si

First synthesis of a unique icosahedral phase from the Khatyrka meteorite by shock-recovery experiment

Icosahedral quasicrystals (i-phases) in the Al–Cu–Fe system are of great interest because of their perfect quasicrystalline structure and natural occurrences in the Khatyrka meteorite. The natural quasicrystal of composition Al62Cu31Fe7, referred to as i-phase II, is unique because it deviates significantly from the stability field of i-phase and has not been synthesized in a laboratory setting to date. Synthetic i-phases formed in shock-recovery experiments present a novel strategy for exploring the stability of new quasicrystal compositions and prove the impact origin of natural quasicrystals. In this study, an Al–Cu–W graded density impactor (GDI, originally manufactured as a ramp-generating impactor but here used as a target) disk was shocked to sample a full range of Al/Cu starting ratios in an Fe-bearing 304 stainless-steel target chamber. In a strongly deformed region of the recovered sample, reactions between the GDI and the steel produced an assemblage of co-existing Al61.5Cu30.3Fe6.8Cr1.4 i-phase II + stolperite (β, AlCu) + khatyrkite (θ, Al2Cu), an exact match to the natural i-phase II assemblage in the meteorite. In a second experiment, the continuous interface between the GDI and steel formed another more Fe-rich quinary i-phase (Al68.6Fe14.5Cu11.2Cr4Ni1.8), together with stolperite and hollisterite (λ, Al13Fe4), which is the expected assemblage at phase equilibrium. This study is the first laboratory reproduction of i-phase II with its natural assemblage. It suggests that the field of thermodynamically stable icosahedrite (Al63Cu24Fe13) could separate into two disconnected fields under shock pressure above 20 GPa, leading to the co-existence of Fe-rich and Fe-poor i-phases like the case in Khatyrka. In light of this, shock-recovery experiments do indeed offer an efficient method of constraining the impact conditions recorded by quasicrystal-bearing meteorite, and exploring formation conditions and mechanisms leading to quasicrystals.




si

Strong hydrogen bonding in a dense hydrous magnesium silicate discovered by neutron Laue diffraction

A large amount of hydrogen circulates inside the Earth, which affects the long-term evolution of the planet. The majority of this hydrogen is stored in deep Earth within the crystal structures of dense minerals that are thermodynamically stable at high pressures and temperatures. To understand the reason for their stability under such extreme conditions, the chemical bonding geometry and cation exchange mechanism for including hydrogen were analyzed in a representative structure of such minerals (i.e. phase E of dense hydrous magnesium silicate) by using time-of-flight single-crystal neutron Laue diffraction. Phase E has a layered structure belonging to the space group R3m and a very large hydrogen capacity (up to 18% H2O weight fraction). It is stable at pressures of 13–18 GPa and temperatures of up to at least 1573 K. Deuterated high-quality crystals with the chemical formula Mg2.28Si1.32D2.15O6 were synthesized under the relevant high-pressure and high-temperature conditions. The nuclear density distribution obtained by neutron diffraction indicated that the O—D dipoles were directed towards neighboring O2− ions to form strong interlayer hydrogen bonds. This bonding plays a crucial role in stabilizing hydrogen within the mineral structure under such high-pressure and high-temperature conditions. It is considered that cation exchange occurs among Mg2+, D+ and Si4+ within this structure, making the hydrogen capacity flexible.




si

Expression and interactions of stereochemically active lone pairs and their relation to structural distortions and thermal conductivity

In chemistry, stereochemically active lone pairs are typically described as an important non-bonding effect, and recent interest has centred on understanding the derived effect of lone pair expression on physical properties such as thermal conductivity. To manipulate such properties, it is essential to understand the conditions that lead to lone pair expression and provide a quantitative chemical description of their identity to allow comparison between systems. Here, density functional theory calculations are used first to establish the presence of stereochemically active lone pairs on antimony in the archetypical chalcogenide MnSb2O4. The lone pairs are formed through a similar mechanism to those in binary post-transition metal compounds in an oxidation state of two less than their main group number [e.g. Pb(II) and Sb(III)], where the degree of orbital interaction (covalency) determines the expression of the lone pair. In MnSb2O4 the Sb lone pairs interact through a void space in the crystal structure, and their their mutual repulsion is minimized by introducing a deflection angle. This angle increases significantly with decreasing Sb—Sb distance introduced by simulating high pressure, thus showing the highly destabilizing nature of the lone pair interactions. Analysis of the chemical bonding in MnSb2O4 shows that it is dominated by polar covalent interactions with significant contributions both from charge accumulation in the bonding regions and from charge transfer. A database search of related ternary chalcogenide structures shows that, for structures with a lone pair (SbX3 units), the degree of lone pair expression is largely determined by whether the antimony–chalcogen units are connected or not, suggesting a cooperative effect. Isolated SbX3 units have larger X—Sb—X bond angles and therefore weaker lone pair expression than connected units. Since increased lone pair expression is equivalent to an increased orbital interaction (covalent bonding), which typically leads to increased heat conduction, this can explain the previously established correlation between larger bond angles and lower thermal conductivity. Thus, it appears that for these chalcogenides, lone pair expression and thermal conductivity may be related through the degree of covalency of the system.




si

New zeolite-like RUB-5 and its related hydrous layer silicate RUB-6 structurally characterized by electron microscopy

This study made use of a recently developed combination of advanced methods to reveal the atomic structure of a disordered nanocrystalline zeolite using exit wave reconstruction, automated diffraction tomography, disorder modelling and diffraction pattern simulation. By applying these methods, it was possible to determine the so far unknown structures of the hydrous layer silicate RUB-6 and the related zeolite-like material RUB-5. The structures of RUB-5 and RUB-6 contain the same dense layer-like building units (LLBUs). In the case of RUB-5, these building units are interconnected via additional SiO4/2 tetrahedra, giving rise to a framework structure with a 2D pore system consisting of intersecting 8-ring channels. In contrast, RUB-6 contains these LLBUs as separate silicate layers terminated by silanol/sil­oxy groups. Both RUB-6 and RUB-5 show stacking disorder with intergrowths of different polymorphs. The unique structure of RUB-6, together with the possibility for an interlayer expansion reaction to form RUB-5, make it a promising candidate for interlayer expansion with various metal sources to include catalytically active reaction centres.




