ap Demographic science aids in understanding the spread and fatality rates of COVID-19 [Social Sciences] By www.pnas.org Published On :: 2020-05-05T10:31:24-07:00 Governments around the world must rapidly mobilize and make difficult policy decisions to mitigate the coronavirus disease 2019 (COVID-19) pandemic. Because deaths have been concentrated at older ages, we highlight the important role of demography, particularly, how the age structure of a population may help explain differences in fatality rates... Full Article
ap Development of a therapeutic anti-HtrA1 antibody and the identification of DKK3 as a pharmacodynamic biomarker in geographic atrophy [Medical Sciences] By www.pnas.org Published On :: 2020-05-05T10:31:24-07:00 Genetic polymorphisms in the region of the trimeric serine hydrolase high-temperature requirement 1 (HTRA1) are associated with increased risk of age-related macular degeneration (AMD) and disease progression, but the precise biological function of HtrA1 in the eye and its contribution to disease etiologies remain undefined. In this study, we have... Full Article
ap Starvation and antimetabolic therapy promote cytokine release and recruitment of immune cells [Immunology and Inflammation] By www.pnas.org Published On :: 2020-05-05T10:31:24-07:00 Cellular starvation is typically a consequence of tissue injury that disrupts the local blood supply but can also occur where cell populations outgrow the local vasculature, as observed in solid tumors. Cells react to nutrient deprivation by adapting their metabolism, or, if starvation is prolonged, it can result in cell... Full Article
ap Landscape analysis of adȷacent gene rearrangements reveals BCL2L14-ETV6 gene fusions in more aggressive triple-negative breast cancer [Genetics] By www.pnas.org Published On :: 2020-05-05T10:31:24-07:00 Triple-negative breast cancer (TNBC) accounts for 10 to 20% of breast cancer, with chemotherapy as its mainstay of treatment due to lack of well-defined targets, and recent genomic sequencing studies have revealed a paucity of TNBC-specific mutations. Recurrent gene fusions comprise a class of viable genetic targets in solid tumors;... Full Article
ap Matrix mechanotransduction mediated by thrombospondin-1/integrin/YAP in the vascular remodeling [Cell Biology] By www.pnas.org Published On :: 2020-05-05T10:31:24-07:00 The extracellular matrix (ECM) initiates mechanical cues that activate intracellular signaling through matrix–cell interactions. In blood vessels, additional mechanical cues derived from the pulsatile blood flow and pressure play a pivotal role in homeostasis and disease development. Currently, the nature of the cues from the ECM and their interaction with... Full Article
ap Cryo-EM structure of C9ORF72-SMCR8-WDR41 reveals the role as a GAP for Rab8a and Rab11a [Biochemistry] By www.pnas.org Published On :: 2020-05-05T10:31:24-07:00 A massive intronic hexanucleotide repeat (GGGGCC) expansion in C9ORF72 is a genetic origin of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Recently, C9ORF72, together with SMCR8 and WDR41, has been shown to regulate autophagy and function as Rab GEF. However, the precise function of C9ORF72 remains unclear. Here, we... Full Article
ap Emergence of self-organized multivortex states in flocks of active rollers [Applied Physical Sciences] By www.pnas.org Published On :: 2020-05-05T10:31:24-07:00 Active matter, both synthetic and biological, demonstrates complex spatiotemporal self-organization and the emergence of collective behavior. A coherent rotational motion, the vortex phase, is of great interest because of its ability to orchestrate well-organized motion of self-propelled particles over large distances. However, its generation without geometrical confinement has been a... Full Article
ap Mimicry of a biophysical pathway leads to diverse pollen-like surface patterns [Applied Physical Sciences] By www.pnas.org Published On :: 2020-05-05T10:31:24-07:00 A ubiquitous structural feature in biological systems is texture in extracellular matrix that gains functions when hardened, for example, cell walls, insect scales, and diatom tests. Here, we develop patterned liquid crystal elastomer (LCE) particles by recapitulating the biophysical patterning mechanism that forms pollen grain surfaces. In pollen grains, a... Full Article
ap Turning up the heat in turbulent thermal convection [Applied Physical Sciences] By www.pnas.org Published On :: 2020-05-05T10:31:24-07:00 Convection is buoyancy-driven flow resulting from unstable density stratification in the presence of a gravitational field. Beyond convection’s central role in myriad engineering heat transfer applications, it underlies many of nature’s dynamical designs on larger-than-human scales. For example, solar heating of Earth’s surface generates buoyancy forces that cause the winds... Full Article
ap Seasonal timing adaptation across the geographic range of Arabidopsis thaliana [Evolution] By www.pnas.org Published On :: 2020-05-05T10:31:24-07:00 The most fundamental genetic program of an annual plant defines when to grow and reproduce and when to remain dormant in the soil as a seed. With the right timing, plants can even live in hostile regions with only a few months of growth-favorable abundant rains and mild temperatures. To... Full Article
ap Closing the gap between mind and brain with the dynamic connectome [Neuroscience] By www.pnas.org Published On :: 2020-05-05T10:31:24-07:00 At the pinnacle of the 17th century scientific revolution, René Descartes, the father of modern philosophy, published his monumental Meditations on First Philosophy (1), in which he proposed a division between soul and body—mind and brain—with the former in charge of our thoughts and conscious decisions (res cogitans) and the... Full Article
ap Determining the Bioenergetic Capacity for Fatty Acid Oxidation in the Mammalian Nervous System [Research Article] By mcb.asm.org Published On :: 2020-04-28T08:00:17-07:00 The metabolic state of the brain can greatly impact neurologic function. Evidence of this includes the therapeutic benefit of a ketogenic diet in neurologic diseases, including epilepsy. However, brain lipid bioenergetics remain largely uncharacterized. The existence, capacity, and relevance of mitochondrial fatty acid β-oxidation (FAO) in the brain are highly controversial, with few genetic tools available to evaluate the question. We have provided evidence for the capacity of brain FAO using a pan-brain-specific conditional knockout (KO) mouse incapable of FAO due to the loss of carnitine palmitoyltransferase 2, the product of an obligate gene for FAO (CPT2B–/–). Loss of central nervous system (CNS) FAO did not result in gross neuroanatomical changes or systemic differences in metabolism. Loss of CPT2 in the brain did not result in robustly impaired behavior. We demonstrate by unbiased and targeted metabolomics that the mammalian brain oxidizes a substantial quantity of long-chain fatty acids in vitro and in vivo. Loss of CNS FAO results in robust accumulation of long-chain acylcarnitines in the brain, suggesting that the mammalian brain mobilizes fatty acids for their oxidation, irrespective of diet or metabolic state. Together, these data demonstrate that the mammalian brain oxidizes fatty acids under normal circumstances with little influence from or on peripheral tissues. Full Article
ap Body surface temperature responses to food restriction in wild and captive great tits [RESEARCH ARTICLE] By jeb.biologists.org Published On :: 2020-04-20T16:00:19-07:00 Lucy A. Winder, Stewart A. White, Andreas Nord, Barbara Helm, and Dominic J. McCafferty During winter at temperate and high latitudes, the low ambient temperatures, limited food supplies and short foraging periods mean small passerines show behavioural, morphological and physiological adaptations to reduce the risk of facing energy shortages. Peripheral tissues vasoconstrict in low ambient temperatures to reduce heat loss and cold injury. Peripheral vasoconstriction has been observed with food restriction in captivity but has yet to be explored in free-ranging animals. We experimentally food restricted both wild and captive great tits (Parus major) during winter months and measured surface temperatures of the bill and eye region using thermal imaging, to investigate whether birds show rapid local heterothermic responses, which may reduce their thermoregulatory costs when facing a perceived imminent food shortage. Our results of a continuously filmed wild population showed that bill temperature was immediately reduced in response to food restriction compared with when food was available ad libitum, an apparent autonomic response. Such immediacy implies a ‘pre-emptive’ response before the bird experiences any shortfalls in energy reserves. We also demonstrate temporal variation in vasoconstriction of the bill, with bill temperature gradually rising throughout the food restriction after the initial drop. Eye-region temperature in the wild birds remained at similar levels throughout food restriction compared with unrestricted birds, possibly reflecting the need to maintain steady circulation to the central nervous and visual systems. Our findings provide evidence that birds selectively allow the bill to cool when a predictable food supply is suddenly disrupted, probably as a means of minimising depletion of body reserves for a perceived future shortage in energy. Full Article
