1

Diaquatetra­kis(μ-3-meth­oxy­benzoato-κ2O1:O1')dicopper(II)

The asymmetric unit of the binuclear title compound, [Cu2(C8H7O3)4(H2O)2], comprises two halves of diaquatetra­kis­(μ-3-meth­oxy­benzoato-κ2O1:O1')dicopper(II) units. The paddle-wheel structure of each complex is completed by application of inversion symmetry, with the inversion centre situated at the midpoint between two CuII atoms in each dimer. The two CuII atoms of each centrosymmetric dimer are bridged by four 3-meth­oxy­benzoate anions resulting in Cu⋯Cu separations of 2.5961 (11) and 2.6060 (12) Å, respectively. The square-pyramidal coordination sphere of each CuII atom is completed by an apical water mol­ecule. Inter­molecular O—H⋯O hydrogen bonds of weak nature link the complexes into layers parallel to (100). The three-dimensional network structure is accomplished by C—H⋯O hydrogen bonds inter­linking adjacent layers.




1

2,2,3,3,4,4,5,5-Octa­fluorohexa­ne-1,6-diol

In the crystal of the title compound, C6H6F8O4, O—H⋯O hydrogen bonds involving the hy­droxy groups connect the mol­ecules, forming a two-dimensional network parallel to (100). These hydrogen-bonding inter­actions appear to drive the O—C—C—O torsion angles into a gauche–trans–trans series of conformations along the backbone of the mol­ecule.




1

Tris­(4,4'-di-tert-butyl-2,2'-bi­pyridine)(trans-4-tert-butyl­cyclo­hexa­nolato)­deca-μ-oxido-hepta­oxido­hepta­vanadium aceto­nitrile monosolvate including another unknown solvent mol­ecule

The title hepta­nuclear alkoxido(oxido)vanadium(V) oxide cluster complex, [V7(C10H19O)O17(C18H24N2)3]·CH3CN, was obtained by the reaction of [V8O20(C18H24N2)4] with 4-tert-butyl­cyclo­hexa­nol (mixture of cis and trans) in a mixed CHCl3/CH3CN solvent. The complex has a V7O18N6 core with approximately Cs symmetry, which is composed of two VO4 tetra­hedra, two VO6 octa­hedra and three VO4N2 octa­hedra. In the crystal, these complexes are linked together by weak inter­molecular C—H⋯O hydrogen bonds between the 4,4'-di-tert-butyl-2,2'-bi­pyridine ligand and the V7O18N6 core, forming a one-dimensional network along the c-axis direction. Besides the complex, the asymmetric unit contains one CH3CN solvent mol­ecule. The contribution of other disordered solvent mol­ecules to the scattering was removed using the SQUEEZE option in PLATON [Spek (2015). Acta Cryst. C71, 9–18]. The unknown solvent mol­ecules are not considered in the chemical formula and other crystal data.




1

2,3-Di­ethyl­benzo[g]quinoxaline

The title compound, C16H16N2, was synthesized by dispersing 3,4-hexa­nedione in a methanol–water solution containing the acid catalyst NH4HF2, then adding 1,2-di­aminona­phthalene. The fused-ring system of the title compound is close to planar (r.m.s. deviation = 0.028 Å); one of the pendant methyl C atoms lies close to the ring plane [deviation = 0.071 (2) Å; N—C—C—C = −0.27 (18)°] whereas the other is significantly displaced [–1.7136 (18) Å; 91.64 (16)°]. The mol­ecules pack in space group Ioverline{4} in a distinctive criss-cross motif supported by numerous aromatic π–π stacking inter­actions [shortest centroid–centroid separation = 3.5805 (6) Å].




1

Poly[[μ4-3,4,8,10,11,13-hexa­hydro-1H,6H-bis­([1,4]di­thio­cino)[6,7-b:6',7'-e]pyrazine]di-μ-iodido-dicopper(I)]: a two-dimensional copper(I) coordination polymer

The reaction of ligand 3,4,8,10,11,13-hexa­hydro-1H,6H-bis­([1,4]di­thio­cino)[6,7-b:6',7'-e]pyrazine (L) with CuI led to the formation of a two-dimensional coordination polymer, incorporating a [Cu2I2] motif. These units are linked via the four S atoms of the ligand to form the title two-dimensional coordination poly­mer, poly[[μ4-3,4,8,10,11,13-hexa­hydro-1H,6H-bis­([1,4]di­thio­cino)[6,7-b:6',7'-e]pyrazine]di-μ-iodido-dicopper(I)], [Cu2I2(C12H16N2S4)]n, (I). The asymmetric unit is composed of a ligand mol­ecule, two copper(I) atoms and two I− ions. Both copper(I) atoms are fourfold S2I2 coordinate with almost regular trigonal-pyramidal environments. In the crystal, the layers, lying parallel to (102), are linked by C—H⋯I hydrogen bonds, forming a supra­molecular framework.




1

Redetermination of di­ammonium trivanadate, (NH4)2V3O8

The crystal structure of (NH4)2V3O8 has been reported twice using single-crystal X-ray data [Theobald et al. (1984). J. Phys. Chem. Solids, 45, 581–587; Range et al. (1988). Z. Naturforsch. Teil B, 43, 309–317]. In both cases, the orientation of the ammonium cation in the asymmetric unit was poorly defined: in Theobald's study, the shape and dimensions were constrained for NH4+, while in Range's study, H atoms were not included. In the present study, we collected a highly redundant data set for this ternary oxide, at 0.61 Å resolution, using Ag Kα radiation. These accurate data reveal that the NH4+ cation is disordered by rotation around a non-crystallographic axis. The rotation axis coincides with one N—H bond lying in the mirror m symmetry element of space-group type P4bm, and the remaining H sites were modelled over two disordered positions, with equal occupancy. It therefore follows that the NH4+ cations filling the space available in the (001) layered structure formed by (V3O8)2– ions do not form strong N—H⋯O hydrogen bonds with the mixed-valent oxidovanadate(IV,V) anions. This feature could have consequences for the Li-ion inter­calation properties of this material, which is used as a cathode for supercapacitors.




1

5-MeO-DALT: the freebase of N,N-diallyl-5-meth­oxy­tryptamine

The title compound {systematic name: N-[2-(5-meth­oxy-1H-indol-3-yl)eth­yl]-N-(prop-2-en-1-yl)prop-2-en-1-amine), C17H22N2O, has a single tryptamine mol­ecule in the asymmetric unit. The mol­ecules are linked by strong N—H⋯N hydrogen bonds into zigzag chains with graph-set notation C(7) along the [010] direction.




