ba Egocentric Database Operations for Social and Economic Network Analysis By Published On :: Full Article
ba Interest in ICT Studies and Careers: Perspectives of Secondary School Female Students from Low Socioeconomic Backgrounds By Published On :: Full Article
ba Adaptive Innovation and a MOODLE-based VLE to Support a Fully Online MSc Business Information Technology (BIT) at the University of East London (UEL) By Published On :: Full Article
ba An Initiative to Address the Gender Imbalance in Tertiary IT Studies By Published On :: Full Article
ba Factors Determining the Balance between Online and Face-to-Face Teaching: An Analysis using Actor-Network Theory By Published On :: Full Article
ba Secure Software Engineering: A New Teaching Perspective Based on the SWEBOK By Published On :: Full Article
ba Examining a Flow-Usage Model to Understand MultiMedia-Based Learning By Published On :: Full Article
ba Introduction to the Special Section on Game-based Learning: Design and Applications (GbL) By Published On :: Full Article
ba Barriers to the Effective Deployment of Information Assets: An Executive Management Perspective By Published On :: Full Article
ba Text-Based Collaborative Work and Innovation: Effects of Communication Media Affordances on Divergent and Convergent Thinking in Group-Based Problem-Solving By Published On :: Full Article
ba (SNTL #3) Design and Implementation Challenges to an Interactive Social Media Based Learning Environment By Published On :: Full Article
ba Social Capital and Knowledge Transfer in New Service Development: The Front/Back Office Perspective By Published On :: Full Article
ba Accounting Information Systems Effectiveness: Evidence from the Nigerian Banking Sector By Published On :: 2017-12-04 Aim/Purpose: The purpose of this study is to investigate the interrelationship among the quality measures of information system success, including system quality, information, quality, and service quality, that eventually influence accounting information systems effectiveness. Background: It is generally believed that investment in an information system offers opportunities to organizations for business process efficiency and effectiveness. Despite huge investments in accounting information systems, banks in Nigeria have not realized the full potential benefits of using these systems because of persistent failures. Few studies have been conducted to address the problem. Methodology: A survey research design was used to collect data, and a total of 287 questionnaires were retrieved from respondents in the Nigerian banking sector. Contribution: This study contributes to the understanding of the most important antecedent factors of the quality measures, the interrelationship among the quality measures, and the influence of these measures on the accounting information systems effectiveness. Findings: The result of the study revealed that security, ease of use, and efficiency are key features of system quality, while the information quality dimension includes accuracy, timeliness, and completeness. The result of the study further revealed that information quality and system quality have significant influences on accounting information systems effectiveness. Recommendations for Practitioners: This study provides practitioners with important measures for evaluation of AIS effectiveness in the context of Nigerian banks. Recommendation for Researchers: Future researchers may build on the findings of current study to conduct fur-ther research in the area of AIS effectiveness in different contexts. Future Research: This study examines only three quality measures of Delone and Mclean model and antecedents of information and system quality measures, neglecting contingency factor. Therefore, future study should include other factors to the AIS effectiveness model to help in developing more specific theory in AIS domain. Full Article
ba An Empirical Examination of Customers’ Mobile Phone Experience and Awareness of Mobile Banking Services in Mobile Banking in Saudi Arabia By Published On :: 2017-11-29 Aim/Purpose: This work aims to understand why a disparity between the popularity of smart phones and the limited adoption of m-banking exists. Accordingly, this study investigates factors that affect a person’s decision to adopt m-banking services. Such an investigation seeks to determine if and to what extent customers’ mobile phone experience as well as their awareness of m-banking services influence their intention to use such services? Background: This study developed a conceptual model to determine the influence that users’ mobile phone experience as well as users’ awareness of m-banking services had on users’ behavioral intention to use m-banking in Saudi Arabia. Methodology: The quantitative method used to collect data was a survey questionnaire tech-nique. A questionnaire with non-structured (close-ended) questions was formulated. A random sample, targeting banking customers in Saudi Arabia, was selected. This study collected data using a cross-sectional survey. Of those surveyed, 389 provided valid responses eligible for data analysis. SPSS v.22 was used to analyze the data. Contribution: This study produced helpful results and a new m-banking conceptual model. The developed conceptual model focused integrally on users’ awareness and experience as antecedents of m-banking adoption and highlighted the im-portance of differentiating between measuring the users’ characteristics in adopting e-banking in general and m-banking services in particular. In addition, this type of model has the ability to synthesize new control variables as well as to study technology acceptance in developing countries. This study, based on an extended UTAUT model, set out to discover what factors might affect customers’ intentions to use m-banking in Saudi Arabia. Findings: The results show that service awareness has a direct effect on performance and effort expectancy, but not on perceived risk. Moreover, mobile phone experience fails to impact the relationships in the same hypothesized direction. As anticipated, performance expectancy, effort expectancy, and perceived risk have direct and significant effects on behavioral intentions to use m-banking. However, customer awareness fails to impact the relationships of performance expectancy, effort expectancy, and perceived risk on behavioral intentions to use m-banking. Recommendations for Practitioners: Banks should target customers by distributing useful information and applying measures to increase acceptance. Banks need to introduce something imaginative to convince bank customers to abandon existing service channels and adopt m-banking services. Banks should make m-banking services the easiest service for conducting bank transactions and/or help customers conduct transactions that they cannot do any other way. Recommendation for Researchers: Other factors, such as trust, culture, and/or credibility should be investigated along with user’s awareness and experience factors in m-banking services. There is a need to focus on a specific type of m-banking. Thus, it may be fruitful to study the adoption of different systems of m-banking services. Impact on Society: This study suggests that m-banking services should be designed and built based on a deep understanding of customers’ needs using extensive testing to assure that applications and sites function well in a mobile setting. Future Research: Future researchers should apply the conceptual model developed in this study in different settings, different countries, and to different technologies. Full Article
ba Reasons for Poor Acceptance of Web-Based Learning using an LMS and VLE in Ghana By Published On :: 2017-05-20 Aim/Purpose: This study investigates the factors that affect the post implementation success of a web-based learning management system at the University of Professional Studies, Accra (UPSA). Background: UPSA implemented an LMS to blend Web-based learning environment with the traditional methods of education to enable working students to acquire education. Methodology: An explanatory sequential mixed method was adopted, under the pragmatic paradigm, to investigate the level of acceptance of web-based learning by students. The effects of perceived usefulness, perceived ease of use, and other social factors were investigated. In all, 4500 final and third-year undergraduate students of UPSA made up the population. A sample size of 870 was used for this study. Contribution: This paper contributes to the body of knowledge by identifying the factors that hinder post-implementation of LMS at the tertiary level in Ghana and adds to the general literature available. Findings: The level of acceptance of LMS seems very low due to poor IT infrastructure, inadequate training, and the relevance of the system to quality lecture delivery. However, students’ intention to use LMS and the usefulness of LMS were perceived to be high, especially among students in higher levels. Recommendations for Practitioners: The authors recommend that IT infrastructure, especially reliable and fast internet connectivity, and adequate training should be provided. Recommendation for Researchers: Further research should be done to confirm if the provision of a more reliable internet system will boost students’ internet proficiency, which in turn will improve their utilisation of the LMS. Impact on Society: Help create awareness of schooling while pursuing a career and also improve interactions between students and lecturers. It will also improve enrolment and possibly reduce the cost of education in the long-run. Future Research: Researchers can look at the possibility of implementing total virtual learning systems at the tertiary level in Ghana. Full Article
ba A Cognitive Knowledge-based Framework for Social and Metacognitive Support in Mobile Learning By Published On :: 2017-03-16 Aim/Purpose: This work aims to present a knowledge modeling technique that supports the representation of the student learning process and that is capable of providing a means for self-assessment and evaluating newly acquired knowledge. The objective is to propose a means to address the pedagogical challenges in m-learning by aiding students’ metacognition through a model of a student with the target domain and pedagogy. Background: This research proposes a framework for social and meta-cognitive support to tackle the challenges raised. Two algorithms are introduced: the meta-cognition algorithm for representing the student’s learning process, which is capable of providing a means for self-assessment, and the social group mapping algorithm for classifying students according to social groups. Methodology : Based on the characteristics of knowledge in an m-learning system, the cognitive knowledge base is proposed for knowledge elicitation and representation. The proposed technique allows a proper categorization of students to support collaborative learning in a social platform by utilizing the strength of m-learning in a social context. The social group mapping and metacognition algorithms are presented. Contribution: The proposed model is envisaged to serve as a guide for developers in implementing suitable m-learning applications. Furthermore, educationists and instructors can devise new pedagogical practices based on the possibilities provided by the proposed m-learning framework. Findings: The effectiveness of any knowledge management system is grounded in the technique used in representing the knowledge. The CKB proposed manipulates knowledge as a dynamic concept network, similar to human knowledge processing, thus, providing a rich semantic capability, which provides various relationships between concepts. Recommendations for Practitioners: Educationist and instructors need to develop new pedagogical practices in line with m-learning. Recommendation for Researchers: The design and implementation of an effective m-learning application are challenging due to the reliance on both pedagogical and technological elements. To tackle this challenge, frameworks which describe the conceptual interaction between the various components of pedagogy and technology need to be proposed. Impact on Society: The creation of an educational platform that provides instant access to relevant knowledge. Future Research: In the future, the proposed framework will be evaluated against some set of criteria for its effectiveness in acquiring and presenting knowledge in a real-life scenario. By analyzing real student interaction in m-learning, the algorithms will be tested to show their applicability in eliciting student metacognition and support for social interactivity. Full Article
ba PRATO: An Automated Taxonomy-Based Reviewer-Proposal Assignment System By Published On :: 2018-10-20 Aim/Purpose: This paper reports our implementation of a prototype system, namely PRATO (Proposals Reviewers Automated Taxonomy-based Organization), for automatic assignment of proposals to reviewers based on categorized tracks and partial matching of reviewers’ profiles of research interests against proposal keywords. Background: The process of assigning reviewers to proposals tends to be a complicated task as it involves inspecting the matching between a given proposal and a reviewer based on different criteria. The situation becomes worse if one tries to automate this process, especially if a reviewer partially matches the domain of the paper at hand. Hence, a new controlled approach is required to facilitate the matching process. Methodology: Proposals and reviewers are organized into categorized tracks as defined by a tree of hierarchical research domains which correspond to the university’s colleges and departments. In addition, reviewers create their profiles of research interests (keywords) at the time of registration. Initial assignment is based on the matching of categorized sub-tracks of proposal and reviewer. Where the proposal and a reviewer fall under different categories (sub-tracks), assignment is done based on partial matching of proposal content against re-viewers’ research interests. Jaccard similarity coefficient scores are calculated of proposal keywords and reviewers’ profiles of research interest, and the reviewer with highest score is chosen. The system was used to automate the process of proposal-reviewer assignment at the Umm Al-Qura University during the 2017-2018 funding cycle. The list of proposal-reviewer assignments generated by the system was sent to human experts for voting and subsequently to make final assignments accordingly. With expert votes and final decisions as evaluation criteria, data system-expert agreements (in terms of “accept” or “reject”) were collected and analyzed by tallying frequencies and calculating rejection/acceptance ratios to assess the system’s performance. Contribution: This work helped the Deanship of Scientific Research (DSR), a funding agency at Umm Al-Qura University, in managing the process of reviewing proposals submitted for funding. We believe the work can also benefit any organizations or conferences to automate the assignment of papers to the most appropriate reviewers. Findings: Our developed prototype, PRATO, showed a considerable impact on the entire process of reviewing proposals at DSR. It automated the assignment of proposals to reviewers and resulted in 56.7% correct assignments overall. This indicates that PRATO performed considerably well at this early stage of its development. Recommendations for Practitioners: It is important for funding agencies and publishers to automate reviewing process to obtain better reviewing quality in a timely manner. Recommendation for Researchers: This work highlighted a new methodology to tackle the proposal-reviewer assignment task in an automated manner. More evaluation might be needed with consideration of different categories, especially for partially matched candidates. Impact on Society: The new methodology and knowledge about factors influencing the implementation of automated proposal-reviewing systems will help funding agencies and publishers to improve the quality of their internal processes. Future Research: In the future, we plan to examine PRATO’s performance on different classification schemes where specialty areas can be represented in graphs rather than trees. With graph representation, the scope for reviewer selection can be widened to include more general fields of specialty. Moreover, we will try to record the reasons for rejection to identify accurately whether the rejection was due to improper assignment or other reasons. Full Article
