com New appointments to BGS Science Advisory Committee - British Geological Survey By news.google.com Published On :: Thu, 29 Aug 2024 07:00:00 GMT New appointments to BGS Science Advisory Committee British Geological Survey Full Article
com New community launched to support effective management of the subsurface - British Geological Survey By news.google.com Published On :: Thu, 03 Oct 2024 13:27:24 GMT New community launched to support effective management of the subsurface British Geological Survey Full Article
com Synthesis and structural study of the partially disordered complex hexagonal phase δ1-MnZn9.7 By journals.iucr.org Published On :: A detailed structural characterization of the δ1-MnZn9.7 phase is presented. Full Article text
com Crystal structure of the incommensurate modulated high-pressure phase of the potassium guaninate monohydrate By journals.iucr.org Published On :: Incommensurate phase of potassium guaninate monohydrate is the first example of a modulation in purine derivatives and of a high-pressure incommensurate crystal structure to be solved for an organic compound. Full Article text
com Crystal structure and compressibility of magnesium chloride heptahydrate found under high pressure By journals.iucr.org Published On :: In-situ diffraction measurements reveal that magnesium chloride forms a unique high-pressure phase, a heptahydrate, above 2 GPa. The hydrogen-bonding structure appears to contain orientational disorder. Full Article text
com The incommensurate composite YxOs4B4 (x = 1.161) By journals.iucr.org Published On :: Tetragonal YxOs4B4 (x = 1.161) is an incommensurate composite of columns of Y atoms in a three-dimensional Os4B4 framework. The structure was refined using the superspace approach. Full Article text
com Review of honeycomb-based Kitaev materials with zigzag magnetic ordering By journals.iucr.org Published On :: Full Article text
com Variable stoichiometry and salt-cocrystal intermediate in the multicomponents of flucytosine: structural elucidation and its impact on stability By journals.iucr.org Published On :: Five multicomponent solid forms of an antifungal drug flucytosine are reported with a hygroscopic stability study. A detailed CSD search on the cocrystal/salts of flucytosine is evaluated and correlated the structures based on bond angles and bond distances. Full Article text
com Density functional theory investigation of the phase transition, elastic and thermal characteristics for AuMTe2(M = Ga, In) chalcopyrite compounds By journals.iucr.org Published On :: This study presents the first theoretical predictions of the phase transitions, elastic properties, and thermal behavior of AuMTe2 (M = Ga, In) chalcopyrite compounds. Using density functional theory and the quasi-harmonic Debye model, key mechanical and thermodynamic properties are analyzed, offering insights valuable for future experimental validation. Full Article text
com The incommensurate composite YxOs4B4 (x = 1.161) By journals.iucr.org Published On :: 2024-10-31 YxOs4B4 (x = 1.161) crystallizes as a tetragonal incommensurate composite of columns of Y atoms extending along [001] in an Os4B4 framework. The structure was refined using the superspace approach. The basic structure of the Y subsystem can be idealized as having I4/mmm symmetry, with a crystallographically unique Y atom located on the 4/mmm position. The actual superspace symmetry is P42/nmc(00σ3)s0s0. The Y atoms feature only subtle positional modulation in the [001] direction. The Os4B4 subsystem [P42/ncm(00σ3)00ss superspace symmetry] is built of columns of edge-sharing Os4 tetrahedra extending along [001] and B2 dumbbells. The Os4 tetrahedra feature pronounced positional modulation with a distinct variation of the Os—Os bond lengths. Modulation of the B2 dumbbells is best described as a rotation about the [001] axis. Full Article text
com Crystal structure and compressibility of magnesium chloride heptahydrate found under high pressure By journals.iucr.org Published On :: 2024-10-21 The odd hydration number has so far been missing in the water-rich magnesium chloride hydrate series (MgCl2·nH2O). In this study, magnesium chloride heptahydrate, MgCl2·7H2O (or MgCl2·7D2O), which forms at high pressures above 2 GPa and high temperatures above 300 K, has been identified. Its structure has been determined by a combination of in-situ single-crystal X-ray diffraction at 2.5 GPa and 298 K and powder neutron diffraction at 3.1 GPa and 300 K. The single-crystal specimen was grown by mixing alcohols to prevent nucleation of undesired crystalline phases. The results show orientational disorder of water molecules, which was also examined using density functional theory calculations. The disorder involves the reconnection of hydrogen bonds, which differs from those in water ice phases and known disordered salt hydrates. Shrinkage by compression occurs mainly in one direction. In the plane perpendicular to this most compressible direction, oxygen and chlorine atoms are in a hexagonal-like arrangement. Full Article text
com Synthesis and structural study of the partially disordered complex hexagonal phase δ1-MnZn9.7 By journals.iucr.org Published On :: 2024-10-02 A detailed structural analysis of the Zn-rich δ1-MnZn9.7 phase using single-crystal X-ray diffraction is presented. The δ1 phase has been synthesized by the high-temperature synthetic route. The structure crystallizes in space group P63/mmc (Pearson symbol hP556) with unit-cell parameters: a = b = 12.9051 (2) Å and c = 57.640 (1) Å. The 556 atoms are distributed over 52 Wyckoff positions in the hexagonal unit cell: seven ordered Mn sites, 37 ordered Zn sites and eight positionally disordered Zn sites. The structure predominantly consists of Frank–Kasper polyhedra (endohedral icosahedra Zn12 and icosioctahedron Zn16) and four distinct types of glue Zn atoms. The structure comprises a 127-atom supercluster (Mn13Zn114), a 38-atom extended Pearce cluster (Mn3Zn35), a 46-atom L-tetrahedron (Mn4Zn42), a Friauf polyhedron (Zn17), a disordered icosahedral cluster (MnZn12) and four glue Zn atoms. Positionally disordered Zn sites around an Mn site can be visualized as the superimposition of three differently oriented Zn12 icosahedra. Full Article text
