rt

Flexible workflows for on-the-fly electron-microscopy single-particle image processing using Scipion

Electron microscopy of macromolecular structures is an approach that is in increasing demand in the field of structural biology. The automation of image acquisition has greatly increased the potential throughput of electron microscopy. Here, the focus is on the possibilities in Scipion to implement flexible and robust image-processing workflows that allow the electron-microscope operator and the user to monitor the quality of image acquisition, assessing very simple acquisition measures or obtaining a first estimate of the initial volume, or the data resolution and heterogeneity, without any need for programming skills. These workflows can implement intelligent automatic decisions and they can warn the user of possible acquisition failures. These concepts are illustrated by analysis of the well known 2.2 Å resolution β-galactosidase data set.




rt

Identifying dynamic, partially occupied residues using anomalous scattering

Although often presented as taking single `snapshots' of the conformation of a protein, X-ray crystallography provides an averaged structure over time and space within the crystal. The important but difficult task of characterizing structural ensembles in crystals is typically limited to small conformational changes, such as multiple side-chain conformations. A crystallographic method was recently introduced that utilizes residual electron and anomalous density (READ) to characterize structural ensembles encompassing large-scale structural changes. Key to this method is an ability to accurately measure anomalous signals and distinguish them from noise or other anomalous scatterers. This report presents an optimized data-collection and analysis strategy for partially occupied iodine anomalous signals. Using the long-wavelength-optimized beamline I23 at Diamond Light Source, the ability to accurately distinguish the positions of anomalous scatterers with occupancies as low as ∼12% is demonstrated. The number and positions of these anomalous scatterers are consistent with previous biophysical, kinetic and structural data that suggest that the protein Im7 binds to the chaperone Spy in multiple partially occupied conformations. Finally, READ selections demonstrate that re-measured data using the new protocols are consistent with the previously characterized structural ensemble of the chaperone Spy with its client Im7. This study shows that a long-wavelength beamline results in easily validated anomalous signals that are strong enough to be used to detect and characterize highly disordered sections of crystal structures.




rt

Open-access and free articles in Acta Crystallographica Section D: Biological Crystallography




rt

From space group to space groupoid: the partial symmetry of low-temperature E-vanillyl oxime

The phase transition of E-vanillyl oxime {1-[(E)-(hydroxyimino)methyl]-4-hydroxy-3-methoxybenzene, C8H9NO3} has been analysed by single-crystal and powder X-ray diffraction. The high-temperature (HT) phase (P21/a, Z' = 1) transforms into the low-temperature (LT) phase (threefold superstructure, Poverline{1}, Z' = 6) at ca 190 K. The point operations lost on cooling, {m[010], 2[010]}, are retained as twin operations and constitute the twin law. The screw rotations and glide reflections are retained in the LT phase as partial operations acting on a subset of Euclidean space {b E}^3. The full symmetry of the LT phase, including partial operations, is described by a disconnected space groupoid which is built of three connected components.




rt

Structure variations within RSi2 and R2TSi3 silicides. Part I. Structure overview

Here, structural parameters of various structure reports on RSi2 and R2TSi3 compounds [where R is an alkaline earth metal, a rare earth metal (i.e. an element of the Sc group or a lathanide), or an actinide and T is a transition metal] are summarized. The parameters comprising composition, lattice parameters a and c, ratio c/a, formula unit per unit cell and structure type are tabulated. The relationships between the underlying structure types are presented within a group–subgroup scheme (Bärnighausen diagram). Additionally, unexpectedly missing compounds within the R2TSi3 compounds were examined with density functional theory and compounds that are promising candidates for synthesis are listed. Furthermore, a correlation was detected between the orthorhombic AlB2-like lattices of, for example, Ca2AgSi3 and the divalence of R and the monovalence of T. Finally, a potential tetragonal structure with ordered Si/T sites is proposed.