ap Octopamine mobilizes lipids from honey bee (Apis mellifera) hypopharyngeal glands [RESEARCH ARTICLE] By jeb.biologists.org Published On :: 2020-04-16T04:02:51-07:00 Vanessa Corby-Harris, Megan E. Deeter, Lucy Snyder, Charlotte Meador, Ashley C. Welchert, Amelia Hoffman, and Bethany T. Obernesser Recent widespread honey bee (Apis mellifera) colony loss is attributed to a variety of stressors, including parasites, pathogens, pesticides and poor nutrition. In principle, we can reduce stress-induced declines in colony health by either removing the stressor or increasing the bees' tolerance to the stressor. This latter option requires a better understanding than we currently have of how honey bees respond to stress. Here, we investigated how octopamine, a stress-induced hormone that mediates invertebrate physiology and behavior, influences the health of young nurse-aged bees. Specifically, we asked whether octopamine induces abdominal lipid and hypopharyngeal gland (HG) degradation, two physiological traits of stressed nurse bees. Nurse-aged workers were treated topically with octopamine and their abdominal lipid content, HG size and HG autophagic gene expression were measured. Hemolymph lipid titer was measured to determine whether tissue degradation was associated with the release of nutrients from these tissues into the hemolymph. The HGs of octopamine-treated bees were smaller than control bees and had higher levels of HG autophagy gene expression. Octopamine-treated bees also had higher levels of hemolymph lipid compared with control bees. Abdominal lipids did not change in response to octopamine. Our findings support the hypothesis that the HGs are a rich source of stored energy that can be mobilized during periods of stress. Full Article
ap Diving apart together: call propagation in diving long-finned pilot whales [RESEARCH ARTICLE] By jeb.biologists.org Published On :: 2020-04-22T03:44:39-07:00 Annebelle C. M. Kok, Lisette van Kolfshoten, James A. Campbell, Alexander M. von Benda-Beckmann, Patrick J. O. Miller, Hans Slabbekoorn, and Fleur VisserGroup-living animals must communicate to stay in contact. In long-finned pilot whales, there is a trade-off between the benefits of foraging individually at depth and the formation of tight social groups at the surface. Using theoretical modelling and empirical data of tagged pairs within a group, we examined the potential of pilot whale social calls to reach dispersed group-members during foraging periods. Both theoretical predictions and empirical data of tag pairs showed a potential for communication between diving and non-diving group members over separation distances up to at least 385 m (empirical) and 1800 m (theoretical). These distances are at or exceeding pilot whale dive depths recorded across populations. Call characteristics and environmental characteristics were analysed to investigate determinants of call detectability. Longer calls with a higher sound pressure level (SPL) that were received in a quieter environment were more often detected than their shorter, lower SPL counterparts within a noisier environment. In a noisier environment, calls were louder and had a lower peak frequency, indicating mechanisms for coping with varying conditions. However, the vulnerability of pilot whales to anthropogenic noise is still of concern as the ability to cope with increasing background noise may be limited. Our study shows that combining propagation modelling and actual tag recordings provides new insights into the communicative potential for social calls in orientation and reunion with group members for deep-diving pilot whales. Full Article
ap Heat dissipation capacity influences reproductive performance in an aerial insectivore [RESEARCH ARTICLE] By jeb.biologists.org Published On :: 2020-04-22T03:44:39-07:00 Simon Tapper, Joseph J. Nocera, and Gary BurnessClimatic warming is predicted to increase the frequency of extreme weather events, which may reduce an individual's capacity for sustained activity due to thermal limits. We tested whether the risk of overheating may limit parental provisioning of an aerial insectivorous bird in population decline. For many seasonally breeding birds, parents are thought to operate close to an energetic ceiling during the 2-3 week chick-rearing period. The factors determining the ceiling remain unknown, although it may be set by an individual's capacity to dissipate body heat (the heat dissipation limitation hypothesis). Over two breeding seasons we experimentally trimmed the ventral feathers of female tree swallows (Tachycineta bicolor, Vieillot, 1808) to provide a thermal window. We then monitored maternal and paternal provisioning rates, nestling growth rates, and fledging success. We found the effect of our experimental treatment was context-dependent. Females with an enhanced capacity to dissipate heat fed their nestlings at higher rates than controls when conditions were hot, but the reverse was true under cool conditions. Control females and their mates both reduced foraging under hot conditions. In contrast, male partners of trimmed females maintained a constant feeding rate across temperatures, suggesting attempts to match the feeding rate of their partners. On average, nestlings of trimmed females were heavier than controls, but did not have a higher probability of fledging. We suggest that removal of a thermal constraint allowed females to increase provisioning rates, but additionally provided nestlings with a thermal advantage via increased heat transfer during maternal brooding. Our data provide support for the heat dissipation limitation hypothesis and suggest that depending on temperature, heat dissipation capacity can influence reproductive success in aerial insectivores. Full Article
ap A rapid intrinsic heart rate resetting response with thermal acclimation in rainbow trout, Oncorhynchus mykiss [RESEARCH ARTICLE] By jeb.biologists.org Published On :: 2020-04-27T23:57:20-07:00 Rachel L. Sutcliffe, Shaorong Li, Matthew J. H. Gilbert, Patricia M. Schulte, Kristi M. Miller, and Anthony P. FarrellWe examined cardiac pacemaker rate resetting in rainbow trout following a reciprocal temperature transfer. In the original experiment, performed in winter, 4°C-acclimated fish transferred to 12°C reset intrinsic heart rate after just 1 h (from 56.8±1.2 to 50.8±1.5 bpm); 12°C-acclimated fish transferred to 4°C reset intrinsic heart rate after 8 h (from 33.4±0.7 to 37.7±1.2 bpm). However, in a replicate experiment, performed in the summer using a different brood year, intrinsic heart rate was not reset, even after 10 weeks at a new temperature. Using this serendipitous opportunity, we compared mRNA expression changes of a suite of proteins in sinoatrial node (SAN), atrial and ventricular tissues after both 1 h and longer than 3 weeks for both experimental acclimation groups to identify those changes only associated with pacemaker rate resetting. Of the changes in mRNA expression occurring after more than 3 weeks of warm acclimation and associated with pacemaker rate resetting, we observed downregulation of NKA α1c in the atrium and ventricle, and upregulation of HCN1 in the ventricle. However, in the SAN there were no mRNA expression changes unique to the fish with pacemaker rate resetting after either 1 h or 3 weeks of warm acclimation. Thus, despite identifying changes in mRNA expression of contractile cardiac tissues, there was absence of changes in mRNA expression directly involved with the initial, rapid pacemaker rate resetting with warm acclimation. Importantly, pacemaker rate resetting with thermal acclimation does not always occur in rainbow trout. Full Article
ap Whale sharks increase swimming effort while filter feeding, but appear to maintain high foraging efficiencies [RESEARCH ARTICLE] By jeb.biologists.org Published On :: 2020-05-04T02:24:22-07:00 David E. Cade, J. Jacob Levenson, Robert Cooper, Rafael de la Parra, D. Harry Webb, and Alistair D. M. DoveWhale sharks (Rhincodon typus Smith 1828) – the largest extant fish species – reside in tropical environments, making them an exception to the general rule that animal size increases with latitude. How this largest fish thrives in tropical environments that promote high metabolism but support less robust zooplankton communities has not been sufficiently explained. We used open-source inertial measurement units (IMU) to log 397 hours of whale shark behavior in Yucatan, Mexico, at a site of both active feeding and intense wildlife tourism. Here we show that the strategies employed by whale sharks to compensate for the increased drag of an open mouth are similar to ram-feeders five orders of magnitude smaller and one order of magnitude larger. Presumed feeding constituted 20% of the total time budget of four sharks, with individual feeding bouts lasting up to 11 consecutive hrs. Compared to normal, sub-surface swimming, three sharks increased their stroke rate and amplitude while surface feeding, while one shark that fed at depth did not demonstrate a greatly increased energetic cost. Additionally, based on time-depth budgets, we estimate that aerial surveys of shark populations should consider including a correction factor of 3 to account for the proportion of daylight hours that sharks are not visible at the surface. With foraging bouts generally lasting several hours, interruptions to foraging during critical feeding periods may represent substantial energetic costs to these endangered species, and this study presents baseline data from which management decisions affecting tourist interactions with whale sharks may be made. Full Article
