Second, the role of peer support throughout residency and early career was crucial to uncovering and rectifying salary inequity. Third, a pay expectation gap was identified among women from minority and low-income households.

Conclusion:

To rectify the gender pay gap in medicine, a systems-level approach is required. This can be achieved through various levels of interventions: societally expanding the use of and removing the stigma around parental leave, recognizing the importance of contributions not currently valued by productivity-based payment models, examining assumptions about leadership; and institutionally moving away from fee-for-service systems, encouraging flexible schedules, increasing salary transparency, and improving advancement transparency.




ea

Colorectal Cancer Screening: A Multicomponent Intervention to Increase Uptake in Patients Aged 45-49

Purpose:

Colorectal cancer (CRC) screening is recommended starting at age 45, but there has been little research on strategies to promote screening among patients younger than 50. This study assessed the effect of a multicomponent intervention on screening completion in this age group.

Methods:

The intervention consisted of outreach to patients aged 45 to 49 (n = 3,873) via mailed fecal immunochemical test (FIT) (sent to 46%), text (84%), e-mail (53%), and the extension to this age group of an existing standing order protocol allowing primary care nurses and medical assistants to order FIT at primary care clinics in an urban safety-net system. We used segmented linear regression to assess changes in CRC screening completion trends. Patients aged 51 to 55 were included as a comparison group (n = 3,943). Data were extracted from the EHR.

Results:

The percentage of patients aged 45 to 49 who were up-to-date with CRC screening (colonoscopy in 10 years or FIT in last year) increased an average of 0.4% (95% CI 0.3, 0.6)) every 30 days before intervention rollout and 2.8% (95% CI 2.5, 3.1) after (slope difference 2.3% [95% CI 2.0, 2.7]). This difference persisted after accounting for small changes in the outcome observed in the comparison group (slope difference 1.7% [95% CI 1.2, 2.2]).

Conclusions:

These results suggest that the intervention increased CRC screening completion among patients 45 to 49. Health care systems seeking to improve CRC screening participation among patients aged 45 to 49 should consider implementing similar interventions.




ea

Associations Between Patient/Caregiver Trust in Clinicians and Experiences of Healthcare-Based Discrimination

Background:

Higher trust in healthcare providers has been linked to better health outcomes and satisfaction. Lower trust has been associated with healthcare-based discrimination.

Objective:

Examine associations between experiences of healthcare discrimination and patients’ and caregivers of pediatric patients’ trust in providers, and identify factors associated with high trust, including prior experience of healthcare-based social screening.

Methods:

Secondary analysis of cross-sectional study using logistic regression modeling. Sample consisted of adult patients and caregivers of pediatric patients from 11 US primary care/emergency department sites.

Results:

Of 1,012 participants, low/medium trust was reported by 26% identifying as non-Hispanic Black, 23% Hispanic, 18% non-Hispanic multiple/other race, and 13% non-Hispanic White (P = .001). Experience of any healthcare-based discrimination was reported by 32% identifying as non-Hispanic Black, 23% Hispanic, 39% non-Hispanic multiple/other race, and 26% non-Hispanic White (P = .012). Participants reporting low/medium trust had a mean discrimination score of 1.65/7 versus 0.57/7 for participants reporting high trust (P < .001). In our adjusted model, higher discrimination scores were associated with lower trust in providers (aOR 0.74, 95%CI = 0.64, 0.85). A significant interaction indicated that prior healthcare-based social screening was associated with reduced impact of discrimination on trust: as discrimination score increased, odds of high trust were greater among participants who had been screened (aOR = 1.28, 95%CI = 1.03, 1.58).

Conclusions:

Patients and caregivers reporting more healthcare-based discrimination were less likely to report high provider trust. Interventions to strengthen trust need structural antiracist components. Increased rapport with patients may be a potential by-product of social screening. Further research is needed on screening and trust.




ea

Using Primary Health Care Electronic Medical Records to Predict Hospitalizations, Emergency Department Visits, and Mortality: A Systematic Review

Introduction:

High-quality primary care can reduce avoidable emergency department visits and emergency hospitalizations. The availability of electronic medical record (EMR) data and capacities for data storage and processing have created opportunities for predictive analytics. This systematic review examines studies which predict emergency department visits, hospitalizations, and mortality using EMR data from primary care.

Methods:

Six databases (Ovid MEDLINE, PubMed, Embase, EBM Reviews (Cochrane Database of Systematic Reviews, Database of Abstracts of Reviews of Effects, Cochrane Central Register of Controlled Trials, Cochrane Methodology Register, Health Technology Assessment, NHS Economic Evaluation Database), Scopus, CINAHL) were searched to identify primary peer-reviewed studies in English from inception to February 5, 2020. The search was initially conducted on January 18, 2019, and updated on February 5, 2020.

Results:

A total of 9456 citations were double-reviewed, and 31 studies met the inclusion criteria. The predictive ability measured by C-statistics (ROC) of the best performing models from each study ranged from 0.57 to 0.95. Less than half of the included studies used artificial intelligence methods and only 7 (23%) were externally validated. Age, medical diagnoses, sex, medication use, and prior health service use were the most common predictor variables. Few studies discussed or examined the clinical utility of models.

Conclusions:

This review helps address critical gaps in the literature regarding the potential of primary care EMR data. Despite further work required to address bias and improve the quality and reporting of prediction models, the use of primary care EMR data for predictive analytics holds promise.




ea

Physician Satisfaction Should Be the Measure of Electronic Health Record Quality for the Nation




ea

Supporting Evidence For Pulmonary Rehabilitation in the Treatment of Long COVID




ea

Downstream Effects of Market Changes on Inhalers: Impacts on Individuals With Chronic Lung Disease

COPD and asthma are two of the most common chronic lung diseases, affecting over 545 million people globally and 34 million in the United States. Annual health care costs related to chronic lung disease are estimated at €380 billion in the European Union, and $24–$50 billion in the United States averaging to $4,000 in out-of-pocket costs per person in the U.S. A full-text literature search was conducted for English publications between January 1, 2005–March 18, 2024. It returned over 5,000 publications that were further narrowed using key search words, resulting in 172 peer-reviewed articles. Using their experience and subject expertise, the authors further narrowed the peer-reviewed articles to 55 that were in their opinion relevant. Also, 38 recently published industry reports and news articles specific to downstream effects of inhaler market changes and the future impact were included. The literature suggests that individuals with chronic lung disease face increased challenges with access to inhaled medication due to rising medication costs, discontinuation of branded medications, introduction of generic medications not covered by insurance, exclusionary preferred drug list tactics that force health care providers into non-medical switching of medication or devices, and ongoing medication shortages. Providers experience ongoing hurdles in prescribing appropriate inhaled medications for individuals with chronic lung disease, including increased time and costs spent on administrative tasks due to inhaler denials, a loss of patient trust, and limits on their ability to prescribe appropriate inhaled medication for individuals with chronic lung disease.




ea

The Impact of Opioid Prescription on the Occurrence and Outcome of Pneumonia: A Nationwide Cohort Study in South Korea

BACKGROUND:Opioids are known to cause respiratory depression, aspiration, and to suppress the immune system. This study aimed to investigate the relationship between short- and long-term opioid use and the occurrence and clinical outcomes of pneumonia in South Korea.METHODS:The data for this population-based retrospective cohort analysis were obtained from the South Korean National Health Insurance Service. The opioid user group consisted of those prescribed opioids in 2016, while the non-user group, who did not receive opioid prescriptions that year, was selected using a 1:1 stratified random sampling method. The opioid users were categorized into short-term (1–89 d) and long-term (≥90 d) users. The primary end point was pneumonia incidence from January 1, 2017–December 31, 2021, with secondary end points including pneumonia-related hospitalizations and mortality rates during the study period.RESULTS:In total, 4,556,606 adults were enrolled (opioid group, 2,070,039). Opioid users had a 3% higher risk of pneumonia and an 11% higher risk of pneumonia requiring hospitalization compared to non-users. Short-term users had a 3% higher risk of pneumonia, and long-term users had a 4% higher risk compared to non-users (P < .001). Additionally, short-term users had an 8% higher risk of hospital-treated pneumonia, and long-term users had a 17% higher risk compared to non-users (P < .001).CONCLUSIONS:Both short- and long-term opioid prescriptions were associated with higher incidences of pneumonia and hospital-treated pneumonia. In addition, long-term opioid prescriptions were linked to higher mortality rates due to pneumonia.