ba Antecedents and Adoption of E-Banking in Bank Performance: The Perspective of Private Bank Employees By Published On :: 2018-10-18 Aim/Purpose: This paper identifies the antecedents that affect E-Banking (EB) adoption and investigates the relationship between the level of EB adoption and the performance of private banks. Background: Rapid technological advancement has transformed the business environment dramatically. These advancements particularly the Internet has reshaped the way businesses operate. Over the last decade, the banking industry has become highly complex and competitive and operates in a highly volatile and unpredictable global economy. With the increasing demand for electronic services, banks are harnessing EB technology to improve their products and services. Methodology: Quantitative research using Structural Equation Modelling (SEM) was carried out with a sample size of 211 by sending questionnaires to employees of six banks in Khartoum, Sudan. The study is based on different technology theories and models. Contribution: The study provides insights into the employees’ perception of EB adoption in their banking transactions. Findings: The results showed that four factors are significant in the adoption of EB in Sudan. However, training and user trust were insignificant in determining its adoption. Moreover, the level of adoption of EB significantly affected private bank performance. Recommendations for Practitioners: Private banks in Sudan that are interested in EB might find these findings helpful in guiding their technology adoption and application initiatives. Recommendation for Researchers: To validate the research model, cross data from different countries are encouraged to apply the model to capture the differences and similarities among them. In addition, a longitudinal research could be conducted to gather data for adoption process over a longer period rather than one point of time, to investigate antecedents and bank performance outcomes by the end of the study period. Other antecedents and outcomes could possibly be included to improve the power of the study model. Impact on Society: This study provides a reference for banks with similar developing country backgrounds in adopting EB to enhance their performance. Moreover, knowledge of antecedents and outcomes of EB adoption could be positively reflected in service quality performance. Future Research: This research is limited to the employees’ perspective, and future research could consider the perception of customers from a developing country towards EB adoption. Full Article
ba Multilevel Authentication System for Stemming Crime in Online Banking By Published On :: 2018-05-28 Aim/Purpose: The wide use of online banking and technological advancement has attracted the interest of malicious and criminal users with a more sophisticated form of attacks. Background: Therefore, banks need to adapt their security systems to effectively stem threats posed by imposters and hackers and to also provide higher security standards that assure customers of a secured environment to perform their financial transactions. Methodology : The use of authentication techniques that include the mutual secure socket layer authentication embedded with some specific features. Contribution: An approach was made through this paper towards providing a more reliable and complete solution for implementing multi-level user authentication in a banking environment. Findings: The use of soft token as the final stage of authentication provides ease of management with no additional hardware requirement. Recommendations for Practitioners : This work is an approach made towards providing a more reliable and complete solution for implementing multi-level user authentication in a banking environment to stem cybercrime. Recommendation for Researchers: With this approach, a reliable system of authentication is being suggested to stem the growing rate of hacking activities in the information technology sector. Impact on Society :This work if adopted will give the entire populace confidence in carrying out online banking without fear of any compromise. Future Research: This work can be adopted to model a real-life scenario. Full Article
ba Crisis and Disaster Situations on Social Media Streams: An Ontology-Based Knowledge Harvesting Approach By Published On :: 2019-10-20 Aim/Purpose: Vis-à-vis management of crisis and disaster situations, this paper focuses on important use cases of social media functions, such as information collection & dissemination, disaster event identification & monitoring, collaborative problem-solving mechanism, and decision-making process. With the prolific utilization of disaster-based ontological framework, a strong disambiguation system is realized, which further enhances the searching capabilities of the user request and provides a solution of unambiguous in nature. Background: Even though social media is information-rich, it has created a challenge for deriving a decision in critical crisis-related cases. In order to make the whole process effective and avail quality decision making, sufficiently clear semantics of such information is necessary, which can be supplemented through employing semantic web technologies. Methodology: This paper evolves a disaster ontology-based system availing a framework model for monitoring uses of social media during risk and crisis-related events. The proposed system monitors a discussion thread discovering whether it has reached its peak or decline after its root in the social forum like Twitter. The content in social media can be accessed through two typical ways: Search Application Program Interfaces (APIs) and Streaming APIs. These two kinds of API processes can be used interchangeably. News content may be filtered by time, geographical region, keyword occurrence and availability ratio. With the support of disaster ontology, domain knowledge extraction and comparison against all possible concepts are availed. Besides, the proposed method makes use of SPARQL to disambiguate the query and yield the results which produce high precision. Contribution: The model provides for the collection of crisis-related temporal data and decision making through semantic mapping of entities over concepts in a disaster ontology we developed, thereby disambiguating potential named entities. Results of empirical testing and analysis indicate that the proposed model outperforms similar other models. Findings: Crucial findings of this research lie in three aspects: (1) Twitter streams and conventional news media tend to offer almost similar types of news coverage for a specified event, but the rate of distribution among topics/categories differs. (2) On specific events such as disaster, crisis or any emergency situations, the volume of information that has been accumulated between the two news media stands divergent and filtering the most potential information poses a challenging task. (3) Relational mapping/co-occurrence of terms has been well designed for conventional news media, but due to shortness and sparseness of tweets, there remains a bottleneck for researchers. Recommendations for Practitioners: Though metadata avails collaborative details of news content and it has been conventionally used in many areas like information retrieval, natural language processing, and pattern recognition, there is still a lack of fulfillment in semantic aspects of data. Hence, the pervasive use of ontology is highly suggested that build semantic-oriented metadata for concept-based modeling, information flow searching and knowledge exchange. Recommendation for Researchers: The strong recommendation for researchers is that instead of heavily relying on conventional Information Retrieval (IR) systems, one can focus more on ontology for improving the accuracy rate and thereby reducing ambiguous terms persisting in the result sets. In order to harness the potential information to derive the hidden facts, this research recommends clustering the information from diverse sources rather than pruning a single news source. It is advisable to use a domain ontology to segregate the entities which pose ambiguity over other candidate sets thus strengthening the outcome. Impact on Society: The objective of this research is to provide informative summarization of happenings such as crisis, disaster, emergency and havoc-based situations in the real world. A system is proposed which provides the summarized views of such happenings and corroborates the news by interrelating with one another. Its major task is to monitor the events which are very booming and deemed important from a crowd’s perspective. Future Research: In the future, one shall strive to help to summarize and to visualize the potential information which is ranked high by the model. Full Article
ba Effects of Advocacy Banners after Abandoning Products in Online Shopping Carts By Published On :: 2019-05-02 Aim/Purpose: This study empirically analyzed and examined the effectiveness of the online advocacy banners on customers’ reactions to make replacements with the similar products in their shopping carts. Background: When a product in a shopping cart is removed, it might be put back into the cart again during the same purchase or it may be bought in the future. Otherwise, it might be abandoned and replaced with a similar item based on the customer’s enquiry list or on the recommendation of banners. There is a lack of understanding of this phenomenon in the existing literature, pointing to the need for this study. Methodology: With a database from a Taiwanese e-retailer, data were the tracks of empirical webpage clickstreams. The used data for analyses were particularly that the products were purchased again or replaced with the similar ones upon the advocacy banners being shown when they were removed from customers’ shopping carts. Few pre-defined Apriori rules as well as similarity algorithm, Jaccard index, were applied to derive the effectiveness. Contribution: This study addressed a measurement challenge by leveraging the information from clickstream data – particularly clickstream data behavior. These data are most useful to observe the real-time behavior of consumers on websites and also are applied to studying click-through behavior, but not click-through rates, for web banners. The study develops a new methodology to aid advertisers in evaluating the effectiveness of their banner campaign. Findings: The recommending/advocating titles of “you probably are interested” and “the most viewed” are not significantly effective on saving back customers’ removed products or repurchasing similar items. For the banners entitled “most buy”, “the most viewed” might only show popularity of the items, but is not enough to convince them to buy. At the current stage on the host website, customers may either not trust in the host e-retailer or in such mechanism. Additionally, the advocating/recommending banners only are effective on the same customer visits and their effects fade over time. As time passes, customers’ impressions of these banners may become vague. Recommendations for Practitioners: One managerial implication is more effective adoption of advocacy/recommendation banners on e-retailing websites. Another managerial implication is the evaluation of the advocacy/recommendation banners. By using a data mining technique to find the association between removed products and restored ones in e-shoppers’ shopping carts, the approach and findings of this study, which are important for e-retailing marketers, reflect the connection between the usage of banners and the personalized purchase changes in an individual customer’s shopping cart. Recommendation for Researchers: This study addressed a new measurement which challenges to leverage the information from clickstream data instead of click-through rates – particularly retailing webpages browsing behavior. These data are most useful to observe the real-time behavior of consumers on websites and also are applied to studying click-through behavior. Impact on Society: Personalization has become an important technique that allows businesses to improve both sales and service relationships with their online customers. This personalization gives e-marketers the ability to deliver real effectiveness in the use of banners. Future Research: The effectiveness is time- and case-sensible. Business practitioners and academic researchers are encouraged to apply the mining methodology to longevity studies, specific marketing campaigns of advertising and personal recommendations, and any further recommendation algorithms. Full Article