ap Fish embryo vulnerability to combined acidification and warming coincides with low capacity for homeostatic regulation [RESEARCH ARTICLE] By jeb.biologists.org Published On :: 2020-05-05T05:22:41-07:00 Flemming Dahlke, Magnus Lucassen, Ulf Bickmeyer, Sylke Wohlrab, Velmurugu Puvanendran, Atle Mortensen, Melissa Chierici, Hans-Otto Pörtner, and Daniela StorchThe vulnerability of fish embryos and larvae to environmental factors is often attributed to a lack of adult-like organ systems (gills) and thus insufficient homeostatic capacity. However, experimental data supporting this hypothesis are scarce. Here, by using Atlantic cod (Gadus morhua) as a model, the relationship between embryo vulnerability (to projected ocean acidification and warming) and homeostatic capacity was explored through parallel analyses of stage-specific mortality and in vitro activity and expression of major ion pumps (ATP-Synthase, Na+/K+-ATPase, H+-ATPase) and co-transporters (NBC1, NKCC1). Immunolocalization of these transporters was used to study ionocyte morphology in newly-hatched larvae. Treatment-related embryo mortality until hatch (+20% due to acidification and warming) occurred primarily during an early period (gastrulation) characterized by extremely low ion transport capacities. Thereafter, embryo mortality decreased in parallel with an exponential increase in activity and expression of all investigated ion transporters. Significant changes in transporter activity and expression in response to acidification (+15% activity) and warming (-30% expression) indicate some potential for short-term acclimatization, although likely associated with energetic trade-offs. Interestingly, whole-larvae enzyme capacities (supported by abundant epidermal ionocytes) reached levels similar to those previously measured in gill tissue of adult cod, suggesting that early-life stages without functional gills are better equipped in terms of ion homeostasis than previously thought. This study implies that the gastrulation period represents a critical transition from inherited (maternal) defenses to active homeostatic regulation, which facilitates enhanced resilience of later stages to environmental factors. Full Article
ap Oxygen supply capacity in animals evolves to meet maximum demand at the current oxygen partial pressure regardless of size or temperature [RESEARCH ARTICLE] By jeb.biologists.org Published On :: 2020-05-06T07:21:49-07:00 Brad A. Seibel and Curtis DeutschThe capacity to extract oxygen from the environment and transport it to respiring tissues in support of metabolic demand reportedly has implications for species’ thermal tolerance, body-size, diversity and biogeography. Here we derive a quantifiable linkage between maximum and basal metabolic rate and their oxygen, temperature and size dependencies. We show that, regardless of size or temperature, the physiological capacity for oxygen supply precisely matches the maximum evolved demand at the highest persistently available oxygen pressure and this is the critical PO2 for the maximum metabolic rate. For most terrestrial and shallow-living marine species, this "Pcrit-max" is the current atmospheric pressure, 21 kPa. Any reduction in oxygen partial pressure from current values will result in a calculable decrement in maximum metabolic performance. However, oxygen supply capacity has evolved to match demand across temperatures and body sizes and so does not constrain thermal tolerance or cause the well-known reduction in mass-specific metabolic rate with increasing body mass. The critical oxygen pressure for resting metabolic rate, typically viewed as an indicator of hypoxia tolerance, is, instead, simply a rate-specific reflection of the oxygen supply capacity. A compensatory reduction in maintenance metabolic costs in warm-adapted species constrains factorial aerobic scope and the critical PO2 to a similar range, between ~2 and 6, across each species’ natural temperature range. The simple new relationship described here redefines many important physiological concepts and alters their ecological interpretation. Full Article
ap Chitotriosidase as a Novel Biomarker for Therapeutic Monitoring of Nephropathic Cystinosis By jasn.asnjournals.org Published On :: 2020-04-30T10:00:30-07:00 Background Nephropathic cystinosis, a hereditary lysosomal storage disorder caused by dysfunction of the lysosomal cotransporter cystinosin, leads to cystine accumulation and cellular damage in various organs, particularly in the kidney. Close therapeutic monitoring of cysteamine, the only available disease-modifying treatment, is recommended. White blood cell cystine concentration is the current gold standard for therapeutic monitoring, but the assay is technically demanding and is available only on a limited basis. Because macrophage-mediated inflammation plays an important role in the pathogenesis of cystinosis, biomarkers of macrophage activation could have potential for the therapeutic monitoring of cystinosis. Methods We conducted a 2-year prospective, longitudinal study in which 61 patients with cystinosis who were receiving cysteamine therapy were recruited from three European reference centers. Each regular care visit included measuring four biomarkers of macrophage activation: IL-1β, IL-6, IL-18, and chitotriosidase enzyme activity. Results A multivariate linear regression analysis of the longitudinal data for 57 analyzable patients found chitotriosidase enzyme activity and IL-6 to be significant independent predictors for white blood cell cystine levels in patients of all ages with cystinosis; a receiver operating characteristic analysis ranked chitotriosidase as superior to IL-6 in distinguishing good from poor therapeutic control (on the basis of white blood cell cystine levels of <2 nmol 1/2 cystine/mg protein or ≥2 nmol 1/2 cystine/mg protein, respectively). Moreover, in patients with at least one extrarenal complication, chitotriosidase significantly correlated with the number of extrarenal complications and was superior to white blood cell cystine levels in predicting the presence of multiple extrarenal complications. Conclusions Chitotriosidase enzyme activity holds promise as a biomarker for use in therapeutic monitoring of nephropathic cystinosis. Full Article
ap Exocyst Genes Are Essential for Recycling Membrane Proteins and Maintaining Slit Diaphragm in Drosophila Nephrocytes By jasn.asnjournals.org Published On :: 2020-04-30T10:00:30-07:00 Background Studies have linked mutations in genes encoding the eight-protein exocyst protein complex to kidney disease, but the underlying mechanism is unclear. Because Drosophila nephrocytes share molecular and structural features with mammalian podocytes, they provide an efficient model for studying this issue. Methods We silenced genes encoding exocyst complex proteins specifically in Drosophila nephrocytes and studied the effects on protein reabsorption by lacuna channels and filtration by the slit diaphragm. We performed nephrocyte functional assays, carried out super-resolution confocal microscopy of slit diaphragm proteins, and used transmission electron microscopy to analyze ultrastructural changes. We also examined the colocalization of slit diaphragm proteins with exocyst protein Sec15 and with endocytosis and recycling regulators Rab5, Rab7, and Rab11. Results Silencing exocyst genes in nephrocytes led to profound changes in structure and function. Abolition of cellular accumulation of hemolymph proteins with dramatically reduced lacuna channel membrane invaginations offered a strong indication of reabsorption defects. Moreover, the slit diaphragm’s highly organized surface structure—essential for filtration—was disrupted, and key proteins were mislocalized. Ultrastructural analysis revealed that exocyst gene silencing led to the striking appearance of novel electron-dense structures that we named "exocyst rods," which likely represent accumulated membrane proteins following defective exocytosis or recycling. The slit diaphragm proteins partially colocalized with Sec15, Rab5, and Rab11. Conclusions Our findings suggest that the slit diaphragm of Drosophila nephrocytes requires balanced endocytosis and recycling to maintain its structural integrity and that impairment of the exocyst complex leads to disruption of the slit diaphragm and nephrocyte malfunction. This model may help identify therapeutic targets for treating kidney diseases featuring molecular defects in vesicle endocytosis, exocytosis, and recycling. Full Article
ap Use of Human Induced Pluripotent Stem Cells and Kidney Organoids To Develop a Cysteamine/mTOR Inhibition Combination Therapy for Cystinosis By jasn.asnjournals.org Published On :: 2020-04-30T10:00:29-07:00 Background Mutations in CTNS—a gene encoding the cystine transporter cystinosin—cause the rare, autosomal, recessive, lysosomal-storage disease cystinosis. Research has also implicated cystinosin in modulating the mTORC1 pathway, which serves as a core regulator of cellular metabolism, proliferation, survival, and autophagy. In its severest form, cystinosis is characterized by cystine accumulation, renal proximal tubule dysfunction, and kidney failure. Because treatment with the cystine-depleting drug cysteamine only slows disease progression, there is an urgent need for better treatments. Methods To address a lack of good human-based cell culture models for studying cystinosis, we generated the first human induced pluripotent stem cell (iPSC) and kidney organoid models of the disorder. We used a variety of techniques to examine hallmarks of cystinosis—including cystine accumulation, lysosome size, the autophagy pathway, and apoptosis—and performed RNA sequencing on isogenic lines to identify differentially expressed genes in the cystinosis models compared with controls. Results Compared with controls, these cystinosis models exhibit elevated cystine levels, increased apoptosis, and defective basal autophagy. Cysteamine treatment ameliorates this phenotype, except for abnormalities in apoptosis and basal autophagy. We found that treatment with everolimus, an inhibitor of the mTOR pathway, reduces the number of large lysosomes, decreases apoptosis, and activates autophagy, but it does not rescue the defect in cystine loading. However, dual treatment of cystinotic iPSCs or kidney organoids with cysteamine and everolimus corrects all of the observed phenotypic abnormalities. Conclusions These observations suggest that combination therapy with a cystine-depleting drug such as cysteamine and an mTOR pathway inhibitor such as everolimus has potential to improve treatment of cystinosis. Full Article