com Crystal structure of the incommensurate modulated high-pressure phase of the potassium guaninate monohydrate By journals.iucr.org Published On :: 2024-10-08 The crystal structure of the incommensurate modulated phase of potassium guaninate monohydrate has been solved on the basis of high-pressure single-crystal X-ray diffraction data. The modulated structure was described as a `mosaic' sequence of three different local configurations of two neighbouring guaninate rings. In contrast to known examples of incommensurate modulated organic compounds, the modulation functions of all atoms are discontinuous. This is the first example of the experimental detection of an incommensurate modulated crystal structure that can be modelled using the special `soliton mode' modulation function proposed by Aramburu et al. [(1995), J. Phys. Condens. Matter, 7, 6187–6196]. Full Article text
com Crystal structures of three uranyl–acetate–bipyridine complexes crystallized from hydraulic fracking fluid By journals.iucr.org Published On :: 2024-01-01 Hydraulic fracking exposes shale plays to acidic hydraulic fracking fluid (HFF), releasing toxic uranium (U) along with the desired oil and gas. With no existing methods to ensure U remains sequestered in the shale, this study sought to add organic ligands to HFF to explore potential U retention in shale plays. To test this possibility, incubations were set up in which uranyl acetate and one organic bipyridine ligand (either 2,2'-, 2,3'-, 2,4'-, or 4,4'-bipyridine) were added to pristine HFF as the crystallization medium. After several months and complete evaporation of all volatiles, bulk yellow crystalline material was obtained from the incubations, three of which yielded crystals suitable for single-crystal analysis, resulting in two novel structures and a high-quality structure of a previously described compound. The UO2VI acetate complexes bis(acetato-κ2O,O')(2,2'-bipyridine-κ2N,N')dioxidouranium(VI), [U(C2H3O2)2O2(C10H8N2)2] or [2,2'-bipyridine]UVIO2(CH3CO2)2, (I), and bis(acetato-κ2O,O')(2,4'-bipyridine-κN1')dioxidouranium(VI), [U(C2H3O2)2O2(C10H8N2)2] or [2,4'-bipyridine]2UVIO2(CH3CO2)2, (III), contain eight-coordinate UVI in a pseudo-hexagonal bipyramidal coordination geometry and are molecular, packing via weak C—H...O/N interactions, whereas catena-poly[bis(2,3'-bipyridinium) [di-μ-acetato-μ3-hydroxido-μ-hydroxido-di-μ3-oxido-hexaoxidotriuranium(VI)]–2,3'-bipyridine–water (1/1/1)], (C10H9N2)2[U3(C2H3O2)2O8(OH)2]·C10H8N2·H2O or {[2,3'-bipyridinium]2[2,3'-bipyridine][(UVIO2)3(O)2(OH)2(CH3CO2)2·H2O]}n, (II), forms an ionic one-dimensional polymer with seven-coordinate pentagonal bipyramidal UVI centers and hydrogen-bonding interactions within each chain. The formation of these crystals could indicate the potential for bipyridine to bind with U in shale during fracking, which will be explored in a future study via ICP-MS (inductively coupled plasma mass spectrometry) analyses of U concentration in HFF/bipyridine/shale incubations. The variation seen here between the molecular structures may indicate variance in the ability of bipyridine isomers to form complexes with U, which could impact their ability to retain U within shale in the context of fracking. Full Article text
com Human transforming growth factor β type I receptor in complex with kinase inhibitor SB505124 By journals.iucr.org Published On :: 2024-10-23 The crystal structure of the intracellular domain of transforming growth factor β type I receptor (TβR1) in complex with the competitive inhibitor SB505124 is presented. The study provides insights into the structure and function of TβR1 in complex with SB505124, and as such offers molecular-level understanding of the inhibition of this critical signalling pathway. The potential of SB505124 as an avenue for therapy in cancer treatment is discussed on basis of the results. Full Article text
com Exploiting Friedel pairs to interpret scanning 3DXRD data from complex geological materials By journals.iucr.org Published On :: A new processing technique for synchrotron scanning 3D X-ray diffraction data is introduced, utilizing symmetric Bragg reflections hkl and hkl, known as Friedel pairs. This technique is designed to tackle the difficulties associated with large, highly deformed, polyphase materials, especially geological samples. Full Article text
com TOMOMAN: a software package for large-scale cryo-electron tomography data preprocessing, community data sharing and collaborative computing By journals.iucr.org Published On :: Here we describe TOMOMAN (TOMOgram MANager), an extensible open-sourced software package for handling cryo-electron tomography data preprocessing. TOMOMAN streamlines interoperability between a wide range of external packages and provides tools for project sharing and archival. Full Article text
com Crystal structure of a solvated dinuclear CuII complex derived from 3,3,3',3'-tetraethyl-1,1'-(furan-2,5-dicarbonyl)bis(thiourea) By journals.iucr.org Published On :: In the title compound, [Cu2(L)2]·2CH2Cl2, the CuII ions coordinate two (S,O)-chelating aroylthiourea moieties of doubly deprotonated furan-2,5-dicarbonylbis(N,N-diethylthiourea) (H2L) ligands. The coordination geometry of the metal centers is best described as a flat isosceles trapezoid with a cis arrangement of the donor atoms. Full Article text
com Exploiting Friedel pairs to interpret scanning 3DXRD data from complex geological materials By journals.iucr.org Published On :: 2024-11-08 The present study introduces a processing strategy for synchrotron scanning 3D X-ray diffraction (s3DXRD) data, aimed at addressing the challenges posed by large, highly deformed, polyphase materials such as crystalline rocks. Leveraging symmetric Bragg reflections known as Friedel pairs, our method enables diffraction events to be precisely located within the sample volume. This method allows for fitting the phase, crystal structure and unit-cell parameters at the intra-grain scale on a voxel grid. The processing workflow incorporates several new modules, designed to (i) efficiently match Friedel pairs in large s3DXRD datasets containing up to 108 diffraction peaks; (ii) assign phases to each pixel or voxel, resolving potential ambiguities arising from overlap in scattering angles between different crystallographic phases; and (iii) fit the crystal orientation and unit cell locally on a point-by-point basis. We demonstrate the effectiveness of our technique on fractured granite samples, highlighting the ability of the method to characterize complex geological materials and show their internal structure and mineral composition. Additionally, we include the characterization of a metal gasket made of a commercial aluminium alloy, which surrounded the granite sample during experiments. The results show the effectiveness of the technique in recovering information about the internal texture and residual strain of materials that have undergone high levels of plastic deformation. Full Article text