ba Improving Webpage Access Predictions Based on Sequence Prediction and PageRank Algorithm By Published On :: 2019-01-20 Aim/Purpose: In this article, we provide a better solution to Webpage access prediction. In particularly, our core proposed approach is to increase accuracy and efficiency by reducing the sequence space with integration of PageRank into CPT+. Background: The problem of predicting the next page on a web site has become significant because of the non-stop growth of Internet in terms of the volume of contents and the mass of users. The webpage prediction is complex because we should consider multiple kinds of information such as the webpage name, the contents of the webpage, the user profile, the time between webpage visits, differences among users, and the time spent on a page or on each part of the page. Therefore, webpage access prediction draws substantial effort of the web mining research community in order to obtain valuable information and improve user experience as well. Methodology: CPT+ is a complex prediction algorithm that dramatically offers more accurate predictions than other state-of-the-art models. The integration of the importance of every particular page on a website (i.e., the PageRank) regarding to its associations with other pages into CPT+ model can improve the performance of the existing model. Contribution: In this paper, we propose an approach to reduce prediction space while improving accuracy through combining CPT+ and PageRank algorithms. Experimental results on several real datasets indicate the space reduced by up to between 15% and 30%. As a result, the run-time is quicker. Furthermore, the prediction accuracy is improved. It is convenient that researchers go on using CPT+ to predict Webpage access. Findings: Our experimental results indicate that PageRank algorithm is a good solution to improve CPT+ prediction. An amount of though approximately 15 % to 30% of redundant data is removed from datasets while improving the accuracy. Recommendations for Practitioners: The result of the article could be used in developing relevant applications such as Webpage and product recommendation systems. Recommendation for Researchers: The paper provides a prediction model that integrates CPT+ and PageRank algorithms to tackle the problem of complexity and accuracy. The model has been experimented against several real datasets in order to show its performance. Impact on Society: Given an improving model to predict Webpage access using in several fields such as e-learning, product recommendation, link prediction, and user behavior prediction, the society can enjoy a better experience and more efficient environment while surfing the Web. Future Research: We intend to further improve the accuracy of webpage access prediction by using the combination of CPT+ and other algorithms. Full Article
ba A Cognitive Knowledge-based Model for an Academic Adaptive e-Advising System By Published On :: 2020-10-08 Aim/Purpose: This study describes a conceptual model, based on the principles of concept algebra that can provide intelligent academic advice using adaptive, knowledge-based feedback. The proposed model advises students based on their traits and academic history. The system aims to deliver adaptive advice to students using historical data from previous and current students. This data-driven approach utilizes a cognitive knowledge-based (CKB) model to update the weights (values that indicate the strength of relationships between concepts) that exist between student’s performances and recommended courses. Background: A research study conducted at the Public Authority for Applied Education and Training (PAAET), a higher education institution in Kuwait, indicates that students’ have positive perceptions of the e-Advising system. Most students believe that PAAET’s e-Advising system is effective because it allows them to check their academic status, provides a clear vision of their academic timeline, and is a convenient, user-friendly, and attractive online service. Student advising can be a tedious element of academic life but is necessary to fill the gap between student performance and degree requirements. Higher education institutions have prioritized assisting undecided students with career decisions for decades. An important feature of e-Advising systems is personalized feedback, where tailored advice is provided based on students' characteristics and other external parameters. Previous e-Advising systems provide students with advice without taking into consideration their different attributes and goals. Methodology: This research describes a model for an e-Advising system that enables students to select courses recommended based on their personalities and academic performance. Three algorithms are used to provide students with adaptive course selection advice: the knowledge elicitation algorithm that represents students' personalities and academic information, the knowledge bonding algorithm that combines related concepts or ideas within the knowledge base, and the adaptive e-Advising model that recommends relevant courses. The knowledge elicitation algorithm acquires student and academic characteristics from data provided, while the knowledge bonding algorithm fuses the newly acquired features with existing information in the database. The adaptive e-Advising algorithm provides recommended courses to students based on existing cognitive knowledge to overcome the issues associated with traditional knowledge representation methods. Contribution: The design and implementation of an adaptive e-Advising system are challenging because it relies on both academic and student traits. A model that incorporates the conceptual interaction between the various academic and student-specific components is needed to manage these challenges. While other e-Advising systems provide students with general advice, these earlier models are too rudimentary to take student characteristics (e.g., knowledge level, learning style, performance, demographics) into consideration. For the online systems that have replaced face-to-face academic advising to be effective, they need to take into consideration the dynamic nature of contemporary students and academic settings. Findings: The proposed algorithms can accommodate a highly diverse student body by providing information tailored to each student. The academic and student elements are represented as an Object-Attribute-Relationship (OAR) model. Recommendations for Practitioners: The model proposed here provides insight into the potential relationships between students’ characteristics and their academic standing. Furthermore, this novel e-Advising system provides large quantities of data and a platform through which to query students, which should enable developing more effective, knowledge-based approaches to academic advising. Recommendation for Researchers: The proposed model provides researches with a framework to incorporate various academic and student characteristics to determine the optimal advisory factors that affect a student’s performance. Impact on Society: The proposed model will benefit e-Advising system developers in implementing updateable algorithms that can be tested and improved to provide adaptive advice to students. The proposed approach can provide new insight to advisors on possible relationships between student’s characteristics and current academic settings. Thus, providing a means to develop new curriculums and approaches to learning. Future Research: In future studies, the proposed algorithms will be implemented, and the adaptive e-Advising model will be tested on real-world data and then further improved to cater to specific academic settings. The proposed model will benefit e-Advising system developers in implementing updateable algorithms that can be tested and improved to provide adaptive advisory to students. The approach proposed can provide new insight to advisors on possible relationships between student’s characteristics and current academic settings. Thus, providing a means to develop new curriculums and approaches to course recommendation. Full Article
ba The Effect of Marketing Knowledge Management on Bank Performance Through Fintech Innovations: A Survey Study of Jordanian Commercial Banks By Published On :: 2020-09-15 Aim/Purpose: This study aimed to examine the effect of marketing knowledge management (MKM) on bank performance via the mediating role of the Fintech innovation in Jordanian commercial banks. Background: An extensive number of studies found a significant relationship between Marketing knowledge management and bank performance (e.g., Akroush & Al-Mohammad, 2010; Hou & Chien 2010; Rezaee & Jafari, 2015; Veismoradi et al., 2013). However, there remains a lack of clarity regarding the relationship between marketing knowledge management (MKM) and bank performance (BP). Furthermore, the linkage between MKM and BP is not straightforward but, instead, includes a more complicated relationship. Therefore, it is argued that managing marketing knowledge management assets and capabilities can enhance performance via the role of financial innovation as a mediating factor on commercial banks; to date, however, there is no empirical evidence. Methodology: Based on a literature review, knowledge-based theory, and financial innovation theory, an integrated conceptual framework has been developed to guide the study. A quantitative approach was used, and the data was collected from 336 managers and employees in all 13 Jordanian commercial banks using online and in hand instruments. Structural equation modeling (SEM) was used to analyze and verify the study variables. Contribution: This article contributes to theory by filling a gap in the literature regarding the role of marketing knowledge management assets and capabilities in commercial banks operating in a developing country like Jordan. It empirically examined and validated the role of Fintech innovation as mediators between marketing knowledge management and bank performance Findings: The main findings revealed that marketing knowledge management had a significant favorable influence on bank performance. Fintech innovation acted as partial mediators in this relationship. Recommendations for Practitioners: Commercial banks should be fully aware of the importance of knowledge management practices to enhance their financial innovation and bank performance. They should also consider promoting a culture of practicing knowledge management processes among their managers and employees by motivating and training to promote innovations. Recommendation for Researchers: The result endorsed Fintech innovation’s mediating effect on the relationship between the independent variable, marketing knowledge management (assets and capabilities), and the dependent variable bank performance, which was not addressed before; thus, it needs further validation. Future Research: The current designed research model can be applied and assessed further in other sectors, including banking and industrial sectors across developed and developing countries. It would also be of interest to introduce other variables in the study model that can act as consequences of MKM capabilities, such as financial and non-financial performance measures Full Article
ba The Effect of Rational Based Beliefs and Awareness on Employee Compliance with Information Security Procedures: A Case Study of a Financial Corporation in Israel By Published On :: 2020-07-02 Aim/Purpose: This paper examines the behavior of financial firm employees with regard to information security procedures instituted within their organization. Furthermore, the effect of information security awareness and its importance within a firm is explored. Background: The study focuses on employees’ attitude toward compliance with information security policies (ISP), combined with various norms and personal abilities. Methodology: A self-reported questionnaire was distributed among 202 employees of a large financial Corporation Contribution: As far as we know, this is the first paper to thoroughly explore employees’ awareness of information system procedures, among financial organizations in Israel, and also the first to develop operative recommendations for these organizations aimed at increasing ISP compliance behavior. The main contribution of this study is that it investigates compliance with information security practices among employees of a defined financial corporation operating under rigid regulatory governance, confidentiality and privacy of data, and stringent requirements for compliance with information security procedures. Findings: Our results indicate that employees’ attitudes, normative beliefs and personal capabilities to comply with firm’s ISP, have positive effects on the firm’s ISP compliance. Also, employees’ general awareness of IS, as well as awareness to ISP within the firm, positively affect employees’ ISP compliance. Recommendations for Practitioners: This study can help information security managers identify the motivating factors for employee behavior to maintain information security procedures, properly channel information security resources, and manage appropriate information security behavior. Recommendation for Researchers: Researchers can see that corporate rewards and sanctions have significant effects on employee security behavior, but other motivational factors also reinforce the ISP’s compliance behavior. Distinguishing between types of corporations and organizations is essential to understanding employee compliance with information security procedures. Impact on Society: This study offers another level of understanding of employee behavior with regard to information security in organizations and comprises a significant contribution to the growing knowledge in this area. The research results form an important basis for IS policymakers, culture designers, managers, and those directly responsible for IS in the organization. Future Research: Future work should sample employees from another type of corporation from other fields and should apply qualitative analysis to explore other aspects of behavioral patterns related to the subject matter. Full Article
ba IDCUP Algorithm to Classifying Arbitrary Shapes and Densities for Center-based Clustering Performance Analysis By Published On :: 2020-05-04 Aim/Purpose: The clustering techniques are normally considered to determine the significant and meaningful subclasses purposed in datasets. It is an unsupervised type of Machine Learning (ML) where the objective is to form groups from objects based on their similarity and used to determine the implicit relationships between the different features of the data. Cluster Analysis is considered a significant problem area in data exploration when dealing with arbitrary shape problems in different datasets. Clustering on large data sets has the following challenges: (1) clusters with arbitrary shapes; (2) less knowledge discovery process to decide the possible input features; (3) scalability for large data sizes. Density-based clustering has been known as a dominant method for determining the arbitrary-shape clusters. Background: Existing density-based clustering methods commonly cited in the literature have been examined in terms of their behavior with data sets that contain nested clusters of varying density. The existing methods are not enough or ideal for such data sets, because they typically partition the data into clusters that cannot be nested. Methodology: A density-based approach on traditional center-based clustering is introduced that assigns a weight to each cluster. The weights are then utilized in calculating the distances from data vectors to centroids by multiplying the distance by the centroid weight. Contribution: In this paper, we have examined different density-based clustering methods for data sets with nested clusters of varying density. Two such data sets were used to evaluate some of the commonly cited algorithms found in the literature. Nested clusters were found to be challenging for the existing algorithms. In utmost cases, the targeted algorithms either did not detect the largest clusters or simply divided large clusters into non-overlapping regions. But, it may be possible to detect all clusters by doing multiple runs of the algorithm with different inputs and then combining the results. This work considered three challenges of clustering methods. Findings: As a result, a center with a low weight will attract objects from further away than a centroid with higher weight. This allows dense clusters inside larger clusters to be recognized. The methods are tested experimentally using the K-means, DBSCAN, TURN*, and IDCUP algorithms. The experimental results with different data sets showed that IDCUP is more robust and produces better clusters than DBSCAN, TURN*, and K-means. Finally, we compare K-means, DBSCAN, TURN*, and to deal with arbitrary shapes problems at different datasets. IDCUP shows better scalability compared to TURN*. Future Research: As future recommendations of this research, we are concerned with the exploration of further available challenges of the knowledge discovery process in clustering along with complex data sets with more time. A hybrid approach based on density-based and model-based clustering algorithms needs to compare to achieve maximum performance accuracy and avoid the arbitrary shapes related problems including optimization. It is anticipated that the comparable kind of the future suggested process will attain improved performance with analogous precision in identification of clustering shapes. Full Article