1

2,6-Diphenyl-3-(prop-2-en-1-yl)piperidin-4-one

In the title compound, C20H21NO, the dihedral angle between the phenyl ring is 47.5 (1)° and the piperidine ring adopts a chair conformation. In the crystal, mol­ecules are linked by C—H⋯π inter­actions into dimers with the mol­ecules related by twofold symmetry.




1

2,4,6-Triphenyl-N-{(3E)-3-[(2,4,6-tri­phenyl­phen­yl)imino]­butan-2-yl­idene}aniline

The title compound, C52H40N2, is disposed about a centre of inversion and the conformation about the imine bond [1.268 (3) Å] is E. The terminal benzene ring is approximately perpendicular to the central 1,4-di­aza­butadiene mean plane, forming a dihedral angle of 81.2 (3)°. Weak C—H⋯π and π–π [inter-centroid distance = 4.021 (5) Å] inter­actions help to consolidate the packing.




1

Crystal structure of pirfenidone (5-methyl-1-phenyl-1H-pyridin-2-one): an active pharmaceutical ingredient (API)

The crystal structure of pirfenidone, C12H11NO [alternative name: 5-methyl-1-phenyl­pyridin-2(1H)-one], an active pharmaceutical ingredient (API) approved in Europe and Japan for the treatment of Idiopathic pulmonary fibrosis (IPF), is reported here for the first time. It was crystallized from toluene by the temperature gradient technique, and crystallizes in the chiral monoclinic space group P21. The phenyl and pyridone rings are inclined to each other by 50.30 (11)°. In the crystal, mol­ecules are linked by C–H⋯O hydrogen bonds involving the same acceptor atom, forming undulating layers lying parallel to the ab plane.




1

Crystal structure and DFT study of (E)-2-chloro-4-{[2-(2,4-di­nitro­phen­yl)hydrazin-1-yl­idene]meth­yl}phenol aceto­nitrile hemisolvate

The title Schiff base compound, C13H9ClN4O5·0.5CH3CN, crystallizes as an aceto­nitrile hemisolvate; the solvent mol­ecule being located on a twofold rotation axis. The mol­ecule is nearly planar, with a dihedral angle between the two benzene rings of 3.7 (2)°. The configuration about the C=N bond is E, and there is an intra­molecular N—H⋯Onitro hydrogen bond present forming an S(6) ring motif. In the crystal, mol­ecules are linked by O—H⋯O and N—H⋯O hydrogen bonds, forming layers lying parallel to (10overline{1}). The layers are linked by C—H⋯Cl hydrogen bonds, forming a supra­molecular framework. Within the framework there are offset π–π stacking inter­actions [inter­centroid distance = 3.833 (2) Å] present involving inversion-related mol­ecules. The DFT study shows that the HOMO and LUMO are localized in the plane extending from the phenol ring to the 2,4-di­nitro­benzene ring, and the HOMO–LUMO gap is found to be 0.13061 a.u.




1

Crystal structure and Hirshfeld surface analysis of 4-[4-(1H-benzo[d]imidazol-2-yl)phen­oxy]phthalo­nitrile dimethyl sulfoxide monosolvate

This work presents the synthesis and structural characterization of [4-(1H-benzo[d]imidazol-2-yl)phen­oxy]phthalo­nitrile, a phthalo­nitrile derivative carrying a benzimidazole moiety. The compound crystallizes as its dimethyl sulfoxide monosolvate, C21H12N4O·(CH3)2SO. The dihedral angle between the two fused rings in the heterocyclic ring system is 2.11 (1)°, while the phenyl ring attached to the imidazole moiety is inclined by 20.7 (1)° to the latter. In the crystal structure, adjacent mol­ecules are connected by pairs of weak inter­molecular C—H⋯N hydrogen bonds into inversion dimers. N—H⋯O and C—H⋯O hydrogen bonds with R21(7) graph-set motifs are also formed between the organic mol­ecule and the disordered dimethyl sulfoxide solvent [occupancy ratio of 0.623 (5):0.377 (5) for the two sites of the sulfur atom]. Hirshfeld surface analysis and fingerprint plots were used to investigate the inter­molecular inter­actions in the crystalline state.




1

Crystal structure, Hirshfeld surface analysis and HOMO–LUMO analysis of (E)-N'-(3-hy­droxy-4-meth­oxy­benzyl­idene)nicotinohydrazide monohydrate

The mol­ecule of the title Schiff base compound, C14H13N3O3·H2O, displays a trans configuration with respect to the C=N bond. The dihedral angle between the benzene and pyridine rings is 29.63 (7)°. The crystal structure features inter­molecular N—H⋯O, C—H⋯O, O—H⋯O and O—H⋯N hydrogen-bonding inter­actions, leading to the formation of a supramolecular framework. A Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H⋯H (37.0%), O⋯H/H⋯O (23.7%)), C⋯H/H⋯C (17.6%) and N⋯H/H⋯N (11.9%) inter­actions. The title compound has also been characterized by frontier mol­ecular orbital analysis.




1

Crystal structure and Hirshfeld surface analysis of a conformationally unsymmetrical bis­chalcone: (1E,4E)-1,5-bis­(4-bromo­phen­yl)penta-1,4-dien-3-one

In the title bis­chalcone, C17H12Br2O, the olefinic double bonds are almost coplanar with their attached 4-bromo­phenyl rings [torsion angles = −10.2 (4) and −6.2 (4)°], while the carbonyl double bond is in an s-trans conformation with with respect to one of the C=C bonds and an s-cis conformation with respect to the other [C=C—C=O = 160.7 (3) and −15.2 (4)°, respectively]. The dihedral angle between the 4-bromo­phenyl rings is 51.56 (2)°. In the crystal, mol­ecules are linked into a zigzag chain propagating along [001] by weak C—H⋯π inter­actions. The conformations of related bis­chalcones are surveyed and a Hirshfeld surface analysis is used to investigate and qu­antify the inter­molecular contacts.