rt

Volt-per-Ångstrom terahertz fields from X-ray free-electron lasers

The electron linear accelerators driving modern X-ray free-electron lasers can emit intense, tunable, quasi-monochromatic terahertz (THz) transients with peak electric fields of V Å−1 and peak magnetic fields in excess of 10 T when a purpose-built, compact, superconducting THz undulator is implemented. New research avenues such as X-ray movies of THz-driven mode-selective chemistry come into reach by making dual use of the ultra-short GeV electron bunches, possible by a rather minor extension of the infrastructure.




rt

Shack–Hartmann wavefront sensors based on 2D refractive lens arrays and super-resolution multi-contrast X-ray imaging

Different approaches of 2D lens arrays as Shack–Hartmann sensors for hard X-rays are compared. For the first time, a combination of Shack–Hartmann sensors for hard X-rays (SHSX) with a super-resolution imaging approach to perform multi-contrast imaging is demonstrated. A diamond lens is employed as a well known test object. The interleaving approach has great potential to overcome the 2D lens array limitation given by the two-photon polymerization lithography. Finally, the radiation damage induced by continuous exposure of an SHSX prototype with a white beam was studied showing a good performance of several hours. The shape modification and influence in the final image quality are presented.




rt

Laser-induced metastable mixed phase of AuNi nanoparticles: a coherent X-ray diffraction imaging study

The laser annealing process for AuNi nanoparticles has been visualized using coherent X-ray diffraction imaging (CXDI). AuNi bimetallic alloy nanoparticles, originally phase separated due to the miscibility gap, transform to metastable mixed alloy particles with rounded surface as they are irradiated by laser pulses. A three-dimensional CXDI shows that the internal part of the AuNi particles is in the mixed phase with preferred compositions at ∼29 at% of Au and ∼90 at% of Au.




rt

Quantifying redox heterogeneity in single-crystalline LiCoO2 cathode particles

Active cathode particles are fundamental architectural units for the composite electrode of Li-ion batteries. The microstructure of the particles has a profound impact on their behavior and, consequently, on the cell-level electrochemical performance. LiCoO2 (LCO, a dominant cathode material) is often in the form of well-shaped particles, a few micrometres in size, with good crystallinity. In contrast to secondary particles (an agglomeration of many fine primary grains), which are the other common form of battery particles populated with structural and chemical defects, it is often anticipated that good particle crystallinity leads to superior mechanical robustness and suppressed charge heterogeneity. Yet, sub-particle level charge inhomogeneity in LCO particles has been widely reported in the literature, posing a frontier challenge in this field. Herein, this topic is revisited and it is demonstrated that X-ray absorption spectra on single-crystalline particles with highly anisotropic lattice structures are sensitive to the polarization configuration of the incident X-rays, causing some degree of ambiguity in analyzing the local spectroscopic fingerprint. To tackle this issue, a methodology is developed that extracts the white-line peak energy in the X-ray absorption near-edge structure spectra as a key data attribute for representing the local state of charge in the LCO crystal. This method demonstrates significantly improved accuracy and reveals the mesoscale chemical complexity in LCO particles with better fidelity. In addition to the implications on the importance of particle engineering for LCO cathodes, the method developed herein also has significant impact on spectro-microscopic studies of single-crystalline materials at synchrotron facilities, which is broadly applicable to a wide range of scientific disciplines well beyond battery research.




rt

Synchrotron X-ray diffraction investigation of the surface condition of artefacts from King Henry VIII's warship the Mary Rose