ap Tubule-Specific Mst1/2 Deficiency Induces CKD via YAP and Non-YAP Mechanisms By jasn.asnjournals.org Published On :: 2020-04-30T10:00:29-07:00 Background The serine/threonine kinases MST1 and MST2 are core components of the Hippo pathway, which has been found to be critically involved in embryonic kidney development. Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are the pathway’s main effectors. However, the biologic functions of the Hippo/YAP pathway in adult kidneys are not well understood, and the functional role of MST1 and MST2 in the kidney has not been studied. Methods We used immunohistochemistry to examine expression in mouse kidneys of MST1 and MST2, homologs of Hippo in Drosophila. We generated mice with tubule-specific double knockout of Mst1 and Mst2 or triple knockout of Mst1, Mst2, and Yap. PCR array and mouse inner medullary collecting duct cells were used to identify the primary target of Mst1/Mst2 deficiency. Results MST1 and MST2 were predominantly expressed in the tubular epithelial cells of adult kidneys. Deletion of Mst1/Mst2 in renal tubules increased activity of YAP but not TAZ. The kidneys of mutant mice showed progressive inflammation, tubular and glomerular damage, fibrosis, and functional impairment; these phenotypes were largely rescued by deletion of Yap in renal tubules. TNF-α expression was induced via both YAP-dependent and YAP-independent mechanisms, and TNF-α and YAP amplified the signaling activities of each other in the tubules of kidneys with double knockout of Mst1/Mst2. Conclusions Our findings show that tubular Mst1/Mst2 deficiency leads to CKD through both the YAP and non-YAP pathways and that tubular YAP activation induces renal fibrosis. The pathogenesis seems to involve the reciprocal stimulation of TNF-α and YAP signaling activities. Full Article
ap The asymmetry and cooperativity of tandem glycine riboswitch aptamers [ARTICLE] By rnajournal.cshlp.org Published On :: 2020-04-16T06:30:22-07:00 Glycine riboswitches utilize both single- and tandem-aptamer architectures. In the tandem system, the relative contribution of each aptamer toward gene regulation is not well understood. To dissect these contributions, the effects of 684 single mutants of a tandem ON switch from Bacillus subtilis were characterized for the wild-type construct and binding site mutations that selectively restrict ligand binding to either the first or second aptamer. Despite the structural symmetry of tandem aptamers, the response to these mutations was frequently asymmetrical. Mutations in the first aptamer often significantly weakened the K1/2, while several mutations in the second aptamer improved the amplitude. These results demonstrate that this ON switch favors ligand binding to the first aptamer. This is in contrast to the tandem OFF switch variant from Vibrio cholerae, which was previously shown to have preferential binding to its second aptamer. A bioinformatic analysis of tandem glycine riboswitches revealed that the two binding pockets are differentially conserved between ON and OFF switches. Altogether, this indicates that tandem ON switch variants preferentially utilize binding to the first aptamer to promote helical switching, while OFF switch variants favor binding to the second aptamer. The data set also revealed a cooperative glycine response when both binding pockets were maximally stabilized with three GC base pairs. This indicates a cooperative response may sometimes be obfuscated by a difference in the affinities of the two aptamers. This conditional cooperativity provides an additional layer of tunability to tandem glycine riboswitches that adds to their versatility as genetic switches. Full Article
ap E-Cigarettes, Vaping Devices, and Acute Lung Injury By rc.rcjournal.com Published On :: 2020-04-28T00:42:49-07:00 “E-cigarettes” are a class of consumer devices designed to deliver drugs, primarily nicotine or marijuana oils, to the lung by vaporization. Regulation of the devices in the United States is relatively minimal, and research on both epidemiology and potential toxicity has focused on nicotine devices. In 2019, an outbreak of an acute respiratory illness in the United States was traced back to the contamination of e-cigarette fluids with vitamin E acetate, which had been used to disguise the dilution of marijuana oils. The outbreak, termed “e-cigarette or vaping associated lung injury” by the U.S. Centers for Disease Control, was characterized by pulmonary infiltrates and hypoxia, which usually required hospitalization and, often, admission to ICUs. The syndrome sickened >2,600 people, mostly young men, and killed >50 people before it began to abate 6 months later. No current regulations exist to prevent a similar event with the same or different chemical contaminants. Absent such regulation, respiratory practitioners should be prepared to evaluate, identify, and treat future cases of acute lung toxicity from e-cigarettes. Full Article
ap 2019 Year in Review: Aerosol Therapy By rc.rcjournal.com Published On :: 2020-04-28T00:42:49-07:00 Relevant publications related to medicinal and toxic aerosols are discussed in this review. Treatment of COPD includes a combination of long-acting bronchodilators and long-acting muscarinic antagonists. A combination of aclidinium bromide and formoterol fumarate was approved in the United States. The combination was superior to its components alone, as well as tiotropium and a salmeterol-fluticasone combination. Increased risk of an asthma exacerbation was reported in children exposed to electronic nicotine delivery systems. A smart inhaler capable of recording inspiratory flow was approved in the United States. The use of as-needed budesonide-formoterol was reported to be superior to scheduled budesonide and as-needed terbutaline for the treatment of adults with mild-to-moderate asthma. A survey among teens with asthma and their caregivers revealed a disagreement in the number of inhaled controller medications the teen was taking. Treatment with inhaled hypertonic saline resulted in a decreased lung clearance index in infants and preschool children with cystic fibrosis. Surgical masks were well tolerated and significantly decreased the burden of aerosolized bacteria generated by coughing in adults with cystic fibrosis. Inhaled liposomal amikacin in addition to guideline-based therapy was reported to be superior to guideline-based therapy alone in achieving negative sputum cultures in adult subjects with Mycobacterium avium complex pulmonary disease. During 2019, lung injury associated to e-cigarette or vaping was reported, including 60 casualties. Full Article
ap Post-Breast Cancer Radiotherapy Bronchiolitis Obliterans Organizing Pneumonia By rc.rcjournal.com Published On :: 2020-04-28T00:42:49-07:00 BACKGROUND:Radiotherapy for breast cancer has been implicated in the development of bronchiolitis obliterans organizing pneumonia (BOOP). Patients may be asymptomatic or may have pulmonary and constitutional symptoms that are moderate or severe. Postradiotherapy BOOP usually develops during the 12 months after completion of radiotherapy and is characterized by ground-glass opacities in the radiation-exposed lung and frequently in the non-irradiated lung.METHODS:An updated literature search and review was performed to update the systematic review we conducted in 2014. Ten new publications were identified: 2 Japanese epidemiological studies, 1 Japanese case series study, 6 case reports, and 1 review article.RESULTS:The incidence of postradiotherapy BOOP was 1.4% in both Japanese epidemiological studies. Risk factors included increasing age, cigarette smoking, and increasing central lung distance. The case reports included 7 women who had breast cancer postradiation BOOP and 1 woman who had an ataxia telangiectasia mutated (ATM) gene mutation, which may increase radiation sensitivity.CONCLUSION:Postradiotherapy BOOP in women with breast cancer occurs at a rate of 1.0–3.0% and may occur in women with immune system dysfunction and genetic mutations. Full Article
ap Human Metapneumovirus Infection in Hospitalized Children By rc.rcjournal.com Published On :: 2020-04-28T00:42:49-07:00 BACKGROUND:Most children are exposed to human metapneumovirus (HMPV) by the age of 5 y. This study aimed to describe the morbidity associated with HMPV infections in a cohort of children in the Midwest of the United States.METHODS:This was a retrospective 2-center cohort study including children (0–17 y old) hospitalized with HMPV infections at 2 tertiary care pediatric hospitals from 2009 to 2013. Demographics, chronic medical conditions, viral coinfections, and hospitalization characteristics, including the need for respiratory support, high-flow nasal cannula, CPAP, bi-level positive airway pressure, invasive mechanical ventilation, pediatric ICU admission, acute kidney injury (AKI), use of extracorporeal membrane oxygenation, and length of stay, were collected.RESULTS:In total, 131 subjects were included. Those with one or more comorbidities were older than their otherwise healthy counterparts, with a median age of 2.8 y (interquartile range [IQR] 1.1–7.0) compared to 1.3 y (IQR 0.6–2.0, P < .001), respectively. Ninety-nine (75.6%) subjects required respiratory support; 72 (55.0%) subjects required nasal cannula, simple face mask, or tracheostomy mask as their maximum support. Additionally, 1 (0.8%) subject required high-flow nasal cannula, 1 (0.8%) subject required CPAP, 2 (1.5%) subjects required bi-level positive airway pressure, 15 (11.5%) subjects required invasive mechanical ventilation, 4 (3.1%) subjects required high-frequency oscillatory or jet ventilation, and 4 (3.1%) subjects required extracorporeal membrane oxygenation. Fifty-one (38.9%) subjects required pediatric ICU admission, and 16 (12.2%) subjects developed AKI. Subjects with AKI were significantly older than those without AKI at 5.4 y old (IQR 1.6–11.7) versus 1.9 y old (IQR 0.7–3.5, P = .003). After controlling for the presence of at least one comorbidity and cystic fibrosis, each year increase in age led to a 16% increase in the odds of AKI (P = .01). The median length of stay for the entire cohort was 4.0 d (IQR 2.7–7.0).CONCLUSIONS:Children hospitalized with HMPV may be at risk for AKI. Risk of HMPV-associated AKI appears to increase with age regardless of severity of respiratory illness or presence of comorbidities. Full Article