1

N-[2-(Tri­fluoro­meth­yl)phen­yl]maleamic acid: crystal structure and Hirshfeld surface analysis

The title mol­ecule, C11H8F3NO3, adopts a cis configuration across the –C=C– double bond in the side chain and the dihedral angle between the phenyl ring and side chain is 47.35 (1)°. The –COOH group adopts a syn conformation (O=C—O—H = 0°), unlike the anti conformation observed in related maleamic acids. In the crystal, inversion dimers linked by pairs of O—H⋯O hydrogen bonds are connected via N—H⋯O hydrogen bonds and C—H⋯O inter­actions into (100) sheets, which are cross-linked by another C—H⋯O inter­action to result in a three-dimensional network. The Hirshfeld surface fingerprint plots show that the highest contribution to surface contacts arises from O⋯H/H⋯O contacts (26.5%) followed by H⋯F/F⋯H (23.4%) and H⋯H (17.3%).




1

Crystal structure and Hirshfeld surface analysis of (Z)-6-[(2-hy­droxy-4-methyl­anilino)­methyl­idene]-4-methyl­cyclo­hexa-2,4-dien-1-one

The title compound, C15H15NO2, is a Schiff base that exists in the keto–enamine tautomeric form and adopts a Z configuration. The mol­ecule is almost planar, with the two phenyl rings twisted relative to each other by 9.60 (18)°. There is an intra­molecular N—H⋯O hydrogen bond present forming an S(6) ring motif. In the crystal, pairs of O—H⋯O hydrogen bonds link adjacent mol­ecules into inversion dimers with an R22(18) ring motif. The dimers are linked by very weak π–π inter­actions, forming layers parallel to (overline{2}01). Hirshfeld surface analysis, two-dimensional fingerprint plots and the mol­ecular electrostatic potential surfaces were used to analyse the inter­molecular inter­actions, indicating that the most important contributions for the crystal packing are from H⋯H (55.2%), C⋯H/H⋯C (22.3%) and O⋯H/H⋯O (13.6%) inter­actions.




1

Crystal structures and Hirshfeld surface analyses of 4,4'-{[1,3-phenyl­enebis(methyl­ene)]bis­(­oxy)}bis­(3-meth­oxy­benzaldehyde) and 4,4'-{[(1,4-phenyl­ene­bis(methyl­ene)]bis­(­oxy)}bis­(

The title compounds, C24H22O6 (I) and C24H22O6 (II), each crystallize with half a mol­ecule in the asymmetric unit. The whole mol­ecule of compound (I) is generated by twofold rotation symmetry, the twofold axis bis­ecting the central benzene ring. The whole mol­ecule of compound (II) is generated by inversion symmetry, the central benzene ring being located on an inversion center. In (I), the outer benzene rings are inclined to each other by 59.96 (10)° and by 36.74 (9)° to the central benzene ring. The corresponding dihedral angles in (II) are 0.0 and 89.87 (12)°. In the crystal of (I), mol­ecules are linked by C—H⋯O hydrogen bonds and C—H⋯π inter­actions, forming ribbons propagating along the [10overline{1}] direction. In the crystal of (II), mol­ecules are linked by C—H⋯O hydrogen bonds, forming a supra­molecular framework. The Hirshfeld surface analyses indicate that for both compounds the H⋯H contacts are the most significant, followed by O⋯H/H⋯O and C⋯H/H⋯C contacts.




1

Crystal structure and Hirshfeld surface analysis of (Z)-6-[(2-hy­droxy-5-nitro­anilino)methyl­idene]-4-methyl­cyclo­hexa-2,4-dien-1-one

The title compound, C14H12N2O4, is a Schiff base that exists in the keto–enamine tautomeric form and adopts a Z configuration. The mol­ecule is almost planar, the rings making a dihedral angle of 4.99 (7)°. The mol­ecular structure is stabilized by an intra­molecular N—H⋯O hydrogen bond forming an S(6) ring motif. In the crystal, inversion-related mol­ecules are linked by pairs of O—H⋯O hydrogen bonds, forming dimers with an R22(18) ring motif. The dimers are linked by pairs of C—H⋯O contacts with an R22(10) ring motif, forming ribbons extended along the [2overline{1}0] direction. Hirshfeld surface analysis, two-dimensional fingerprint plots and the mol­ecular electrostatic potential surfaces were used to analyse the inter­molecular inter­actions present in the crystal, indicating that the most important contributions for the crystal packing are from H⋯H (33.9%), O⋯H/H⋯O (29.8%) and C⋯H/H⋯C (17.3%) inter­actions.




1

2-[(4-Bromo­phen­yl)sulfan­yl]-2-meth­oxy-1-phenyl­ethan-1-one: crystal structure, Hirshfeld surface analysis and computational chemistry

The title compound, C15H13BrO2S, comprises three different substituents bound to a central (and chiral) methine-C atom, i.e. (4-bromo­phen­yl)sulfanyl, benzaldehyde and meth­oxy residues: crystal symmetry generates a racemic mixture. A twist in the mol­ecule is evident about the methine-C—C(carbon­yl) bond as evidenced by the O—C—C—O torsion angle of −20.8 (7)°. The dihedral angle between the bromo­benzene and phenyl rings is 43.2 (2)°, with the former disposed to lie over the oxygen atoms. The most prominent feature of the packing is the formation of helical supra­molecular chains as a result of methyl- and methine-C—H⋯O(carbon­yl) inter­actions. The chains assemble into a three-dimensional architecture without directional inter­actions between them. The nature of the weak points of contacts has been probed by a combination of Hirshfeld surface analysis, non-covalent inter­action plots and inter­action energy calculations. These point to the importance of weaker H⋯H and C—H⋯C inter­actions in the consolidation of the structure.




1

Crystal structure of tetra­kis­[μ-3-carboxy-1-(1,2,4-triazol-4-yl)adamantane-κ2N1:N2]tetra­fluoridodi-μ2-oxido-dioxidodisilver(I)divanadium(V) tetra­hydrate

The crystal structure of the title mol­ecular complex, [Ag2{VO2F2}2(C13H17N3O2)4]·4H2O, supported by the heterofunctional ligand tr-ad-COOH [1-(1,2,4-triazol-4-yl)-3-carb­oxy­adamantane] is reported. Four 1,2,4-triazole groups of the ligand link two AgI atoms, as well as AgI and VV centres, forming the heterobimetallic coordination cluster {AgI2(VVO2F2)2(tr)4}. VV exists as a vanadium oxofluoride anion and possesses a distorted trigonal–bipyramidal coordination environment [VO2F2N]. A carb­oxy­lic acid functional group of the ligand stays in a neutral form and is involved in hydrogen bonding with solvent water mol­ecules and VO2F2− ions of adjacent mol­ecules. The extended hydrogen-bonding network is responsible for the crystal packing in the structure.