ea

The Impact of Increased PEEP on Hemodynamics, Respiratory Mechanics, and Oxygenation in Pediatric ARDS

BACKGROUND:PEEP is a cornerstone treatment for children with pediatric ARDS. Unfortunately, its titration is often performed solely by evaluating oxygen saturation, which can lead to inadequate PEEP level settings and consequent adverse effects. This study aimed to assess the impact of increasing PEEP on hemodynamics, respiratory system mechanics, and oxygenation in children with ARDS.METHODS:Children receiving mechanical ventilation and on pressure-controlled volume-guaranteed mode were prospectively assessed for inclusion. PEEP was sequentially changed to 5, 12, 10, 8 cm H2O, and again to 5 cm H2O. After 10 min at each PEEP level, hemodynamic, ventilatory, and oxygenation variables were collected.RESULTS:A total of 31 subjects were included, with median age and weight of 6 months and 6.3 kg, respectively. The main reasons for pediatric ICU admission were respiratory failure caused by acute viral bronchiolitis (45%) and community-acquired pneumonia (32%). Most subjects had mild or moderate ARDS (45% and 42%, respectively), with a median (interquartile range) oxygenation index of 8.4 (5.8–12.7). Oxygen saturation improved significantly when PEEP was increased. However, although no significant changes in blood pressure were observed, the median cardiac index at PEEP of 12 cm H2O was significantly lower than that observed at any other PEEP level (P = .001). Fourteen participants (45%) experienced a reduction in cardiac index of > 10% when PEEP was increased to 12 cm H2O. Also, the estimated oxygen delivery was significantly lower, at 12 cm H2O PEEP. Finally, respiratory system compliance significantly reduced when PEEP was increased. At a PEEP of 12 cm H2O, static compliance had a median reduction of 25% in relation to the initial assessment (PEEP of 5 cm H2O).CONCLUSIONS:Although it may improve arterial oxygen saturation, inappropriately high PEEP levels may reduce cardiac output, oxygen delivery, and respiratory system compliance in pediatric subjects with ARDS with low potential for lung recruitability.




ea

Feasibility of Delivering 5-Day Normobaric Hypoxia Breathing in a Hospital Setting

BACKGROUND:Beneficial effects of breathing at FIO2 < 0.21 on disease outcomes have been reported in previous preclinical and clinical studies. However, the safety and intra-hospital feasibility of breathing hypoxic gas for 5 d have not been established. In this study, we examined the physiologic effects of breathing a gas mixture with FIO2 as low as 0.11 in 5 healthy volunteers.METHODS:All 5 subjects completed the study, spending 5 consecutive days in a hypoxic tent, where the ambient oxygen level was lowered in a stepwise manner over 5 d, from FIO2 of 0.16 on the first day to FIO2 of 0.11 on the fifth day of the study. All the subjects returned to an environment at room air on the sixth day. The subjects' SpO2, heart rate, and breathing frequency were continuously recorded, along with daily blood sampling, neurologic evaluations, transthoracic echocardiography, and mental status assessments.RESULTS:Breathing hypoxia concentration dependently caused profound physiologic changes, including decreased SpO2 and increased heart rate. At FIO2 of 0.14, the mean SpO2 was 92%; at FIO2 of 0.13, the mean SpO2 was 93%; at FIO2 of 0.12, the mean SpO2 was 88%; at FIO2 of 0.11, the mean SpO2 was 85%; and, finally, at an FIO2 of 0.21, the mean SpO2 was 98%. These changes were accompanied by increased erythropoietin levels and reticulocyte counts in blood. All 5 subjects concluded the study with no adverse events. No subjects exhibited signs of mental status changes or pulmonary hypertension.CONCLUSIONS:Results of the current physiologic study suggests that, within a hospital setting, delivering FIO2 as low as 0.11 is feasible and safe in healthy subjects, and provides the foundation for future studies in which therapeutic effects of hypoxia breathing are tested.




ea

An Introductory Guide to Survey Research

In the dental hygiene discipline, evidence-based practice serves as a cornerstone for delivering high quality patient care and moving professional standards forward. As practitioners delve deeper into research to inform clinical decision making, the integration of robust survey methodologies becomes imperative. However, the complexities of survey design, implementation, and analysis pose notable challenges, particularly in ensuring the reliability and validity of research outcomes. This short report provides brief practical guidance about the basics of survey research methodologies for dental hygiene professionals.




ea

Effects of Ultrasonic Use on Hearing Loss in Dental Hygienists: A matched pairs design study

Purpose Dental professionals are exposed to hazardous noise levels on a daily basis in clinical practice. The purpose of this study was to compare the hearing status of dental hygienists who utilize ultrasonic scalers in the workplace compared to age-matched control participants (non-dental hygienists) who were not exposed to ultrasonic noise.Methods A convenience sample of nineteen dental hygienists (experimental) and nineteen non-dental hygienists (control) was recruited for this study. A matched pairs design was utilized; participants in each group were matched based on age and gender to eliminate confounding variables. The testing procedure consisted of an audiologist performing a series of auditory tests including otoacoustic emissions test, pure-tone audiometry, and tympanometry on the experimental and control groups.Results In the right ear, there were notable differences from 1000 Hz – 10,000 Hz and in the left ear from 6000 Hz – 10,000 Hz, with higher hearing thresholds in the experimental group of dental hygienists. While 56% of the univariate tests conducted on how many days were worked per week showed statistical significance, the regression line slope indicated those that worked more days had better hearing statuses. The variables for years in practice for dental hygienists, how many of those years were full-time employment, and how many years the dental hygienist had used an ultrasonic scaling device, also had many significant univariate tests for the experimental group only. These variables were more likely to serve as proxies representing true noise exposure. The paired t-test between the groups demonstrated statistically significant differences between the experimental and control group at 9000 Hz in both ears.Conclusion While results from this study demonstrated various qualitative differences in hearing status of the control group (non-dental hygienists) and experimental group (dental hygienists), age was found to be the most critical variable. Furthermore, this data demonstrated differences in hearing status based on various frequencies between dental hygienists and age-matched controls that should be further explored with a larger population.




ea

A Review of Artificial Intelligence and Machine Learning in Product Life Cycle Management

The pursuit of harnessing data for knowledge creation has been an enduring quest, with the advent of machine learning (ML) and artificial intelligence (AI) marking significant milestones in this journey. ML, a subset of AI, emerged as the practice of employing mathematical models to enable computers to learn and improve autonomously based on their experiences. In the pharmaceutical and biopharmaceutical sectors, a significant portion of manufacturing data remains untapped or insufficient for practical use. Recognizing the potential advantages of leveraging the available data for process design and optimization, manufacturers face the daunting challenge of data utilization. Diverse proprietary data formats and parallel data generation systems compound the complexity. The transition to Pharma 4.0 necessitates a paradigm shift in data capture, storage, and accessibility for manufacturing and process operations. This paper highlights the pivotal role of AI in converting process data into actionable knowledge to support critical functions throughout the whole product life cycle. Furthermore, it underscores the importance of maintaining compliance with data integrity guidelines, as mandated by regulatory bodies globally. Embracing AI-driven transformations is a crucial step toward shaping the future of the pharmaceutical industry, ensuring its competitiveness and resilience in an evolving landscape.




ea

Impact of Dimensional Variability of Primary Packaging Materials on the Break-Loose and Gliding Forces of Prefilled Syringes