Synchrotron X-ray diffraction (XRD) measured on the XMaS beamline at the ESRF was used to characterize the alloy composition and crystalline surface corrosion of three copper alloy Tudor artefacts recovered from the undersea wreck of King Henry VIII's warship the Mary Rose. The XRD method adopted has a dynamic range ∼1:105 and allows reflections <0.002% of the height of major reflections in the pattern to be discerned above the background without smoothing. Laboratory XRD, scanning electron microscopy–energy dispersive spectroscopy, synchrotron X-ray fluorescence and X-ray excited optical luminescence–X-ray near-edge absorption structure were used as supporting techniques, and the combination revealed structural and compositional features of importance to both archaeology and conservation. The artefacts were brass links believed to be fragments of chainmail and were excavated from the seabed during 1981 and 1982. Their condition reflects very different treatment just after recovery, viz. complete cleaning and conservation, chemical corrosion inhibition and chloride removal only, and distilled water soaking only (to remove the chlorides). The brass composition has been determined for all three at least in the top 7 µm or so as Cu(73%)Zn(27%) from the lattice constant. Measurement of the peak widths showed significant differences in the crystallite size and microstrain between the three samples. All of the links are found to be almost chloride-free with the main corrosion products being spertiniite, sphalerite, zincite, covellite and chalcocite. The balance of corrosion products between the links reflects the conservation treatment applied to one and points to different corrosion environments for the other two.




rt

Foreword to the special virtual issue on X-ray free-electron lasers




rt

Solid/liquid-interface-dependent synthesis and immobilization of copper-based particles nucleated by X-ray-radiolysis-induced photochemical reaction




rt

Forthcoming article in Journal of Synchrotron Radiation




rt

Comment on the article The nanodiffraction problem




rt

Response to Zbigniew Kaszkur's comment on the article The nanodiffraction problem




rt

Structure analysis of supported disordered molybdenum oxides using pair distribution function analysis and automated cluster modelling

Molybdenum oxides and sulfides on various low-cost high-surface-area supports are excellent catalysts for several industrially relevant reactions. The surface layer structure of these materials is, however, difficult to characterize due to small and disordered MoOx domains. Here, it is shown how X-ray total scattering can be applied to gain insights into the structure through differential pair distribution function (d-PDF) analysis, where the scattering signal from the support material is subtracted to obtain structural information on the supported structure. MoOx catalysts supported on alumina nanoparticles and on zeolites are investigated, and it is shown that the structure of the hydrated molybdenum oxide layer is closely related to that of disordered and polydisperse polyoxometalates. By analysing the PDFs with a large number of automatically generated cluster structures, which are constructed in an iterative manner from known polyoxometalate clusters, information is derived on the structural motifs in supported MoOx.




rt

Quantifying nanoparticles in clays and soils with a small-angle X-ray scattering method

Clays and soils produce strong small-angle X-ray scattering (SAXS) because they contain large numbers of nanoparticles, namely allophane and ferrihydrite. These nanoparticles are amorphous and have approximately spherical shape with a size of around 3–10 nm. The weight ratios of these nanoparticles will affect the properties of the clays and soils. However, the nanoparticles in clays and soils are not generally quantified and are sometimes ignored because there is no standard method to quantify them. This paper describes a method to quantify nanoparticles in clays and soils with SAXS. This is achieved by deriving normalized SAXS intensities from unit weight of the sample, which are not affected by absorption. By integrating the normalized SAXS intensities over the reciprocal space, one obtains a value that is proportional to the weight ratio of the nanoparticles, proportional to the square of the difference of density between the nanoparticles and the liquid surrounding the nanoparticles, and inversely proportional to the density of the nanoparticles. If the density of the nanoparticles is known, the weight ratio of the nanoparticles can be calculated from the SAXS intensities. The density of nanoparticles was estimated from the chemical composition of the sample. Nanoparticles in colloidal silica, silica gels, mixtures of silica gel and α-aluminium oxide, and synthetic clays have been quantified with the integral SAXS method. The results show that the errors of the weight ratios of nanoparticles are around 25% of the weight ratio. It is also shown that some natural clays contain large fractions of nanoparticles; montmorillonite clay from the Mikawa deposit, pyrophillite clay from the Shokozan deposit and kaolinite clay from the Kanpaku deposit contain 25 (7), 10 (2) and 19 (5) wt% nanoparticles, respectively, where errors are shown in parentheses.