ap Determinants of Exercise Capacity Assessed With the Modified Shuttle Test in Individuals With Cystic Fibrosis By rc.rcjournal.com Published On :: 2020-04-28T00:42:49-07:00 BACKGROUND:Patients with cystic fibrosis develop decreased exercise capacity. However, the main factors responsible for this decline are still unclear. Thus, the objective of this study was to evaluate the factors influencing exercise capacity assessed with the modified shuttle test (MST) in individuals with cystic fibrosis.METHODS:A cross-sectional study was carried out in subjects with a diagnosis of cystic fibrosis who were 6–26 y old and were regularly monitored at 2 cystic fibrosis reference centers in Brazil. Individuals who were unable to perform the tests or who exhibited hemodynamic instability and exacerbation of respiratory symptoms were excluded. Anthropometric, clinical, and genotype data were collected. In addition, lung function and exercise capacity were evaluated with the MST.RESULTS:73 subjects (mean age 12.2 ± 4.9 y and FEV1 76.8 ± 23.3%) were included. The mean distance achieved in the MST was 765 ± 258 m (71.6% of predicted). The distance achieved on the MST correlated significantly with age (r = 0.49, P < .001), body mass index (r = 0.41, P < .001), resting heart rate (r = −0.51, P < .001), and FEV1 (r = 0.24, P = .042). Subjects with FEV1 > 67% of predicted (P = .02) and those with resting heart rate < 100 beats/min (P = .01) had a greater exercise capacity. Resting heart rate, age, and FEV1 (%) were found as significant variables to explain the distance achieved on the MST (R2 = 0.48, standard error = 191.0 m).CONCLUSIONS:The main determinants of exercise capacity assessed with the MST in individuals with cystic fibrosis were resting heart rate, age, and lung function. Full Article
ap Distribution of Ventilation Measured by Electrical Impedance Tomography in Critically Ill Children By rc.rcjournal.com Published On :: 2020-04-28T00:42:49-07:00 BACKGROUND:Electrical impedance tomography (EIT) is a noninvasive, portable lung imaging technique that provides functional distribution of ventilation. We aimed to describe the relationship between the distribution of ventilation by mode of ventilation and level of oxygenation impairment in children who are critically ill. We also aimed to describe the safety of EIT application.METHODS:A prospective observational study of EIT images obtained from subjects in the pediatric ICU. Images were categorized by whether the subjects were on intermittent mandatory ventilation (IMV), continuous spontaneous ventilation, or no positive-pressure ventilation. Images were categorized by the level of oxygenation impairment when using SpO2/FIO2. Distribution of ventilation is described by the center of ventilation.RESULTS:Sixty-four images were obtained from 25 subjects. Forty-two images obtained during IMV with a mean ± SD center of ventilation of 55 ± 6%, 14 images during continuous spontaneous ventilation with a mean ± SD center of ventilation of 48.1 ± 11%, and 8 images during no positive-pressure ventilation with a mean ± SD center of ventilation of 47.5 ± 10%. Seventeen images obtained from subjects with moderate oxygenation impairment with a mean ± SD center of ventilation of 59.3 ± 1.9%, 12 with mild oxygenation impairment with a mean ± SD center of ventilation of 52.6 ± 2.3%, and 4 without oxygenation impairment with a mean ± SD center of ventilation of 48.3 ± 4%. There was more ventral distribution of ventilation with IMV versus continuous spontaneous ventilation (P = .009), with IMV versus no positive-pressure ventilation (P = .01) cohorts, and with moderate oxygenation impairment versus cohorts without oxygenation impairment (P = .009). There were no adverse events related to the placement and use of EIT in our study.CONCLUSIONS:Children who had worse oxygen impairment or who received controlled modes of ventilation had more ventral distribution of ventilation than those without oxygen impairment or the subjects who were spontaneously breathing. The ability of EIT to detect changes in the distribution of ventilation in real time may allow for distribution-targeted mechanical ventilation strategies to be deployed proactively; however, future studies are needed to determine the effectiveness of such a strategy. Full Article
ap Characterization of Antineovascularization Activity and Ocular Pharmacokinetics of Phosphoinositide 3-Kinase/Mammalian Target of Rapamycin Inhibitor GNE-947 [Articles] By dmd.aspetjournals.org Published On :: 2020-04-21T21:06:36-07:00 The objectives of the present study were to characterize GNE-947 for its phosphoinositide 3-kinase (PI3K) and mammalian target of rapamycin (mTOR) inhibitory activities, in vitro anti–cell migration activity in human umbilical vein endothelial cells (HUVECs), in vivo antineovascularization activity in laser-induced rat choroidal neovascular (CNV) eyes, pharmacokinetics in rabbit plasma and eyes, and ocular distribution using matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS) and autoradioluminography. Its PI3K and mTOR Ki were 0.0005 and 0.045 µM, respectively, and its HUVEC IC50 was 0.093 µM. GNE-947 prevented neovascularization in the rat CNV model at 50 or 100 µg per eye with repeat dosing. After a single intravenous injection at 2.5 and 500 μg/kg in rabbits, its plasma terminal half-lives (t1/2) were 9.11 and 9.59 hours, respectively. After a single intravitreal injection of a solution at 2.5 μg per eye in rabbits, its apparent t1/2 values were 14.4, 16.3, and 23.2 hours in the plasma, vitreous humor, and aqueous humor, respectively. After a single intravitreal injection of a suspension at 33.5, 100, 200 μg per eye in rabbits, the t1/2 were 29, 74, and 219 days in the plasma and 46, 143, and 191 days in the eyes, respectively. MALDI-IMS and autoradioluminography images show that GNE-947 did not homogenously distribute in the vitreous humor and aggregated at the injection sites after injection of the suspension, which was responsible for the long t1/2 of the suspension because of the slow dissolution process. This hypothesis was supported by pharmacokinetic modeling analyses. In conclusion, the PI3K/mTOR inhibitor GNE-947 prevented neovascularization in a rat CNV model, with t1/2 up to approximately 6 months after a single intravitreal injection of the suspension in rabbit eyes. SIGNIFICANCE STATEMENT GNE-947 is a potent phosphoinositide 3-kinase/mammalian target of rapamycin inhibitor and exhibits anti–choroidal neovascular activity in rat eyes. The duration of GNE-947 in the rabbit eyes after intravitreal injection in a solution is short, with a half-life (t1/2) of less than a day. However, the duration after intravitreal dose of a suspension is long, with t1/2 up to 6 months due to low solubility and slow dissolution. These results indicate that intravitreal injection of a suspension for low-solubility drugs can be used to achieve long-term drug exposure. Full Article
ap Circadian Clock-Controlled Drug Metabolism: Implications for Chronotherapeutics [Minireview] By dmd.aspetjournals.org Published On :: 2020-04-17T07:49:35-07:00 Dependence of drug metabolism on dosing time has long been recognized. However, only recently are the underlying mechanisms for circadian drug metabolism being clarified. Diurnal rhythmicity in expression of drug-metabolizing enzymes is believed to be a key factor determining circadian metabolism. Supporting the notion that biological rhythms are generated and maintained by the circadian clock, a number of diurnal enzymes are under the control of the circadian clock. In general, circadian clock genes generate and regulate diurnal rhythmicity in drug-metabolizing enzymes via transcriptional actions on one or two of three cis-elements (i.e., E-box, D-box, and Rev-erb response element or RAR-related orphan receptor response element). Additionally, cycling or clock-controlled nuclear receptors such as hepatocyte nuclear factor 4α and peroxisome proliferator–activated receptor are contributors to diurnal enzyme expression. These newly discovered mechanisms for each of the rhythmic enzymes are reviewed in this article. We also discuss how the rhythms of enzymes are translated to circadian pharmacokinetics and drug chronotoxicity, which has direct implications for chronotherapeutics. Our discussion is also extended to two diurnal transporters (P-glycoprotein and multidrug resistance-associated protein 2) that have an important role in drug absorption. Although the experimental evidence is lacking in metabolism-based chronoefficacy, circadian genes (e.g., Rev-erbα) as drug targets are shown to account for diurnal variability in drug efficacy. SIGNIFICANCE STATEMENT Significant progress has been made in understanding the molecular mechanisms for generation of diurnal rhythmicity in drug-metabolizing enzymes. In this article, we review the newly discovered mechanisms for each of the rhythmic enzymes and discuss how the rhythms of enzymes are translated to circadian pharmacokinetics and drug chronotoxicity, which has direct implications for chronotherapeutics. Full Article