A prefilled syringe (PFS) should be able to be adequately and consistently extruded during injection for optimal safe drug delivery and accurate dosing. To facilitate appropriate break-loose and gliding forces (BLGFs) required during injection, certain primary packaging materials (PPMs) such as the syringe barrel and plunger are usually coated with silicone oil, which acts as a lubricant. Due to its direct contact with drug, silicone oil can increase the number of particles in the syringe, which could lead to adverse interactions. Compliance with regulatory-defined silicone oil quantities in certain drug products, such as ophthalmics, presents a trade-off with the necessity for desirable low and consistent BLGF. In addition to its siliconization, the dimensional accuracy of the PPM has an important role in controlling the BLGF. The dimensions of the PPM are individualized depending on the product and its design and have certain tolerances that must be met during manufacturing. Most studies on ophthalmics focused on the adverse interactions between silicone oil and the drug. To the authors' knowledge, there have been no public studies so far that have investigated the impact of the dimensional variability of the PPM on the BLGF in ophthalmic PFSs. In this study, we applied advanced optical shaft and tactile measuring technologies to investigate this impact. The syringes investigated were first sampled during aseptic production and tested for the BLGF. Subsequently, defined dimensions of the PPM were measured individually. The results showed that the dimensional variability of the PPM can have a negative impact on the BLGF, despite their conformity to specifications, which indicates that the currently available market quality of PPMs is improvable for critical drug products such as ophthalmics. This study could serve as an approach to define product-specific requirements for primary packaging combinations and thus appropriate specifications based on data during the development stage of drug products.




ea

Degradation of Obidoxime Chloride Solution for Injection upon Long-Term Storage under Field Conditions of Mediterranean Climate vs the Controlled Environment

Obidoxime chloride is an antidote for nerve gas intoxication. As an emergency medicine, it is being stored by the Israel Defense Forces (IDF) scattered throughout Israel in depots without a controlled environment (field conditions), thus being exposed to high and fluctuating temperatures. These conditions do not meet the manufacturer’s requirements. In addition, due to possible supply shortages, the utilization of expired batches was suggested. The current work investigated these matters. Long-term (15 years) storage under different conditions was initiated. Chemical stability and toxicity in rats were assessed. No difference was found between field conditions vs the controlled environment. The obidoxime assay remained >95% for 5 years and >90% for 7 years. The pH remained above the lower specification limit for 7–8 years. The major degradation product, 4-pyridinealdoxime, surpassed the allowed limit at 5 years. The content of total unknown impurities reached its maximum allowed by the IDF limit at 4–5 years. Threefold higher than clinically utilized doses of valid-to-date Toxogonin batches administered to rats did not cause any abnormality. However, expired batches produced significant toxic effects. Although no difference was found between storage of obidoxime ampoules when adhering to manufacturer’s recommendations vs field conditions, accumulation of degradants over the limit allowed by the IDF at 4–5 years of storage and the toxicity of the expired batches observed in rats led the IDF to a decision to shorten the shelf-life of this product from 5 to 4 years when stored in an uncontrolled environment of the Mediterranean climate.




ea

NEAT1 promotes genome stability via m6A methylation-dependent regulation of CHD4 [Research Papers]

Long noncoding (lnc)RNAs emerge as regulators of genome stability. The nuclear-enriched abundant transcript 1 (NEAT1) is overexpressed in many tumors and is responsive to genotoxic stress. However, the mechanism that links NEAT1 to DNA damage response (DDR) is unclear. Here, we investigate the expression, modification, localization, and structure of NEAT1 in response to DNA double-strand breaks (DSBs). DNA damage increases the levels and N6-methyladenosine (m6A) marks on NEAT1, which promotes alterations in NEAT1 structure, accumulation of hypermethylated NEAT1 at promoter-associated DSBs, and DSB signaling. The depletion of NEAT1 impairs DSB focus formation and elevates DNA damage. The genome-protective role of NEAT1 is mediated by the RNA methyltransferase 3 (METTL3) and involves the release of the chromodomain helicase DNA binding protein 4 (CHD4) from NEAT1 to fine-tune histone acetylation at DSBs. Our data suggest a direct role for NEAT1 in DDR.




ea

YY1 knockout in pro-B cells impairs lineage commitment, enabling unusual hematopoietic lineage plasticity [Research Papers]

During B-cell development, cells progress through multiple developmental stages, with the pro-B-cell stage defining commitment to the B-cell lineage. YY1 is a ubiquitous transcription factor that is capable of both activation and repression functions. We found here that knockout of YY1 at the pro-B-cell stage eliminates B lineage commitment. YY1 knockout pro-B cells can generate T lineage cells in vitro using the OP9-DL4 feeder system and in vivo after injection into sublethally irradiated Rag1–/– mice. These T lineage-like cells lose their B lineage transcript profile and gain a T-cell lineage profile. Single-cell RNA-seq experiments showed that as YY1 knockout pro-B cells transition into T lineage cells in vitro, various cell clusters adopt transcript profiles representing a multiplicity of hematopoietic lineages, indicating unusual lineage plasticity. In addition, YY1 KO pro-B cells in vivo can give rise to other hematopoietic lineages in vivo. Evaluation of RNA-seq, scRNA-seq, ChIP-seq, and scATAC-seq data indicates that YY1 controls numerous chromatin-modifying proteins leading to increased accessibility of alternative lineage genes in YY1 knockout pro-B cells. Given the ubiquitous nature of YY1 and its dual activation and repression functions, YY1 may regulate commitment in multiple cell lineages.




ea

A germline PAF1 paralog complex ensures cell type-specific gene expression [Research Papers]

Animal germline development and fertility rely on paralogs of general transcription factors that recruit RNA polymerase II to ensure cell type-specific gene expression. It remains unclear whether gene expression processes downstream from such paralog-based transcription is distinct from that of canonical RNA polymerase II genes. In Drosophila, the testis-specific TBP-associated factors (tTAFs) activate over a thousand spermatocyte-specific gene promoters to enable meiosis and germ cell differentiation. Here, we show that efficient termination of tTAF-activated transcription relies on testis-specific paralogs of canonical polymerase-associated factor 1 complex (PAF1C) proteins, which form a testis-specific PAF1C (tPAF). Consequently, tPAF mutants show aberrant expression of hundreds of downstream genes due to read-in transcription. Furthermore, tPAF facilitates expression of Y-linked male fertility factor genes and thus serves to maintain spermatocyte-specific gene expression. Consistently, tPAF is required for the segregation of meiotic chromosomes and male fertility. Supported by comparative in vivo protein interaction assays, we provide a mechanistic model for the functional divergence of tPAF and the PAF1C and identify transcription termination as a developmentally regulated process required for germline-specific gene expression.




ea

Decoding biology with massively parallel reporter assays and machine learning [Reviews]

Massively parallel reporter assays (MPRAs) are powerful tools for quantifying the impacts of sequence variation on gene expression. Reading out molecular phenotypes with sequencing enables interrogating the impact of sequence variation beyond genome scale. Machine learning models integrate and codify information learned from MPRAs and enable generalization by predicting sequences outside the training data set. Models can provide a quantitative understanding of cis-regulatory codes controlling gene expression, enable variant stratification, and guide the design of synthetic regulatory elements for applications from synthetic biology to mRNA and gene therapy. This review focuses on cis-regulatory MPRAs, particularly those that interrogate cotranscriptional and post-transcriptional processes: alternative splicing, cleavage and polyadenylation, translation, and mRNA decay.




ea

The area postrema: a critical mediator of brain-body interactions [Special Section: Symposium Outlook]

The dorsal vagal complex contains three structures: the area postrema, the nucleus tractus solitarii, and the dorsal motor nucleus of the vagus. These structures are tightly linked, both anatomically and functionally, and have important yet distinct roles in not only conveying peripheral bodily signals to the rest of the brain but in the generation of behavioral and physiological responses. Reports on the new discoveries in these structures were highlights of the symposium. In this outlook, we focus on the roles of the area postrema in mediating brain–body interactions and its potential utility as a therapeutic target, especially in cancer cachexia.




ea

Dysregulating mTORC1-4E-BP2 signaling in GABAergic interneurons impairs hippocampus-dependent learning and memory [RESEARCH PAPERS]

Memory formation is contingent on molecular and structural changes in neurons in response to learning stimuli—a process known as neuronal plasticity. The initiation step of mRNA translation is a gatekeeper of long-term memory by controlling the production of plasticity-related proteins in the brain. The mechanistic target of rapamycin complex 1 (mTORC1) controls mRNA translation, mainly through phosphorylation of the eukaryotic initiation factor 4E (eIF4E)-binding proteins (4E-BPs) and ribosomal protein S6 kinases (S6Ks). mTORC1 signaling decreases throughout brain development, starting from the early postnatal period. Here, we discovered that in mice, the age-dependent decrease in mTORC1 signaling occurs selectively in excitatory but not inhibitory neurons. Using a gene conditional knockout (cKO) strategy, we demonstrate that either up- or downregulating the mTORC1-4E-BP2 axis in GAD65 inhibitory interneurons, but not excitatory neurons, results in long-term object recognition and object location memory deficits. Our data indicate that the mTORC1 pathway in inhibitory but not excitatory neurons plays a key role in memory formation.