1

Crystal structure of di-μ-chlorido-bis­[di­chlorido(l-histidinium-κO)cadmium(II)]

In the title compound, [Cd2(C6H9N3O2)2Cl6], the coordination polyhedra around the CdII cations are distorted trigonal bipyramids. Two of the chloride ions (one axial and one equatorial) are bridging to the other metal atom, leading to a Cd⋯Cd separation of 3.9162 (4) Å. The O atom of the l-histidinium cation lies in an axial site. In the crystal, numerous N—H⋯Cl, N—H⋯O, C—H⋯O and C—H⋯Cl hydrogen bonds link the mol­ecules into a three-dimensional network. Theoretical calculations and spectroscopic data are available as supporting information.




1

The crystal structure of (RS)-7-chloro-2-(2,5-di­meth­oxy­phen­yl)-2,3-di­hydro­quinazolin-4(1H)-one: two hydrogen bonds generate an elegant three-dimensional framework structure

In the title compound, C61H15ClN2O3, the heterocyclic ring adopts an envelope conformation, folded across the N⋯N line, with the 2,5-di­meth­oxy­phenyl unit occupying a quasi-axial site. There are two N—H⋯O hydrogen bonds in the structure: one hydrogen bond links mol­ecules related by a 41 screw axis to form a C(6) chain, and the other links inversion-related pairs of mol­ecules to form an R22(8) ring. The ring motif links all of the chains into a continuous three-dimensional framework structure. Comparisons are made with the structures of some related compounds.




1

Crystal structure and Hirshfeld surface analysis of new polymorph of racemic 2-phenyl­butyramide

A new polymorph of the title compound, C10H13NO, was obtained by recrystallization of the commercial product from a water/ethanol mixture (1:1 v/v). Crystals of the previously reported racemic and homochiral forms of 2-phenyl­butyramide were grown from water–aceto­nitrile solution in 1:1 volume ratio [Khrustalev et al. (2014). Cryst. Growth Des. 14, 3360–3369]. While the previously reported racemic and enanti­opure forms of the title compound adopt very similar supra­molecular structures (hydrogen-bonded ribbons), the new racemic polymorph is stabilized by a single N—H⋯O hydrogen bond that links mol­ecules into chains along the c-axis direction with an anti­parallel (centrosymmetric) packing in the crystal. Hirshfeld mol­ecular surface analysis was employed to compare the inter­molecular inter­actions in the polymorphs of the title compound.




1

Hirshfeld surface analysis and crystal structure of N-(2-meth­oxy­phen­yl)acetamide

The title compound, C9H11NO2, was obtained as unexpected product from the reaction of (4-{2-benz­yloxy-5-[(E)-(3-chloro-4-methyl­phen­yl)diazen­yl]benzyl­idene}-2-phenyl­oxazol-5(4H)-one) with 2-meth­oxy­aniline in the presence of acetic acid as solvent. The amide group is not coplanar with the benzene ring, as shown by the C—N—C—O and C—N—C—C torsion angles of −2.5 (3) and 176.54 (19)°, respectively. Hirshfeld surface analysis and two-dimensional fingerprint plots indicate that the most important contributions to the crystal packing are from H⋯H (53.9%), C⋯H/H⋯C (21.4%), O⋯H/H⋯O (21.4%) and N⋯H/H⋯N (1.7%) inter­actions.




1

Crystal structure and Hirshfeld surface analysis of tris­(2,2'-bi­pyridine)­nickel(II) bis­(1,1,3,3-tetra­cyano-2-eth­oxy­propenide) dihydrate

The title compound, [Ni(C10H8N2)3](C9H5N4O)2·2H2O, crystallizes as a racemic mixture in the monoclinic space group C2/c. In the crystal, the 1,1,3,3-tetracyano-2-ethoxypropenide anions and the water molecules are linked by O—H⋯N hydrogen bonds, forming chains running along the [010] direction. The bpy ligands of the cation are linked to the chain via C—H⋯π(cation) inter­actions involving the CH3 group. The inter­molecular inter­actions were investigated by Hirshfeld surface analysis and two-dimensional fingerprint plots.




1

Crystal structure of methyl α-l-rhamno­pyranosyl-(1→2)-α-l-rhamno­pyran­oside monohydrate

The title compound, C13H24O9·H2O, a structural model for part of bacterial O-anti­gen polysaccharides from Shigella flexneri and Escherichia coli, crystallizes with four independent disaccharide mol­ecules and four water mol­ecules in the asymmetric unit. The conformation at the glycosidic linkage joining the two rhamnosyl residues is described by the torsion angles φH of 39, 30, 37 and 37°, and ψH of −32, −35, −31 and −32°, which are the major conformation region known to be populated in an aqueous solution. The hexo­pyran­ose rings have the 1C4 chair conformation. In the crystal, the disaccharide and water mol­ecules are associated through O—H⋯O hydrogen bonds, forming a layer parallel to the bc plane. The layers stack along the a axis via hydro­phobic inter­actions between the methyl groups.




1

Crystal structures of a series of 6-aryl-1,3-diphenyl­fulvenes

The synthesis and crystal structures of a series of 6-aryl­fuvlenes (fulvene is 5-methyl­idene­cyclo­penta-1,3-diene) with varying methyl­ation patterns on the 6-phenyl substituent are reported, namely 6-(3-methyl­phen­yl)-1,3-di­phenyl­fulvene (C25H20), 6-(4-methyl­phen­yl)-1,3-di­phenyl­fulvene (C25H20), 6-mesityl-3-di­phenyl­fulvene (C27H24) and 6-(2,3,4,5,6-penta­methyl­phen­yl)-1,3-di­phenyl­fulvene (C29H28). The bond lengths are typical of those observed in related fulvenes. A network of C—H⋯π ring inter­actions consolidates the packing in each structure.