si

A decagonal quasicrystal with rhombic and hexagonal tiles decorated with icosahedral structural units

The structure of a decagonal quasicrystal in the Zn58Mg40Y2 (at.%) alloy was studied using electron diffraction and atomic resolution Z-contrast imaging techniques. This stable Frank–Kasper Zn–Mg–Y decagonal quasicrystal has an atomic structure which can be modeled with a rhombic/hexagonal tiling decorated with icosahedral units at each vertex. No perfect decagonal clusters were observed in the Zn–Mg–Y decagonal quasicrystal, which differs from the Zn–Mg–Dy decagonal crystal with the same space group P10/mmm. Y atoms occupy the center of `dented decagon' motifs consisting of three fat rhombic and two flattened hexagonal tiles. About 75% of fat rhombic tiles are arranged in groups of five forming star motifs, while the others connect with each other in a `zigzag' configuration. This decagonal quasicrystal has a composition of Zn68.3Mg29.1Y2.6 (at.%) with a valence electron concentration (e/a) of about 2.03, which is in accord with the Hume–Rothery criterion for the formation of the Zn-based quasicrystal phase (e/a = 2.0–2.15).




si

Prediction of models for ordered solvent in macromolecular structures by a classifier based upon resolution-independent projections of local feature data

Current software tools for the automated building of models for macro­molecular X-ray crystal structures are capable of assembling high-quality models for ordered macromolecule and small-molecule scattering components with minimal or no user supervision. Many of these tools also incorporate robust functionality for modelling the ordered water molecules that are found in nearly all macromolecular crystal structures. However, no current tools focus on differentiating these ubiquitous water molecules from other frequently occurring multi-atom solvent species, such as sulfate, or the automated building of models for such species. PeakProbe has been developed specifically to address the need for such a tool. PeakProbe predicts likely solvent models for a given point (termed a `peak') in a structure based on analysis (`probing') of its local electron density and chemical environment. PeakProbe maps a total of 19 resolution-dependent features associated with electron density and two associated with the local chemical environment to a two-dimensional score space that is independent of resolution. Peaks are classified based on the relative frequencies with which four different classes of solvent (including water) are observed within a given region of this score space as determined by large-scale sampling of solvent models in the Protein Data Bank. Designed to classify peaks generated from difference density maxima, PeakProbe also incorporates functionality for identifying peaks associated with model errors or clusters of peaks likely to correspond to multi-atom solvent, and for the validation of existing solvent models using solvent-omit electron-density maps. When tasked with classifying peaks into one of four distinct solvent classes, PeakProbe achieves greater than 99% accuracy for both peaks derived directly from the atomic coordinates of existing solvent models and those based on difference density maxima. While the program is still under development, a fully functional version is publicly available. PeakProbe makes extensive use of cctbx libraries, and requires a PHENIX licence and an up-to-date phenix.python environment for execution.




si

Combining random microseed matrix screening and the magic triangle for the efficient structure solution of a potential lysin from bacteriophage P68

Two commonly encountered bottlenecks in the structure determination of a protein by X-ray crystallography are screening for conditions that give high-quality crystals and, in the case of novel structures, finding derivatization conditions for experimental phasing. In this study, the phasing molecule 5-amino-2,4,6-triiodoisophthalic acid (I3C) was added to a random microseed matrix screen to generate high-quality crystals derivatized with I3C in a single optimization experiment. I3C, often referred to as the magic triangle, contains an aromatic ring scaffold with three bound I atoms. This approach was applied to efficiently phase the structures of hen egg-white lysozyme and the N-terminal domain of the Orf11 protein from Staphylococcus phage P68 (Orf11 NTD) using SAD phasing. The structure of Orf11 NTD suggests that it may play a role as a virion-associated lysin or endolysin.




si

LAT1 (SLC7A5) and CD98hc (SLC3A2) complex dynamics revealed by single-particle cryo-EM

Solute carriers are a large class of transporters that play key roles in normal and disease physiology. Among the solute carriers, heteromeric amino-acid transporters (HATs) are unique in their quaternary structure. LAT1–CD98hc, a HAT, transports essential amino acids and drugs across the blood–brain barrier and into cancer cells. It is therefore an important target both biologically and therapeutically. During the course of this work, cryo-EM structures of LAT1–CD98hc in the inward-facing conformation and in either the substrate-bound or apo states were reported to 3.3–3.5 Å resolution [Yan et al. (2019), Nature (London), 568, 127–130]. Here, these structures are analyzed together with our lower resolution cryo-EM structure, and multibody 3D auto-refinement against single-particle cryo-EM data was used to characterize the dynamics of the interaction of CD98hc and LAT1. It is shown that the CD98hc ectodomain and the LAT1 extracellular surface share no substantial interface. This allows the CD98hc ectodomain to have a high degree of movement within the extracellular space. The functional implications of these aspects are discussed together with the structure determination.




si

Sequence assignment for low-resolution modelling of protein crystal structures

The performance of automated model building in crystal structure determination usually decreases with the resolution of the experimental data, and may result in fragmented models and incorrect side-chain assignment. Presented here are new methods for machine-learning-based docking of main-chain fragments to the sequence and for their sequence-independent connection using a dedicated library of protein fragments. The combined use of these new methods noticeably increases sequence coverage and reduces fragmentation of the protein models automatically built with ARP/wARP.




si

Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix

Diffraction (X-ray, neutron and electron) and electron cryo-microscopy are powerful methods to determine three-dimensional macromolecular structures, which are required to understand biological processes and to develop new therapeutics against diseases. The overall structure-solution workflow is similar for these techniques, but nuances exist because the properties of the reduced experimental data are different. Software tools for structure determination should therefore be tailored for each method. Phenix is a comprehensive software package for macromolecular structure determination that handles data from any of these techniques. Tasks performed with Phenix include data-quality assessment, map improvement, model building, the validation/rebuilding/refinement cycle and deposition. Each tool caters to the type of experimental data. The design of Phenix emphasizes the automation of procedures, where possible, to minimize repetitive and time-consuming manual tasks, while default parameters are chosen to encourage best practice. A graphical user interface provides access to many command-line features of Phenix and streamlines the transition between programs, project tracking and re-running of previous tasks.




si

Flexible workflows for on-the-fly electron-microscopy single-particle image processing using Scipion