rt

Local orientational order in self-assembled nanoparticle films: the role of ligand composition and salt

An X-ray cross-correlation study of the impact of ligand composition and salt content on the self-assembly of soft-shell nanoparticles is presented, indicating symmetry-selective formation of order.




rt

Nanometre-sized droplets from a gas dynamic virtual nozzle

This work describes a method to characterize the size distribution of individual aqueous droplets in a high-density and polydisperse aerosol. It is shown that droplets smaller than 120 nm can be generated by purely mechanical means using a gas dynamic virtual nozzle, and theoretical models are provided for the different flow regimes investigated.




rt

sasPDF: pair distribution function analysis of nanoparticle assemblies from small-angle scattering data

The sasPDF method, an extension of the atomic pair distribution function (PDF) analysis to the small-angle scattering (SAS) regime, is presented. The method is applied to characterize the structure of nanoparticle assemblies with different levels of structural order.




rt

Forthcoming article in Journal of Applied Crystallography




rt

Crystal structures of two furazidin polymorphs revealed by a joint effort of crystal structure prediction and NMR crystallography

This work presents the crystal structure determination of two elusive polymorphs of furazidin, an antibacterial agent, employing a combination of crystal structure prediction (CSP) calculations and an NMR crystallography approach. Two previously uncharacterized neat crystal forms, one of which has two symmetry-independent molecules (form I), whereas the other one is a Z' = 1 polymorph (form II), crystallize in P21/c and P1 space groups, respectively, and both are built by different conformers, displaying different intermolecular interactions. It is demonstrated that the usage of either CSP or NMR crystallography alone is insufficient to successfully elucidate the above-mentioned crystal structures, especially in the case of the Z' = 2 polymorph. In addition, cases of serendipitous agreement in terms of 1H or 13C NMR data obtained for the CSP-generated crystal structures different from the ones observed in the laboratory (false-positive matches) are analyzed and described. While for the majority of analyzed crystal structures the obtained agreement with the NMR experiment is indicative of some structural features in common with the experimental structure, the mentioned serendipity observed in exceptional cases points to the necessity of caution when using an NMR crystallography approach in crystal structure determination.




rt

Structure variations within RSi2 and R2Si3 silicides. Part II. Structure driving factors

Most articles dealing with R2TSi3 compounds are only interested in one specific composite or in a series of composites with varying T elements while keeping R fixed (or vice versa). The present work gives an overview of the complete range of 2:1:3 silicides, similar those of Hoffmann & Pöttgen (2001) and Pan et al. (2013). In contrast to the work of Hoffmann & Pöttgen (2001), reasons for formation of the different symmetries and superstructures are discussed. Here, crystallographic properties are in[the] focus, whereas physical and magnetic properties are omitted because those are given by Pan et al. (2013). READS LIKE AN ABSTRACT, please re-write and remove references if possible. Should be two sentences max.




rt

Synthesis, crystal structure, polymorphism and microscopic luminescence properties of anthracene derivative compounds

Crystal structure and microscopic optical properties of anthracene derivative compounds have been investigated by single-crystal synchrotron X-ray diffraction, laser confocal microscopy and fluorescence lifetime imaging microscopy.




rt

Forthcoming article in Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials




rt

Crystallographic snapshots of the EF-hand protein MCFD2 complexed with the intracellular lectin ERGIC-53 involved in glycoprotein transport

This article reports conformational polymorphisms of the EF-hand protein MCFD2 which is involved in glycoprotein transport..




rt

Open-access and free articles in Acta Crystallographica Section F: Structural Biology and Crystallization Communications




rt

Linux certifications




rt

What are the certificates to do for a cyber security job?




rt

Some unsolicited advice for future support techs




rt

In face of crisis, National Zoo to start captive population of Virginia big-eared bats

The National Zoo has been awarded a grant from the U.S. Fish and Wildlife Service to establish a captive population of the Virginia big-eared bat at the National Zoo’s Conservation & Research Center near Front Royal, Va. Only 15,000 Virginia big-eared bats remain living in caves in West Virginia, Virginia, Kentucky and North Carolina, and these are threatened by the white-nose syndrome.