ea

The influence of categorical stimuli on relational memory binding [RESEARCH PAPERS]

Binding of arbitrary information into distinct memory representations that can be used to guide behavior is a hallmark of relational memory. What is and is not bound into a memory representation and how those things influence the organization of that representation remain topics of interest. While some information is intentionally and effortfully bound—often the information that is consistent with task goals or expectations about what information may be required later—other information appears to be bound automatically. The present set of experiments sought to investigate whether spatial memory would be systematically influenced by the presence and absence of distinct categories of stimuli on a spatial reconstruction task. In this task, participants must learn multiple item-location bindings and place each item back in its studied location after a short delay. Across three experiments, participants made significantly more within-category errors (i.e., misassigning one item to the location of a different item from the same category) than between-category errors (i.e., misassigning one item to the location of an item from a different category) when categories were perceptually or semantically distinct. These data reveal that category information contributed to the organization of the memory representation and influenced spatial reconstruction performance. Together, these results suggest that categorical information can influence memory organization, and not always to the benefit of overall task performance.




ea

Characterization and implementation of the MarathonRT template-switching reaction to expand the capabilities of RNA-seq [ARTICLE]

End-to-end RNA-sequencing methods that capture 5'-sequence content without cumbersome library manipulations are of great interest, particularly for analysis of long RNAs. While template-switching methods have been developed for RNA sequencing by distributive short-read RTs, such as the MMLV RTs used in SMART-Seq methods, they have not been adapted to leverage the power of ultraprocessive RTs, such as those derived from group II introns. To facilitate this transition, we dissected the individual processes that guide the enzymatic specificity and efficiency of the multistep template-switching reaction carried out by RTs, in this case, by MarathonRT. Remarkably, this is the first study of its kind, for any RT. First, we characterized the nucleotide specificity of nontemplated addition (NTA) reaction that occurs when the RT extends past the RNA 5'-terminus. We then evaluated the binding specificity of specialized template-switching oligonucleotides, optimizing their sequences and chemical properties to guide efficient template-switching reaction. Having dissected and optimized these individual steps, we then unified them into a procedure for performing RNA sequencing with MarathonRT enzymes, using a well-characterized RNA reference set. The resulting reads span a six-log range in transcript concentration and accurately represent the input RNA identities in both length and composition. We also performed RNA-seq from total human RNA and poly(A)-enriched RNA, with short- and long-read sequencing demonstrating that MarathonRT enhances the discovery of unseen RNA molecules by conventional RT. Altogether, we have generated a new pipeline for rapid, accurate sequencing of complex RNA libraries containing mixtures of long RNA transcripts.




ea

Improved functions for nonlinear sequence comparison using SEEKR [ARTICLE]

SEquence Evaluation through k-mer Representation (SEEKR) is a method of sequence comparison that uses sequence substrings called k-mers to quantify the nonlinear similarity between nucleic acid species. We describe the development of new functions within SEEKR that enable end-users to estimate P-values that ascribe statistical significance to SEEKR-derived similarities, as well as visualize different aspects of k-mer similarity. We apply the new functions to identify chromatin-enriched lncRNAs that contain XIST-like sequence features, and we demonstrate the utility of applying SEEKR on lncRNA fragments to identify potential RNA-protein interaction domains. We also highlight ways in which SEEKR can be applied to augment studies of lncRNA conservation, and we outline the best practice of visualizing RNA-seq read density to evaluate support for lncRNA annotations before their in-depth study in cell types of interest.




ea

Characteristics of exacerbators in the US Bronchiectasis and NTM Research Registry: a cross-sectional study

Background

Exacerbations of noncystic fibrosis bronchiectasis (bronchiectasis) are associated with reduced health-related quality of life and increased mortality, likelihood of hospitalisation and lung function decline. This study investigated patient clinical characteristics associated with exacerbation frequency.

Methods

A cross-sectional cohort study of patients ≥18 years with bronchiectasis enrolled in the US Bronchiectasis and Nontuberculous Mycobacteria (NTM) Research Registry (BRR) September 2008–March 2020. Patients were stratified by exacerbation frequency in their 2 years before enrolment. Patient demographics, respiratory symptoms, healthcare resource utilisation, microbiology, modified bronchiectasis severity index (mBSI) and select comorbidities were collected at enrolment. Patient characteristics associated with exacerbation frequency were assessed using a negative binomial model.

Results

The study included 2950 patients (mean age 65.6 years; 79.1% female). Frequency of moderate to severe airway obstruction (forced expiratory volume in 1 s (FEV1) % predicted <50%; most recent measure) was 15.9%, 17.8%, and 24.6% in patients with 1, 2, and ≥3 exacerbations versus 8.9% in patients with 0 exacerbations; severe disease (mBSI) was 27.8%, 24.2% and 51.1% versus 13.2%; respiratory hospitalisation was 24.5%, 33.0% and 36.5% versus 4.1%; and Pseudomonas aeruginosa infection was 18.8%, 23.4% and 35.2% versus 11.9%. In multivariable model analysis, respiratory hospitalisation, cough, haemoptysis, P.  aeruginosa, younger age, lower FEV1% predicted, asthma, and gastro-oesophageal reflux disease were associated with more exacerbations.

Conclusions

These findings demonstrate a high disease burden, including increased respiratory symptoms, healthcare resource utilisation, and P.  aeruginosa infection in patients with bronchiectasis and multiple exacerbations.




ea

Ensuring availability of respiratory medicines in times of European drug shortages

Extract

It is of utmost importance that medicines are available at all times for our patients. Historically, medication unavailability has typically, if not exclusively, affected low- and middle-income countries [1]. More recently however, drug shortages have also been reported in high-income European countries [2]. Drug shortages have negative health consequences for patients [3], and a profound economic impact, with the need to resort to more expensive alternatives and demands on healthcare professionals’ time to find, prescribe and dispense alternatives [4].




ea

The treatment of latent tuberculosis infection in migrants in primary care versus secondary care

Extract

With a disproportionate burden of tuberculosis (TB) amongst migrants in Europe [1], Burman et al. [2] have highlighted the pressing need for alternative approaches to make TB infection (TBI) screening comprehensive and accessible. Across high-income Organisation for Economic Co-operation and development countries, a median of 52% of TB cases occur in foreign-born individuals, who are at their highest risk of developing TB disease within the first 5 years of migration [3]. Molecular epidemiological studies indicate that the majority of these cases occur as a result of TBI reactivation, often acquired overseas [4]. Within the UK, overseas-born migrants have a 14-fold higher TB incidence than UK-born individuals [5]. The World Health Organization therefore recommends that migrants from countries with a high TB burden may be prioritised for TBI screening [6, 7].




ea

Reassessing Halm's clinical stability criteria in community-acquired pneumonia management

Background

Halm's clinical stability criteria have long guided antibiotic treatment and hospital discharge decisions for patients hospitalised with community-acquired pneumonia (CAP). Originally introduced in 1998, these criteria were established based on a relatively small and select patient population. Consequently, our study aims to reassess their applicability in the management of CAP in a contemporary real-world setting.

Methods

This cohort study included 2918 immunocompetent patients hospitalised with CAP from three hospitals in Denmark between 2017 and 2020. The primary outcome was time to achieve clinical stability as defined by Halm's criteria. Additionally, we examined recurrence of clinical instability and severe complications. Cumulative incidence function or Kaplan–Meier survival curves were used to analyse these outcomes, considering competing risks.

Results

The study population primarily comprised elderly individuals (median age 75 years) with significant comorbidities. The median time to clinical stability according to Halm's criteria was 4 days, with one-fifth experiencing recurrence of instability after early clinical response (stability within 3 days). Severe complications within 30 days mainly comprised mortality, with rates of 5.1% (64/1257) overall in those with early clinical response, 1.7% (18/1045) in the subgroup without do-not-resuscitate orders and 17.3% (276/1595) among the rest.