com Crystal structure of a solvated dinuclear CuII complex derived from 3,3,3',3'-tetraethyl-1,1'-(furan-2,5-dicarbonyl)bis(thiourea) By journals.iucr.org Published On :: 2024-11-08 Reaction between equimolar amounts of 3,3,3',3'-tetraethyl-1,1'-(furan-2,5-dicarbonyl)bis(thiourea) (H2L) and CuCl2·2H2O in methanol in the presence of the supporting base Et3N gave rise to a neutral dinuclear complex bis[μ-3,3,3',3'-tetraethyl-1,1'-(furan-2,5-dicarbonyl)bis(thioureato)]dicopper(II) dichloromethane disolvate, [Cu2(C16H22N4O3S2)2]·2CH2Cl2 or [Cu2(L)2]·2CH2Cl2. The aroylbis(thioureas) are doubly deprotonated and the resulting anions {L2–} bond to metal ions through (S,O)-chelating moieties. The copper atoms adopt a virtually cis-square-planar environment. In the crystal, adjacent [Cu2(L)2]·2CH2Cl2 units are linked into polymeric chains along the a-axis direction by intermolecular coordinative Cu...S interactions. The co-crystallized solvent molecules play a vital role in the crystal packing. In particular, weak C—Hfuran...Cl and C—Hethyl...Cl contacts consolidate the three-dimensional supramolecular architecture. Full Article text
com Deep learning to overcome Zernike phase-contrast nanoCT artifacts for automated micro-nano porosity segmentation in bone By journals.iucr.org Published On :: 2024-01-01 Bone material contains a hierarchical network of micro- and nano-cavities and channels, known as the lacuna-canalicular network (LCN), that is thought to play an important role in mechanobiology and turnover. The LCN comprises micrometer-sized lacunae, voids that house osteocytes, and submicrometer-sized canaliculi that connect bone cells. Characterization of this network in three dimensions is crucial for many bone studies. To quantify X-ray Zernike phase-contrast nanotomography data, deep learning is used to isolate and assess porosity in artifact-laden tomographies of zebrafish bones. A technical solution is proposed to overcome the halo and shade-off domains in order to reliably obtain the distribution and morphology of the LCN in the tomographic data. Convolutional neural network (CNN) models are utilized with increasing numbers of images, repeatedly validated by `error loss' and `accuracy' metrics. U-Net and Sensor3D CNN models were trained on data obtained from two different synchrotron Zernike phase-contrast transmission X-ray microscopes, the ANATOMIX beamline at SOLEIL (Paris, France) and the P05 beamline at PETRA III (Hamburg, Germany). The Sensor3D CNN model with a smaller batch size of 32 and a training data size of 70 images showed the best performance (accuracy 0.983 and error loss 0.032). The analysis procedures, validated by comparison with human-identified ground-truth images, correctly identified the voids within the bone matrix. This proposed approach may have further application to classify structures in volumetric images that contain non-linear artifacts that degrade image quality and hinder feature identification. Full Article text
com Combination of XEOL, TR-XEOL and HB-T interferometer at the TPS 23A X-ray nanoprobe for exploring quantum materials By journals.iucr.org Published On :: 2024-01-19 In this study, a combination of X-ray excited optical luminescence (XEOL), time-resolved XEOL (TR-XEOL) and the Hanbury-Brown and Twiss (HB-T) interferometer at the Taiwan Photon Source (TPS) 23A X-ray nanoprobe beamline for exploring quantum materials is demonstrated. On the basis of the excellent spatial resolution rendered using a nano-focused beam, emission distributions of artificial micro-diamonds can be obtained by XEOL maps, and featured emission peaks of a selected local area can be obtained by XEOL spectra. The hybrid bunch mode of the TPS not only provides a sufficiently high peak power density for experiments at each beamline but also permits high-quality temporal domain (∼200 ns) measurements for investigating luminescence dynamics. From TR-XEOL measurements, the decay lifetime of micro-diamonds is determined to be approximately 16 ns. Furthermore, the XEOL spectra of artificial micro-diamonds can be investigated by the HB-T interferometer to identify properties of single-photon sources. The unprecedented strategy of combining XEOL, TR-XEOL and the HB-T interferometer at the X-ray nanoprobe beamline will open new avenues with significant characterization abilities for unraveling the emission mechanisms of single-photon sources for quantum materials. Full Article text
com Image registration for in situ X-ray nano-imaging of a composite battery cathode with deformation By journals.iucr.org Published On :: 2024-02-01 The structural and chemical evolution of battery electrodes at the nanoscale plays an important role in affecting the cell performance. Nano-resolution X-ray microscopy has been demonstrated as a powerful technique for characterizing the evolution of battery electrodes under operating conditions with sensitivity to their morphology, compositional distribution and redox heterogeneity. In real-world batteries, the electrode could deform upon battery operation, causing challenges for the image registration which is necessary for several experimental modalities, e.g. XANES imaging. To address this challenge, this work develops a deep-learning-based method for automatic particle identification and tracking. This approach was not only able to facilitate image registration with good robustness but also allowed quantification of the degree of sample deformation. The effectiveness of the method was first demonstrated using synthetic datasets with known ground truth. The method was then applied to an experimental dataset collected on an operating lithium battery cell, revealing a high degree of intra- and interparticle chemical complexity in operating batteries. Full Article text