1

Bis[μ-bis­(2,6-diiso­propyl­phen­yl) phosphato-κ2O:O']bis­[(2,2'-bi­pyridine-κ2N,N')lithium] toluene disolvate and its catalytic activity in ring-opening polymerization of ∊-caprolactone and l-dilactide

The solvated centrosymmmtric title compound, [Li2(C24H34O4P)2(C10H8N2)2]·2C7H8, was formed in the reaction between {Li[(2,6-iPr2C6H3-O)2POO](MeOH)3}(MeOH) and 2,2'-bi­pyridine (bipy) in toluene. The structure has monoclinic (P21/n) symmetry at 120 K and the asymmetric unit consists of half a complex mol­ecule and one mol­ecule of toluene solvent. The diaryl phosphate ligand demonstrates a μ-κO:κO'-bridging coordination mode and the 2,2'-bi­pyridine ligand is chelating to the Li+ cation, generating a distorted tetra­hedral LiN2O2 coordination polyhedron. The complex exhibits a unique dimeric Li2O4P2 core. One isopropyl group is disordered over two orientations in a 0.621 (4):0.379 (4) ratio. In the crystal, weak C—H⋯O and C—H⋯π inter­actions help to consolidate the packing. Catalytic systems based on the title complex and on the closely related complex {Li[(2,6-iPr2C6H3-O)2POO](MeOH)3}(MeOH) display activity in the ring-opening polymerization of ∊-caprolactone and l-dilactide.




1

Crystal structure of 7,8,15,16,17-penta­thiadi­spiro­[5.2.59.36]hepta­deca­ne

The title compound, C12H20S5, crystallizes in the monoclinic space group P21/c with four mol­ecules in the unit cell. In the crystal, the asymmetric unit comprises the entire mol­ecule with the three cyclic moieties arranged in a line. The mol­ecules in the unit cell pack in a parallel fashion, with their longitudinal axes arranged along a uniform direction. The packing is stabilized by the one-dimensional propagation of non-classical hydrogen-bonding contacts between the central sulfur atom of the S3 fragment and the C—H of a cyclo­hexyl group from a glide-related mol­ecule [C⋯S = 3.787 (2) Å].




1

Crystal structure of butane-1,4-diyl bis­(furan-2-carboxyl­ate)

The asymmetric unit of the title compound, C14H14O6, a monomeric compound of poly(butyl­ene 2,5-furandi­carboxyl­ate), consists of one half-mol­ecule, the whole all-trans mol­ecule being generated by an inversion centre. In the crystal, the mol­ecules are inter­connected via C—H⋯O inter­actions, forming a mol­ecular sheet parallel to (10overline{2}). The mol­ecular sheets are further linked by C—H⋯π inter­actions.




1

Crystal structure of bis(μ-{2-[(5-bromo-2-oxido­benzyl­idene)amino]­eth­yl}sulfanido-κ3N,O,S){2,2'-[(3,4-di­thia­hexane-1,6-di­yl)bis­(nitrilo­methanylyl­idene)]bis­(4-bromo­phenolato)-κ4O,N,N',O

The title binuclear CoIII complex, [Co2(C9H8BrNOS)2(C18H16Br2N2O2S2)]·C3H7NO, with a Schiff base ligand formed in situ from cyste­amine (2-amino­ethane­thiol) and 5-bromo­salicyl­aldehyde crystallizes in the space group P21. It was found that during the synthesis the ligand undergoes spontaneous oxidation, forming the new ligand H2L' having an S—S bond. Thus, the asymmetric unit consists of one Co2(L)2(L') mol­ecule and one DMF solvent mol­ecule. Each CoIII ion has a slightly distorted octa­hedral S2N2O2 coordination geometry. In the crystal, the components are linked into a three-dimensional network by several S⋯ Br, C⋯ Br, C—H⋯Br, short S⋯C (essentially shorter than the sum of the van der Waals radii for the atoms involved) contacts as well by weak C—H⋯O hydrogen bonds. The crystal studied was refined as an inversion twin.




1

Bis(4-acet­oxy-N,N-di­methyl­tryptammonium) fumarate: a new crystalline form of psilacetin, an alternative to psilocybin as a psilocin prodrug

The title compound (systematic name: bis­{2-[4-(acet­yloxy)-1H-indol-3-yl]ethan-1-aminium} but-2-enedioate), 2C14H19N2O2+·C4H2O42−, has a single protonated psilacetin cation and one half of a fumarate dianion in the asymmetric unit. There are N—H⋯O hydrogen bonds between the ammonium H atoms and the fumarate O atoms, as well as N—H⋯O hydrogen bonds between the indole H atoms and the fumarate O atoms. The hydrogen bonds hold the ions together in infinite one-dimensional chains along [111].




1

Crystal structures of butyl 2-amino-5-hy­droxy-4-(4-nitro­phen­yl)benzo­furan-3-carboxyl­ate and 2-meth­oxy­ethyl 2-amino-5-hy­droxy-4-(4-nitro­phen­yl)benzo­furan-3-carboxyl­ate

The title benzo­furan derivatives 2-amino-5-hy­droxy-4-(4-nitro­phen­yl)benzo­furan-3-carboxyl­ate (BF1), C19H18N2O6, and 2-meth­oxy­ethyl 2-amino-5-hy­droxy-4-(4-nitro­phen­yl)benzo­furan-3-carboxyl­ate (BF2), C18H16N2O7, recently attracted attention because of their promising anti­tumoral activity. BF1 crystallizes in the space group Poverline{1}. BF2 in the space group P21/c. The nitro­phenyl group is inclined to benzo­furan moiety with a dihedral angle between their mean planes of 69.2 (2)° in BF1 and 60.20 (6)° in BF2. A common feature in the mol­ecular structures of BF1 and BF2 is the intra­molecular N—H⋯Ocarbon­yl hydrogen bond. In the crystal of BF1, the mol­ecules are linked head-to-tail into a one-dimensional hydrogen-bonding pattern along the a-axis direction. In BF2, pairs of head-to-tail hydrogen-bonded chains of mol­ecules along the b-axis direction are linked by O—H⋯Ometh­oxy hydrogen bonds. In BF1, the butyl group is disordered over two orientations with occupancies of 0.557 (13) and 0.443 (13).