ap A kinesin adapter directly mediates dendritic mRNA localization during neural development in mice [Neurobiology] By www.jbc.org Published On :: 2020-05-08T03:41:14-07:00 Motor protein-based active transport is essential for mRNA localization and local translation in animal cells, yet how mRNA granules interact with motor proteins remains poorly understood. Using an unbiased yeast two–hybrid screen for interactions between murine RNA-binding proteins (RBPs) and motor proteins, here we identified protein interaction with APP tail-1 (PAT1) as a potential direct adapter between zipcode-binding protein 1 (ZBP1, a β-actin RBP) and the kinesin-I motor complex. The amino acid sequence of mouse PAT1 is similar to that of the kinesin light chain (KLC), and we found that PAT1 binds to KLC directly. Studying PAT1 in mouse primary hippocampal neuronal cultures from both sexes and using structured illumination microscopic imaging of these neurons, we observed that brain-derived neurotrophic factor (BDNF) enhances co-localization of dendritic ZBP1 and PAT1 within granules that also contain kinesin-I. PAT1 is essential for BDNF-stimulated neuronal growth cone development and dendritic protrusion formation, and we noted that ZBP1 and PAT1 co-locate along with β-actin mRNA in actively transported granules in living neurons. Acute disruption of the PAT1–ZBP1 interaction in neurons with PAT1 siRNA or a dominant-negative ZBP1 construct diminished localization of β-actin mRNA but not of Ca2+/calmodulin-dependent protein kinase IIα (CaMKIIα) mRNA in dendrites. The aberrant β-actin mRNA localization resulted in abnormal dendritic protrusions and growth cone dynamics. These results suggest a critical role for PAT1 in BDNF-induced β-actin mRNA transport during postnatal development and reveal a new molecular mechanism for mRNA localization in vertebrates. Full Article
ap Crystallographic and kinetic analyses of the FdsBG subcomplex of the cytosolic formate dehydrogenase FdsABG from Cupriavidus necator [Molecular Biophysics] By www.jbc.org Published On :: 2020-05-08T03:41:14-07:00 Formate oxidation to carbon dioxide is a key reaction in one-carbon compound metabolism, and its reverse reaction represents the first step in carbon assimilation in the acetogenic and methanogenic branches of many anaerobic organisms. The molybdenum-containing dehydrogenase FdsABG is a soluble NAD+-dependent formate dehydrogenase and a member of the NADH dehydrogenase superfamily. Here, we present the first structure of the FdsBG subcomplex of the cytosolic FdsABG formate dehydrogenase from the hydrogen-oxidizing bacterium Cupriavidus necator H16 both with and without bound NADH. The structures revealed that the two iron-sulfur clusters, Fe4S4 in FdsB and Fe2S2 in FdsG, are closer to the FMN than they are in other NADH dehydrogenases. Rapid kinetic studies and EPR measurements of rapid freeze-quenched samples of the NADH reduction of FdsBG identified a neutral flavin semiquinone, FMNH•, not previously observed to participate in NADH-mediated reduction of the FdsABG holoenzyme. We found that this semiquinone forms through the transfer of one electron from the fully reduced FMNH−, initially formed via NADH-mediated reduction, to the Fe2S2 cluster. This Fe2S2 cluster is not part of the on-path chain of iron-sulfur clusters connecting the FMN of FdsB with the active-site molybdenum center of FdsA. According to the NADH-bound structure, the nicotinamide ring stacks onto the re-face of the FMN. However, NADH binding significantly reduced the electron density for the isoalloxazine ring of FMN and induced a conformational change in residues of the FMN-binding pocket that display peptide-bond flipping upon NAD+ binding in proper NADH dehydrogenases. Full Article
ap Pro-515 of the dynamin-like GTPase MxB contributes to HIV-1 inhibition by regulating MxB oligomerization and binding to HIV-1 capsid [Microbiology] By www.jbc.org Published On :: 2020-05-08T03:41:14-07:00 Interferon-regulated myxovirus resistance protein B (MxB) is an interferon-induced GTPase belonging to the dynamin superfamily. It inhibits infection with a wide range of different viruses, including HIV-1, by impairing viral DNA entry into the nucleus. Unlike the related antiviral GTPase MxA, MxB possesses an N-terminal region that contains a nuclear localization signal and is crucial for inhibiting HIV-1. Because MxB previously has been shown to reside in both the nuclear envelope and the cytoplasm, here we used bioinformatics and biochemical approaches to identify a nuclear export signal (NES) responsible for MxB's cytoplasmic location. Using the online computational tool LocNES (Locating Nuclear Export Signals or NESs), we identified five putative NES candidates in MxB and investigated whether their deletion caused nuclear localization of MxB. Our results revealed that none of the five deletion variants relocates to the nucleus, suggesting that these five predicted NES sequences do not confer NES activity. Interestingly, deletion of one sequence, encompassing amino acids 505–527, abrogated the anti-HIV-1 activity of MxB. Further mutation experiments disclosed that amino acids 515–519, and Pro-515 in particular, regulate MxB oligomerization and its binding to HIV-1 capsid, thereby playing an important role in MxB-mediated restriction of HIV-1 infection. In summary, our results indicate that none of the five predicted NES sequences in MxB appears to be required for its nuclear export. Our findings also reveal several residues in MxB, including Pro-515, critical for its oligomerization and anti-HIV-1 function. Full Article
ap Genetic lineage tracing with multiple DNA recombinases: A user's guide for conducting more precise cell fate mapping studies [Methods and Resources] By www.jbc.org Published On :: 2020-05-08T03:41:14-07:00 Site-specific recombinases, such as Cre, are a widely used tool for genetic lineage tracing in the fields of developmental biology, neural science, stem cell biology, and regenerative medicine. However, nonspecific cell labeling by some genetic Cre tools remains a technical limitation of this recombination system, which has resulted in data misinterpretation and led to many controversies in the scientific community. In the past decade, to enhance the specificity and precision of genetic targeting, researchers have used two or more orthogonal recombinases simultaneously for labeling cell lineages. Here, we review the history of cell-tracing strategies and then elaborate on the working principle and application of a recently developed dual genetic lineage-tracing approach for cell fate studies. We place an emphasis on discussing the technical strengths and caveats of different methods, with the goal to develop more specific and efficient tracing technologies for cell fate mapping. Our review also provides several examples for how to use different types of DNA recombinase–mediated lineage-tracing strategies to improve the resolution of the cell fate mapping in order to probe and explore cell fate–related biological phenomena in the life sciences. Full Article
ap A neuroglobin-based high-affinity ligand trap reverses carbon monoxide-induced mitochondrial poisoning [Molecular Biophysics] By www.jbc.org Published On :: 2020-05-08T03:41:14-07:00 Carbon monoxide (CO) remains the most common cause of human poisoning. The consequences of CO poisoning include cardiac dysfunction, brain injury, and death. CO causes toxicity by binding to hemoglobin and by inhibiting mitochondrial cytochrome c oxidase (CcO), thereby decreasing oxygen delivery and inhibiting oxidative phosphorylation. We have recently developed a CO antidote based on human neuroglobin (Ngb-H64Q-CCC). This molecule enhances clearance of CO from red blood cells in vitro and in vivo. Herein, we tested whether Ngb-H64Q-CCC can also scavenge CO from CcO and attenuate CO-induced inhibition of mitochondrial respiration. Heart tissue from mice exposed to 3% CO exhibited a 42 ± 19% reduction in tissue respiration rate and a 33 ± 38% reduction in CcO activity compared with unexposed mice. Intravenous infusion of Ngb-H64Q-CCC restored respiration rates to that of control mice correlating with higher electron transport chain CcO activity in Ngb-H64Q-CCC–treated compared with PBS-treated, CO-poisoned mice. Further, using a Clark-type oxygen electrode, we measured isolated rat liver mitochondrial respiration in the presence and absence of saturating solutions of CO (160 μm) and nitric oxide (100 μm). Both CO and NO inhibited respiration, and treatment with Ngb-H64Q-CCC (100 and 50 μm, respectively) significantly reversed this inhibition. These results suggest that Ngb-H64Q-CCC mitigates CO toxicity by scavenging CO from carboxyhemoglobin, improving systemic oxygen delivery and reversing the inhibitory effects of CO on mitochondria. We conclude that Ngb-H64Q-CCC or other CO scavengers demonstrate potential as antidotes that reverse the clinical and molecular effects of CO poisoning. Full Article