com Novel correction procedure for compensating thermal contraction errors in the measurement of the magnetic field of superconducting undulator coils in a liquid helium cryostat By journals.iucr.org Published On :: 2024-02-22 Superconducting undulators (SCUs) can offer a much higher on-axis undulator field than state-of-the-art cryogenic permanent-magnet undulators with the same period and vacuum gap. The development of shorter-period and high-field SCUs would allow the free-electron laser and synchrotron radiation source community to reduce both the length of undulators and the dimensions of the accelerator. Magnetic measurements are essential for characterizing the magnetic field quality of undulators for operation in a modern light source. Hall probe scanning is so far the most mature technique for local field characterization of undulators. This article focuses on the systematic error caused by thermal contraction that influences Hall probe measurements carried out in a liquid helium cryostat. A novel procedure, based on the redundant measurement of the magnetic field using multiple Hall probes at known relative distance, is introduced for the correction of such systematic error. Full Article text
com A new experimental setup for combined fast differential scanning calorimetry and X-ray photon correlation spectroscopy By journals.iucr.org Published On :: 2024-04-24 Synchrotron-radiation-based techniques are a powerful tool for the investigation of materials. In particular, the availability of highly brilliant sources has opened the possibility to develop techniques sensitive to dynamics at the atomic scale such as X-ray photon correlation spectroscopy (XPCS). XPCS is particularly relevant in the study of glasses, which have been often investigated at the macroscopic scale by, for example, differential scanning calorimetry. Here, we show how to adapt a Flash calorimeter to combine XPCS and calorimetric scans. This setup paves the way to novel experiments requiring dynamical and thermodynamic information, ranging from the study of the crystallization kinetics to the study of the glass transition in systems that can be vitrified thanks to the high cooling rates reachable with an ultrafast calorimeter. Full Article text
com First X-ray spectral ptychography and resonant ptychographic computed tomography experiments at the SWING beamline from Synchrotron SOLEIL By journals.iucr.org Published On :: 2024-05-21 X-ray ptychography and ptychographic computed tomography have seen a rapid rise since the advent of fourth-generation synchrotrons with a high degree of coherent radiation. In addition to quantitative multiscale structural analysis, ptychography with spectral capabilities has been developed, allowing for spatial-localized multiscale structural and spectral information of samples. The SWING beamline of Synchrotron SOLEIL has recently developed a nanoprobe setup where the endstation's first spectral and resonant ptychographic measurements have been successfully conducted. A metallic nickel wire sample was measured using 2D spectral ptychography in XANES mode and resonant ptychographic tomography. From the 2D spectral ptychography measurements, the spectra of the components of the sample's complex-valued refractive index, δ and β, were extracted, integrated along the sample thickness. By performing resonance ptychographic tomography at two photon energies, 3D maps of the refractive index decrement, δ, were obtained at the Ni K-edge energy and another energy above the edge. These maps allowed the detection of impurities in the Ni wire. The significance of accounting for the atomic scattering factor is demonstrated in the calculation of electron density near a resonance through the use of the δ values. These results indicate that at the SWING beamline it is possible to conduct state-of-the-art spectral and resonant ptychography experiments using the nanoprobe setup. Full Article text
com Mapping of lithium ion concentrations in 3D structures through development of in situ correlative imaging of X-ray Compton scattering-computed tomography By journals.iucr.org Published On :: 2024-06-05 Understanding the correlation between chemical and microstructural properties is critical for unraveling the fundamental relationship between materials chemistry and physical structures that can benefit materials science and engineering. Here, we demonstrate novel in situ correlative imaging of the X-ray Compton scattering computed tomography (XCS-CT) technique for studying this fundamental relationship. XCS-CT can image light elements that do not usually exhibit strong signals using other X-ray characterization techniques. This paper describes the XCS-CT setup and data analysis method for calculating the valence electron momentum density and lithium-ion concentration, and provides two examples of spatially and temporally resolved chemical properties inside batteries in 3D. XCS-CT was applied to study two types of rechargeable lithium batteries in standard coin cell casings: (1) a lithium-ion battery containing a cathode of bespoke microstructure and liquid electrolyte, and (2) a solid-state battery containing a solid-polymer electrolyte. The XCS-CT technique is beneficial to a wide variety of materials and systems to map chemical composition changes in 3D structures. Full Article text
com Asymmetric electrostatic dodecapole: compact bandpass filter with low aberrations for momentum microscopy By journals.iucr.org Published On :: 2024-06-20 Imaging energy filters in photoelectron microscopes and momentum microscopes use spherical fields with deflection angles of 90°, 180° and even 2 × 180°. These instruments are optimized for high energy resolution, and exhibit image aberrations when operated in high transmission mode at medium energy resolution. Here, a new approach is presented for bandpass-filtered imaging in real or reciprocal space using an electrostatic dodecapole with an asymmetric electrode array. In addition to energy-dispersive beam deflection, this multipole allows aberration correction up to the third order. Here, its use is described as a bandpass prefilter in a time-of-flight momentum microscope at the hard X-ray beamline P22 of PETRA III. The entire instrument is housed in a straight vacuum tube because the deflection angle is only 4° and the beam displacement in the filter is only ∼8 mm. The multipole is framed by transfer lenses in the entrance and exit branches. Two sets of 16 different-sized entrance and exit apertures on piezomotor-driven mounts allow selection of the desired bandpass. For pass energies between 100 and 1400 eV and slit widths between 0.5 and 4 mm, the transmitted kinetic energy intervals are between 10 eV and a few hundred electronvolts (full width at half-maximum). The filter eliminates all higher or lower energy signals outside the selected bandpass, significantly improving the signal-to-background ratio in the time-of-flight analyzer. Full Article text