The post In face of crisis, National Zoo to start captive population of Virginia big-eared bats appeared first on Smithsonian Insider.




rt

Astronomers Find Super-Earth Using Amateur, Off-the-Shelf Technology

The newfound world, GJ1214b, is about 6.5 times as massive as the Earth. Its host star, GJ1214, is a small, red type M star about one-fifth the size of the Sun. GJ1214b orbits its star once every 38 hours at a distance of only 1.3 million miles. Astronomers estimate the planet's temperature to be about 400 degrees Fahrenheit. Although warm as an oven, it is still cooler than any other known transiting planet because it orbits a very dim star.

The post Astronomers Find Super-Earth Using Amateur, Off-the-Shelf Technology appeared first on Smithsonian Insider.




rt

Strawberry dart frogs bred at National Zoo for first time in Zoo’s history

For the first time in its history, the National Zoo has bred strawberry dart frogs (Oophaga pumilio), which are known primarily for their vibrant colors and poisonous skin. These frogs also stand out among others because of their dedication to their young as they undergo metamorphosis from egg to tadpole to frog.

The post Strawberry dart frogs bred at National Zoo for first time in Zoo’s history appeared first on Smithsonian Insider.




rt

Meteorite that fell in Lorton, Va., identified by Smithsonian scientists

A meteorite that crashed through the roof of a Lorton, Va., doctors’ office on Monday, Jan. 18, 2010 was recently identified by scientists in the […]

The post Meteorite that fell in Lorton, Va., identified by Smithsonian scientists appeared first on Smithsonian Insider.




rt

Laboratory tests reveal precise way to measure vertical lift in bumblebees and other small insects and birds

Birds do it. Bees do it. And in a laboratory in northern California, scientists using bumblebees recently figured out the best way to measure it--vertical lift!

The post Laboratory tests reveal precise way to measure vertical lift in bumblebees and other small insects and birds appeared first on Smithsonian Insider.




rt

Double Black-Hole Mystery: Dance Partners or Breakup Survivors?

Smithsonian astronomers have just discovered a rare example of a galaxy that appears to have a pair of giant black holes. Now they are trying to determine if those black holes are partners tied together by gravity, or if one of the two has been kicked out in a cosmic breakup.

The post Double Black-Hole Mystery: Dance Partners or Breakup Survivors? appeared first on Smithsonian Insider.




rt

Newly discovered prehistoric turtle co-existed with world’s biggest snake

About as thick as a standard dictionary, this turtle’s shell may have warded off attacks by the Titanoboa, thought to have been the world’s biggest snake, and by other, crocodile-like creatures living in its neighborhood 60 million years ago.

The post Newly discovered prehistoric turtle co-existed with world’s biggest snake appeared first on Smithsonian Insider.




rt

Net survey: For quarter century, scientists have been counting creatures traveling Chesapeake Bay tributary

More than 25 years ago, researchers at the Smithsonian Environmental Research Center's Fish and Invertebrate Ecology Lab began taking weekley surveys of the species that make their way in and out of Muddy Creek.

The post Net survey: For quarter century, scientists have been counting creatures traveling Chesapeake Bay tributary appeared first on Smithsonian Insider.




rt

Super sensitive telescope will detect “killer” asteroids and comets on collision course with Earth

This innovative facility will be at the front line of Earth defense by searching for "killer" asteroids and comets. It will map large portions of the sky nightly, making it an efficient sleuth for not just asteroids but also supernovae and other variable objects.

The post Super sensitive telescope will detect “killer” asteroids and comets on collision course with Earth appeared first on Smithsonian Insider.




rt

NSRC to receive $25 million Investing in Innovation grant from U.S. Department of Education

The funding will allow the National Science Resources Center to validate its LASER (Leadership Assistance for Science Education Reform) Model. LASER, a systemic approach to reform, is a set of processes and strategies designed to help state, district and school leadership teams effectively implement and sustain
high-quality science education for elementary, middle and secondary school students.