1

Crystal structure and Hirshfeld surface analysis of ethyl 2-[5-(3-chloro­benz­yl)-6-oxo-3-phenyl-1,6-di­hydro­pyridazin-1-yl]acetate

The title pyridazinone derivative, C21H19ClN2O3, is not planar. The unsubstituted phenyl ring and the pyridazine ring are inclined to each other, making a dihedral angle of 17.41 (13)° whereas the Cl-substituted phenyl ring is nearly orthogonal to the pyridazine ring [88.19 (13)°]. In the crystal, C—H⋯O hydrogen bonds generate dimers with R22(10) and R22(24) ring motifs which are linked by C—H⋯O inter­actions, forming chains extending parallel to the c-axis direction. The inter­molecular inter­actions were investigated using Hirshfeld surface analysis and two-dimensional fingerprint plots, revealing that the most significant contributions to the crystal packing are from H⋯H (44.5%), C⋯H/H⋯C (18.5%), H⋯O/H⋯O (15.6%), Cl⋯H/H⋯Cl (10.6%) and C⋯C (2.8%) contacts.




1

Crystal structure of 5-(4-tert-but­oxy­phen­yl)-3-(4-n-octyloxyphen­yl)-4,5-di­hydro­isoxazole

The mol­ecule of the title compound, C27H37NO3, was prepared by [3 + 2] 1,3-dipolar cyclo­addition of 4-n-octyl­phenyl­nitrile oxide and 4-tert-but­oxy­styrene, the latter compound being a very useful inter­mediate to the synthesis of liquid-crystalline materials. In the mol­ecule, the benzene rings of the n-octyloxyphenyl and tert-but­oxy­phenyl groups form dihedral angles of 2.83 (7) and 85.49 (3)°, respectively, with the mean plane of the isoxazoline ring. In the crystal, mol­ecules are linked by weak C—H⋯O hydrogen inter­actions into chains running parallel to the b axis.




1

Zn and Ni complexes of pyridine-2,6-di­carboxyl­ates: crystal field stabilization matters!

Six reaction products of ZnII and NiII with pyridine-2,6-di­carb­oxy­lic acid (H2Lig1), 4-chloro­pyridine-2,6-di­carb­oxy­lic acid (H2Lig2) and 4-hy­droxy­pyridine-2,6-di­carb­oxy­lic acid (H2Lig3) are used to pinpoint the structural consequences of crystal field stabilization by an incomplete d shell. The pseudo-octa­hedral ZnII coordination sphere in bis­(6-carb­oxy­picolinato)zinc(II) trihydrate, [Zn(C7H4NO4)2]·3H2O or [Zn(HLig1)2]·3H2O, (1), is significantly less regular than that about NiII in the isostructural compound bis­(6-carb­oxy­picolinato)nickel(II) trihydrate, [Ni(C7H4NO4)2]·3H2O or [Ni(HLig1)2]·3H2O, (2). The ZnII complexes poly[(4-chloro­pyridine-2,6-di­carboxyl­ato)zinc(II)], [Zn(C7H2ClNO4)]n or [Zn(Lig2)]n, (3), and poly[[(4-hy­droxy­pyridine-2,6-di­carboxyl­ato)zinc(II)] monohydrate], {[Zn(C7H3NO5)]·H2O}n or {[Zn(Lig3)]·H2O}n, (4), represent two-dimensional coordination polymers with chelating and bridging pyridine-2,6-di­carboxyl­ate ligands in which the coordination polyhedra about the central cations cannot be associated with any regular shape; their coordination environments range between trigonal–bipyramidal and square-pyramidal geometries. In contrast, the corresponding adducts of the diprotonated ligands to NiII, namely tri­aqua­(4-chloro­pyridine-2,6-di­carboxyl­ato)nickel(II), [Ni(C7H2ClNO4)(H2O)3] or [NiLig2(OH2)3)], (5), and tri­aqua­(4-hy­droxy­pyridine-2,6-di­carboxyl­ato)nickel(II) 1.7-hydrate, [Ni(C7H3NO5)(H2O)3]·1.7H2O or [NiLig3(OH2)3)]·1.7H2O, (6), feature rather regular octa­hedral coordination spheres about the transition-metal cations, thus precluding the formation of analogous extended structures.




1

Crystal structure, DFT study and Hirshfeld surface analysis of ethyl 6-chloro-2-eth­oxy­quinoline-4-carboxyl­ate

In the title quinoline derivative, C14H14ClNO3, there is an intra­molecular C—H⋯O hydrogen bond forming an S(6) graph-set motif. The mol­ecule is essentially planar with the mean plane of the ethyl acetate group making a dihedral angle of 5.02 (3)° with the ethyl 6-chloro-2-eth­oxy­quinoline mean plane. In the crystal, offset π–π inter­actions with a centroid-to-centroid distance of 3.4731 (14) Å link inversion-related mol­ecules into columns along the c-axis direction. Hirshfeld surface analysis indicates that H⋯H contacts make the largest contribution (50.8%) to the Hirshfeld surface.




1

Some chalcones derived from thio­phene-3-carbaldehyde: synthesis and crystal structures

The synthesis, spectroscopic data and crystal and mol­ecular structures of four 3-(3-phenyl­prop-1-ene-3-one-1-yl)thio­phene derivatives, namely 1-(4-hydroxy­phen­yl)-3-(thio­phen-3-yl)prop-1-en-3-one, C13H10O2S, (1), 1-(4-meth­oxy­phen­yl)-3-(thio­phen-3-yl)prop-1-en-3-one, C14H12O2S, (2), 1-(4-eth­oxy­phen­yl)-3-(thio­phen-3-yl)prop-1-en-3-one, C15H14O2S, (3), and 1-(4-­bromophen­yl)-3-(thio­phen-3-yl)prop-1-en-3-one, C13H9BrOS, (4), are described. The four chalcones have been synthesized by reaction of thio­phene-3-carbaldehyde with an aceto­phenone derivative in an absolute ethanol solution containing potassium hydroxide, and differ in the substituent at the para position of the phenyl ring: –OH for 1, –OCH3 for 2, –OCH2CH3 for 3 and –Br for 4. The thio­phene ring in 4 was found to be disordered over two orientations with occupancies 0.702 (4) and 0.298 (4). The configuration about the C=C bond is E. The thio­phene and phenyl rings are inclined by 4.73 (12) for 1, 12.36 (11) for 2, 17.44 (11) for 3 and 46.1 (6) and 48.6 (6)° for 4, indicating that the –OH derivative is almost planar and the –Br derivative deviates the most from planarity. However, the substituent has no real influence on the bond distances in the α,β-unsaturated carbonyl moiety. The mol­ecular packing of 1 features chain formation in the a-axis direction by O—H⋯O contacts. In the case of 2 and 3, the packing is characterized by dimer formation through C—H⋯O inter­actions. In addition, C—H⋯π(thio­phene) inter­actions in 2 and C—H⋯S(thio­phene) inter­actions in 3 contribute to the three-dimensional architecture. The presence of C—H⋯π(thio­phene) contacts in the crystal of 4 results in chain formation in the c-axis direction. The Hirshfeld surface analysis shows that for all four derivatives, the highest contribution to surface contacts arises from contacts in which H atoms are involved.