Conclusion

Halm's clinical stability criteria effectively classify CAP patients with different disease courses, yet achieving stability required more time in this ageing population with substantial comorbidities and more severe disease. Early clinical response indicates reduced risk of complications, especially in those without do-not-resuscitate orders.




ea

Treatment of latent tuberculosis infection in migrants in primary care versus secondary care

Background

Control of latent tuberculosis infection (LTBI) is a priority in the World Health Organization strategy to eliminate TB. Many high-income, low TB incidence countries have prioritised LTBI screening and treatment in recent migrants. We tested whether a novel model of care, based entirely within primary care, was effective and safe compared to secondary care.

Methods

This was a pragmatic cluster-randomised, parallel group, superiority trial (ClinicalTrials.gov: NCT03069807) conducted in 34 general practices in London, UK, comparing LTBI treatment in recent migrants in primary care to secondary care. The primary outcome was treatment completion, defined as taking ≥90% of antibiotic doses. Secondary outcomes included treatment acceptance, adherence, adverse effects, patient satisfaction, TB incidence and a cost-effectiveness analysis. Analyses were performed on an intention-to-treat basis.

Results

Between September 2016 and May 2019, 362 recent migrants with LTBI were offered treatment and 276 accepted. Treatment completion was similar in primary and secondary care (82.6% versus 86.0%; adjusted OR (aOR) 0.64, 95% CI 0.31–1.29). There was no difference in drug-induced liver injury between primary and secondary care (0.7% versus 2.3%; aOR 0.29, 95% CI 0.03–2.84). Treatment acceptance was lower in primary care (65.2% (146/224) versus 94.2% (130/138); aOR 0.10, 95% CI 0.03–0.30). The estimated cost per patient completing treatment was lower in primary care, with an incremental saving of GBP 315.27 (95% CI 313.47–317.07).

Conclusions

The treatment of LTBI in recent migrants within primary care does not result in higher rates of treatment completion but is safe and costs less when compared to secondary care.




ea

Correlations of Long Noncoding RNA HNF4A-AS1 Alternative Transcripts with Liver Diseases and Drug Metabolism [Articles]

Hepatocyte nuclear factor 4 alpha antisense 1 (HNF4A-AS1) is a long noncoding RNA (lncRNA) gene physically located next to the transcription factor HNF4A gene in the human genome. Its transcription products have been reported to inhibit the progression of hepatocellular carcinoma (HCC) and negatively regulate the expression of cytochrome P450s (CYPs), including CYP1A2, 2B6, 2C9, 2C19, 2E1, and 3A4. By altering CYP expression, lncRNA HNF4A-AS1 also contributes to the susceptibility of drug-induced liver injury. Thus, HNF4A-AS1 lncRNA is a promising target for controlling HCC and modulating drug metabolism. However, HNF4A-AS1 has four annotated alternative transcripts in the human genome browsers, and it is unclear which transcripts the small interfering RNAs or small hairpin RNAs used in the previous studies are silenced and which transcripts should be used as the target. In this study, four annotated and two newly identified transcripts were confirmed. These six transcripts showed different expression levels in different liver disease conditions, including metabolic dysfunction-associated steatotic liver disease, alcohol-associated liver disease, and obesity. The expression patterns of all HNF4A-AS1 transcripts were further investigated in liver cell growth from human embryonic stem cells to matured hepatocyte-like cells, HepaRG differentiation, and exposure to rifampicin treatment. Several HNF4A-AS1 transcripts highly displayed correlations with these situations. In addition, some of the HNF4A-AS1 transcripts also showed a strong correlation with CYP3A4 during HepaRG maturation and rifampicin exposure. Our findings provide valuable insights into the specific roles of HNF4A-AS1 transcripts, paving the way for more targeted therapeutic strategies for liver diseases and drug metabolism.

SIGNIFICANCE STATEMENT

This study explores the alternative transcripts of HNF4A-AS1, showing how their expression changes in different biological conditions, from various liver diseases to the growth and differentiation of hepatocytes and drug metabolism. The generated knowledge is essential for understanding the independent roles of different transcripts from the same lncRNA in different liver diseases and drug metabolism situations.




ea

The Simultaneous Inhibition of Solute Carrier Family 6 Member 19 and Breast Cancer Resistance Protein Transporters Leads to an Increase of Indoxyl Sulfate (a Uremic Toxin) in Plasma and Kidney [Articles]

Solute carrier family 6 member 19 (SLC6A19) inhibitors are being studied as therapeutic agents for phenylketonuria. In this work, a potent SLC6A19 inhibitor (RA836) elevated rat kidney uremic toxin indoxyl sulfate (IDS) levels by intensity (arbitrary unit) of 13.7 ± 7.7 compared with vehicle 0.3 ± 0.1 (P = 0.01) as determined by tissue mass spectrometry imaging analysis. We hypothesized that increased plasma and kidney levels of IDS could be caused by the simultaneous inhibition of both Slc6a19 and a kidney IDS transporter responsible for excretion of IDS into urine. To test this, we first confirmed the formation of IDS through tryptophan metabolism by feeding rats a Trp-free diet. Inhibiting Slc6a19 with RA836 led to increased IDS in these rats. Next, RA836 and its key metabolites were evaluated in vitro for inhibiting kidney transporters such as organic anion transporter (OAT)1, OAT3, and breast cancer resistance protein (BCRP). RA836 inhibits BCRP with an IC50 of 0.045 μM but shows no significant inhibition of OAT1 or OAT3. Finally, RA836 analogs with either potent or no inhibition of SLC6A19 and/or BCRP were synthesized and administered to rats fed a normal diet. Plasma and kidney samples were collected to quantify IDS using liquid chromatography–mass spectrometry. Neither a SLC6A19 inactive but potent BCRP inhibitor nor a SLC6A19 active but weak BCRP inhibitor raised IDS levels, whereas compounds inhibiting both transporters caused IDS accumulation in rat plasma and kidney, supporting the hypothesis that rat Bcrp contributes to the excretion of IDS. In summary, we identified that inhibiting Slc6a19 increases IDS formation, while simultaneously inhibiting Bcrp results in IDS accumulation in the kidney and plasma.

SIGNIFICANCE STATEMENT

This is the first publication to decipher the mechanism for accumulation of indoxyl sulfate (IDS) (a uremic toxin) in rats via inhibition of both Slc6a19 and Bcrp. Specifically, inhibition of Slc6a19 in the gastrointestinal track increases IDS formation, and inhibition of Bcrp in the kidney blocks IDS excretion. Therefore, we should avoid inhibiting both solute carrier family 6 member 19 and breast cancer resistance protein simultaneously in humans to prevent accumulation of IDS, a known risk factor for cardiovascular disease, psychic anxiety, and mortality in chronic kidney disease patients.




ea

Early Prediction and Impact Assessment of CYP3A4-Related Drug-Drug Interactions for Small-Molecule Anticancer Drugs Using Human-CYP3A4-Transgenic Mouse Models [Articles]

Early detection of drug-drug interactions (DDIs) can facilitate timely drug development decisions, prevent unnecessary restrictions on patient enrollment, resulting in clinical study populations that are not representative of the indicated study population, and allow for appropriate dose adjustments to ensure safety in clinical trials. All of these factors contribute to a streamlined drug approval process and enhanced patient safety. Here we describe a new approach for early prediction of the magnitude of change in exposure for cytochrome P450 (P450) CYP3A4-related DDIs of small-molecule anticancer drugs based on the model-based extrapolation of human-CYP3A4-transgenic mice pharmacokinetics to humans. Victim drugs brigatinib and lorlatinib were evaluated with the new approach in combination with the perpetrator drugs itraconazole and rifampicin. Predictions of the magnitude of change in exposure deviated at most 0.99- to 1.31-fold from clinical trial results for inhibition with itraconazole, whereas exposure predictions for the induction with rifampicin were less accurate, with deviations of 0.22- to 0.48-fold. Results for the early prediction of DDIs and their clinical impact appear promising for CYP3A4 inhibition, but validation with more victim and perpetrator drugs is essential to evaluate the performance of the new method.