Electron microscopy of macromolecular structures is an approach that is in increasing demand in the field of structural biology. The automation of image acquisition has greatly increased the potential throughput of electron microscopy. Here, the focus is on the possibilities in Scipion to implement flexible and robust image-processing workflows that allow the electron-microscope operator and the user to monitor the quality of image acquisition, assessing very simple acquisition measures or obtaining a first estimate of the initial volume, or the data resolution and heterogeneity, without any need for programming skills. These workflows can implement intelligent automatic decisions and they can warn the user of possible acquisition failures. These concepts are illustrated by analysis of the well known 2.2 Å resolution β-galactosidase data set.




si

SAD phasing of XFEL data depends critically on the error model

A nonlinear least-squares method for refining a parametric expression describing the estimated errors of reflection intensities in serial crystallographic (SX) data is presented. This approach, which is similar to that used in the rotation method of crystallographic data collection at synchrotrons, propagates error estimates from photon-counting statistics to the merged data. Here, it is demonstrated that the application of this approach to SX data provides better SAD phasing ability, enabling the autobuilding of a protein structure that had previously failed to be built. Estimating the error in the merged reflection intensities requires the understanding and propagation of all of the sources of error arising from the measurements. One type of error, which is well understood, is the counting error introduced when the detector counts X-ray photons. Thus, if other types of random errors (such as readout noise) as well as uncertainties in systematic corrections (such as from X-ray attenuation) are completely understood, they can be propagated along with the counting error, as appropriate. In practice, most software packages propagate as much error as they know how to model and then include error-adjustment terms that scale the error estimates until they explain the variance among the measurements. If this is performed carefully, then during SAD phasing likelihood-based approaches can make optimal use of these error estimates, increasing the chance of a successful structure solution. In serial crystallography, SAD phasing has remained challenging, with the few examples of de novo protein structure solution each requiring many thousands of diffraction patterns. Here, the effects of different methods of treating the error estimates are estimated and it is shown that using a parametric approach that includes terms proportional to the known experimental uncertainty, the reflection intensity and the squared reflection intensity to improve the error estimates can allow SAD phasing even from weak zinc anomalous signal.




si

Deriving and refining atomic models in crystallography and cryo-EM: the latest Phenix tools to facilitate structure analysis




si

Molecular replacement using structure predictions from databases

Molecular replacement (MR) is the predominant route to solution of the phase problem in macromolecular crystallography. Where the lack of a suitable homologue precludes conventional MR, one option is to predict the target structure using bioinformatics. Such modelling, in the absence of homologous templates, is called ab initio or de novo modelling. Recently, the accuracy of such models has improved significantly as a result of the availability, in many cases, of residue-contact predictions derived from evolutionary covariance analysis. Covariance-assisted ab initio models representing structurally uncharacterized Pfam families are now available on a large scale in databases, potentially representing a valuable and easily accessible supplement to the PDB as a source of search models. Here, the unconventional MR pipeline AMPLE is employed to explore the value of structure predictions in the GREMLIN and PconsFam databases. It was tested whether these deposited predictions, processed in various ways, could solve the structures of PDB entries that were subsequently deposited. The results were encouraging: nine of 27 GREMLIN cases were solved, covering target lengths of 109–355 residues and a resolution range of 1.4–2.9 Å, and with target–model shared sequence identity as low as 20%. The cluster-and-truncate approach in AMPLE proved to be essential for most successes. For the overall lower quality structure predictions in the PconsFam database, remodelling with Rosetta within the AMPLE pipeline proved to be the best approach, generating ensemble search models from single-structure deposits. Finally, it is shown that the AMPLE-obtained search models deriving from GREMLIN deposits are of sufficiently high quality to be selected by the sequence-independent MR pipeline SIMBAD. Overall, the results help to point the way towards the optimal use of the expanding databases of ab initio structure predictions.




si

Shake-it-off: a simple ultrasonic cryo-EM specimen-preparation device

Although microscopes and image-analysis software for electron cryomicroscopy (cryo-EM) have improved dramatically in recent years, specimen-preparation methods have lagged behind. Most strategies still rely on blotting microscope grids with paper to produce a thin film of solution suitable for vitrification. This approach loses more than 99.9% of the applied sample and requires several seconds, leading to problematic air–water interface interactions for macromolecules in the resulting thin film of solution and complicating time-resolved studies. Recently developed self-wicking EM grids allow the use of small volumes of sample, with nanowires on the grid bars removing excess solution to produce a thin film within tens of milliseconds from sample application to freezing. Here, a simple cryo-EM specimen-preparation device that uses components from an ultrasonic humidifier to transfer protein solution onto a self-wicking EM grid is presented. The device is controlled by a Raspberry Pi single-board computer and all components are either widely available or can be manufactured by online services, allowing the device to be constructed in laboratories that specialize in cryo-EM rather than instrument design. The simple open-source design permits the straightforward customization of the instrument for specialized experiments.




si

Identifying dynamic, partially occupied residues using anomalous scattering

Although often presented as taking single `snapshots' of the conformation of a protein, X-ray crystallography provides an averaged structure over time and space within the crystal. The important but difficult task of characterizing structural ensembles in crystals is typically limited to small conformational changes, such as multiple side-chain conformations. A crystallographic method was recently introduced that utilizes residual electron and anomalous density (READ) to characterize structural ensembles encompassing large-scale structural changes. Key to this method is an ability to accurately measure anomalous signals and distinguish them from noise or other anomalous scatterers. This report presents an optimized data-collection and analysis strategy for partially occupied iodine anomalous signals. Using the long-wavelength-optimized beamline I23 at Diamond Light Source, the ability to accurately distinguish the positions of anomalous scatterers with occupancies as low as ∼12% is demonstrated. The number and positions of these anomalous scatterers are consistent with previous biophysical, kinetic and structural data that suggest that the protein Im7 binds to the chaperone Spy in multiple partially occupied conformations. Finally, READ selections demonstrate that re-measured data using the new protocols are consistent with the previously characterized structural ensemble of the chaperone Spy with its client Im7. This study shows that a long-wavelength beamline results in easily validated anomalous signals that are strong enough to be used to detect and characterize highly disordered sections of crystal structures.