com Investigation of fast and efficient lossless compression algorithms for macromolecular crystallography experiments By journals.iucr.org Published On :: 2024-06-05 Structural biology experiments benefit significantly from state-of-the-art synchrotron data collection. One can acquire macromolecular crystallography (MX) diffraction data on large-area photon-counting pixel-array detectors at framing rates exceeding 1000 frames per second, using 200 Gbps network connectivity, or higher when available. In extreme cases this represents a raw data throughput of about 25 GB s−1, which is nearly impossible to deliver at reasonable cost without compression. Our field has used lossless compression for decades to make such data collection manageable. Many MX beamlines are now fitted with DECTRIS Eiger detectors, all of which are delivered with optimized compression algorithms by default, and they perform well with current framing rates and typical diffraction data. However, better lossless compression algorithms have been developed and are now available to the research community. Here one of the latest and most promising lossless compression algorithms is investigated on a variety of diffraction data like those routinely acquired at state-of-the-art MX beamlines. Full Article text
com L3-edge X-ray spectroscopy of rhodium and palladium compounds By journals.iucr.org Published On :: 2024-06-26 L3-edge high-energy-resolution fluorescence-detection X-ray absorption near-edge structure (XANES) spectra for palladium and rhodium compounds are presented, with focus on their electronic structures. The data are compared with transmission XANES spectra recorded at the K-edge. A correlation between the absorption edge energy and the metal ion oxidation state is not observed. Despite the different filling of the 4d orbitals and different local coordination, the Rh and Pd compounds show remarkably similar spectral shapes. Calculation of the density of states and of the L3-XANES data reproduce the experimental results. Full Article text
com Development and commissioning of a broadband online X-ray spectrometer for the SXFEL Facility By journals.iucr.org Published On :: 2024-07-29 A broadband online X-ray spectrometer has been designed and commissioned at the SUD beamline of the Shanghai Soft X-ray Free-Electron Laser Facility, which can deliver both SASE and seeded FEL pulses to user experiments, spanning the photon energy range of 50–620 eV. The resolving powers of the spectrometer calibrated via online measurement at 92 eV and 249 eV are ∼20000 and ∼15000, respectively, and the absolute photon energy is characterized by an electron time-of-flight spectrometer. The high energy resolution provided by the spectrometer can differentiate the fine structure in the FEL spectrum, to determine its pulse length. Full Article text
com The diamond–silicon carbide composite Skeleton® as a promising material for substrates of intense X-ray beam optics By journals.iucr.org Published On :: 2024-08-06 The paper considers the possibility of using the diamond-silicon carbide composite Skeleton® with a technological coating of polycrystalline silicon as a substrate for X-ray mirrors used with powerful synchrotron radiation sources (third+ and fourth generation). Samples were studied after polishing to provide the following surface parameters: root-mean-square flatness ≃ 50 nm, micro-roughness on the frame 2 µm × 2 µm σ ≃ 0.15 nm. The heat capacity, thermal conductivity and coefficient of linear thermal expansion were investigated. For comparison, a monocrystalline silicon sample was studied under the same conditions using the same methods. The value of the coefficient of linear thermal expansion turned out to be higher than that of monocrystalline silicon and amounted to 4.3 × 10−6 K−1, and the values of thermal conductivity (5.0 W cm−1 K−1) and heat capacity (1.2 J K−1 g−1) also exceeded the values for Si. Thermally induced deformations of both Skeleton® and monocrystalline silicon samples under irradiation with a CO2 laser beam have also been experimentally studied. Taking into account the obtained thermophysical constants, the calculation of thermally induced deformation under irradiation with hard (20 keV) X-rays showed almost three times less deformation of the Skeleton® sample than of the monocrystalline silicon sample. Full Article text
com Accelerating imaging research at large-scale scientific facilities through scientific computing By journals.iucr.org Published On :: 2024-08-27 To date, computed tomography experiments, carried-out at synchrotron radiation facilities worldwide, pose a tremendous challenge in terms of the breadth and complexity of the experimental datasets produced. Furthermore, near real-time three-dimensional reconstruction capabilities are becoming a crucial requirement in order to perform high-quality and result-informed synchrotron imaging experiments, where a large amount of data is collected and processed within a short time window. To address these challenges, we have developed and deployed a synchrotron computed tomography framework designed to automatically process online the experimental data from the synchrotron imaging beamlines, while leveraging the high-performance computing cluster capabilities to accelerate the real-time feedback to the users on their experimental results. We have, further, integrated it within a modern unified national authentication and data management framework, which we have developed and deployed, spanning the entire data lifecycle of a large-scale scientific facility. In this study, the overall architecture, functional modules and workflow design of our synchrotron computed tomography framework are presented in detail. Moreover, the successful integration of the imaging beamlines at the Shanghai Synchrotron Radiation Facility into our scientific computing framework is also detailed, which, ultimately, resulted in accelerating and fully automating their entire data processing pipelines. In fact, when compared with the original three-dimensional tomography reconstruction approaches, the implementation of our synchrotron computed tomography framework led to an acceleration in the experimental data processing capabilities, while maintaining a high level of integration with all the beamline processing software and systems. Full Article text