SIGNIFICANCE STATEMENT

The described method offers an alternative for the early detection and assessment of potential clinical impact of CYP3A4-related drug-drug interactions. The model was able to adequately describe the inhibition of CYP3A4 metabolism and the subsequent magnitude of change in exposure. However, it was unable to accurately predict the magnitude of change in exposure of victim drugs in combination with an inducer.




ea

Roles of the ABCG2 Transporter in Protoporphyrin IX Distribution and Toxicity [Special Section on New and Emerging Areas and Technologies in Drug Metabolism and Disposition, Part II-Minireview]

ATP-binding cassette transporter subfamily G member 2 (ABCG2) is a membrane-bound transporter responsible for the efflux of various xenobiotics and endobiotics, including protoporphyrin IX (PPIX), an intermediate in the heme biosynthesis pathway. Certain genetic mutations and chemicals impair the conversion of PPIX to heme and/or increase PPIX production, leading to PPIX accumulation and toxicity. In mice, deficiency of ABCG2 protects against PPIX-mediated phototoxicity and hepatotoxicity by modulating PPIX distribution. In addition, in vitro studies revealed that ABCG2 inhibition increases the efficacy of PPIX-based photodynamic therapy by retaining PPIX inside target cells. In this review, we discuss the roles of ABCG2 in modulating the tissue distribution of PPIX, PPIX-mediated toxicity, and PPIX-based photodynamic therapy.

SIGNIFICANCE STATEMENT

This review summarized the roles of ABCG2 in modulating PPIX distribution and highlighted the therapeutic potential of ABCG2 inhibitors for the management of PPIX-mediated toxicity.




ea

Assessing Trends in Cytokine-CYP Drug Interactions and Relevance to Drug Dosing [Special Section on New and Emerging Areas and Technologies in Drug Metabolism and Disposition, Part II-Minireview]

The regulation of drug-metabolizing enzymes and transporters by cytokines has been extensively studied in vitro and in clinic. Cytokine-mediated suppression of cytochrome P450 (CYP) or drug transporters may increase or decrease the systemic clearance of drug substrates that are primarily cleared via these pathways; neutralization of cytokines by therapeutic proteins may thereby alter systemic exposures of such drug substrates. The Food and Drug Administration recommends evaluating such clinical drug interactions during clinical development and has provided labeling recommendations for therapeutic proteins. To determine the clinical relevance of these drug interactions to dose adjustments, trends in steady-state exposures of CYP-sensitive substrates coadministered with cytokine modulators as reported in the University of Washington Drug Interaction Database were extracted and examined for each of the CYPs. Coadministration of cytochrome P450 family 3 subfamily A (CYP3A) (midazolam/simvastatin), cytochrome P450 subfamily 2C19 (omeprazole), or cytochrome P450 subfamily 1A2 (caffeine/tizanidine) substrates with anti-interleukin-6 and with anti-interleukin-23 therapeutics led to changes in systemic exposures of CYP substrates ranging from ~ –58% to ~35%; no significant trends were observed for cytochrome P450 subfamily 2D6 (dextromethorphan) and cytochrome P450 subfamily 2C9 (warfarin) substrates. Although none of these changes in systemic exposures have been reported as clinically meaningful, dose adjustment of midazolam for optimal sedation in acute care settings has been reported. Simulated concentration-time profiles of midazolam under conditions of elevated cytokine levels when coadministered with tocilizumab, suggest a ~six- to sevenfold increase in midazolam clearance, suggesting potential implications of cytokine–CYP drug interactions on dose adjustments of sensitive CYP3A substrates in acute care settings. Additionally, this article also provides a brief overview of nonclinical and clinical assessments of cytokine–CYP drug interactions in drug discovery and development.

SIGNIFICANCE STATEMENT

There has been significant progress in understanding cytokine-mediated drug interactions for CYP-sensitive substrates. This article provides an overview of the progress in this field, including a trend analysis of systemic exposures of CYP-sensitive substrates coadministered with anti-interleukin therapeutics. In addition, the review also provides a perspective of current methods used to assess these drug interactions during drug development and a focus on individualized medicine, particularly in acute care settings.




ea

Pharmacometabolomics in Drug Disposition, Toxicity, and Precision Medicine [Special Section on New and Emerging Areas and Technologies in Drug Metabolism and Disposition, Part II-Minireview]

The precision medicine initiative has driven a substantial change in the way scientists and health care practitioners think about diagnosing and treating disease. While it has long been recognized that drug response is determined by the intersection of genetic, environmental, and disease factors, improvements in technology have afforded precision medicine guided dosing of drugs to improve efficacy and reduce toxicity. Pharmacometabolomics aims to evaluate small molecule metabolites in plasma and/or urine to help evaluate mechanisms that predict and/or reflect drug efficacy and toxicity. In this mini review, we provide an overview of pharmacometabolomic approaches and methodologies. Relevant examples where metabolomic techniques have been used to better understand drug efficacy and toxicity in major depressive disorder and cancer chemotherapy are discussed. In addition, the utility of metabolomics in drug development and understanding drug metabolism, transport, and pharmacokinetics is reviewed. Pharmacometabolomic approaches can help describe factors mediating drug disposition, efficacy, and toxicity. While important advancements in this area have been made, there remain several challenges that must be overcome before this approach can be fully implemented into clinical drug therapy.

SIGNIFICANCE STATEMENT

Pharmacometabolomics has emerged as an approach to identify metabolites that allow for implementation of precision medicine approaches to pharmacotherapy. This review article provides an overview of pharmacometabolomics including highlights of important examples.




ea

Characterizing the Distribution of a Stimulator of Interferon Genes Agonist and Its Metabolites in Mouse Liver by Matrix-Assisted Laser Desorption/Ionization Imaging Mass Spectrometry [Special Section on New and Emerging Areas and Technologies in Drug Met

A STING (stimulator of interferon genes) agonist GSK3996915 under investigation in early discovery for hepatitis B was orally dosed to a mouse model for understanding the parent drug distribution in liver, the target organ. Matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) was used to quantify the distribution of GSK3996915 in liver collected from mice administered a single oral dose at 90 mg/kg. GSK3996915 was detected with a zonal distribution localized in the portal triad and highly concentrated in the main bile ducts, indicating clearance through biliary excretion. High spatial resolution imaging showed the distribution of the parent drug localized to the cellular populations in the sinusoids, including the Kupffer cells. Additionally, a series of drug-related metabolites were observed to be localized in the central zones of the liver. These results exemplify the potential of utilizing MALDI IMS for measuring not only quantitative drug distribution and target exposure but also drug metabolism and elimination in a single suite of experiments.

SIGNIFICANCE STATEMENT

An integrated imaging approach utilizing matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) complemented with immunohistochemistry (IHC) and histology was used to address the question of target exposure at the cellular level. Localized quantification of the parent drug in the target organ and identification of potential metabolites in the context of tissue histology were also achieved in one experimental suite to support characterization of pharmacokinetic properties of the drug in the early discovery stage.:




ea

Evaluating Drug-Drug Interaction Risk Associated with Peptide Analogs Using advanced In Vitro Systems [Special Section on New and Emerging Areas and Technologies in Drug Metabolism and Disposition, Part II]

Drug–drug interaction (DDI) assessment of therapeutic peptides is an evolving area. The industry generally follows DDI guidelines for small molecules, but the translation of data generated with commonly used in vitro systems to in vivo is sparse. In the current study, we investigated the ability of advanced human hepatocyte in vitro systems, namely HepatoPac, spheroids, and Liver-on-a-chip, to assess potential changes in regulation of CYP1A2, CYP2B6, CYP3A4, SLCO1B1, and ABCC2 in the presence of selected therapeutic peptides, proteins, and small molecules. The peptide NN1177, a glucagon and GLP-1 receptor co-agonist, did not suppress mRNA expression or activity of CYP1A2, CYP2B6, and CYP3A4 in HepatoPac, spheroids, or Liver-on-a-chip; these findings were in contrast to the data obtained in sandwich cultured hepatocytes. No effect of NN1177 on SLCO1B1 and ABCC2 mRNA was observed in any of the complex systems. The induction magnitude differed across the systems (e.g., rifampicin induction of CYP3A4 mRNA ranged from 2.8-fold in spheroids to 81.2-fold in Liver-on-a-chip). Small molecules, obeticholic acid and abemaciclib, showed varying responses in HepatoPac, spheroids, and Liver-on-a-chip, indicating a need for EC50 determinations to fully assess translatability data. HepatoPac, the most extensively investigated in this study (3 donors), showed high potential to investigate DDIs associated with CYP regulation by therapeutic peptides. Spheroids and Liver-on-a-chip were only assessed in one hepatocyte donor and further evaluations are required to confirm their potential. This study establishes an excellent foundation toward the establishment of more clinically-relevant in vitro tools for evaluation of potential DDIs with therapeutic peptides.