ba A Knowledge Transfer Perspective on Front/Back-Office Structure and New Service Development Performance: An Empirical Study of Retail Banking in China By Published On :: 2022-01-07 Aim/Purpose: The purpose of this study is to investigate the mechanism of the front/back-office structure affecting new service development (NSD) performance and examine the role of knowledge transfer in the relationship between front/back-office structure and NSD. Background: The separation of front and back-office has become the prevailing trend of the organizational transformation of modern service enterprises in the digital era. Yet, the influence of front and back-office separation dealing with new service development has not been widely researched. Methodology: Building on the internal social capital perspective, a multivariate regression analysis was conducted to investigate the impact of front/back-office structure on the NSD performance through knowledge transfer as an intermediate variable. The data was collected through a survey questionnaire from 198 project-level officers in the commercial banking industry of China. Contribution: This study advances the understanding of front/back-office structure’s influence mechanism on new service development activity. It reveals that knowledge transfer plays a critical role in bridging the impact of front and back-office separation to NSD performance under the trend of digitalization of service organizations. Findings: This study verified the positive effects of front/back-office social capital on NSD performance. Moreover, knowledge transfer predicted the variation in NSD performance and fully mediated the effect of front/back-office social capital on NSD performance. Recommendations for Practitioners: Service organizations should optimize knowledge transfer by promoting the social capital between front and back-office to overcome the negative effect organizational separation brings to NSD. Service and other organizations could explore developing an internal social network management platform, by which the internal social network could be visualized and dynamically managed. Recommendation for Researchers: The introduction of information and communications technology not only divides the organization into front and back-office, but also reduces the face-to-face customer contact. The impacts of new forms of customer contact to new service development and knowledge transfer between customer and service organizations call for further research. Along with the digital servitization, some manufacturing organizations also separate front and back-offices. The current model can be applied and assessed further in manufacturing and other service sectors. Impact on Society: The conclusion of this study guides us to pay attention to the construction of social capital inside organizations with front/back-office structure and implicates introducing and developing sociotechnical theory in front/back-office issue undergoing technological revolution. Future Research: As this study is based on the retail banking industry, similar studies are called upon in other service sectors to identify differences and draw more general conclusions. In addition, as the front and back-offices are being replaced increasingly by information technology such as artificial intelligence (AI), it is necessary to advance the research on front/back-office research with a new theoretical perspective, such as sociotechnical theory. Full Article
ba The Effect of Visual Appeal, Social Interaction, Enjoyment, and Competition on Mobile Esports Acceptance by Urban Citizens By Published On :: 2022-12-09 Aim/Purpose: This study investigated a model of mobile esports acceptance among urban citizens based on an extended Technology Acceptance Model (TAM). Background: Currently, esports are increasingly popular and in demand by the public. Supported by the widespread development of mobile devices, it has become an interactive market trend to play games in a new model, mobile esports. Methodology: This study collected data from 400 respondents and analyzed it using partial least squares-structural equation modeling (PLS-SEM). Contribution: This study addresses two research gaps. The first gap is limited esports information systems studies, particularly in mobile esports acceptance studies. The second gap is limited exploration of external variables in online gaming acceptance studies. Thus, this study proposed a TAM extended model by integrating the TAM native variables with other external variables such as visual appeal, enjoyment, social interaction, and competition to explore mobile esports acceptance by urban citizens. Findings: Nine hypotheses were accepted, and four were rejected. The visual appeal did not affect the acceptance. Meanwhile, social interaction and enjoyment significantly affected both perceived ease of use and usefulness. However, perceived ease of use surprisingly had an insignificant effect on attitude toward using mobile esports. Moreover, competition significantly affected the acceptance, particularly on perceived usefulness. Recommendations for Practitioners: Fresh and innovative features, such as new game items or themes, should be frequently introduced to enhance players’ continued enjoyment. Moreover, mobile esports providers should offer a solid platform to excite players’ interactions to increase the likelihood that users feel content. On the other hand, the national sports ministry/agency or responsible authorities should organize many esports competitions, big or small, to search for new talents. Recommendation for Researchers: Visual appeal in this study did not influence the perceived ease of use or usefulness. However, it could affect enjoyment. Thus, it would be worth revisiting the relationship between visual appeal and enjoyment. At the same time, perceived ease of use is a strong driver for the continued use of most online games, but not in this study. It could indicate significant differences between mobile esports and typical online games, one of which is the different purposes. Users might play online games for recreational intention, but players would use mobile esports to compete, win, or even get monetary rewards. Therefore, although users might find mobile esports challenging and hard to use, they tend to keep playing it. Thus, monetary rewards could be considered a determinant of the continuation of use. Impact on Society: Nowadays, users are being paid for playing games. It also would be an excel-lent job if they become professional esports athletes. This study investigated factors that could affect the continued use of mobile esports. Like other jobs, playing games professionally in the long term could make the players tedious and tired. Therefore, responsible parties, like mobile esports providers or governments, could use the recommendations of this study to promote positive behavior among the players. They will not feel like working and still con-sider playing mobile esports a hobby if they happily do the job. In the long run, the players could also make a nation’s society proud if they can be a champion in prestigious competitions. Future Research: A larger sample size will be needed to generalize the results, such as for a nation. It is also preferable if the sample is randomized systematically. Future works should also investigate whether the same results are acquired in other mobile esports. Furthermore, to extend our knowledge and deepen our understanding of the variables that influence mobile esports adoption, the subsequent research could look at other mobile esports acceptability based on characteristics of system functionality and moderator effects. Finally, longitudinal data-collecting approaches are suggested for future studies since behavior can change over time. Full Article
ba A Framework for Ranking Critical Success Factors of Business Intelligence Based on Enterprise Architecture and Maturity Model By Published On :: 2022-12-03 Aim/Purpose: The aim of this study is to identify Critical Success Factors (CSF) of Business Intelligence (BI) and provide a framework to classify CSF into layers or perspectives using an enterprise architecture approach, then rank CSF within each perspective and evaluate the importance of each perspective at different BI maturity levels as well. Background: Although the implementation of the BI project has a significant impact on creating analytical and competitive capabilities, the lack of evaluation of CSF holistically is still a challenge. Moreover, the BI maturity level of the organization has not been considered in the BI implementation project. Identifying BI critical success factors and their importance can help the project team to move to a higher maturity level in the organization. Methodology: First, a list of distinct CSF is identified through a literature review. Second, a framework is provided for categorizing these CSF using enterprise architecture. Interviewing is the research method used to evaluate the importance of CSF and framework layers with two questionnaires among experts. The first questionnaire was done by Analytical Hierarchy Process (AHP), a quantitative method of decision-making to calculate the weight of the CSF according to the importance of CSF in each of the framework layers. The second one was conducted to evaluate framework layers at different BI maturity levels using a Likert scale. Contribution: This paper contributes to the implementation of BI projects by identifying a comprehensive list of CSF in the form of a holistic multi-layered framework and ranking the importance of CSF and layers at BI maturity levels. Findings: The most important CSF in BI implementation projects include senior management support, process identification, data quality, analytics quality, hardware quality, security standards, scope management, documentation, project team skills, and customer needs transformation, which received the highest scores in framework layers. In addition, it was observed that as the organization moves to higher levels of maturity, the average importance of strategic business and security perspectives or layers increases. But the average importance of data, applications, infrastructure, and network, the project management layers in the proposed framework is the same regardless of the level of business intelligence maturity. Recommendations for Practitioners: The results of this paper can be used by academicians and practitioners to improve BI project implementation through understanding a comprehensive list of CSF and their importance. This awareness causes us to focus on the most important CSF and have better planning to reach higher levels of maturity according to the maturity level of the organization. Future Research: For future research, the interaction of critical success factors of business intelligence and framework layers can be examined with different methods. Full Article
ba Adoption of Telecommuting in the Banking Industry: A Technology Acceptance Model Approach By Published On :: 2022-09-29 Aim/Purpose: Currently, the world faces unprecedented challenges due to COVID-19, particularly concerning individuals’ health and livelihood and organizations and industrial performance. Indeed, the pandemic has caused rapid intensifying socio-economic effects. For instance, organizations are shifting from traditional working patterns toward telecommuting. By adopting remote working, organizations might mitigate the impact of COVID-19 on their workforce, explicitly concerning their safety, wellbeing, mobility, work-life balance, and self-efficiency. From this perceptive, this study examines the factors that influence employees’ behavioral intention to adopt telecommuting in the banking industry. Background: The study’s relevance stems from the fact that telecommuting and its benefits have been assumed rather than demonstrated in the banking sector. However, the pandemic has driven the implementation of remote working, thereby revealing possible advantages of working from home in the banking industry. The study investigated the effect of COVID-19 in driving organizations to shift from traditional working patterns toward telecommuting. Thereby, the study investigates the banking sector employees’ behavioral intention to adopt telecommuting. Methodology: The study employed a survey-based questionnaire, which entails gathering data from employees of twelve banks in Jordan, as the banking sector in Jordan was the first to transform from traditional working to telecommuting. The sample for this research was 675 respondents; convenience sampling was employed as a sampling technique. Subsequently, the data were analyzed with the partial least square structural equation modeling (PLS-SEM) to statistically test the research model. Contribution: Firstly, this study provides a deep examination and understanding of facilitators of telecommuting in a single comprehensive model. Secondly, the study pro-vides a deeper insight into the factors affecting behavioral intention towards telecommuting from the employees’ perspective in the banking sector. Finally, this study is the first to examine telecommuting in the emerging market of Jordan. Thereby, this study provides critical recommendations for managers to facilitate the implementation of telecommuting. Findings: Using the Technology Acceptance Model (TAM), this study highlights significant relationships between telecommuting systems, quality, organizational support, and the perceived usefulness and ease of use in telecommuting. Employees who perceive telecommuting systems to be easy and receive supervision and training for using these systems are likely to adopt this work scheme. The results present critical theoretical and managerial implications regarding employees’ behavioral intentions toward telecommuting. Recommendations for Practitioners: This study suggests the importance of work-life balance for employees when telecommuting. Working from home while managing household duties can create complications for employees, particularly parents. Therefore, flexibility