com Comparing single-shot damage thresholds of boron carbide and silicon at the European XFEL By journals.iucr.org Published On :: 2024-08-25 Xray free-electron lasers (XFELs) enable experiments that would have been impractical or impossible at conventional X-ray laser facilities. Indeed, more XFEL facilities are being built and planned, with their aim to deliver larger pulse energies and higher peak brilliance. While seeking to increase the pulse power, it is quintessential to consider the maximum pulse fluence that a grazing-incidence FEL mirror can withstand. To address this issue, several studies were conducted on grazing-incidence damage by soft X-ray FEL pulses at the European XFEL facility. Boron carbide (B4C) coatings on polished silicon substrate were investigated using 1 keV photon energy, similar to the X-ray mirrors currently installed at the soft X-ray beamlines (SASE3). The purpose of this study is to compare the damage threshold of B4C and Si to determine the advantages, tolerance and limits of using B4C coatings. Full Article text
com α-d-2'-Deoxyadenosine, an irradiation product of canonical DNA and a component of anomeric nucleic acids: crystal structure, packing and Hirshfeld surface analysis By journals.iucr.org Published On :: 2024-01-22 α-d-2'-Deoxyribonucleosides are products of the γ-irradiation of DNA under oxygen-free conditions and are constituents of anomeric DNA. They are not found as natural building blocks of canonical DNA. Reports on their conformational properties are limited. Herein, the single-crystal X-ray structure of α-d-2'-deoxyadenosine (α-dA), C10H13N5O3, and its conformational parameters were determined. In the crystalline state, α-dA forms two conformers in the asymmetric unit which are connected by hydrogen bonds. The sugar moiety of each conformer is arranged in a `clamp'-like fashion with respect to the other conformer, forming hydrogen bonds to its nucleobase and sugar residue. For both conformers, a syn conformation of the nucleobase with respect to the sugar moiety was found. This is contrary to the anti conformation usually preferred by α-nucleosides. The sugar conformation of both conformers is C2'-endo, and the 5'-hydroxyl groups are in a +sc orientation, probably due to the hydrogen bonds formed by the conformers. The formation of the supramolecular assembly of α-dA is controlled by hydrogen bonding and stacking interactions, which was verified by a Hirshfeld and curvedness surface analysis. Chains of hydrogen-bonded nucleobases extend parallel to the b direction and are linked to equivalent chains by hydrogen bonds involving the sugar moieties to form a sheet. A comparison of the solid-state structures of the anomeric 2'-deoxyadenosines revealed significant differences of their conformational parameters. Full Article text
com Borotropic shifting of the hydrotris[3-(2-furyl)pyrazol-1-yl]borate ligand in high-coordinate lanthanide complexes By journals.iucr.org Published On :: 2024-04-16 The coordination of hydrotris[3-(2-furyl)pyrazol-1-yl]borate (Tp2-Fu, C21H16BN6O3) to lanthanide(III) ions is achieved for the first time with the complex [Ln(Tp2-Fu)2](BPh4)·xCH2Cl2 (1-Ln has Ln = Ce and x = 2; 1-Dy has Ln = Dy and x = 1). This was accomplished via both hydrous (Ln = Ce) and anhydrous methods (Ln = Dy). When isolating the dysprosium analogue, the filtrate produced a second crop of crystals which were revealed to be the 1,2-borotropic-shifted product [Dy(κ4-Tp2-Fu)(κ5-Tp2-Fu*)](BPh4) (2) {Tp2-Fu* = hydrobis[3-(2-furyl)pyrazol-1-yl][5-(2-furyl)pyrazol-1-yl]borate}. We conclude that the presence of a strong Lewis acid and a sterically crowded coordination environment are contributing factors for the 1,2-borotropic shifting of scorpionate ligands in conjunction with the size of the conical angle with the scorpionate ligand. Full Article text
com Molecular structure and selective theophylline complexation by conformational change of diethyl N,N'-(1,3-phenylene)dicarbamate By journals.iucr.org Published On :: 2024-05-07 The receptor ability of diethyl N,N'-(1,3-phenylene)dicarbamate (1) to form host–guest complexes with theophylline (TEO) and caffeine (CAF) by mechanochemistry was evaluated. The formation of the 1–TEO complex (C12H16N2O4·C7H8N4O2) was preferred and involves the conformational change of one of the ethyl carbamate groups of 1 from the endo conformation to the exo conformation to allow the formation of intermolecular interactions. The formation of an N—H⋯O=C hydrogen bond between 1 and TEO triggers the conformational change of 1. CAF molecules are unable to form an N—H⋯O=C hydrogen bond with 1, making the conformational change and, therefore, the formation of the complex impossible. Conformational change and selective binding were monitored by IR spectroscopy, solid-state 13C nuclear magnetic resonance and single-crystal X-ray diffraction. The 1–TEO complex was characterized by IR spectroscopy, solid-state 13C nuclear magnetic resonance, powder X-ray diffraction and single-crystal X-ray diffraction. Full Article text
com Synthesis, characterization and structural analysis of complexes from 2,2':6',2''-terpyridine derivatives with transition metals By journals.iucr.org Published On :: 2024-05-16 The synthesis and structural characterization of three families of coordination complexes synthesized from 4'-phenyl-2,2':6',2''-terpyridine (8, Ph-TPY), 4'-(4-chlorophenyl)-2,2':6',2''-terpyridine (9, ClPh-TPY) and 4'-(4-methoxyphenyl)-2,2':6',2''-terpyridine (10, MeOPh-TPY) ligands with the divalent metals Co2+, Fe2+, Mn2+ and Ni2+ are reported. The compounds were synthesized from a 1:2 mixture of the metal and ligand, resulting in a series of complexes with the general formula [M(R-TPY)2](ClO4)2 (where M = Co2+, Fe2+, Mn2+ and Ni2+, and R-TPY = Ph-TPY, ClPh-TPY and MeOPh-TPY). The general formula and structural and supramolecular features were determinated by single-crystal X-ray diffraction for bis(4'-phenyl-2,2':6',2''-terpyridine)nickel(II) bis(perchlorate), [Ni(C21H15N3)2](ClO4)2 or [Ni(Ph-TPY)2](ClO4)2, bis[4'-(4-methoxyphenyl)-2,2':6',2''-terpyridine]manganese(II) bis(perchlorate), [Mn(C22H17N3O)2](ClO4)2 or [Mn(MeOPh-TPY)2](ClO4)2, and bis(4'-phenyl-2,2':6',2''-terpyridine)manganese(II) bis(perchlorate), [Mn(C21H15N3)2](ClO4)2 or [Mn(Ph-TPY)2](ClO4)2. In all three cases, the complexes present distorted octahedral coordination polyhedra and the crystal packing is determined mainly by weak C—H⋯π interactions. All the compounds (except for the Ni derivatives, for which FT–IR, UV–Vis and thermal analysis are reported) were fully characterized by spectroscopic (FT–IR, UV–Vis and NMR spectroscopy) and thermal (TGA–DSC, thermogravimetric analysis–differential scanning calorimetry) methods. Full Article text