si

Using Phaser and ensembles to improve the performance of SIMBAD

The conventional approach to search-model identification in molecular replacement (MR) is to screen a database of known structures using the target sequence. However, this strategy is not always effective, for example when the relationship between sequence and structural similarity fails or when the crystal contents are not those expected. An alternative approach is to identify suitable search models directly from the experimental data. SIMBAD is a sequence-independent MR pipeline that uses either a crystal lattice search or MR functions to directly locate suitable search models from databases. The previous version of SIMBAD used the fast AMoRe rotation-function search. Here, a new version of SIMBAD which makes use of Phaser and its likelihood scoring to improve the sensitivity of the pipeline is presented. It is shown that the additional compute time potentially required by the more sophisticated scoring is counterbalanced by the greater sensitivity, allowing more cases to trigger early-termination criteria, rather than running to completion. Using Phaser solved 17 out of 25 test cases in comparison to the ten solved with AMoRe, and it is shown that use of ensemble search models produces additional performance benefits.




si

Refinement of protein structures using a combination of quantum-mechanical calculations with neutron and X-ray crystallographic data. Corrigendum

Corrections are published for the article by Caldararu et al. [(2019), Acta Cryst. D75, 368–380].




si

Noncrystallographic symmetry-constrained map obtained by direct density optimization

Noncrystallographic symmetry (NCS) averaging following molecular-replacement phasing is generally the major technique used to solve a structure with several molecules in one asymmetric unit, such as a spherical icosahedral viral particle. As an alternative method to NCS averaging, a new approach to optimize or to refine the electron density directly under NCS constraints is proposed. This method has the same effect as the conventional NCS-averaging method but does not include the process of Fourier synthesis to generate the electron density from amplitudes and the corresponding phases. It has great merit for the solution of structures with limited data that are either twinned or incomplete at low resolution. This method was applied to the case of the T = 1 shell-domain subviral particle of Penaeus vannamei nodavirus with data affected by twinning using the REFMAC5 refinement software.




si

SEQUENCE SLIDER: expanding polyalanine fragments for phasing with multiple side-chain hypotheses

Fragment-based molecular-replacement methods can solve a macromolecular structure quasi-ab initio. ARCIMBOLDO, using a common secondary-structure or tertiary-structure template or a library of folds, locates these with Phaser and reveals the rest of the structure by density modification and autotracing in SHELXE. The latter stage is challenging when dealing with diffraction data at lower resolution, low solvent content, high β-sheet composition or situations in which the initial fragments represent a low fraction of the total scattering or where their accuracy is low. SEQUENCE SLIDER aims to overcome these complications by extending the initial polyalanine fragment with side chains in a multisolution framework. Its use is illustrated on test cases and previously unknown structures. The selection and order of fragments to be extended follows the decrease in log-likelihood gain (LLG) calculated with Phaser upon the omission of each single fragment. When the starting substructure is derived from a remote homolog, sequence assignment to fragments is restricted by the original alignment. Otherwise, the secondary-structure prediction is matched to that found in fragments and traces. Sequence hypotheses are trialled in a brute-force approach through side-chain building and refinement. Scoring the refined models through their LLG in Phaser may allow discrimination of the correct sequence or filter the best partial structures for further density modification and autotracing. The default limits for the number of models to pursue are hardware dependent. In its most economic implementation, suitable for a single laptop, the main-chain trace is extended as polyserine rather than trialling models with different sequence assignments, which requires a grid or multicore machine. SEQUENCE SLIDER has been instrumental in solving two novel structures: that of MltC from 2.7 Å resolution data and that of a pneumococcal lipoprotein with 638 residues and 35% solvent content.




si

The use of local structural similarity of distant homologues for crystallographic model building from a molecular-replacement solution

The performance of automated protein model building usually decreases with resolution, mainly owing to the lower information content of the experimental data. This calls for a more elaborate use of the available structural information about macromolecules. Here, a new method is presented that uses structural homologues to improve the quality of protein models automatically constructed using ARP/wARP. The method uses local structural similarity between deposited models and the model being built, and results in longer main-chain fragments that in turn can be more reliably docked to the protein sequence. The application of the homology-based model extension method to the example of a CFA synthase at 2.7 Å resolution resulted in a more complete model with almost all of the residues correctly built and docked to the sequence. The method was also evaluated on 1493 molecular-replacement solutions at a resolution of 4.0 Å and better that were submitted to the ARP/wARP web service for model building. A significant improvement in the completeness and sequence coverage of the built models has been observed.




si

Measuring and using information gained by observing diffraction data

The information gained by making a measurement, termed the Kullback–Leibler divergence, assesses how much more precisely the true quantity is known after the measurement was made (the posterior probability distribution) than before (the prior probability distribution). It provides an upper bound for the contribution that an observation can make to the total likelihood score in likelihood-based crystallographic algorithms. This makes information gain a natural criterion for deciding which data can legitimately be omitted from likelihood calculations. Many existing methods use an approximation for the effects of measurement error that breaks down for very weak and poorly measured data. For such methods a different (higher) information threshold is appropriate compared with methods that account well for even large measurement errors. Concerns are raised about a current trend to deposit data that have been corrected for anisotropy, sharpened and pruned without including the original unaltered measurements. If not checked, this trend will have serious consequences for the reuse of deposited data by those who hope to repeat calculations using improved new methods.




si

Sample deposition onto cryo-EM grids: from sprays to jets and back

Despite the great strides made in the field of single-particle cryogenic electron microscopy (cryo-EM) in microscope design, direct electron detectors and new processing suites, the area of sample preparation is still far from ideal. Traditionally, sample preparation involves blotting, which has been used to achieve high resolution, particularly for well behaved samples such as apoferritin. However, this approach is flawed since the blotting process can have adverse effects on some proteins and protein complexes, and the long blot time increases exposure to the damaging air–water interface. To overcome these problems, new blotless approaches have been designed for the direct deposition of the sample on the grid. Here, different methods of producing droplets for sample deposition are compared. Using gas dynamic virtual nozzles, small and high-velocity droplets were deposited on cryo-EM grids, which spread sufficiently for high-resolution cryo-EM imaging. For those wishing to pursue a similar approach, an overview is given of the current use of spray technology for cryo-EM grid preparation and areas for enhancement are pointed out. It is further shown how the broad aspects of sprayer design and operation conditions can be utilized to improve grid quality reproducibly.