in terms of working hours is needed to increase employees’ acceptance of telecommuting as they will have more control over their life. These increase employees’ perceived self-efficacy with telecommuting, which smooths the transition toward remote working in the future. In addition, training will allow employees to solve technical issues that can arise from using online systems. Recommendation for Researchers: This study focused on the context of the banking sector. The sensitivity of data and transactions in this sector may influence employers’ and employees’ willingness to work remotely. In addition, the job descriptions of employees in banks moderate specific factors outlined in this model, including work-life balance. For instance, executive managers may have a higher overload in banks in contrast to front-line employees. Thus, future studies should explore different contexts, including manufacturing and consultation, to understand the industry’s effect on remote working. Similarly, future research should concentrate on the influence of job descriptions on employees’ intentions toward telecommuting. Impact on Society: The COVID-19 pandemic created a sudden shift towards telecommuting, which made employees struggle to adopt new work schemes. Therefore, managers had to provide training for their employees to be well prepared and increase their acceptance of telecommuting. Furthermore, telecommuting has a positive effect on work-life balance, it provides employees with the flexibility to organize their daily schedule into more activities. Along the same line, the study highlighted the correlation between work-life balance and telecommuting. Such a relationship provides further evidence for the need to understand employees’ lifestyles in facilitating the adoption of telecommuting. Moreover, the study extends the stream of literature by outlining critical factors affecting employees’ acceptance of telecommuting. Future Research: Future studies should explore different contexts, including manufacturing and consultation, to understand the industry’s effect on remote working. Similarly, future research should concentrate on the influence of job descriptions on employees’ intentions toward telecommuting. Furthermore, the research team conducted the study by surveying 12 banks. Future research recommends surveying the whole banking industry to add more validation to the model. Full Article
ba A Novel Telecom Customer Churn Analysis System Based on RFM Model and Feature Importance Ranking By Published On :: 2023-10-03 Aim/Purpose: In this paper, we present an RFM model-based telecom customer churn system for better predicting and analyzing customer churn. Background: In the highly competitive telecom industry, customer churn is an important research topic in customer relationship management (CRM) for telecom companies that want to improve customer retention. Many researchers focus on a telecom customer churn analysis system to find out the customer churn factors for improving prediction accuracy. Methodology: The telecom customer churn analysis system consists of three main parts: customer segmentation, churn prediction, and churn factor identification. To segment the original dataset, we use the RFM model and K-means algorithm with an elbow method. We then use RFM-based feature construction for customer churn prediction, and the XGBoost algorithm with SHAP method to obtain a feature importance ranking. We chose an open-source customer churn dataset that contains 7,043 instances and 21 features. Contribution: We present a novel system for churn analysis in telecom companies, which encompasses customer churn prediction, customer segmentation, and churn factor analysis to enhance business strategies and services. In this system, we leverage customer segmentation techniques for feature construction, which enables the new features to improve the model performance significantly. Our experiments demonstrate that the proposed system outperforms current advanced customer churn prediction methods in the same dataset, with a higher prediction accuracy. The results further demonstrate that this churn analysis system can help telecom companies mine customer value from the features in a dataset, identify the primary factors contributing to customer churn, and propose suitable solution strategies. Findings: Simulation results show that the K-means algorithm gets better results when the original dataset is divided into four groups, so the K value is selected as 4. The XGBoost algorithm achieves 79.3% and 81.05% accuracy on the original dataset and new data with RFM, respectively. Additionally, each cluster has a unique feature importance ranking, allowing for specialized strategies to be provided to each cluster. Overall, our system can help telecom companies implement effective CRM and marketing strategies to reduce customer churn. Recommendations for Practitioners: More accurate churn prediction reduces misjudgment of customer churn. The acquisition of customer churn factors makes the company more convenient to analyze the reasons for churn and formulate relevant conservation strategies. Recommendation for Researchers: The research achieves 81.05% accuracy for customer churn prediction with the Xgboost and RFM algorithms. We believe that more enhancements algorithms can be attempted for data preprocessing for better prediction. Impact on Society: This study proposes a more accurate and competitive customer churn system to help telecom companies conserve the local markets and reduce capital outflows. Future Research: The research is also applicable to other fields, such as education, banking, and so forth. We will make more new attempts based on this system. Full Article
ba Determinants of the Intention to Use Big Data Analytics in Banks and Insurance Companies: The Moderating Role of Managerial Support By Published On :: 2023-10-03 Aim/Purpose: The aim of this research paper is to suggest a comprehensive model that incorporates the technology acceptance model with the task-technology fit model, information quality, security, trust, and managerial support to investigate the intended usage of big data analytics (BDA) in banks and insurance companies. Background: The emergence of the concept of “big data,” prompted by the widespread use of connected devices and social media, has been pointed out by many professionals and financial institutions in particular, which makes it necessary to assess the determinants that have an impact on behavioral intention to use big data analytics in banks and insurance companies. Methodology: The integrated model was empirically assessed using self-administered questionnaires from 181 prospective big data analytics users in Moroccan banks and insurance firms and examined using partial least square (PLS) structural equation modeling. The results cover sample characteristics, an analysis of the validity and reliability of measurement models’ variables, an evaluation of the proposed hypotheses, and a discussion of the findings. Contribution: The paper makes a noteworthy contribution to the BDA adoption literature within the finance sector. It stands out by ingeniously amalgamating the Technology Acceptance Model (TAM) with Task-Technology Fit (TTF) while underscoring the critical significance of information quality, trust, and managerial support, due to their profound relevance and importance in the finance domain. Thus showing BDA has potential applications beyond the finance sector. Findings: The findings showed that TTF and trust’s impact on the intention to use is considerable. Information quality positively impacted perceived usefulness and ease of use, which in turn affected the intention to use. Moreover, managerial support moderates the correlation between perceived usefulness and the intention to use, whereas security did not affect the intention to use and managerial support did not moderate the influence of perceived ease of use. Recommendations for Practitioners: The results suggest that financial institutions can improve their adoption decisions for big data analytics (BDA) by understanding how users perceive it. Users are predisposed to use BDA if they presume it fits well with their tasks and is easy to use. The research also emphasizes the importance of relevant information quality, managerial support, and collaboration across departments to fully leverage the potential of BDA. Recommendation for Researchers: Further study may be done on other business sectors to confirm its generalizability and the same research design can be employed to assess BDA adoption in organizations that are in the advanced stage of big data utilization. Impact on Society: The study’s findings can enable stakeholders of financial institutions that are at the primary stage of big data exploitation to understand how users perceive BDA technologies and the way their perception can influence their intention toward their use. Future Research: Future research is expected to conduct a comparison of the moderating effect of managerial support on users with technical expertise versus those without; in addition, international studies across developed countries are required to build a solid understanding of users’ perceptions towards BDA. Full Article
ba Antecedents of Business Analytics Adoption and Impacts on Banks’ Performance: The Perspective of the TOE Framework and Resource-Based View By Published On :: 2023-09-18 Aim/Purpose: This study utilized a comprehensive framework to investigate the adoption of Business Analytics (BA) and its effects on performance in commercial banks in Jordan. The framework integrated the Technological-Organizational-Environmental (TOE) model, the Diffusion of Innovation (DOI) theory, and the Resource-Based View (RBV). Background: The recent trend of utilizing data for business operations and decision-making has positively impacted organizations. Business analytics (BA) is a leading technique that generates valuable insights from data. It has gained considerable attention from scholars and practitioners across various industries. However, guidance is lacking for organizations to implement BA effectively specific to their business contexts. This research aims to evaluate factors influencing BA adoption by Jordanian commercial banks and examine how its implementation impacts bank performance. The goal is to provide needed empirical evidence surrounding BA adoption and outcomes in the Jordanian banking sector. Methodology: The study gathered empirical data by conducting an online questionnaire survey with senior and middle managers from 13 commercial banks in Jordan. The participants were purposefully selected, and the questionnaire was designed based on relevant and well-established literature. A total of 307 valid questionnaires were collected and considered for data analysis. Contribution: This study makes a dual contribution to the BA domain. Firstly, it introduces a research model that comprehensively examines the factors that influence the adoption of BA. The proposed model integrates the TOE framework, DOI theory, and RBV theory. Combining these frameworks allows for a comprehensive examination of BA adoption in the banking industry. By analyzing the technological, organizational, and environmental factors through the TOE framework, understanding the diffusion process through the DOI theory, and assessing the role of resources and capabilities through the RBV theory, researchers and practitioners can better understand the complex dynamics involved. This integrated approach enables a more nuanced assessment of the factors that shape BA adoption and its subsequent impact on business performance within the banking industry. Secondly, it uncovers the effects of BA adoption on business performance. These noteworthy findings stem from a rigorous analysis of primary data collected from commercial banks in Jordan. By presenting a holistic model and delving into the implications for business performance, this research offers valuable insights to researchers and practitioners alike in the field of BA. Findings: The findings revealed that various technological (data quality, complexity, compatibility, relative advantage), organizational (top management support, organizational readiness), and environmental (external support) factors are crucial in shaping the decision to adopt BA. Furthermore, the study findings demonstrated a positive relationship between BA adoption and performance outcomes in Jordanian commercial banks. Recommendations for Practitioners: The findings suggest that Jordanian commercial banks should enforce data quality practices, provide clear standards, invest in data quality tools and technologies, and conduct regular data audits. Top management support is crucial for fostering a data-driven decision-making culture. Organizational readiness involves having the necessary resources and skilled personnel, as well as promoting continuous learning and improvement. Highlighting the benefits of BA helps overcome resistance to technological innovation and encourages adoption by demonstrating improved decision-making processes and operational efficiency. Furthermore, external support is crucial for banks to adopt Business Analytics (BA). Banks should partner with experienced vendors to gain expertise and incorporate best practices. Vendors also provide training and technical support to overcome technological barriers. Compatibility is essential for optimal performance, requiring managers to modify workflows and IT infrastructure. Complexity, including data, organizational, and technical complexities, is a major obstacle to BA adoption. Banks should take a holistic approach, focusing on people, processes, and technology, and prioritize data quality and governance. Building a skilled team, fostering a data-driven culture, and investing in technology and infrastructure are essential. Recommendation for Researchers: The integration of the TOE framework, the DOI theory, and the RBV theory can prove to be a powerful approach for comprehensively analyzing the various factors that influence BA adoption within the dynamic banking industry. Furthermore, this combined framework enables us to gain deeper insights into the subsequent impact of BA adoption on overall business performance. Impact on Society: Examining the factors influencing BA adoption in the banking industry and its subsequent impact on business performance can have wide-ranging societal implications. It can promote data-driven decision-making, enhance customer experiences, strengthen fraud detection, foster financial inclusion, contribute to economic growth, and trigger discussions on ethical considerations. Future Research: To further advance future research, there are several avenues to consider. One option is to broaden the scope by including a larger sample size, allowing for a more comprehensive analysis. Another possibility is to investigate the impact of BA adoption on various performance indicators beyond the ones already examined. Additionally, incorporating qualitative research methods would provide a more holistic understanding of the organizational dynamics and challenges associated with the adoption of BA in Jordanian commercial banks. Full Article