com Using cocrystals as a tool to study non-crystallizing molecules: crystal structure, Hirshfeld surface analysis and computational study of the 1:1 cocrystal of (E)-N-(3,4-difluorophenyl)-1-(pyridin-4-yl)methanimine and acetic By journals.iucr.org Published On :: 2024-07-05 Using a 1:1 cocrystal of (E)-N-(3,4-difluorophenyl)-1-(pyridin-4-yl)methanimine with acetic acid, C12H8F2N2·C2H4O2, we investigate the influence of F atoms introduced to the aromatic ring on promoting π–π interactions. The cocrystal crystallizes in the triclinic space group P1. Through crystallographic analysis and computational studies, we reveal the molecular arrangement within this cocrystal, demonstrating the presence of hydrogen bonding between the acetic acid molecule and the pyridyl group, along with π–π interactions between the aromatic rings. Our findings highlight the importance of F atoms in promoting π–π interactions without necessitating full halogenation of the aromatic ring. Full Article text
com Crystal structure and cryomagnetic study of a mononuclear erbium(III) oxamate inclusion complex By journals.iucr.org Published On :: 2024-07-10 The synthesis, crystal structure and magnetic properties of an oxamate-containing erbium(III) complex, namely, tetrabutylammonium aqua[N-(2,4,6-trimethylphenyl)oxamato]erbium(III)–dimethyl sulfoxide–water (1/3/1.5), (C16H36N)[Er(C11H12NO3)4(H2O)]·3C2H6OS·1.5H2O or n-Bu4N[Er(Htmpa)4(H2O)]·3DMSO·1.5H2O (1), are reported. The crystal structure of 1 reveals the occurrence of an erbium(III) ion, which is surrounded by four N-phenyl-substituted oxamate ligands and one water molecule in a nine-coordinated environment, together with one tetrabutylammonium cation acting as a counter-ion, and one water and three dimethyl sulfoxide (DMSO) molecules of crystallization. Variable-temperature static (dc) and dynamic (ac) magnetic measurements were carried out for this mononuclear complex, revealing that it behaves as a field-induced single-ion magnet (SIM) below 5.0 K. Full Article text
com A brief review on computer simulations of chalcopyrite surfaces: structure and reactivity By journals.iucr.org Published On :: 2024-08-08 Chalcopyrite, the world's primary copper ore mineral, is abundant in Latin America. Copper extraction offers significant economic and social benefits due to its strategic importance across various industries. However, the hydrometallurgical route, considered more environmentally friendly for processing low-grade chalcopyrite ores, remains challenging, as does its concentration by froth flotation. This limited understanding stems from the poorly understood structure and reactivity of chalcopyrite surfaces. This study reviews recent contributions using density functional theory (DFT) calculations with periodic boundary conditions and slab models to elucidate chalcopyrite surface properties. Our analysis reveals that reconstructed surfaces preferentially expose S atoms at the topmost layer. Furthermore, some studies report the formation of disulfide groups (S22−) on pristine sulfur-terminated surfaces, accompanied by the reduction of Fe3+ to Fe2+, likely due to surface oxidation. Additionally, Fe sites are consistently identified as favourable adsorption locations for both oxygen (O2) and water (H2O) molecules. Finally, the potential of computer modelling for investigating collector–chalcopyrite surface interactions in the context of selective froth flotation is discussed, highlighting the need for further research in this area. Full Article text
com Occupational modulation in the (3+1)-dimensional incommensurate structure of (2S,3S)-2-amino-3-hydroxy-3-methyl-4-phenoxybutanoic acid dihydrate By journals.iucr.org Published On :: 2024-08-08 The incommensurately modulated structure of (2S,3S)-2-amino-3-hydroxy-3-methyl-4-phenoxybutanoic acid dihydrate (C11H15NO4·2H2O or I·2H2O) is described in the (3+1)-dimensional superspace group P212121(0β0)000 (β = 0.357). The loss of the three-dimensional periodicity is ascribed to the occupational modulation of one positionally disordered solvent water molecule, where the two positions are related by a small translation [ca 0.666 (9) Å] and ∼168 (5)° rotation about one of its O—H bonds, with an average 0.624 (3):0.376 (3) occupancy ratio. The occupational modulation of this molecule arises due to the competition between the different hydrogen-bonding motifs associated with each position. The structure can be very well refined in the average approximation (all satellite reflections disregarded) in the space group P212121, with the water molecule refined as disordered over two positions in a 0.625 (16):0.375 (16) ratio. The refinement in the commensurate threefold supercell approximation in the space group P1121 is also of high quality, with the six corresponding water molecules exhibiting three different occupancy ratios averaging 0.635:0.365. Full Article text
com Formation of a diiron–(μ-η1:η1-CN) complex from acetonitrile solution By journals.iucr.org Published On :: 2024-08-08 The activation of C—C bonds by transition-metal complexes is of continuing interest and acetonitrile (MeCN) has attracted attention as a cyanide source with comparatively low toxicity for organic cyanation reactions. A diiron end-on μ-η1:η1-CN-bridged complex was obtained from a crystallization experiment of an open-chain iron–NHC complex, namely, μ-cyanido-κ2C:N-bis{[(acetonitrile-κN)[3,3'-bis(pyridin-2-yl)-1,1'-(methylidene)bis(benzimidazol-2-ylidene)]iron(II)} tris(hexafluorophosphate), [Fe2(CN)(C2H3N)2(C25H18N6)2](PF6)3. The cyanide appears to originate from the MeCN solvent by C—C bond cleavage or through carbon–hydrogen oxidation. Full Article text