si

The crystal structure of the heme d1 biosynthesis-associated small c-type cytochrome NirC reveals mixed oligomeric states in crystallo

Monoheme c-type cytochromes are important electron transporters in all domains of life. They possess a common fold hallmarked by three α-helices that surround a covalently attached heme. An intriguing feature of many monoheme c-type cytochromes is their capacity to form oligomers by exchanging at least one of their α-helices, which is often referred to as 3D domain swapping. Here, the crystal structure of NirC, a c-type cytochrome co-encoded with other proteins involved in nitrite reduction by the opportunistic pathogen Pseudomonas aeruginosa, has been determined. The crystals diffracted anisotropically to a maximum resolution of 2.12 Å (spherical resolution of 2.83 Å) and initial phases were obtained by Fe-SAD phasing, revealing the presence of 11 NirC chains in the asymmetric unit. Surprisingly, these protomers arrange into one monomer and two different types of 3D domain-swapped dimers, one of which shows pronounced asymmetry. While the simultaneous observation of monomers and dimers probably reflects the interplay between the high protein concentration required for crystallization and the structural plasticity of monoheme c-type cytochromes, the identification of conserved structural motifs in the monomer together with a comparison with similar proteins may offer new leads to unravel the unknown function of NirC.




si

Ion permeation in potassium ion channels

The study of ion channels dates back to the 1950s and the groundbreaking electrophysiology work of Hodgin and Huxley, who used giant squid axons to probe how action potentials in neurons were initiated and propagated. More recently, several experiments using different structural biology techniques and approaches have been conducted to try to understand how potassium ions permeate through the selectivity filter of potassium ion channels. Two mechanisms of permeation have been proposed, and each of the two mechanisms is supported by different experiments. The key structural biology experiments conducted so far to try to understand how ion permeation takes place in potassium ion channels are reviewed and discussed. Protein crystallo­graphy has made, and continues to make, key contributions in this field, often through the use of anomalous scattering. Other structural biology techniques used to study the contents of the selectivity filter include solid-state nuclear magnetic resonance and two-dimensional infrared spectroscopy, both of which make clever use of isotopic labeling techniques, while molecular-dynamics simulations of ion flow through the selectivity filter have been enabled by the growing number of potassium ion channel structures deposited in the Protein Data Bank.




si

Development of basic building blocks for cryo-EM: the emcore and emvis software libraries

Image-processing software has always been an integral part of structure determination by cryogenic electron microscopy (cryo-EM). Recent advances in hardware and software are recognized as one of the key factors in the so-called cryo-EM resolution revolution. Increasing computational power has opened many possibilities to consider more demanding algorithms, which in turn allow more complex biological problems to be tackled. Moreover, data processing has become more accessible to many experimental groups, with computations that used to last for many days at supercomputing facilities now being performed in hours on personal workstations. All of these advances, together with the rapid expansion of the community, continue to pose challenges and new demands on the software-development side. In this article, the development of emcore and emvis, two basic software libraries for image manipulation and data visualization in cryo-EM, is presented. The main goal is to provide basic functionality organized in modular components that other developers can reuse to implement new algorithms or build graphical applications. An additional aim is to showcase the importance of following established practices in software engineering, with the hope that this could be a first step towards a more standardized way of developing and distributing software in the field.




si

Insight into the role of pre-assembly and desolvation in crystal nucleation: a case of p-nitro­benzoic acid

As one of the most important phenomena in crystallization, the crystal nucleation process has always been the focus of research. In this work, influences of pre-assembly species and the desolvation process on the crystal nucleation process were studied. p-Nitro­benzoic acid (PNBA) was taken as a model compound to investigate the relationship between solution chemistry and nucleation kinetics in seven different solvents. One unsolvated form and four solvates of PNBA were obtained and one of the solvates was newly discovered. The nucleation behaviours and nucleation kinetics of PNBA in the seven solvents were studied and analyzed. Density functional theory (DFT) and solvation energy calculation were adopted to evaluate the strength of solute–solvent interactions. Vibrational spectroscopy combined with molecular simulation was applied to reveal the pre-assembly species in the solution. Based on these results, a comprehensive understanding of the relationship between molecular structure, crystal structure, solution chemistry and nucleation dynamics was proposed and discussed. It was found that the structural similarity between solution chemistry and crystal structure, the interaction between specific sites and the overall strength of solvation will jointly affect the nucleation process.




si

On the puzzling case of sodium saccharinate 1.875-hydrate: structure description in (3+1)-dimensional superspace

The structure of sodium saccharinate 1.875-hydrate is presented in three- and (3+1)-dimensional space. The present model is more accurate than previously published superstructures, due to an excellent data set collected up to a high resolution of 0.89 Å−1. The present study confirms the unusual complexity of the structure comprising a very large primitive unit cell with Z' = 16. A much smaller degree of correlated disorder of parts of the unit cell is found than is present in the previously published models. As a result of pseudo-symmetry, the structure can be described in a higher-dimensional space. The X-ray diffraction data clearly indicate a (3+1)-dimensional periodic structure with stronger main reflections and weaker superstructure reflections. Furthermore, the structure is established as being commensurate. The structure description in superspace results in a four times smaller unit cell with an additional base centring of the lattice, resulting in an eightfold substructure (Z' = 2) of the 3D superstructure. Therefore, such a superspace approach is desirable to work out this high-Z' structure. The displacement and occupational modulation of the saccharinate anions have been studied, as well as their conformational variation along the fourth dimension.




si

Structure variations within RSi2 and R2TSi3 silicides. Part I. Structure overview

Here, structural parameters of various structure reports on RSi2 and R2TSi3 compounds [where R is an alkaline earth metal, a rare earth metal (i.e. an element of the Sc group or a lathanide), or an actinide and T is a transition metal] are summarized. The parameters comprising composition, lattice parameters a and c, ratio c/a, formula unit per unit cell and structure type are tabulated. The relationships between the underlying structure types are presented within a group–subgroup scheme (Bärnighausen diagram). Additionally, unexpectedly missing compounds within the R2TSi3 compounds were examined with density functional theory and compounds that are promising candidates for synthesis are listed. Furthermore, a correlation was detected between the orthorhombic AlB2-like lattices of, for example, Ca2AgSi3 and the divalence of R and the monovalence of T. Finally, a potential tetragonal structure with ordered Si/T sites is proposed.