1

Crystal structure of 210,220-bis­(2,6-di­chloro­phen­yl)-4,7,12,15-tetra­oxa-2(5,15)-nickel(II)porpyhrina-1,3(1,2)-dibenzena-cyclo­hepta­deca­phane-9-yne di­chloro­methane monosolvate

The asymmetric unit of the title compound, [Ni(C52H34Cl4N4O4)]·CH2Cl2, consists of two discrete complexes, which show significant differences in the conformation of the side chain. Each NiII cation is coordinated by four nitro­gen atoms of a porphyrin mol­ecule within a square-planar coordination environment. Weak intra­molecular C—H⋯Cl and C—H⋯O inter­actions stabilize the mol­ecular conformation. In the crystal structure, discrete complexes are linked by C—H⋯Cl hydrogen-bonding inter­actions. In addition, the two unique di­chloro­methane solvate mol­ecules (one being disordered) are hydrogen-bonded to the Cl atoms of the chloro­phenyl groups of the porphyrin mol­ecules, thus stabilizing the three-dimensional arrangement. The crystal exhibits pseudo-ortho­rhom­bic metrics, but structure refinements clearly show that the crystal system is monoclinic and that the crystal is twinned by pseudo-merohedry.




1

Crystal structure of a polymorph of μ-oxido-bis­[(5,10,15,20-tetra­phenyl­porphyrinato)iron(III)]

The title compound, [Fe2(C44H28N4O)2O], was obtained as a by-product during the synthesis of FeIII tetra­phenyl­porphyrin perchlorate. It crystallizes as a new polymorphic modification in addition to the ortho­rhom­bic form previously reported [Hoffman et al. (1972). J. Am. Chem. Soc. 94, 3620–3626; Swepston & Ibers (1985) Acta Cryst. C41, 671–673; Kooijmann et al. (2007). Private Communication (refcode 667666). CCDC, Cambridge, England]. In its crystal structure, the two crystallographically independent FeIII cations are coordinated in a square-planar environment by the four N atoms of a tetra­phenyl­porphyrin ligand. The FeIII-tetra­phenyl­porphyrine units are linked by a μ2-oxido ligand into a dimer with an Fe—O—Fe angle close to linearity. The final coordination sphere for each FeIII atom is square-pyramidal with the μ2-oxido ligand in the apical position. The crystal under investigation consisted of two domains in a ratio of 0.691 (3): 0.309 (3).




1

Crystal structure of N-(di­phenyl­phosphor­yl)-2-meth­oxy­benzamide

In the title compound, C20H18NO3P, the C=O and P=O groups of the carbacyl­amido­phosphate (CAPh) fragments are located in a synclinal position relative to each other and are pre-organized for bidentate chelate coordination of metal ions. The N—H group is involved in the formation of an intra­molecular hydrogen bond. In the crystal, mol­ecules do not form strong inter­molecular inter­actions but the mol­ecules are linked via weak C—H⋯π inter­actions, forming chains along [001].




1

Synthesis, crystal structure and Hirshfeld surface analysis of 2-chloro-3-[(E)-(2-phenyl­hydrazinyl­idene)meth­yl]quinoline

A new quinoline-based hydrazone, C16H12ClN3, was synthesized by a condensation reaction of 2-chloro-3-formyl­quinoline with phenyl­hydrazine. The quinoline ring system is essentially planar (r.m.s. deviation = 0.012 Å), and forms a dihedral angle of 8.46 (10)° with the phenyl ring. The mol­ecule adopts an E configuration with respect to the central C=N bond. In the crystal, mol­ecules are linked by a C—H⋯π-phenyl inter­action, forming zigzag chains propagating along the [10overline{3}] direction. The N—H hydrogen atom does not participate in hydrogen bonding but is directed towards the phenyl ring of an adjacent mol­ecule, so linking the chains via weak N—H⋯π inter­actions to form of a three-dimensional structure. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions to the crystal packing are from H⋯H (35.5%), C⋯H/H⋯C (33.7%), Cl⋯H/H⋯Cl (12.3%), N⋯H/H⋯N (9.5%) contacts.




1

Crystal structure of 3,14-diethyl-2,13-di­aza-6,17-diazo­niatri­cyclo­[16.4.0.07,12]docosane dinitrate dihydrate from synchrotron X-ray data

The crystal structure of title salt, C22H46N42+·2NO3−·2H2O, has been determined using synchrotron radiation at 220 K. The structure determination reveals that protonation has occurred at diagonally opposite amine N atoms. The asymmetric unit contains half a centrosymmetric dication, one nitrate anion and one water mol­ecule. The mol­ecular dication, C22H46N42+, together with the nitrate anion and hydrate water mol­ecule are involved in an extensive range of hydrogen bonds. The mol­ecule is stabilized, as is the conformation of the dication, by forming inter­molecular N—H⋯O, O—H⋯O, together with intra­molecular N—H⋯N hydrogen bonds.




1

Crystal structure, synthesis and thermal properties of tetra­kis­(4-benzoyl­pyridine-κN)bis­(iso­thio­cyanato-κN)iron(II)

The asymmetric unit of the title compound, [Fe(NCS)2(C12H9NO)4], consists of an FeII ion that is located on a centre of inversion, as well as two 4-benzoyl­pyridine ligands and one thio­cyanate anion in general positions. The FeII ions are coordinated by two N-terminal-bonded thio­cyanate anions and four 4-benzoyl­pyridine ligands into discrete complexes with a slightly distorted octa­hedral geometry. These complexes are further linked by weak C—H⋯O hydrogen bonds into chains running along the c-axis direction. Upon heating, this complex loses half of the 4-benzoyl­pyridine ligands and transforms into a compound with the composition Fe(NCS)2(4-benzoyl­pyridine)2, that might be isotypic to the corresponding MnII compound and for which the structure is unknown.