com Coordination variety of phenyltetrazolato and dimethylamido ligands in dimeric Ti, Zr, and Ta complexes By journals.iucr.org Published On :: 2024-08-23 Three structurally diverse 5-phenyltetrazolato (Tz) Ti, Zr, and Ta complexes, namely, (C2H8N)[Ti2(C7H5N4)5(C2H6N)4]·1.45C6H6 or (Me2NH2)[Ti2(NMe2)4(2,3-μ-Tz)3(2-η1-Tz)2]·1.45C6H6, (1·1.45C6H6), [Zr2(C7H5N4)6(C2H6N)2(C2H7N)2]·1.12C6H6·0.382CH2Cl2 or [Zr2(Me2NH)2(NMe2)2(2,3-μ-Tz)3(2-η1-Tz)2(1,2-η2-Tz)]·1.12C6H6·0.38CH2Cl2 (2·1.12C6H6·0.38CH2Cl2), and (C2H8N)2[Ta2(C7H5N4)8(C2H6N)2O]·0.25C7H8 or (Me2NH2)2[Ta2(NMe2)2(2,3-μ-Tz)2(2-η1-Tz)6O]·0.25C7H8 (3·0.25C7H8), where TzH is 5-phenyl-1H-tetrazole, have been synthesized and structurally characterized. All three complexes are dinuclear; the Ti center in 1 is six-coordinate, whereas the Zr and Ta atoms in 2 and 3 are seven-coordinate. The coordination environments of the Ti centers in 1 are similar, and so are the ligations of the Ta centers in 3. In contrast, the two Zr centers in 2 bear a different number of ligands, one of which is a bidentate η2-5-phenyltetrazolato ligand that has not been observed previously for d-block elements. The dimethylamido ligand, present in the starting materials, remained unchanged, or was converted to dimethylamine and dimethylammonium during the synthesis. Dimethylamine coordinates as a neutral ligand, whereas dimethylammonium is retained as a hydrogen-bonded entity bridging Tz ligands. Full Article text
com Coordination structure and intermolecular interactions in copper(II) acetate complexes with 1,10-phenanthroline and 2,2'-bipyridine By journals.iucr.org Published On :: 2024-08-23 The crystal structures of two coordination compounds, (acetato-κO)(2,2'-bipyridine-κ2N,N')(1,10-phenanthroline-κ2N,N')copper(II) acetate hexahydrate, [Cu(C2H3O2)(C10H8N2)(C12H8N2)](C2H3O2)·6H2O or [Cu(bipy)(phen)Ac]Ac·6H2O, and (acetato-κO)bis(2,2'-bipyridine-κ2N,N')copper(II) acetate–acetic acid–water (1/1/3), [Cu(C2H3O2)(C10H8N2)2](C2H3O2)·C2H4O2·3H2O or [Cu(bipy)2Ac]Ac·HAc·3H2O, are reported and compared with the previously published structure of [Cu(phen)2Ac]Ac·7H2O (phen is 1,10-phenanthroline, bipy for 2,2'-bipyridine, ac is acetate and Hac is acetic acid). The geometry around the metal centre is pentacoordinated, but highly distorted in all three cases. The coordination number and the geometric distortion are both discussed in detail, and all complexes belong to the space group Poverline{1}. The analysis of the geometric parameters and the Hirshfeld surface properties dnorm and curvedness provide information about the metal–ligand interactions in these complexes and allow comparison with similar systems. Full Article text
com Multivalent hydrogen-bonded architectures directed by self-complementarity between [Cu(2,2'-biimidazole)] and malonate building blocks By journals.iucr.org Published On :: 2024-08-19 The synthesis and structural characterization of four novel supramolecular hydrogen-bonded arrangements based on self-assembly from molecular `[Cu(2,2'-biimidazole)]' modules and malonate anions are presented, namely, tetrakis(2,2'-biimidazole)di-μ-chlorido-dimalonatotricopper(II) pentahydrate, [Cu3(C3H2O4)2Cl2(C6H6N4)4]·5H2O or [Cu(H2biim)2(μ-Cl)Cu0.5(mal)]2·5H2O, aqua(2,2'-biimidazole)malonatocopper(II) dihydrate, [Cu(C3H2O4)(C6H6N4)(H2O)]·2H2O or [Cu(H2biim)(mal)(H2O)]·2H2O, bis[aquabis(2,2'-biimidazole)copper(II)] dimalonatodiperchloratocopper(II) 2.2-hydrate, [Cu(C6H6N4)2(H2O)]2[Cu(C3H2O4)(ClO4)2]·2.2H2O or [Cu(H2biim)2(H2O)]2[Cu(mal)2(ClO4)2]·2.2H2O, and bis(2,2'-biimidazole)copper(II) bis[bis(2,2'-biimidazole)(2-carboxyacetato)malonatocopper(II)] tridecahydrate, [Cu(C6H6N4)2][Cu(C3H2O4)(C3H3O4)(C6H6N4)2]·13H2O or [Cu(H2biim)2][Cu(H2biim)2(Hmal)(mal)]2·13H2O. These assemblies are characterized by self-complementary donor–acceptor molecular interactions, demonstrating a recurrent and distinctive pattern of hydrogen-bonding preferences among the carboxylate, carboxylic acid and N—H groups of the coordinated 2,2'-biimidazole and malonate ligands. Additionally, coordination of the carboxylate group with the metallic centre helps sustain remarkable supramolecular assemblies, such as layers, helices, double helix columns or 3D channeled architectures, including mixed-metal complexes, into a single structure. Full Article text
com Photocrystallography – common or exclusive? By journals.iucr.org Published On :: 2024-10-07 Full Article text
com Using cryo-EM to understand the assembly pathway of respiratory complex I By journals.iucr.org Published On :: 2024-02-19 Complex I (proton-pumping NADH:ubiquinone oxidoreductase) is the first component of the mitochondrial respiratory chain. In recent years, high-resolution cryo-EM studies of complex I from various species have greatly enhanced the understanding of the structure and function of this important membrane-protein complex. Less well studied is the structural basis of complex I biogenesis. The assembly of this complex of more than 40 subunits, encoded by nuclear or mitochondrial DNA, is an intricate process that requires at least 20 different assembly factors in humans. These are proteins that are transiently associated with building blocks of the complex and are involved in the assembly process, but are not part of mature complex I. Although the assembly pathways have been studied extensively, there is limited information on the structure and molecular function of the assembly factors. Here, the insights that have been gained into the assembly process using cryo-EM are reviewed. Full Article text
com EMinsight: a tool to capture cryoEM microscope configuration and experimental outcomes for analysis and deposition By journals.iucr.org Published On :: 2024-03-26 The widespread adoption of cryoEM technologies for structural biology has pushed the discipline to new frontiers. A significant worldwide effort has refined the single-particle analysis (SPA) workflow into a reasonably standardized procedure. Significant investments of development time have been made, particularly in sample preparation, microscope data-collection efficiency, pipeline analyses and data archiving. The widespread adoption of specific commercial microscopes, software for controlling them and best practices developed at facilities worldwide has also begun to establish a degree of standardization to data structures coming from the SPA workflow. There is opportunity to capitalize on this moment in the maturation of the field, to capture metadata from SPA experiments and correlate the metadata with experimental outcomes, which is presented here in a set of programs called EMinsight. This tool aims to prototype the framework and types of analyses that could lead to new insights into optimal microscope configurations as well as to define methods for metadata capture to assist with the archiving of cryoEM SPA data. It is also envisaged that this tool will be useful to microscope operators and facilities looking to rapidly generate reports on SPA data-collection and screening sessions. Full Article text