ba The Implications of Knowledge-Based HRM Practices on Open Innovations for SMEs in the Manufacturing Sector By Published On :: 2023-08-04 Aim/Purpose: The main aim of this study was to investigate the impact of knowledge-based Human Resources Management (HRM) practices on inbound and outbound open innovation in Jordanian small and medium enterprises (SMEs). Background: SMEs in Jordan lack tangible resources. This insufficiency can be remedied by using knowledge as a resource. According to the Knowledge-Based View (KBV) theory, which posits knowledge as the most valuable resource, SMEs can achieve open innovation by implementing knowledge-based HRM practices that enhance the utilization of knowledge and yield competitiveness. Methodology: This study adopted the quantitative method employing descriptive and exploratory approaches. A total of 500 Jordanian manufacturing SMEs were selected from 2,310 manufacturing SMEs registered lists, according to the Jordan Social Security, by using random sampling. The study’s instrument was a questionnaire that was applied to these SMEs. There were 335 responses that were deemed useful for analysis after filtering out the replies with missing values; this corresponded to a response rate of 67%. The paper utilized structural equation modeling and cross-sectional design to test hypotheses in the proposed research model. Contribution: This study advocates the assumption of the role of KBV in improving innovation practices. This study contributes to the existing strategic HRM research by extending the understanding of knowledge-based HRM practices in the context of SMEs. Thus, this study contributes to the understanding of innovation management by demonstrating the role of knowledge-based HRM practices in boosting inbound and outbound OI practices, thereby enhancing innovation as an essential component of firm competitiveness. Findings: The findings revealed the positive impact of four knowledge-based HRM practices on inbound and outbound open innovation in Jordanian manufacturing SMEs. These practices were knowledge-based recruitment and selection, knowledge-based training and development, knowledge-based compensation and reward, as well as knowledge-based performance assessment. Recommendations for Practitioners: This study is expected to help the stakeholders of SMEs to re-shape the traditional HRM practices into knowledge-based practices which improve managerial skills, innovation practices, and the level of the firm’s competitiveness. Recommendation for Researchers: This study serves as a significant contribution to the research field of innovation practices by building a new association between knowledge-based HRM practices and inbound and outbound open innovation. Impact on Society: The study emphasizes the vital role of knowledge-based HRM practices in enhancing the knowledge and social skills of the human capital in SMEs in Jordan, thus improving the country’s social and economic development. Future Research: Future research could build on this study to include service SMEs. It could also employ a longitudinal study over the long run which would allow for a deeper analysis of the relationships of causality, offering a more comprehensive view of the effect of knowledge-based HRM on open innovation. Furthermore, future research could examine the sample of investigation before and after implementing the knowledge-based HRM practices to provide stronger evidence of their influence on inbound and outbound innovation. Full Article
ba Factors Influencing User’s Intention to Adopt AI-Based Cybersecurity Systems in the UAE By Published On :: 2023-07-25 Aim/Purpose: The UAE and other Middle Eastern countries suffer from various cybersecurity vulnerabilities that are widespread and go undetected. Still, many UAE government organizations rely on human-centric approaches to combat the growing cybersecurity threats. These approaches are ineffective due to the rapid increase in the amount of data in cyberspace, hence necessitating the employment of intelligent technologies such as AI cybersecurity systems. In this regard, this study investigates factors influencing users’ intention to adopt AI-based cybersecurity systems in the UAE. Background: Even though UAE is ranked among the top countries in embracing emerging technologies such as digital identity, robotic process automation (RPA), intelligent automation, and blockchain technologies, among others, it has experienced sluggish adoption of AI cybersecurity systems. This selectiveness in adopting technology begs the question of what factors could make the UAE embrace or accept new technologies, including AI-based cybersecurity systems. One of the probable reasons for the slow adoption and use of AI in cybersecurity systems in UAE organizations is the employee’s perception and attitudes towards such intelligent technologies. Methodology: The study utilized a quantitative approach whereby web-based questionnaires were used to collect data from 370 participants working in UAE government organizations considering or intending to adopt AI-based cybersecurity systems. The data was analyzed using the PLS-SEM approach. Contribution: The study is based on the Protection Motivation Theory (PMT) framework, widely used in information security research. However, it extends this model by including two more variables, job insecurity and resistance to change, to enhance its predictive/exploratory power. Thus, this research improves PMT and contributes to the body of knowledge on technology acceptance, especially in intelligent cybersecurity technology. Findings: This paper’s findings provide the basis from which further studies can be conducted while at the same time offering critical insights into the measures that can boost the acceptability and use of cybersecurity systems in the UAE. All the hypotheses were accepted. The relationship between the six constructs (perceived vulnerability (PV), perceived severity (PS), perceived response efficacy (PRE), perceived self-efficacy (PSE), job insecurity (JI), and resistance to change (RC)) and the intention to adopt AI cybersecurity systems in the UAE was found to be statistically significant. This paper’s findings provide the basis from which further studies can be conducted while at the same time offering critical insights into the measures that can boost the acceptability and use of cybersecurity systems in the UAE. Recommendations for Practitioners: All practitioners must be able to take steps and strategies that focus on factors that have a significant impact on increasing usage intentions. PSE and PRE were found to be positively related to the intention to adopt AI-based cybersecurity systems, suggesting the need for practitioners to focus on them. The government can enact legislation that emphasizes the simplicity and awareness of the benefits of cybersecurity systems in organizations. Recommendation for Researchers: Further research is needed to include other variables such as facilitating conditions, AI knowledge, social influence, and effort efficacy as well as other frameworks such as UTAUT, to better explain individuals’ behavioral intentions to use cybersecurity systems in the UAE. Impact on Society: This study can help all stakeholders understand what factors can increase users’ interest in investing in the applications that are embedded with security. As a result, they have an impact on economic recovery following the COVID-19 pandemic. Future Research: Future research is expected to investigate additional factors that can influence individuals’ behavioral intention to use cybersecurity systems such as facilitating conditions, AI knowledge, social influence, effort efficacy, as well other variables from UTAUT. International research across nations is also required to build a larger sample size to examine the behavior of users. Full Article
ba Medicine Recommender System Based on Semantic and Multi-Criteria Filtering By Published On :: 2023-07-21 Aim/Purpose: This study aims to devise a personalized solution for online healthcare platforms that can alleviate problems arising from information overload and data sparsity by providing personalized healthcare services to patients. The primary focus of this paper is to develop an effective medicine recommendation approach for recommending suitable medications to patients based on their specific medical conditions. Background: With a growing number of people becoming more conscious about their health, there has been a notable increase in the use of online healthcare platforms and e-services as a means of diagnosis. As the internet continues to evolve, these platforms and e-services are expected to play an even more significant role in the future of healthcare. For instance, WebMD and similar platforms offer valuable tools and information to help manage patients’ health, such as searching for medicines based on their medical conditions. Nonetheless, patients often find it arduous and time-consuming to sort through all the available medications to find the ones that match their specific medical conditions. To address this problem, personalized recommender systems have emerged as a practical solution for mitigating the burden of information overload and data sparsity-related issues that are frequently encountered on online healthcare platforms. Methodology: The study utilized a dataset of MC ratings obtained from WebMD, a popular healthcare website. Patients on this website can rate medications based on three criteria, including medication effectiveness, ease of use, and satisfaction, using a scale of 1 to 5. The WebMD MC rating dataset used in this study contains a total of 32,054 ratings provided by 2,136 patients for 845 different medicines. The proposed HSMCCF approach consists of two primary modules: a semantic filtering module and a multi-criteria filtering module. The semantic filtering module is designed to address the issues of data sparsity and new item problems by utilizing a medicine taxonomy that sorts medicines according to medical conditions and makes use of semantic relationships between them. This module identifies the medicines that are most likely to be relevant to patients based on their current medical conditions. The multi-criteria filtering module, on the other hand, enhances the approach’s ability to capture the complexity of patient preferences by considering multiple criteria and preferences through a unique similarity metric that incorporates both distance and structural similarities. This module ensures that patients receive more accurate and personalized medication recommendations. Moreover, a medicine reputation score is employed to ensure that the approach remains effective even when dealing with limited ratings or new items. Overall, the combination of these modules makes the proposed approach more robust and effective in providing personalized medicine recommendations for patients. Contribution: This study addresses the medicine recommendation problem by proposing a novel approach called Hybrid Semantic-based Multi-Criteria Collaborative Filtering (HSMCCF). This approach effectively recommends medications for patients based on their medical conditions and is specifically designed to overcome issues related to data sparsity and new item recommendations that are commonly encountered on online healthcare platforms. The proposed approach addresses data sparsity and new item issues by incorporating a semantic filtering module and a multi-criteria filtering module. The semantic filtering module sorts medicines based on medical conditions and uses semantic relationships to identify relevant ones. The multi-criteria filtering module accurately captures patient preferences and provides precise recommendations using a novel similarity metric. Additionally, a medicine reputation score is also employed to further expand potential neighbors, improving predictive accuracy and coverage, particularly in sparse datasets or new items with few ratings. With the HSMCCF approach, patients can receive more personalized recommendations that are tailored to their unique medical needs and conditions. By leveraging a combination of semantic-based and multi-criteria filtering techniques, the proposed approach can effectively address the challenges associated with medicine recommendations on online healthcare platforms. Findings: The proposed HSMCCF approach demonstrated superior effectiveness compared to benchmark recommendation methods in multi-criteria rating datasets in terms of enhancing both prediction accuracy and coverage while effectively addressing data sparsity and new item challenges. Recommendations for Practitioners: By applying the proposed medicine recommendation approach, practitioners can develop a medicine recommendation system that can be integrated into online healthcare platforms. Patients can then utilize this system to make better-informed decisions regarding the medications that are most suitable for their specific medical conditions. This personalized approach to medication recommendations can ultimately lead to improved patient satisfaction. Recommendation for Researchers: Integrating patient medicine reviews is a promising way for researchers to elevate the proposed medicine recommendation approach. By leveraging patient reviews, the approach can gain a more comprehensive understanding of how certain medications perform for specific medical conditions. Additionally, exploring the relationship between MC-based ratings using an improved aggregation function can potentially enhance the accuracy of medication predictions. This involves analyzing the relationship between different criteria, such as medication effectiveness, ease of use, and satisfaction of the patients, and determining the optimal weighting for each criterion based on patient feedback. A more holistic approach that incorporates patient reviews and an improved aggregation function can enable the proposed medicine recommendation approach to provide more personalized and accurate recommendations to patients. Impact on Society: To mitigate the risk of infection during the COVID-19 pandemic, the promotion of online healthcare services was actively encouraged. This allowed patients to continue accessing care and receiving treatment while adhering to physical distancing guidelines and shielding measures where necessary. As a result, the implementation of personalized healthcare services for patients is expected to be a major disruptive force in healthcare in the coming years. This study proposes a personalized medicine recommendation approach that can effectively address this issue and aid patients in making informed decisions about the medications that are most suitable for their specific medical conditions. Future Research: One way that may enhance the proposed medicine recommendation approach is to incorporate patient medicine reviews. Furthermore, the analysis of MC-based ratings using an improved aggregation function can also potentially enhance the accuracy of medication predictions. Full Article