SIGNIFICANT STATEMENT

At present, there are no guidelines for drug–drug interaction (DDI) assessment of therapeutic peptides. Existing in vitro methods recommended for assessing small molecule DDIs do not appear to translate well for peptide drugs, complicating drug development for these moieties. Here, we establish evidence that complex cellular systems have potential to be used as more clinically-relevant tools for the in vitro DDI evaluation of therapeutic peptides.




ea

Exogenous Pregnane X Receptor Does Not Undergo Liquid-Liquid Phase Separation in Nucleus under Cell-Based In Vitro Conditions [Special Section on New and Emerging Areas and Technologies in Drug Metabolism and Disposition, Part II]

Pregnane X receptor (PXR) belongs to the nuclear receptor superfamily that plays a crucial role in hepatic physiologic and pathologic conditions. Phase separation is a process in which biomacromolecules aggregate and condense into a dense phase as liquid condensates and coexist with a dilute phase, contributing to various cellular and biologic functions. Until now, whether PXR could undergo phase separation remains unclear. This study aimed to investigate whether PXR undergoes phase separation. Analysis of the intrinsically disordered regions (IDRs) using algorithm tools indicated a low propensity of PXR to undergo phase separation. Experimental assays such as hyperosmotic stress, agonist treatment, and optoDroplets assay demonstrated the absence of phase separation for PXR. OptoDroplets assay revealed the inability of the fusion protein of Cry2 with PXR to form condensates upon blue light stimulation. Moreover, phase separation of PXR did not occur even though the mRNA and protein expression levels of PXR target, cytochrome P450 3A4, changed after sorbitol treatment. In conclusion, for the first time, these findings suggested that exogenous PXR does not undergo phase separation following activation or under hyperosmotic stress in nucleus of cells.

SIGNIFICANCE STATEMENT

PXR plays a critical role in hepatic physiological and pathological processes. The present study clearly demonstrated that exogenous PXR does not undergo phase separation after activation by agonist or under hyperosmotic stress in nucleus. These findings may help understand PXR biology.




ea

Differential Tissue Abundance of Membrane-Bound Drug Metabolizing Enzymes and Transporter Proteins by Global Proteomics [Special Section on New and Emerging Areas and Technologies in Drug Metabolism and Disposition, Part II]

Protein abundance data of drug-metabolizing enzymes and transporters (DMETs) are useful for scaling in vitro and animal data to humans for accurate prediction and interpretation of drug clearance and toxicity. Targeted DMET proteomics that relies on synthetic stable isotope-labeled surrogate peptides as calibrators is routinely used for the quantification of selected proteins; however, the technique is limited to the quantification of a small number of proteins. Although the global proteomics-based total protein approach (TPA) is emerging as a better alternative for large-scale protein quantification, the conventional TPA does not consider differential sequence coverage by identifying unique peptides across proteins. Here, we optimized the TPA approach by correcting protein abundance data by the sequence coverage, which was applied to quantify 54 DMETs for characterization of 1) differential tissue DMET abundance in the human liver, kidney, and intestine, and 2) interindividual variability of DMET proteins in individual intestinal samples (n = 13). Uridine diphosphate-glucuronosyltransferase 2B7 (UGT2B7), microsomal glutathione S-transferases (MGST1, MGST2, and MGST3) carboxylesterase 2 (CES2), and multidrug resistance-associated protein 2 (MRP2) were expressed in all three tissues, whereas, as expected, four cytochrome P450s (CYP3A4, CYP3A5, CYP2C9, and CYP4F2), UGT1A1, UGT2B17, CES1, flavin-containing monooxygenase 5, MRP3, and P-glycoprotein were present in the liver and intestine. The top three DMET proteins in individual tissues were: CES1>CYP2E1>UGT2B7 (liver), CES2>UGT2B17>CYP3A4 (intestine), and MGST1>UGT1A6>MGST2 (kidney). CYP3A4, CYP3A5, UGT2B17, CES2, and MGST2 showed high interindividual variability in the intestine. These data are relevant for enhancing in vitro to in vivo extrapolation of drug absorption and disposition and can be used to enhance the accuracy of physiologically based pharmacokinetic prediction of systemic and tissue concentration of drugs.

SIGNIFICANCE STATEMENT

This study quantified the abundance and compositions of drug-metabolizing enzymes and transporters in pooled human liver, intestine, and kidney microsomes as well as individual intestinal microsomes using an optimized global proteomics approach. The data revealed large intertissue differences in the abundance of these proteins and high intestinal interindividual variability in the levels of cytochrome P450s (e.g., CYP3A4 and CYP3A5), uridine diphosphate-glucuronosyltransferase 2B17, carboxylesterase 2, and microsomal glutathione S-transferase 2. These data are applicable for the prediction of first-pass metabolism and tissue-specific drug clearance.




ea

Regulation of Human Hydrolases and Its Implications in Pharmacokinetics and Pharmacodynamics [Special Section on New and Emerging Areas and Technologies in Drug Metabolism and Disposition, Part II]

Hydrolases represent an essential class of enzymes indispensable for the metabolism of various clinically essential medications. Individuals exhibit marked differences in the expression and activation of hydrolases, resulting in significant variability in the pharmacokinetics (PK) and pharmacodynamics (PD) of drugs metabolized by these enzymes. The regulation of hydrolase expression and activity involves both genetic polymorphisms and nongenetic factors. This review examines the current understanding of genetic and nongenetic regulators of six clinically significant hydrolases, including carboxylesterase (CES)-1 CES2, arylacetamide deacetylase (AADAC), paraoxonase (PON)-1 PON3, and cathepsin A (CTSA). We explore genetic variants linked to the expression and activity of the hydrolases and their effects on the PK and PD of their substrate drugs. Regarding nongenetic regulators, we focus on the inhibitors and inducers of these enzymes. Additionally, we examine the developmental expression patterns and gender differences in the hydrolases when pertinent information was available. Many genetic and nongenetic regulators were found to be associated with the expression and activity of the hydrolases and PK and PD. However, hydrolases remain generally understudied compared with other drug-metabolizing enzymes, such as cytochrome P450s. The clinical significance of genetic and nongenetic regulators has not yet been firmly established for the majority of hydrolases. Comprehending the mechanisms that underpin the regulation of these enzymes holds the potential to refine therapeutic regimens, thereby enhancing the efficacy and safety of drugs metabolized by the hydrolases.

SIGNIFICANCE STATEMENT

Hydrolases play a crucial role in the metabolism of numerous clinically important medications. Genetic polymorphisms and nongenetic regulators can affect hydrolases’ expression and activity, consequently influencing the exposure and clinical outcomes of hydrolase substrate drugs. A comprehensive understanding of hydrolase regulation can refine therapeutic regimens, ultimately enhancing the efficacy and safety of drugs metabolized by the enzymes.




ea

50th Anniversary Celebration Collection Special Section on New and Emerging Areas and Technologies in Drug Metabolism and Disposition, Part II--Editorial [Special Section on New and Emerging Areas and Technologies in Drug Metabolism and Disposition, Part




ea

FP2020 and FP2030 Country Commitments: A Mixed Method Study of Adolescent and Youth Sexual and Reproductive Health Components

ABSTRACTIntroduction:Family Planning 2020 (FP2020) was established in 2012 with the goal of expanding contraceptive access. By 2020, 46 countries had made commitments to FP2020. A sustained focus on adolescents and youth (AY) began in 2016. During the commitment formulation process, substantial support was offered to countries to develop AY commitments based on sound data, research evidence, and programmatic experience. This study assesses how country commitments under FP2020 and FP2030 have evolved over time with respect to improving attention to and focus on the needs of adolescents and youth sexual and reproductive health (AYSRH).Methods:We analyzed the content of FP2020 and FP2030 country commitments focusing on AY (aged 10–24 years) using a scoring guideline we developed to measure the AY commitments in terms of completeness, clarity, and quality.Results:This analysis shows that FP2030 commitments better articulate strategies and activities to reach AY with contraceptive information and services when compared to FP2020 commitments.Conclusion:FP2030 commitments are stronger in some areas on AYSRH, such as commitment to establish national or local policies, strategies, and guidance for AY programming, specifying the target audience of the AY commitment, and partnering with AY or youth-led organizations in commitments. However, more work remains to be done by countries to dedicate a budget for achieving AY objectives, including measurable targets for monitoring progress, identifying and addressing the root causes that impact AY access to and use of contraception, including child marriage and gender-based violence, and reducing financial barriers to access contraception.