The post NSRC to receive $25 million Investing in Innovation grant from U.S. Department of Education appeared first on Smithsonian Insider.




rt

Great Sichuan earthquake of 2008 had little impact on of China’s wild takins

Data from a recent study of wild takins in the high-altitude forests of the Tangjiahe National Nature Reserve in southeast China has shown that the […]

The post Great Sichuan earthquake of 2008 had little impact on of China’s wild takins appeared first on Smithsonian Insider.




rt

Earth’s highest coastal mountain range moved 1,367 miles in 170 million years

Using the ancient magnetic field recorded in these rocks, a Smithsonian research group revealed Santa Marta’s 2,200-kilometer journey from northern Peru to its modern position on the Caribbean coast of Colombia during the past 170 million years.

The post Earth’s highest coastal mountain range moved 1,367 miles in 170 million years appeared first on Smithsonian Insider.




rt

Kepler spacecraft used by Smithsonian astronomers to find other earths

The Kepler spacecraft was launched in March of 2009 to study extrasolar planets. One of its major goals is the detection of terrestrial planets in habitable zones.

The post Kepler spacecraft used by Smithsonian astronomers to find other earths appeared first on Smithsonian Insider.




rt

A Halloween roundup featuring recent articles on spiders, bats and rats

A roundup of recent articles featuring spiders, bats and rats....

The post A Halloween roundup featuring recent articles on spiders, bats and rats appeared first on Smithsonian Insider.




rt

Smithsonian bat expert Kristofer Helgen answers common questions about bats

To celebrate a cool Halloween creature--bats--we teamed up with the Smithsonian’s Kristofer Helgen, curator of mammals at the National Museum of Natural History. Here, he answers three commonly asked questions about these winged mammals.

The post Smithsonian bat expert Kristofer Helgen answers common questions about bats appeared first on Smithsonian Insider.




rt

One hundred sixty years after his birth a racehorse’s bones return to Lexington

Known as one of the greatest racehorses of his day and sire to more winning horses than any other American thoroughbred before or since, this Smithsonian loan returned the legendary Lexington's remains to the town of his birthplace some 160 years after he was born.

The post One hundred sixty years after his birth a racehorse’s bones return to Lexington appeared first on Smithsonian Insider.




rt

National Zoo and partners first to breed critically endangered tree frog

Although the La Loma tree frog, Hyloscirtus colymba, is notoriously difficult to care for in captivity, the Panama Amphibian Rescue and Conservation Project is the first to successfully breed this species.

The post National Zoo and partners first to breed critically endangered tree frog appeared first on Smithsonian Insider.




rt

Turkey’s trip to table: Domesticating North America’s largest fowl

The turkey has become synonymous with Thanksgiving in the United States. But when exactly where turkeys first domesticated? And where? Bruce Smith, senior archeologist at the Smithsonian’s National Museum of Natural History has the answers.

The post Turkey’s trip to table: Domesticating North America’s largest fowl appeared first on Smithsonian Insider.




rt

Super-earth has an atmosphere, but is it steamy or gassy?

The extrasolar planet GJ 1214b has a radius of about 2.7 times that of the Earth and is about 6.5 times as massive putting it squarely into the class of exoplanets known as super-Earths.

The post Super-earth has an atmosphere, but is it steamy or gassy? appeared first on Smithsonian Insider.




rt

Giant impact may explain origin of Martian moons Phobos and Deimos

The Martian moons, Phobos and Deimos, may have been the result of a giant impact that sent rocks and debris into orbit around Mars, instead of asteroids that were captured by the planet’s gravity as previously thought.

The post Giant impact may explain origin of Martian moons Phobos and Deimos appeared first on Smithsonian Insider.