si

ID30A-3 (MASSIF-3) – a beamline for macromolecular crystallography at the ESRF with a small intense beam

ID30A-3 (or MASSIF-3) is a mini-focus (beam size 18 µm × 14 µm) highly intense (2.0 × 1013 photons s−1), fixed-energy (12.81 keV) beamline for macromolecular crystallography (MX) experiments at the European Synchrotron Radiation Facility (ESRF). MASSIF-3 is one of two fixed-energy beamlines sited on the first branch of the canted undulator setup on the ESRF ID30 port and is equipped with a MD2 micro-diffractometer, a Flex HCD sample changer, and an Eiger X 4M fast hybrid photon-counting detector. MASSIF-3 is recommended for collecting diffraction data from single small crystals (≤15 µm in one dimension) or for experiments using serial methods. The end-station has been in full user operation since December 2014, and here its current characteristics and capabilities are described.




si

TEXS: in-vacuum tender X-ray emission spectrometer with 11 Johansson crystal analyzers

The design and first results of a large-solid-angle X-ray emission spectrometer that is optimized for energies between 1.5 keV and 5.5 keV are presented. The spectrometer is based on an array of 11 cylindrically bent Johansson crystal analyzers arranged in a non-dispersive Rowland circle geometry. The smallest achievable energy bandwidth is smaller than the core hole lifetime broadening of the absorption edges in this energy range. Energy scanning is achieved using an innovative design, maintaining the Rowland circle conditions for all crystals with only four motor motions. The entire spectrometer is encased in a high-vacuum chamber that allocates a liquid helium cryostat and provides sufficient space for in situ cells and operando catalysis reactors.




si

Radiochromic film dosimetry in synchrotron radiation breast computed tomography: a phantom study

This study relates to the INFN project SYRMA-3D for in vivo phase-contrast breast computed tomography using the SYRMEP synchrotron radiation beamline at the ELETTRA facility in Trieste, Italy. This peculiar imaging technique uses a novel dosimetric approach with respect to the standard clinical procedure. In this study, optimization of the acquisition procedure was evaluated in terms of dose delivered to the breast. An offline dose monitoring method was also investigated using radiochromic film dosimetry. Various irradiation geometries have been investigated for scanning the prone patient's pendant breast, simulated by a 14 cm-diameter polymethylmethacrylate cylindrical phantom containing pieces of calibrated radiochromic film type XR-QA2. Films were inserted mid-plane in the phantom, as well as wrapped around its external surface, and irradiated at 38 keV, with an air kerma value that would produce an estimated mean glandular dose of 5 mGy for a 14 cm-diameter 50% glandular breast. Axial scans were performed over a full rotation or over 180°. The results point out that a scheme adopting a stepped rotation irradiation represents the best geometry to optimize the dose distribution to the breast. The feasibility of using a piece of calibrated radiochromic film wrapped around a suitable holder around the breast to monitor the scan dose offline is demonstrated.




si

Quantitative three-dimensional nondestructive imaging of whole anaerobic ammonium-oxidizing bacteria

Anaerobic ammonium-oxidizing (anammox) bacteria play a key role in the global nitrogen cycle and in nitrogenous wastewater treatment. The anammox bacteria ultrastructure is unique and distinctly different from that of other prokaryotic cells. The morphological structure of an organism is related to its function; however, research on the ultrastructure of intact anammox bacteria is lacking. In this study, in situ three-dimensional nondestructive ultrastructure imaging of a whole anammox cell was performed using synchrotron soft X-ray tomography (SXT) and the total variation-based simultaneous algebraic reconstruction technique (TV-SART). Statistical and quantitative analyses of the intact anammox bacteria were performed. High soft X-ray absorption composition inside anammoxosome was detected and verified to be relevant to iron-binding protein. On this basis, the shape adaptation of the anammox bacteria response to iron was explored.




si

Versatile compact heater design for in situ nano-tomography by transmission X-ray microscopy

A versatile, compact heater designed at National Synchrotron Light Source-II for in situ X-ray nano-imaging in a full-field transmission X-ray microscope is presented. Heater design for nano-imaging is challenging, combining tight spatial constraints with stringent design requirements for the temperature range and stability. Finite-element modeling and analytical calculations were used to determine the heater design parameters. Performance tests demonstrated reliable and stable performance, including maintaining the exterior casing close to room temperature while the heater is operating at above 1100°C, a homogenous heating zone and small temperature fluctuations. Two scientific experiments are presented to demonstrate the heater capabilities: (i) in situ 3D nano-tomography including a study of metal dealloying in a liquid molten salt extreme environment, and (ii) a study of pore formation in icosahedral quasicrystals. The progression of structural changes in both studies were clearly resolved in 3D, showing that the new heater enables powerful capabilities to directly visualize and quantify 3D morphological evolution of materials under real conditions by X-ray nano-imaging at elevated temperature during synthesis, fabrication and operation processes. This heater design concept can be applied to other applications where a precise, compact heater design is required.




si

Identification of Ca-rich dense granules in human platelets using scanning transmission X-ray microscopy

Whole-mount (WM) platelet preparation followed by transmission electron microscopy (TEM) observation is the standard method currently used to assess dense granule (DG) deficiency (DGD). However, due to the electron-density-based contrast mechanism in TEM, other granules such as α-granules might cause false DG detection. Here, scanning transmission X-ray microscopy (STXM) was used to identify DGs and minimize false DG detection of human platelets. STXM image stacks of human platelets were collected at the calcium (Ca) L2,3 absorption edge and then converted to optical density maps. Ca distribution maps, obtained by subtracting the optical density maps at the pre-edge region from those at the post-edge region, were used to identify DGs based on the Ca richness. DGs were successfully detected using this STXM method without false detection, based on Ca maps for four human platelets. Spectral analysis of granules in human platelets confirmed that DGs contain a richer Ca content than other granules. The Ca distribution maps facilitated more effective DG identification than TEM which might falsely detect DGs. Correct identification of DGs would be important to assess the status of platelets and DG-related diseases. Therefore, this STXM method is proposed as a promising approach for better DG identification and diagnosis, as a complementary tool to the current WM TEM approach.