ap Thioredoxin regulates human mercaptopyruvate sulfurtransferase at physiologically-relevant concentrations [Enzymology] By www.jbc.org Published On :: 2020-05-08T03:41:14-07:00 3-Mercaptopyruvate sulfur transferase (MPST) catalyzes the desulfuration of 3-mercaptopyruvate (3-MP) and transfers sulfane sulfur from an enzyme-bound persulfide intermediate to thiophilic acceptors such as thioredoxin and cysteine. Hydrogen sulfide (H2S), a signaling molecule implicated in many physiological processes, can be released from the persulfide product of the MPST reaction. Two splice variants of MPST, differing by 20 amino acids at the N terminus, give rise to the cytosolic MPST1 and mitochondrial MPST2 isoforms. Here, we characterized the poorly-studied MPST1 variant and demonstrated that substitutions in its Ser–His–Asp triad, proposed to serve a general acid–base role, minimally affect catalytic activity. We estimated the 3-MP concentration in murine liver, kidney, and brain tissues, finding that it ranges from 0.4 μmol·kg−1 in brain to 1.4 μmol·kg−1 in kidney. We also show that N-acetylcysteine, a widely-used antioxidant, is a poor substrate for MPST and is unlikely to function as a thiophilic acceptor. Thioredoxin exhibits substrate inhibition, increasing the KM for 3-MP ∼15-fold compared with other sulfur acceptors. Kinetic simulations at physiologically-relevant substrate concentrations predicted that the proportion of sulfur transfer to thioredoxin increases ∼3.5-fold as its concentration decreases from 10 to 1 μm, whereas the total MPST reaction rate increases ∼7-fold. The simulations also predicted that cysteine is a quantitatively-significant sulfane sulfur acceptor, revealing MPST's potential to generate low-molecular-weight persulfides. We conclude that the MPST1 and MPST2 isoforms are kinetically indistinguishable and that thioredoxin modulates the MPST-catalyzed reaction in a physiologically-relevant concentration range. Full Article
ap The testis-specific LINC component SUN3 is essential for sperm head shaping during mouse spermiogenesis [Cell Biology] By www.jbc.org Published On :: 2020-05-08T03:41:14-07:00 Sperm head shaping is a key event in spermiogenesis and is tightly controlled via the acrosome–manchette network. Linker of nucleoskeleton and cytoskeleton (LINC) complexes consist of Sad1 and UNC84 domain–containing (SUN) and Klarsicht/ANC-1/Syne-1 homology (KASH) domain proteins and form conserved nuclear envelope bridges implicated in transducing mechanical forces from the manchette to sculpt sperm nuclei into a hook-like shape. However, the role of LINC complexes in sperm head shaping is still poorly understood. Here we assessed the role of SUN3, a testis-specific LINC component harboring a conserved SUN domain, in spermiogenesis. We show that CRISPR/Cas9-generated Sun3 knockout male mice are infertile, displaying drastically reduced sperm counts and a globozoospermia-like phenotype, including a missing, mislocalized, or fragmented acrosome, as well as multiple defects in sperm flagella. Further examination revealed that the sperm head abnormalities are apparent at step 9 and that the sperm nuclei fail to elongate because of the absence of manchette microtubules and perinuclear rings. These observations indicate that Sun3 deletion likely impairs the ability of the LINC complex to transduce the cytoskeletal force to the nuclear envelope, required for sperm head elongation. We also found that SUN3 interacts with SUN4 in mouse testes and that the level of SUN4 proteins is drastically reduced in Sun3-null mice. Altogether, our results indicate that SUN3 is essential for sperm head shaping and male fertility, providing molecular clues regarding the underlying pathology of the globozoospermia-like phenotype. Full Article
ap A kainate receptor-selective RNA aptamer [Neurobiology] By www.jbc.org Published On :: 2020-05-08T03:41:14-07:00 Kainate and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors are two major, closely related receptor subtypes in the glutamate ion channel family. Excessive activities of these receptors have been implicated in a number of central nervous system diseases. Designing potent and selective antagonists of these receptors, especially of kainate receptors, is useful for developing potential treatment strategies for these neurological diseases. Here, we report on two RNA aptamers designed to individually inhibit kainate and AMPA receptors. To improve the biostability of these aptamers, we also chemically modified these aptamers by substituting their 2'-OH group with 2'-fluorine. These 2'-fluoro aptamers, FB9s-b and FB9s-r, were markedly resistant to RNase-catalyzed degradation, with a half-life of ∼5 days in rat cerebrospinal fluid or serum-containing medium. Furthermore, FB9s-r blocked AMPA receptor activity. Aptamer FB9s-b selectively inhibited GluK1 and GluK2 kainate receptor subunits, and also GluK1/GluK5 and GluK2/GluK5 heteromeric kainate receptors with equal potency. This inhibitory profile makes FB9s-b a powerful template for developing tool molecules and drug candidates for treatment of neurological diseases involving excessive activities of the GluK1 and GluK2 subunits. Full Article
ap Inhibition of the polyamine synthesis enzyme ornithine decarboxylase sensitizes triple-negative breast cancer cells to cytotoxic chemotherapy [Molecular Bases of Disease] By www.jbc.org Published On :: 2020-05-08T03:41:14-07:00 Treatment of patients with triple-negative breast cancer (TNBC) is limited by a lack of effective molecular therapies targeting this disease. Recent studies have identified metabolic alterations in cancer cells that can be targeted to improve responses to standard-of-care chemotherapy regimens. Using MDA-MB-468 and SUM-159PT TNBC cells, along with LC-MS/MS and HPLC metabolomics profiling, we found here that exposure of TNBC cells to the cytotoxic chemotherapy drugs cisplatin and doxorubicin alter arginine and polyamine metabolites. This alteration was because of a reduction in the levels and activity of a rate-limiting polyamine biosynthetic enzyme, ornithine decarboxylase (ODC). Using gene silencing and inhibitor treatments, we determined that the reduction in ODC was mediated by its negative regulator antizyme, targeting ODC to the proteasome for degradation. Treatment with the ODC inhibitor difluoromethylornithine (DFMO) sensitized TNBC cells to chemotherapy, but this was not observed in receptor-positive breast cancer cells. Moreover, TNBC cell lines had greater sensitivity to single-agent DFMO, and ODC levels were elevated in TNBC patient samples. The alterations in polyamine metabolism in response to chemotherapy, as well as DFMO-induced preferential sensitization of TNBC cells to chemotherapy, reported here suggest that ODC may be a targetable metabolic vulnerability in TNBC. Full Article
ap Intrapartum Magnesium Sulfate By neoreviews.aappublications.org Published On :: 2020-05-01T01:00:20-07:00 Full Article
ap Pathogenesis and Management of Indirect Hyperbilirubinemia in Preterm Neonates Less Than 35 Weeks: Moving Toward a Standardized Approach By neoreviews.aappublications.org Published On :: 2020-05-01T01:00:20-07:00 Premature infants have a higher incidence of indirect hyperbilirubinemia than term infants. Management of neonatal indirect hyperbilirubinemia in late preterm and term neonates has been well addressed by recognized, consensus-based guidelines. However, the extension of these guidelines to the preterm population has been an area of uncertainty because of limited evidence. This leads to variation in clinical practice and lack of recognition of the spectrum of bilirubin-induced neurologic dysfunction (BIND) in this population. Preterm infants are metabolically immature and at higher risk for BIND at lower bilirubin levels than their term counterparts. Early use of phototherapy to eliminate BIND and minimize the need for exchange transfusion is the goal of treatment in premature neonates. Although considered relatively safe, phototherapy does have side effects, and some NICUs tend to overuse phototherapy. In this review, we describe the epidemiology and pathophysiology of BIND in preterm neonates, and discuss our approach to standardized management of indirect hyperbilirubinemia in the vulnerable preterm population. The proposed treatment charts suggest early use of phototherapy in preterm neonates with the aim of reducing exposure to high irradiance levels, minimizing the need for exchange transfusions, and preventing BIND. The charts are pragmatic and have additional curves for stopping phototherapy and escalating its intensity. Having a standardized approach would support future research and quality improvement initiatives that examine dose and duration of phototherapy exposure with relation to outcomes. Full Article
ap Lithological and chemostratigraphic discrimination of facies within the Bowland Shale Formation within the Craven and Edale basins, UK By pg.lyellcollection.org Published On :: 2020-05-01T00:30:41-07:00 The Carboniferous Bowland Shale Formation of the UK is a proven hydrocarbon source rock and currently a target for shale gas exploration. Most existing analysis details lithofacies and geochemical assessment of a small number of boreholes. Given a paucity of relevant borehole cores, surface samples provide a valuable contribution to the assessment of this unconventional gas source. This study reviews existing literature on the formation's hydrocarbon geochemistry and provides new lithological descriptions of seven lithofacies, XRD mineralogy and hydrocarbon-specific geochemical data for 32 outcrop localities within the Craven and Edale basins, respectively in the northern and southern parts of the resource area. Low oxygen indices suggest that the majority of samples are relatively unaltered (in terms of hydrocarbon geochemistry), and therefore suitable for the characterization of the shale organic character. Total organic carbon (TOC) ranges from 0.7 to 6.5 wt%, with highest values associated with maximum flooding surfaces. Mean Tmax values of 447 and 441°C for the Edale and Craven basins, respectively, suggest that nearly all the samples were too immature to have generated appreciable amounts of dry gas. The oil saturation index is consistently below the >100 mg g–1 TOC benchmark, suggesting that they are not prospective for shale oil. Supplementary material: A table summarizing the location, geological description and age of all of the samples in this paper is available at https://doi.org/10.6084/m9.figshare.c.4444589 Full Article