ba A New Model for Collecting, Storing, and Analyzing Big Data on Customer Feedback in the Tourism Industry By Published On :: 2023-05-07 Aim/Purpose: In this study, the research proposes and experiments with a new model of collecting, storing, and analyzing big data on customer feedback in the tourism industry. The research focused on the Vietnam market. Background: Big Data describes large databases that have been “silently” built by businesses, which include product information, customer information, customer feedback, etc. This information is valuable, and the volume increases rapidly over time, but businesses often pay little attention or store it discretely, not centrally, thereby wasting an extremely large resource and partly causing limitations for business analysis as well as data. Methodology: The study conducted an experiment by collecting customer feedback data in the field of tourism, especially tourism in Vietnam, from 2007 to 2022. After that, the research proceeded to store and mine latent topics based on the data collected using the Topic Model. The study applied cloud computing technology to build a collection and storage model to solve difficulties, including scalability, system stability, and system cost optimization, as well as ease of access to technology. Contribution: The research has four main contributions: (1) Building a model for Big Data collection, storage, and analysis; (2) Experimenting with the solution by collecting customer feedback data from huge platforms such as Booking.com, Agoda.com, and Phuot.vn based on cloud computing, focusing mainly on tourism Vietnam; (3) A Data Lake that stores customer feedback and discussion in the field of tourism was built, supporting researchers in the field of natural language processing; (4) Experimental research on the latent topic mining model from the collected Big Data based on the topic model. Findings: Experimental results show that the Data Lake has helped users easily extract information, thereby supporting administrators in making quick and timely decisions. Next, PySpark big data processing technology and cloud computing help speed up processing, save costs, and make model building easier when moving to SaaS. Finally, the topic model helps identify customer discussion trends and identify latent topics that customers are interested in so business owners have a better picture of their potential customers and business. Recommendations for Practitioners: Empirical results show that facilities are the factor that customers in the Vietnamese market complain about the most in the tourism/hospitality sector. This information also recommends that practitioners reduce their expectations about facilities because the overall level of physical facilities in the Vietnamese market is still weak and cannot be compared with other countries in the world. However, this is also information to support administrators in planning to upgrade facilities in the long term. Recommendation for Researchers: The value of Data Lake has been proven by research. The study also formed a model for big data collection, storage, and analysis. Researchers can use the same model for other fields or use the model and algorithm proposed by this study to collect and store big data in other platforms and areas. Impact on Society: Collecting, storing, and analyzing big data in the tourism sector helps government strategists to identify tourism trends and communication crises. Based on that information, government managers will be able to make decisions and strategies to develop regional tourism, propose price levels, and support innovative programs. That is the great social value that this research brings. Future Research: With each different platform or website, the study had to build a query scenario and choose a different technology approach, which limits the ability of the solution’s scalability to multiple platforms. Research will continue to build and standardize query scenarios and processing technologies to make scalability to other platforms easier. Full Article
ba Customer Churn Prediction in the Banking Sector Using Machine Learning-Based Classification Models By Published On :: 2023-02-28 Aim/Purpose: Previous research has generally concentrated on identifying the variables that most significantly influence customer churn or has used customer segmentation to identify a subset of potential consumers, excluding its effects on forecast accuracy. Consequently, there are two primary research goals in this work. The initial goal was to examine the impact of customer segmentation on the accuracy of customer churn prediction in the banking sector using machine learning models. The second objective is to experiment, contrast, and assess which machine learning approaches are most effective in predicting customer churn. Background: This paper reviews the theoretical basis of customer churn, and customer segmentation, and suggests using supervised machine-learning techniques for customer attrition prediction. Methodology: In this study, we use different machine learning models such as k-means clustering to segment customers, k-nearest neighbors, logistic regression, decision tree, random forest, and support vector machine to apply to the dataset to predict customer churn. Contribution: The results demonstrate that the dataset performs well with the random forest model, with an accuracy of about 97%, and that, following customer segmentation, the mean accuracy of each model performed well, with logistic regression having the lowest accuracy (87.27%) and random forest having the best (97.25%). Findings: Customer segmentation does not have much impact on the precision of predictions. It is dependent on the dataset and the models we choose. Recommendations for Practitioners: The practitioners can apply the proposed solutions to build a predictive system or apply them in other fields such as education, tourism, marketing, and human resources. Recommendation for Researchers: The research paradigm is also applicable in other areas such as artificial intelligence, machine learning, and churn prediction. Impact on Society: Customer churn will cause the value flowing from customers to enterprises to decrease. If customer churn continues to occur, the enterprise will gradually lose its competitive advantage. Future Research: Build a real-time or near real-time application to provide close information to make good decisions. Furthermore, handle the imbalanced data using new techniques. Full Article
ba Improving the Accuracy of Facial Micro-Expression Recognition: Spatio-Temporal Deep Learning with Enhanced Data Augmentation and Class Balancing By Published On :: 2024-10-22 Aim/Purpose: This study presents a novel deep learning-based framework designed to enhance spontaneous micro-expression recognition by effectively increasing the amount and variety of data and balancing the class distribution to improve recognition accuracy. Background: Micro-expression recognition using deep learning requires large amounts of data. Micro-expression datasets are relatively small, and their class distribution is not balanced. Methodology: This study developed a framework using a deep learning-based model to recognize spontaneous micro-expressions on a person’s face. The framework also includes several technical stages, including image and data preprocessing. In data preprocessing, data augmentation is carried out to increase the amount and variety of data and class balancing to balance the distribution of sample classes in the dataset. Contribution: This study’s essential contribution lies in enhancing the accuracy of micro-expression recognition and overcoming the limited amount of data and imbalanced class distribution that typically leads to overfitting. Findings: The results indicate that the proposed framework, with its data preprocessing stages and deep learning model, significantly increases the accuracy of micro-expression recognition by overcoming dataset limitations and producing a balanced class distribution. This leads to improved micro-expression recognition accuracy using deep learning techniques. Recommendations for Practitioners: Practitioners can utilize the model produced by the proposed framework, which was developed to recognize spontaneous micro-expressions on a person’s face, by implementing it as an emotional analysis application based on facial micro-expressions. Recommendation for Researchers: Researchers involved in the development of a spontaneous micro-expression recognition framework for analyzing hidden emotions from a person’s face are playing an essential role in advancing this field and continue to search for more innovative deep learning-based solutions that continue to explore techniques to increase the amount and variety of data and find solutions to balancing the number of sample classes in various micro-expression datasets. They can further improvise to develop deep learning model architectures that are more suitable and relevant according to the needs of recognition tasks and the various characteristics of different datasets. Impact on Society: The proposed framework could significantly impact society by providing a reliable model for recognizing spontaneous micro-expressions in real-world applications, ranging from security systems and criminal investigations to healthcare and emotional analysis. Future Research: Developing a spontaneous micro-expression recognition framework based on spatial and temporal flow requires the learning model to classify optimal features. Our future work will focus more on exploring micro-expression features by developing various alternative learning models and increasing the weights of spatial and temporal features. Full Article
ba Learning to (Co)Evolve: A Conceptual Review and Typology of Network Design in Global Health Virtual Communities of Practice By Published On :: 2024-08-16 Aim/Purpose: This conceptual review analyzes the designs of global health virtual communities of practice (VCoPs) programming reported in the empirical literature and proposes a new typology of their functioning. The purpose of this review is to provide clarity on VCoP learning stages of (co)evolution and insight into VCoP (re)development efforts to best meet member, organization, and network needs against an ever-evolving landscape of complexity in global health. Background: Since the COVID-19 pandemic, the field of global health has seen an uptick in the use of VCoPs to support continuous learning and improve health outcomes. However, evidence of how different combinations of programmatic designs impact opportunities for learning and development is lacking, and how VCoPs evolve as learning networks has yet to be explored. Methodology: Following an extensive search for literature in six databases, thematic analysis was conducted on 13 articles meeting the inclusion criteria. This led to the development and discussion of a new typology of VCoP phases of learning (co)evolution. Contribution: Knowledge gained from this review and the new categorization of VCoPs can support the functioning and evaluation of global health training programs. It can also provide a foundation for future research on how VCoPs influence the culture of learning organizations and networks. Findings: Synthesis of findings resulted in the categorization of global health VCoPs into five stages (slightly evolving, somewhat revolving, moderately revolving, highly revolving, and coevolving) across four design domains (network development, general member engagement before/after sessions, general member engagement during sessions, and session leadership). All global health VCoPs reviewed showed signs of adaptation and recommended future evolution. Recommendations for Practitioners: VCoP practitioners should pay close attention to how the structured flexibility of partnerships, design, and relationship development/accountability may promote or hinder VcoP’s continued evolution. Practitioners should shift perspective from short to mid- and long-term VCoP planning. Recommendation for Researchers: The new typology can stimulate further research to strengthen the clarity of language and findings related to VCoP functioning. Impact on Society: VCoPs are utilized by academic institutions, the private sector, non-profit organizations, the government, and other entities to fill gaps in adult learning at scale. The contextual implementation of findings from this study may impact VCoP design and drive improvements in opportunities for learning, global health, and well-being. Future Research: Moving forward, future research could explore how VCoP evaluations relate to different stages of learning, consider evaluation stages across the totality of VCoP programming design, and explore how best to capture VCoP (long-term) impact attributed to health outcomes and the culture of learning organizations and networks. Full Article
ba Unraveling Knowledge-Based Chatbot Adoption Intention in Enhancing Species Literacy By Published On :: 2024-05-07 Aim/Purpose: This research investigated the determinant factors influencing the adoption intentions of Chatsicum, a Knowledge-Based Chatbot (KBC) aimed at enhancing the species literacy of biodiversity students. Background: This research was conducted to bridge the gap between technology, education, and biodiversity conservation. Innovative solutions are needed to empower individuals with knowledge, particularly species knowledge, in preserving the natural world. Methodology: The study employed a quantitative approach using the Partial Least Square Structural Equation Modeling (PLS-SEM) and sampled 145 university students as respondents. The research model combined the Task-Technology Fit (TTF) framework with elements from the Diffusion of Innovation (DOI), including relative advantage, compatibility, complexity, and observability. Also, the model introduced perceived trust as an independent variable. The primary dependent variable under examination was the intention to use the KBC. Contribution: The findings of this research contribute to a deeper understanding of the critical factors affecting the adoption of the KBC in biodiversity education and outreach, as studies in this context are limited. This study provides valuable insights for developers, educators, and policymakers interested in promoting species literacy and leveraging innovative technologies by analyzing the interplay of TTF and DOI constructs alongside perceived trust. Ultimately, this research aims to foster more effective and accessible biodiversity education strategies. Findings: TTF influenced all DOI variables, such as relative advantage, compatibility, observability, and trust positively and complexity negatively. In conclusion, TTF strongly affected usage intention indirectly. However, relative advantage, complexity, and observability insignificantly influenced the intention to use. Meanwhile, compatibility and trust strongly affected the use intention. Recommendations for Practitioners: Developers should prioritize building and maintaining chatbots that are aligned with the tasks, needs, and goals of the target users, as well as establishing trust through the assurance of information accuracy. Educators could develop tailored educational interventions that resonate with the values and preferences of diverse learners and are aligned closely with students’ learning needs, preferences, and curriculum while ensuring seamless integration with the existing educational context. Conservation organizations and policymakers could also utilize the findings of this study to enhance their outreach strategies, as the KBC is intended for students and biodiversity laypeople. Recommendation for Researchers: Researchers should explore the nuances of relationships between TTF and DOI, as well as trust, and consider the potential influence of mediating and moderating variables to advance the field of technology adoption in educational contexts. Researchers could also explore why relative advantage, complexity, and observability did not significantly impact the usage intention and whether specific user segments or contextual factors influence these relationships. Impact on Society: This research has significant societal impacts by improving species literacy, advancing technology in education, and promoting conservation efforts. Species knowledge could raise awareness regarding biodiversity and the importance of conservation, thereby leading to more informed and responsible citizens. Future Research: Future works should address the challenges and opportunities presented by KBCs in the context of species literacy enhancement, for example, interventions or experiments to influence the non-significant factors. Furthermore, longitudinal studies should investigate whether user behavior evolves. Ultimately, examining the correlation between species literacy, specifically when augmented by chatbots, and tangible conservation practices is an imperative domain in the future. It may entail evaluating the extent to which enhanced knowledge leads to concrete measures promoting biodiversity preservation. Full Article