si

Quantifying redox heterogeneity in single-crystalline LiCoO2 cathode particles

Active cathode particles are fundamental architectural units for the composite electrode of Li-ion batteries. The microstructure of the particles has a profound impact on their behavior and, consequently, on the cell-level electrochemical performance. LiCoO2 (LCO, a dominant cathode material) is often in the form of well-shaped particles, a few micrometres in size, with good crystallinity. In contrast to secondary particles (an agglomeration of many fine primary grains), which are the other common form of battery particles populated with structural and chemical defects, it is often anticipated that good particle crystallinity leads to superior mechanical robustness and suppressed charge heterogeneity. Yet, sub-particle level charge inhomogeneity in LCO particles has been widely reported in the literature, posing a frontier challenge in this field. Herein, this topic is revisited and it is demonstrated that X-ray absorption spectra on single-crystalline particles with highly anisotropic lattice structures are sensitive to the polarization configuration of the incident X-rays, causing some degree of ambiguity in analyzing the local spectroscopic fingerprint. To tackle this issue, a methodology is developed that extracts the white-line peak energy in the X-ray absorption near-edge structure spectra as a key data attribute for representing the local state of charge in the LCO crystal. This method demonstrates significantly improved accuracy and reveals the mesoscale chemical complexity in LCO particles with better fidelity. In addition to the implications on the importance of particle engineering for LCO cathodes, the method developed herein also has significant impact on spectro-microscopic studies of single-crystalline materials at synchrotron facilities, which is broadly applicable to a wide range of scientific disciplines well beyond battery research.




si

High-dynamic-range transmission-mode detection of synchrotron radiation using X-ray excited optical luminescence in diamond

Enhancement of X-ray excited optical luminescence in a 100 µm-thick diamond plate by introduction of defect states via electron beam irradiation and subsequent high-temperature annealing is demonstrated. The resulting X-ray transmission-mode scintillator features a linear response to incident photon flux in the range 7.6 × 108 to 1.26 × 1012 photons s−1 mm−2 for hard X-rays (15.9 keV) using exposure times from 0.01 to 5 s. These characteristics enable a real-time transmission-mode imaging of X-ray photon flux density without disruption of X-ray instrument operation.




si

A design of resonant inelastic X-ray scattering (RIXS) spectrometer for spatial- and time-resolved spectroscopy

The optical design of a Hettrick–Underwood-style soft X-ray spectrometer with Wolter type 1 mirrors is presented. The spectrometer with a nominal length of 3.1 m can achieve a high resolving power (resolving power higher than 10000) in the soft X-ray regime when a small source beam (<3 µm in the grating dispersion direction) and small pixel detector (5 µm effective pixel size) are used. Adding Wolter mirrors to the spectrometer before its dispersive elements can realize the spatial imaging capability, which finds applications in the spectroscopic studies of spatially dependent electronic structures in tandem catalysts, heterostructures, etc. In the pump–probe experiments where the pump beam perturbs the materials followed by the time-delayed probe beam to reveal the transient evolution of electronic structures, the imaging capability of the Wolter mirrors can offer the pixel-equivalent femtosecond time delay between the pump and probe beams when their wavefronts are not collinear. In combination with some special sample handing systems, such as liquid jets and droplets, the imaging capability can also be used to study the time-dependent electronic structure of chemical transformation spanning multiple time domains from microseconds to nanoseconds. The proposed Wolter mirrors can also be adopted to the existing soft X-ray spectrometers that use the Hettrick–Underwood optical scheme, expanding their capabilities in materials research.




si

Comparative study of the around-Fermi electronic structure of 5d metals and metal-oxides by means of high-resolution X-ray emission and absorption spectroscopies

The composition of occupied and unoccupied electronic states in the vicinity of Fermi energies is vital for all materials and relates to their physical, chemical and mechanical properties. This work demonstrates how the combination of resonant and non-resonant X-ray emission spectroscopies supplemented with theoretical modelling allows for quantitative analysis of electronic states in 5d transition metal and metal-oxide materials. Application of X-rays provides element selectivity that, in combination with the penetrating properties of hard X-rays, allows determination of the composition of electronic states under working conditions, i.e. non-vacuum environment. Tungsten metal and tungsten oxide are evaluated to show the capability to simultaneously assess composition of around-band-gap electronic states as well as the character and magnitude of the crystal field splitting.




si

Full strain tensor measurements with X-ray diffraction and strain field mapping: a simulation study

Strain tensor measurements are important for understanding elastic and plastic deformation, but full bulk strain tensor measurement techniques are still lacking, in particular for dynamic loading. Here, such a methodology is reported, combining imaging-based strain field mapping and simultaneous X-ray diffraction for four typical loading modes: one-dimensional strain/stress compression/tension. Strain field mapping resolves two in-plane principal strains, and X-ray diffraction analysis yields volumetric strain, and thus the out-of-plane principal strain. This methodology is validated against direct molecular dynamics simulations on nanocrystalline tantalum. This methodology can be implemented with simultaneous X-ray diffraction and digital image correlation in synchrotron radiation or free-electron laser experiments.




si

Estimating signal and noise of time-resolved X-ray solution scattering data at synchrotrons and XFELs

Elucidating the structural dynamics of small molecules and proteins in the liquid solution phase is essential to ensure a fundamental understanding of their reaction mechanisms. In this regard, time-resolved X-ray solution scattering (TRXSS), also known as time-resolved X-ray liquidography (TRXL), has been established as a powerful technique for obtaining the structural information of reaction intermediates and products in the liquid solution phase and is expected to be applied to a wider range of molecules in the future. A TRXL experiment is generally performed at the beamline of a synchrotron or an X-ray free-electron laser (XFEL) to provide intense and short X-ray pulses. Considering the limited opportunities to use these facilities, it is necessary to verify the plausibility of a target experiment prior to the actual experiment. For this purpose, a program has been developed, referred to as S-cube, which is short for a Solution Scattering Simulator. This code allows the routine estimation of the shape and signal-to-noise ratio (SNR) of TRXL data from known experimental parameters. Specifically, S-cube calculates the difference scattering curve and the associated quantum noise on the basis of the molecular structure of the target reactant and product, the target solvent, the energy of the pump laser pulse and the specifications of the beamline to be used. Employing a simplified form for the pair-distribution function required to calculate the solute–solvent cross term greatly increases the calculation speed as compared with a typical TRXL data analysis. Demonstrative applications of S-cube are presented, including the estimation of the expected TRXL data and SNR level for the future LCLS-II HE beamlines.