ap The role of relay ramp evolution in governing sediment dispersal and petroleum prospectivity of syn-rift stratigraphic plays in the Northern North Sea By pg.lyellcollection.org Published On :: 2020-05-01T00:30:41-07:00 Interpretation of a 3D seismic survey located on the western margin of the Northern North Sea Basin demonstrates how the propagation, overlap and linkage of two north–south-striking, en echelon normal fault segments exerted a powerful influence over prospective subtle stratigraphic traps. The relay ramp that formed between the segments appears to have focused sediment dispersal, controlled reservoir distribution and aided post-depositional petroleum migration. Integration of electrical well log data, root-mean-square (RMS)-amplitude analysis and biostratigraphy with seismic interpretation demonstrates that a series of elongate, linear, sand-prone (reservoir) channel complexes characterize the depositional slopes generated by fault growth. The combination of synsedimentary rotation of bedding due to fault propagation and associated footwall uplift led to erosion and truncation of a laterally extensive, older channelized system (Lower Sequence), the downdip parts of which extend beyond the relay ramp. Its subsequent drape by transgressive shales created the subtle stratigraphic trap that now hosts the Cladhan Field, with charge occurring because the sandstones belonging to the Lower Sequence extend as far as the active kitchen in the neighbouring (hanging-wall) depocentre situated downdip and to the east. In contrast, the exploration of a younger, Upper Sequence of sandstones has proven to be disappointing due to their more restricted distribution, lack of access to charge, and occurrence of faults that offset and breach the thin end of the stratigraphic wedge. The implication is that partially breached relay ramps not only provide a preferential site for syn-rift clastic reservoirs to develop but also form important migration pathways through which oil passed from a petroleum kitchen into a trap. Thematic collection: This article is part of the Under-explored plays and frontier basins of the UK continental shelf collection available at: http://www.lyellcollection.org/cc/under-explored-plays-and-frontier-basins-of-the-uk-continental-shelf Full Article
ap Structural and stratigraphic evolution of the Mid North Sea High region of the UK Continental Shelf By pg.lyellcollection.org Published On :: 2020-05-01T00:30:41-07:00 Interpretation of newly acquired seismic and legacy well data has led to a greater understanding of the Upper Paleozoic–Recent geological evolution of the Mid North Sea High (MNSH), an under-explored region of the North Sea. The position of granite-cored blocks controlled the distribution of Devono-Carboniferous highs and basins before Variscan uplift led to peneplanation and the creation of the Base Permian Unconformity. The MNSH became the dominant feature during the Permian when it formed a west–east-striking ridge between the Southern and Northern Permian basins. Following a period of non-deposition, sedimentation was renewed in the Late Permian–Triassic before Middle Jurassic doming caused uplift to the NE. Subsequent Late Jurassic North Sea rifting transected the MNSH to create the Western Platform between the Central Graben and Moray Firth rift arms. Following Cretaceous post-rift deposition, the area experienced a significant easterly tilt in the Cenozoic that led to the demise of the MNSH as a prominent topographical feature. The tectonic and stratigraphic evolution exerts a strong control over reservoir facies distribution, source-rock deposition and maturation. However, the area is not barren of petroleum potential. Despite the lack of Upper Carboniferous source rocks over large areas, hydrocarbon potential is evident through shows in legacy wells, indicating the Lower Carboniferous as a potential source rock. Cenozoic uplift to the west imparted a regional tilt, the effects of which remains key to unlocking the area's prospectivity since it reconfigured structures and formed remigration pathways from Lower Carboniferous and Jurassic source rocks. Thematic collection: This article is part of the Under-explored plays and frontier basins of the UK continental shelf collection available at: https://www.lyellcollection.org/cc/under-explored-plays-and-frontier-basins-of-the-uk-continental-shelf Full Article
ap Sedimentary and diapiric melanges in the Skrzydlna area (Outer Carpathians of Poland) as indicators of basinal and structural evolution By jgs.lyellcollection.org Published On :: 2020-05-04T02:10:48-07:00 The Dukla Nappe in the Skrzydlna area exposes two types of mélange reflecting two different phases of basinal and tectonic evolution of the Outer West Carpathian orogen in its Polish sector. The Oligocene-age sedimentary mélange (olistostrome) is related to growth of the accretionary wedge, whereas the Miocene-age diapiric mélange postdates the orogenic thrusting. Textural and structural features of the very coarse-grained sedimentary mélange suggest non-cohesive debris flows and high-density turbidity currents as predominant emplacement mechanisms. Growth strata, associated with progressive unconformities, and facies contrast between the underlying fine-grained unit and the overlying olistostrome reflect a considerable uplift of the source area and rotation of the adjacent part of the basin floor. The olistostrome and the overlying turbidite succession form a retrogressive sequence interpreted as a submarine canyon infill grading to a small submarine fan. The diapiric mélange, injected into the Oligocene-age succession of the Dukla Nappe, contains the Early and Late Cretaceous-age blocks and matrix derived from the underlying Silesian Nappe. The features reflecting diapiric emplacement include matrix proportion increase and block content decrease towards the mélange margins, scaly fabric and shear zones. Both mélanges, interpreted in the past as chaotic bodies, upon detailed examination reveal genesis-related subtle internal organization. Full Article
ap Redefinition of the Ligurian Units at the Alps-Apennines junction (NW Italy) and their role in the evolution of the Ligurian accretionary wedge: constraints from melanges and broken formations By jgs.lyellcollection.org Published On :: 2020-05-04T02:10:48-07:00 We document that the undifferentiated chaotic Ligurian Units of the Monferrato–Torino Hill sector (MO-TH) at the Alps–Apennines junction consist of three different units that are comparable with the Cassio, Caio and Sporno Units of the External Ligurian Units of the Northern Apennines. Their internal stratigraphy reflects the character of units deposited in an ocean–continent transition (OCT) zone between the northwestern termination of the Ligurian–Piedmont oceanic basin and the thinned passive margin of Adria microcontinent. The inherited wedge-shaped architecture of this OCT, which gradually closed toward the north in the present-day Canavese Zone, controlled the Late Cretaceous–early Eocene flysch deposition at the trench of the External Ligurian accretionary wedge during the oblique subduction. This favoured the formation of an accretionary wedge increasing in thickness and elevation toward the SE, from the MO-TH to the Emilia Northern Apennines. Our results therefore provide significant information on both the palaeogeographical reconstruction of the northwestern termination of the Ligurian–Piedmont oceanic basin and the role played by inherited along-strike variations (stratigraphy, structural architecture and morphology) of OCT zones in controlling subduction–accretionary processes. Supplementary material: A spreadsheet with X-ray fluorescence spectrometry and inductively coupled plasma mass spectrometry whole-rock major and trace element composition of mantle peridotites, and photomicrographs of mantle peridotites are available at https://doi.org/10.6084/m9.figshare.c.4519643 Full Article
ap Polygenetic melanges: a glimpse on tectonic, sedimentary and diapiric recycling in convergent margins By jgs.lyellcollection.org Published On :: 2020-05-04T02:10:48-07:00 A significant part of mélanges recognized in exhumed convergent margins around the world has been recently documented to have chiefly originated from masse transport and subsurface remobilization and disruption (i.e. mélanges, from sedimentary and mud–serpentinite diapiric processes and from in situ fluidification–disruption). Tectonic and/or sedimentary processes occurring during subsequent multiple deformational events of convergent margin evolution commonly overprint and significantly rework the primary (sedimentary or diapiric) mélange fabric, forming polygenetic mélanges. This ultimately complicates their distinction from true tectonic mélanges, masking part of the recorded tectono-sedimentary evolution of the associated convergent margin. The contributions gathered in this thematic collection explore with different approaches (from field structural and stratigraphic observations to geophysical analyses) different types of polygenetic mélange, at various scales, around the world. These studies conclude that the understanding of this type of mélange may provide crucial insights for a more detailed interpretation of the evolution of ancient and modern convergent margins, and of processes and mechanisms triggering potential natural hazards (earthquakes and tsunamis). Case studies include the Apennines in the Central Mediterranean region, the Carpathians in Central Europe and the Nankai Prism in Japan. Thematic collection: This article is part of the ‘Polygenetic mélanges: a glimpse on tectonic sedimentary and diapiric recycling in convergent margins’ collection available at https://www.lyellcollection.org/cc/polygenetic-melanges Full Article