1

Structure and Hirshfeld surface analysis of the salt N,N,N-trimethyl-1-(4-vinyl­phen­yl)methanaminium 4-vinyl­benzene­sulfonate

In the title compound, the asymmetric unit comprises an N,N,N-trimethyl-1-(4-vinyl­phen­yl)methanaminium cation and a 4-vinyl­benzene­sulfonate anion, C12H18N+·C8H7O3S−. The salt has a polymerizable vinyl group attached to both the cation and the anion. The methanaminium and vinyl substituents on the benzene ring of the cation subtend angles of 86.6 (3) and 10.5 (9)° to the ring plane, while the anion is planar excluding the sulfonate O atoms. The vinyl substituent on the benzene ring of the cation is disordered over two sites with a refined occupancy ratio of 0.542 (11):0.458 (11). In the crystal, C—H⋯O hydrogen bonds dominate the packing and combine with a C—H⋯π(ring) contact to stack the cations and anions along the a-axis direction. Hirshfeld surface analysis of the salt and of the individual cation and anion components is also reported.




1

Crystal structure and Hirshfeld surface analysis of (2E)-3-(4-chloro-3-fluoro­phen­yl)-1-(3,4-di­meth­oxy­phen­yl)prop-2-en-1-one

The mol­ecular structure of the title compound, C17H14ClFO3, consists of a 4-chloro-3-fluoro­phenyl ring and a 3,4-di­meth­oxy­phenyl ring linked via a prop-2-en-1-one spacer. The mol­ecule has an E configuration about the C=C bond and the carbonyl group is syn with respect to the C=C bond. The F and H atoms at the meta positions of the 4-chloro-3-fluoro­phenyl ring are disordered over two orientations, with an occupancy ratio of 0.785 (3):0.215 (3). In the crystal, mol­ecules are linked via pairs of C—H⋯O inter­actions with an R22(14) ring motif, forming inversion dimers. The dimers are linked into a tape structure running along [10overline{1}] by a C—H⋯π inter­action. The inter­molecular contacts in the crystal were further analysed using Hirshfield surface analysis, which indicates that the most significant contacts are H⋯H (25.0%), followed by C⋯H/H⋯C (20.6%), O⋯H/H⋯O (15.6%), Cl⋯H/H⋯Cl (10.7%), F⋯H/H⋯F (10.4%), F⋯C/C⋯F (7.2%) and C⋯C (3.0%).




1

Crystal structure of N,N'-bis­[3-(methyl­sulfan­yl)prop­yl]-1,8:4,5-naphthalene­tetra­carb­oxy­lic di­imide

The title compound, C22H22N2O4S2, was synthesized by the reaction of 1,4,5,8-naphthalene­tetra­carb­oxy­lic dianhydride with 3-(methyl­sulfan­yl)propyl­amine. The whole mol­ecule is generated by an inversion operation of the asymmetric unit. This mol­ecule has an anti form with the terminal methyl­thio­propyl groups above and below the aromatic di­imide plane, where four intra­molecular C—H⋯O and C—H⋯S hydrogen bonds are present and the O⋯H⋯S angle is 100.8°. DFT calculations revealed slight differences between the solid state and gas phase structures. In the crystal, C—H⋯O and C—H⋯S hydrogen bonds link the mol­ecules into chains along the [2overline20] direction. adjacent chains are inter­connected by π–π inter­actions, forming a two-dimensional network parallel to the (001) plane. Each two-dimensional layer is further packed in an ABAB sequence along the c-axis direction. Hirshfeld surface analysis shows that van der Waals inter­actions make important contributions to the inter­molecular contacts. The most important contacts found in the Hirshfeld surface analysis are H⋯H (44.2%), H⋯O/O⋯H (18.2%), H⋯C/C⋯H (14.4%), and H⋯S/S⋯H (10.2%).




1

Crystal structure, Hirshfeld surface analysis and inter­action energy and DFT studies of 5,5-diphenyl-1,3-bis­(prop-2-yn-1-yl)imidazolidine-2,4-dione

The title compound, C21H16N2O2, consists of an imidazolidine unit linked to two phenyl rings and two prop-2-yn-1-yl moieties. The imidazolidine ring is oriented at dihedral angles of 79.10 (5) and 82.61 (5)° with respect to the phenyl rings, while the dihedral angle between the two phenyl rings is 62.06 (5)°. In the crystal, inter­molecular C—HProp⋯OImdzln (Prop = prop-2-yn-1-yl and Imdzln = imidazolidine) hydrogen bonds link the mol­ecules into infinite chains along the b-axis direction. Two weak C—HPhen⋯π inter­actions are also observed. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (43.3%), H⋯C/C⋯H (37.8%) and H⋯O/O⋯H (18.0%) inter­actions. Hydrogen bonding and van der Waals inter­actions are the dominant inter­actions in the crystal packing. Computational chemistry indicates that the C—HProp⋯OImdzln hydrogen-bond energy in the crystal is −40.7 kJ mol−1. Density functional theory (DFT) optimized structures at the B3LYP/6–311G(d,p) level are compared with the experimentally determined mol­ecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap.




1

Crystal structure and electrical resistance property of Rb0.21(H2O)yWS2

Rb0.21(H2O)yWS2, rubidium hydrate di­thio­tungstate, is a new quasi two-dimensional sulfide. Its crystal structure consists of ordered WS2 layers, separated by disordered Rb+ ions and water mol­ecules. All atomic sites are located on mirror planes. The WS2 layers are composed of edge-sharing [WS6] octa­hedra and extend parallel to (001). The presence of structural water was revealed by thermogravimetry, but the position and exact amount could not be determined in the present study. The temperature dependence of the electrical resistance indicates that Rb0.21(H2O)yWS2 is semiconducting between 80–300 K.




1

Crystal structure and DFT study of benzyl 1-benzyl-2-oxo-1,2-di­hydro­quinoline-4-carboxyl­ate

In the title quinoline derivative, C24H19NO3, the two benzyl rings are inclined to the quinoline ring mean plane by 74.09 (8) and 89.43 (7)°, and to each other by 63.97 (10)°. The carboxyl­ate group is twisted from the quinoline ring mean plane by 32.2 (2)°. There is a short intra­molecular C—H⋯O contact forming an S(6) ring motif. In the crystal, mol­ecules are linked by bifurcated C—H,H⋯O hydrogen bonds, forming layers parallel to the ac plane. The layers are linked by C—H⋯π inter­actions, forming a supra­molecular three-dimensional structure.