si

A single-crystal diamond X-ray pixel detector with embedded graphitic electrodes

The first experimental results from a new transmissive diagnostic instrument for synchrotron X-ray beamlines are presented. The instrument utilizes a single-crystal chemical-vapour-deposition diamond plate as the detector material, with graphitic wires embedded within the bulk diamond acting as electrodes. The resulting instrument is an all-carbon transmissive X-ray imaging detector. Within the instrument's transmissive aperture there is no surface metallization that could absorb X-rays, and no surface structures that could be damaged by exposure to synchrotron X-ray beams. The graphitic electrodes are fabricated in situ within the bulk diamond using a laser-writing technique. Two separate arrays of parallel graphitic wires are fabricated, running parallel to the diamond surface and perpendicular to each other, at two different depths within the diamond. One array of wires has a modulated bias voltage applied; the perpendicular array is a series of readout electrodes. X-rays passing through the detector generate charge carriers within the bulk diamond through photoionization, and these charge carriers travel to the nearest readout electrode under the influence of the modulated electrical bias. Each of the crossing points between perpendicular wires acts as an individual pixel. The simultaneous read-out of all pixels is achieved using a lock-in technique. The parallel wires within each array are separated by 50 µm, determining the pixel pitch. Readout is obtained at 100 Hz, and the resolution of the X-ray beam position measurement is 600 nm for a 180 µm size beam.




si

Focusing with saw-tooth refractive lenses at a high-energy X-ray beamline

The Advanced Photon Source 1-ID beamline, operating in the 40–140 keV X-ray energy range, has successfully employed continuously tunable saw-tooth refractive lenses to routinely deliver beams focused in both one and two dimensions to experiments for over 15 years. The practical experience of implementing such lenses, made of silicon and aluminium, is presented, including their properties, control, alignment, and diagnostic methods, achieving ∼1 µm focusing (vertically). Ongoing development and prospects towards submicrometre focusing at these high energies are also mentioned.




si

Measurement and compensation of misalignment in double-sided hard X-ray Fresnel zone plates

Double-sided Fresnel zone plates are diffractive lenses used for high-resolution hard X-ray microscopy. The double-sided structures have significantly higher aspect ratios compared with single-sided components and hence enable more efficient imaging. The zone plates discussed in this paper are fabricated on each side of a thin support membrane, and the alignment of the zone plates with respect to each other is critical. Here, a simple and reliable way of quantifying misalignments by recording efficiency maps and measuring the absolute diffraction efficiency of the zone plates as a function of tilting angle in two directions is presented. The measurements are performed in a setup based on a tungsten-anode microfocus X-ray tube, providing an X-ray energy of 8.4 keV through differential measurements with a Cu and an Ni filter. This study investigates the sources of the misalignments and concludes that they can be avoided by decreasing the structure heights on both sides of the membrane and by pre-programming size differences between the front- and back-side zone plates.




si

High-efficiency ultra-precision comparator for d-spacing mapping measurement of silicon

This article describes a high-efficiency experimental configuration for a self-referenced lattice comparator with a `brush beam' of synchrotron radiation from a bending magnet and two linear position-sensitive photon-counting-type X-ray detectors. The efficiency is more than ten times greater compared with the `pencil-beam' configuration and a pair of zero-dimensional detectors. A solution for correcting the systematic deviation of d-spacing measurements caused by the horizontal non-uniformity of the brush beam is provided. Also, the use of photon-counting-type one-dimensional detectors not only improves the spatial resolution of the measurements remarkably but can also adjust the sample's attitude angles easily.




si

Solid/liquid-interface-dependent synthesis and immobilization of copper-based particles nucleated by X-ray-radiolysis-induced photochemical reaction




si

Comprehensive characterization of TSV etching performance with phase-contrast X-ray microtomography

A complete method of comprehensive and quantitative evaluation of through-silicon via reliability using a highly sensitive phase-contrast X-ray microtomography was established. Quantitative characterizations include 3D local morphology and overall consistency of statistics.




si

Classification of grazing-incidence small-angle X-ray scattering patterns by convolutional neural network

Convolutional neural networks are useful for classifying grazing-incidence small-angle X-ray scattering patterns. They are also useful for classifying real experimental data.




si

GIDVis: a comprehensive software tool for geometry-independent grazing-incidence X-ray diffraction data analysis and pole-figure calculations

GIDVis is a software package based on MATLAB specialized for, but not limited to, the visualization and analysis of grazing-incidence thin-film X-ray diffraction data obtained during sample rotation around the surface normal. GIDVis allows the user to perform detector calibration, data stitching, intensity corrections, standard data evaluation (e.g. cuts and integrations along specific reciprocal-space directions), crystal phase analysis etc. To take full advantage of the measured data in the case of sample rotation, pole figures can easily be calculated from the experimental data for any value of the scattering angle covered. As an example, GIDVis is applied to phase analysis and the evaluation of the epitaxial alignment of pentacene­quinone crystallites on a single-crystalline Au(111) surface.




si

ClickX: a visualization-based program for preprocessing of serial crystallography data

Serial crystallography is a powerful technique in structure determination using many small crystals at X-ray free-electron laser or synchrotron radiation facilities. The large diffraction data volumes require high-throughput software to preprocess the raw images for subsequent analysis. ClickX is a program designated for serial crystallography data preprocessing, capable of rapid data sorting for online feedback and peak-finding refinement by parameter optimization. The graphical user interface (GUI) provides convenient access to various operations such as pattern visualization, statistics plotting and parameter tuning. A batch job module is implemented to facilitate large-data-volume processing. A two-step geometry calibration for single-panel detectors is also integrated into the GUI, where the beam center and detector tilting angles are optimized using an ellipse center shifting method first, then all six parameters, including the photon energy and detector distance, are refined together using a residual minimization method. Implemented in Python, ClickX has good portability and extensibility, so that it can be installed, configured and used on any computing platform that provides a Python interface or common data file format. ClickX has been tested in online analysis at the Pohang Accelerator Laboratory X-ray Free-Electron Laser, Korea, and the Linac Coherent Light Source, USA. It has also been applied in post-experimental data analysis. The source code is available via https://github.com/LiuLab-CSRC/ClickX under a GNU General Public License.