ea

Learnings From an Innovative Model to Expand Access to a New and Underutilized Nonhormonal Contraceptive Diaphragm

ABSTRACTWe document the effort over the last 30 years to respond to the call by women advocates at the International Conference on Population and Development for more woman-initiated single or dual-purpose contraceptive methods by developing the Caya contoured diaphragm, an innovative diaphragm designed to meet the needs of women and their partners and expand options for nonhormonal barrier contraception. We describe the complex and interrelated set of activities undertaken to develop the product using a human-centered design process and how we are working to create a corollary sustainable market. This review includes the evidence generated around improved acceptability among couples in low- and middle-income countries and depicts challenges and practical actions on how to dispel misconceptions about diaphragm use. Importantly, we share programmatic lessons learned on increasing universal access to this new sexual and reproductive health technology. Following our new model for increasing access to new and underutilized methods, Caya is now registered and being marketed in nearly 40 countries worldwide.




ea

&#x201C;Je suis desole, &#x0237;e parle francais&#x201D;: How English Hegemony Undermines Efforts to Shift Power in Global Health

Le texte complet de l’article est aussi disponible en français.




ea

Family Planning, Reproductive Health, and Progress Toward the Sustainable Development Goals: Reflections and Directions on the 30th Anniversary of the International Conference on Population and Development




ea

Early Lessons From Working With Local Partners to Expand Private-Sector Health Care Networks in Burundi and Mali

ABSTRACTThe private health care sector is an important source of service delivery in low- and middle-income countries (LMICs). Yet, the private sector remains fragmented, making it difficult for health system actors to support and ensure the availability of quality health care services. In global health programs, social franchising is one model used to engage and organize the private health care sector. Two social franchise networks, ProFam in West Africa and Tunza in East and Central Africa, provide health care through branded networks of facilities. However, these social franchise networks include a limited number of private health care facilities, and in fragile contexts, like Burundi and Mali, they have faced challenges in integrating with national health systems. The MOMENTUM Private Healthcare Delivery (MPHD) project in Burundi and Mali sought to expand the number of health facilities it engaged beyond the existing ProFam and Tunza networks. The expansion aimed to help improve service quality in more private facilities while advancing localization and reducing fragmentation for improved stewardship by health system actors. MPHD achieved this expansion by removing barriers for private health facilities to join inclusive, nonbranded networks and engaging local partners to build and maintain these networks. We share lessons learned regarding the growing role of local organizations as actors within mixed health systems and provide insights on strengthening stewardship of the increasingly heterogeneous private health care delivery sector in LMICs, particularly in fragile settings.




ea

Delays in Cardiovascular Emergency Responses in Africa: Health System Failures or Cultural Challenges?




ea

Maturity Assessment of the Health Information System Using Stages of Continuous Improvement Methodology: Results From Serbia

ABSTRACTIntroduction:Since the health information system (HIS) in public health care services in Serbia was introduced in 2009, it has gradually expanded. However, it is unclear how well the HIS components have developed and the whole system’s stage of maturity.Method:In June–September 2021, a maturity assessment of the Serbian HIS was conducted for the first time using the HIS Stages of Continuous Improvement (SOCI) toolkit. The toolkit measures HIS status across 5 HIS domains: leadership and governance, management and workforce, information and communication technology (ICT), standards and interoperability, and data quality and use. The domains were further divided into 13 components and 39 subcomponents whose maturity stage was assessed on a 5-point Likert scale, indicating the level of development: (1) emerging/ad hoc; (2) repeatable; (3) defined; (4) managed; and (5) optimized. The toolkit was applied in a working group of 32 professionals and experts who were engaged in developing the new national eHealth strategy and action plan.Results:The overall maturity score of the Serbian HIS was 1.6, which indicates a low level. The highest baseline score (2) was given to the standards and interoperability domain, and the lowest (1.1) was given to ICT infrastructure. The remaining 3 domains (leadership and governance, Management and Workforce, and Data Quality and Use) were similarly rated (1.7, 1.7, and 1.6, respectively).Conclusion:A baseline assessment of the maturity level of Serbian HIS indicates that the majority of components are between the emerging/ad hoc stage and repeatable, which represent isolated, ad hoc efforts, with some basic processes in place and existing and accessible policies. This exercise provided an opportunity to address identified weaknesses in the upcoming national eHealth strategy.




ea

Documenting the Provision of Emergency Contraceptive Pills Through Youth-Serving Delivery Channels: Exploratory Mixed Methods Research on Malawi&#x2019;s Emergency Contraception Strategy

ABSTRACTIntroduction:Emergency contraceptive pills (ECPs) are effective and can be used safely at any age repeatedly within the same cycle. They are often favored by youth yet are underutilized. Private facilities can increase ECP access but present barriers including cost. Identifying effective public-sector ECP distribution models can help ensure equitable access. The Malawi Ministry of Health developed a strategy to improve ECP access in 2020. We documented ECP provision through select public, youth-serving channels recommended by the strategy: general and youth-specific outreach, paid and unpaid community health workers (CHWs), and youth clubs.Methods:We conducted this mixed methods study from November 2022–March 2023 in 2 rural districts (Mchinji and Phalombe) implementing the strategy. We conducted qualitative interviews with 10 national stakeholders, 46 providers, and 24 clients aged 15–24 years about ECP service delivery. Additionally, 25 providers collected quantitative tally data about clients seeking ECPs. We analyzed qualitative data using grounded theory and quantitative data descriptively.Results:Stakeholders and providers reported ECP uptake increased in geographies where the strategy was implemented, especially among youth. Providers documented 3,988 client visits for ECPs over 3 months. Of these visits, 26% were from male clients, 36% were from clients aged younger than 20 years, and 64% received ECPs for the first time. Across channels, youth club leaders and unpaid CHWs reported the most client visits per provider and served the youngest clients. However, no ECPs were dispensed during 29% of visits due to stock-outs. While many providers were supportive of youth accessing ECPs, most held unfavorable attitudes toward repeat use.Conclusion:ECP access should be expanded through provision in the studied channels, especially youth clubs and CHWs. However, to meet demand, the supply chain must be strengthened. We recommend addressing providers’ attitudes about repeat use to ensure informed method choice.




ea

Antenatal Care Interventions to Increase Contraceptive Use Following Birth in Low- and Middle-Income Countries: Systematic Review and Narrative Synthesis

ABSTRACTIntroduction:Health risks associated with short interpregnancy intervals, coupled with women’s desires to avoid pregnancy following childbirth, underscore the need for effective postpartum family planning programs. The antenatal period provides an opportunity to intervene; however, evidence is limited on the effectiveness of interventions aimed at reaching women in the antenatal period to increase voluntary postpartum family planning in low- and middle-income countries (LMICs). This systematic review aimed to identify and describe interventions in LMICs that attempted to increase postpartum contraceptive use via contacts with pregnant women in the antenatal period.Methods:Studies published from January 2012 to July 2022 were considered if they were conducted in LMICs, evaluated an intervention delivered during the antenatal period, were designed to affect postpartum contraceptive use, were experimental or quasi-experimental, and were published in French or English. The main outcome of interest was postpartum contraceptive use within 1 year after birth, defined as the use of any method of contraception at the time of data collection. We searched EMBASE, Global Health, and Medline and manually searched the reference lists from studies included in the full-text screening.Results:We double-screened 771 records and included 34 reports on 31 unique interventions in the review. Twenty-three studies were published from 2018 on, with 21 studies conducted in sub-Saharan Africa. Approximately half of the study designs (n=16) were randomized controlled trials, and half (n=15) were quasi-experimental. Interventions were heterogeneous. Among the 24 studies that reported on the main outcome of interest, 18 reported a positive intervention effect, with intervention recipients having greater contraceptive use in the first year postpartum.Conclusion:While the studies in this systematic review were heterogeneous, the findings suggest that interventions that included a multifaceted package of initiatives appeared to be most likely to have a positive effect.