ba Learning-Based Models for Building User Profiles for Personalized Information Access By Published On :: 2024-04-30 Aim/Purpose: This study aims to evaluate the success of deep learning in building user profiles for personalized information access. Background: To better express document content and information during the matching phase of the information retrieval (IR) process, deep learning architectures could potentially offer a feasible and optimal alternative to user profile building for personalized information access. Methodology: This study uses deep learning-based models to deduce the domain of the document deemed implicitly relevant by a user that corresponds to their center of interest, and then used predicted domain by the best given architecture with user’s characteristics to predict other centers of interest. Contribution: This study contributes to the literature by considering the difference in vocabulary used to express document content and information needs. Users are integrated into all research phases in order to provide them with relevant information adapted to their context and their preferences meeting their precise needs. To better express document content and information during this phase, deep learning models are employed to learn complex representations of documents and queries. These models can capture hierarchical, sequential, or attention-based patterns in textual data. Findings: The results show that deep learning models were highly effective for building user profiles for personalized information access since they leveraged the power of neural networks in analyzing and understanding complex patterns in user behavior, preferences, and user interactions. Recommendations for Practitioners: Building effective user profiles for personalized information access is an ongoing process that requires a combination of technology, user engagement, and a commitment to privacy and security. Recommendation for Researchers: Researchers involved in building user profiles for personalized information access play a crucial role in advancing the field and developing more innovative deep-based networks solutions by exploring novel data sources, such as biometric data, sentiment analysis, or physiological signals, to enhance user profiles. They can investigate the integration of multimodal data for a more comprehensive understanding of user preferences. Impact on Society: The proposed models can provide companies with an alternative and sophisticated recommendation system to foster progress in building user profiles by analyzing complex user behavior, preferences, and interactions, leading to more effective and dynamic content suggestions. Future Research: The development of user profile evolution models and their integration into a personalized information search system may be confronted with other problems such as the interpretability and transparency of the learning-based models. Developing interpretable machine learning techniques and visualization tools to explain how user profiles are constructed and used for personalized information access seems necessary to us as a future extension of our work. Full Article
ba Barriers of Agile Requirements Engineering in the Public Sector: A Systematic Literature Review By Published On :: 2024-03-28 Aim/Purpose: The objective of this study is to summarize the challenges of Agile Requirements Engineering (Agile RE) in the public sector in republican and constitutional monarchy nations. Additionally, it offers recommendations to address these challenges. Background: Failure of IT projects in the public sector results in financial losses for the state and loss of public trust, often attributed to issues in requirements engineering such as prioritization of user needs and excessive scope of requirements. IT projects can have a higher success rate with Agile RE, but there are also drawbacks. Therefore, this study holds significance by presenting a thorough framework designed to pinpoint and overcome the challenges associated with Agile RE to increase the success rate of IT projects. Methodology: This study employs a Systematic Literature Review (SLR) protocol in the field of software engineering or related domains, which consists of three main phases: planning the review, conducting the review with a snowballing approach, and reporting the review. Furthermore, the authors perform open coding to categorize challenges based on the Agile methodologies adoption factor model and axial coding to map potential solutions. Contribution: The authors assert that this research enriches the existing literature on Agile RE, specifically within the public sector context, by mapping out challenges and possible solutions that contribute to creating a foundation for future studies to conduct a more in-depth analysis of Agile adoption in the public sector. Furthermore, it compares the barriers of Agile RE in the public sector with the general context, leading to the discovery of new theories specifically for this field. Findings: Most challenges related to Agile RE in the public sector are found in the people and process aspects. Project and organizational-related are subsequent aspects. Therefore, handling people and processes proficiently is imperative within Agile RE to prevent project failure. Recommendations for Practitioners: Our findings offer a comprehensive view of Agile RE in the public sector in republican and constitutional monarchy nations. This study maps the challenges encountered by the public sector and provides potential solutions. The authors encourage practitioners to consider our findings as a foundation for adopting Agile methodology in the public sector. Furthermore, this study can assist practitioners in identifying existing barriers related to Agile RE, pinpointing elements that contribute to overcoming those challenges, and developing strategies based on the specific needs of the organizations. Recommendation for Researchers: Researchers have the potential to expand the scope of this study by conducting research in other countries, especially African countries, as this study has not yet encompassed this geographic region. Additionally, they can strengthen the evidence linking Agile RE challenges to the risk of Agile project failure by performing empirical validation in a specific country. Impact on Society: This research conducts a comprehensive exploration of Agile RE within the public sector, serving as a foundation for the successful adoption of Agile methodology by overcoming obstacles related to Agile RE. This study highlights the importance of managing people, processes, projects, and organizational elements to increase the success of Agile adoption in the public sector. Future Research: In the future, researchers should work towards resolving the limitations identified in this study. This study has not provided a clear prioritization of challenges and solutions according to their significance. Therefore, future researchers can perform a Fuzzy Analytical Hierarchical Process (F-AHP) to prioritize the proposed solutions. Full Article
ba Continuous Use of Mobile Banking Applications: The Role of Process Virtualizability, Anthropomorphism and Virtual Process Failure Risk By Published On :: 2024-03-13 Aim/Purpose: The research aims to investigate the factors that influence the continuous use of mobile banking applications to complete banking monetary transactions. Background: Despite a significant increase in the use of mobile banking applications, particularly during the COVID-19 pandemic, new evidence indicates that the use rate of mobile banking applications for operating banking monetary transactions has declined. Methodology: The study proposed an integrated model based mainly on the process virtualization theory (PVT) with other novel factors such as mobile banking application anthropomorphism and virtual process failure risk. The study model was empirically validated using structural equation modeling analysis on quantitative data from 484 mobile banking application users from Jordan. Contribution: The study focuses on continuing use or post-adoption behavior rather than pre-adoption behavior. This is important since the maximum and long-term viability, as well as the financial investment in mobile banking applications, depend on regular usage rather than first-time use or initial experience. Findings: The results indicate that process virtualizable and anthropomorphism have a strong positive impact on bank customers’ decisions to continue using mobile banking applications to complete banking monetary transactions. Meanwhile, the negative impact of virtualization process failure risk on continuous use has been discovered. The found factors explain 67.5% of the variance in continuous use. Recommendations for Practitioners: The study identified novel, significant factors that affect bank customers’ decisions to use mobile banking applications frequently, and these factors should be examined, matched, satisfied, or addressed when redesigning or upgrading mobile applications. Banks should provide users with clear directions, processes, or tutorials on how to complete monetary transactions effectively. They should also embrace Artificial Intelligence (AI) technology to improve their applications and products with anthropomorphic features like speech synthesizers, Chatbots, and AI-powered virtual bank assistants. This is expected to help bank customers conduct various banking services conveniently and securely, just as if interacting with real people. The study further recommends that banks create and publish clear norms and procedures, as well as promote tolerance and protect consumers’ rights when the process fails or mistakes occur. Recommendation for Researchers: The study provides measurement items that were specifically built for the context of mobile banking applications based on PVT notions. Researchers are invited to reuse, test, and modify existing measurement items, as well as submit new ones if necessary. The study model does not consider psychological aspects like trust and satisfaction, which would provide additional insight into factors affecting continuing use. Researchers could potentially take a different approach by focusing on user resistance and non-adoption. Impact on Society: Financial inclusion is problematic, particularly in underdeveloped nations. According to financial inclusion research, Jordanians rarely utilize mobile banking apps. Continuous usage of mobile banking applications will be extremely beneficial in closing the financial inclusion gap, particularly among women. Furthermore, it could help the country’s efforts to transition to a digital society. Future Research: The majority of study participants are from urban areas. Future studies should focus on consumers who live in rural areas. It was also suggested that the elderly be targeted because they may have different views/perspectives on the continued use of mobile banking applications. Full Article
ba Hybrid encryption of Fernet and initialisation vector with attribute-based encryption: a secure and flexible approach for data protection By www.inderscience.com Published On :: 2024-06-04T23:20:50-05:00 With the continuous growth and importance of data, the need for strong data protection becomes crucial. Encryption plays a vital role in preserving the confidentiality of data, and attribute-based encryption (ABE) offers a meticulous access control system based on attributes. This study investigates the integration of Fernet encryption with initialisation vector (IV) and ABE, resulting in a hybrid encryption approach that enhances both security and flexibility. By combining the advantages of Fernet encryption and IV-based encryption, the hybrid encryption scheme establishes an effective and robust mechanism for safeguarding data. Fernet encryption, renowned for its simplicity and efficiency, provides authenticated encryption, guaranteeing both the confidentiality and integrity of the data. The incorporation of an initialisation vector (IV) introduces an element of randomness into the encryption process, thereby strengthening the overall security measures. This research paper discusses the advantages and drawbacks of the hybrid encryption of Fernet and IV with ABE. Full Article
ba Map reduce-based scalable Lempel-Ziv and application in route prediction By www.inderscience.com Published On :: 2024-06-04T23:20:50-05:00 Prediction of route based on historical trip observation of users is widely employed in location-based services. This work concentrates on building a route prediction system using Lempel-Ziv technique applied to a historical corpus of user travel data. Huge continuous logs of historical GPS traces representing the user's location in past are decomposed into smaller logical units known as trips. User trips are converted into sequences of road network edges using a process known as map matching. Lempel-Ziv is applied on road network edges to build the prediction model that captures the user's travel pattern in the past. A two-phased model is proposed using a map reduce framework without losing accuracy and efficiency. Model is then used to predict the user's end-to-end route given a partial route travelled by the user at any point in time. The objective of the proposed work is to build a Route Prediction system in which model building and prediction both are horizontally scalable. Full Article
ba A Cognitive and Logic Based Model for Building Glass-Box Learning Objects By Published On :: Full Article