ow Low Testosterone (Low-T) By www.medicinenet.com Published On :: Mon, 2 Dec 2019 00:00:00 PDT Title: Low Testosterone (Low-T)Category: Diseases and ConditionsCreated: 12/14/2009 12:00:00 AMLast Editorial Review: 12/2/2019 12:00:00 AM Full Article
ow Allow Dead Men to Be Sperm Donors, Medical Ethicists Say By www.medicinenet.com Published On :: Wed, 22 Jan 2020 00:00:00 PDT Title: Allow Dead Men to Be Sperm Donors, Medical Ethicists SayCategory: Health NewsCreated: 1/22/2020 12:00:00 AMLast Editorial Review: 1/22/2020 12:00:00 AM Full Article
ow Researchers Move Toward Once-Yearly Treatment for HIV By www.medicinenet.com Published On :: Fri, 1 May 2020 00:00:00 PDT Title: Researchers Move Toward Once-Yearly Treatment for HIVCategory: Health NewsCreated: 4/30/2020 12:00:00 AMLast Editorial Review: 5/1/2020 12:00:00 AM Full Article
ow Rheumatoid Arthritis, Low Folate Levels Raise Heart Risks By www.medicinenet.com Published On :: Tue, 3 Mar 2020 00:00:00 PDT Title: Rheumatoid Arthritis, Low Folate Levels Raise Heart RisksCategory: Health NewsCreated: 3/2/2020 12:00:00 AMLast Editorial Review: 3/3/2020 12:00:00 AM Full Article
ow Marijuana Withdrawal Is Real, Study Shows By www.medicinenet.com Published On :: Mon, 13 Apr 2020 00:00:00 PDT Title: Marijuana Withdrawal Is Real, Study ShowsCategory: Health NewsCreated: 4/10/2020 12:00:00 AMLast Editorial Review: 4/13/2020 12:00:00 AM Full Article
ow AHA News: Nearly Killed in OKC Bombing, She Vowed to Change Her Life By www.medicinenet.com Published On :: Fri, 17 Apr 2020 00:00:00 PDT Title: AHA News: Nearly Killed in OKC Bombing, She Vowed to Change Her LifeCategory: Health NewsCreated: 4/16/2020 12:00:00 AMLast Editorial Review: 4/17/2020 12:00:00 AM Full Article
ow Experimental Drug Shows Promise for Schizophrenia By www.medicinenet.com Published On :: Fri, 17 Apr 2020 00:00:00 PDT Title: Experimental Drug Shows Promise for SchizophreniaCategory: Health NewsCreated: 4/16/2020 12:00:00 AMLast Editorial Review: 4/17/2020 12:00:00 AM Full Article
ow How Does Cognitive Behavioral Therapy Treat Depression? By www.medicinenet.com Published On :: Wed, 29 Apr 2020 00:00:00 PDT Title: How Does Cognitive Behavioral Therapy Treat Depression?Category: Procedures and TestsCreated: 4/29/2020 12:00:00 AMLast Editorial Review: 4/29/2020 12:00:00 AM Full Article
ow Middle Age More Stressful Now Than in 1990s: Study By www.medicinenet.com Published On :: Fri, 8 May 2020 00:00:00 PDT Title: Middle Age More Stressful Now Than in 1990s: StudyCategory: Health NewsCreated: 5/7/2020 12:00:00 AMLast Editorial Review: 5/8/2020 12:00:00 AM Full Article
ow Your Best Bet Against Heart Attack, Stroke? Lower Blood Pressure By www.medicinenet.com Published On :: Fri, 21 Feb 2020 00:00:00 PDT Title: Your Best Bet Against Heart Attack, Stroke? Lower Blood PressureCategory: Health NewsCreated: 2/20/2020 12:00:00 AMLast Editorial Review: 2/21/2020 12:00:00 AM Full Article
ow AHA News: Could Sunshine Lower Blood Pressure? Study Offers Enlightenment By www.medicinenet.com Published On :: Mon, 2 Mar 2020 00:00:00 PDT Title: AHA News: Could Sunshine Lower Blood Pressure? Study Offers EnlightenmentCategory: Health NewsCreated: 2/28/2020 12:00:00 AMLast Editorial Review: 3/2/2020 12:00:00 AM Full Article
ow Up Your Steps to Lower Blood Pressure, Heart Study Suggests By www.medicinenet.com Published On :: Fri, 27 Mar 2020 00:00:00 PDT Title: Up Your Steps to Lower Blood Pressure, Heart Study SuggestsCategory: Health NewsCreated: 3/26/2020 12:00:00 AMLast Editorial Review: 3/27/2020 12:00:00 AM Full Article
ow Low Blood Pressure (Hypotension) By www.medicinenet.com Published On :: Tue, 14 Apr 2020 00:00:00 PDT Title: Low Blood Pressure (Hypotension) Category: Diseases and ConditionsCreated: 12/31/1997 12:00:00 AMLast Editorial Review: 4/14/2020 12:00:00 AM Full Article
ow How Dangerous Is General Anesthesia? By www.medicinenet.com Published On :: Tue, 7 Apr 2020 00:00:00 PDT Title: How Dangerous Is General Anesthesia?Category: Procedures and TestsCreated: 3/5/2020 12:00:00 AMLast Editorial Review: 4/7/2020 12:00:00 AM Full Article
ow How Common Are STDs? Most People Have No Clue By www.medicinenet.com Published On :: Tue, 25 Feb 2020 00:00:00 PDT Title: How Common Are STDs? Most People Have No ClueCategory: Health NewsCreated: 2/25/2020 12:00:00 AMLast Editorial Review: 2/25/2020 12:00:00 AM Full Article
ow How Does Early Menopause Affect a Woman's Heart? By www.medicinenet.com Published On :: Fri, 11 Oct 2019 00:00:00 PDT Title: How Does Early Menopause Affect a Woman's Heart?Category: Health NewsCreated: 10/10/2019 12:00:00 AMLast Editorial Review: 10/11/2019 12:00:00 AM Full Article
ow How Pets Can Be True Lifesavers for Seniors By www.medicinenet.com Published On :: Fri, 3 Apr 2020 00:00:00 PDT Title: How Pets Can Be True Lifesavers for SeniorsCategory: Health NewsCreated: 4/3/2020 12:00:00 AMLast Editorial Review: 4/3/2020 12:00:00 AM Full Article
ow Mindfulness a Powerful Tool for Aging By www.medicinenet.com Published On :: Fri, 3 Apr 2020 00:00:00 PDT Title: Mindfulness a Powerful Tool for AgingCategory: Health NewsCreated: 4/2/2020 12:00:00 AMLast Editorial Review: 4/3/2020 12:00:00 AM Full Article
ow How Long Does a Laparoscopic Nissen Fundoplication Last? By www.medicinenet.com Published On :: Wed, 29 Apr 2020 00:00:00 PDT Title: How Long Does a Laparoscopic Nissen Fundoplication Last?Category: Procedures and TestsCreated: 4/29/2020 12:00:00 AMLast Editorial Review: 4/29/2020 12:00:00 AM Full Article
ow How Is a Transjugular Liver Biopsy Done? By www.medicinenet.com Published On :: Wed, 6 May 2020 00:00:00 PDT Title: How Is a Transjugular Liver Biopsy Done?Category: Procedures and TestsCreated: 5/6/2020 12:00:00 AMLast Editorial Review: 5/6/2020 12:00:00 AM Full Article
ow How Long Does a Cholecystostomy Tube Stay In? By www.medicinenet.com Published On :: Thu, 7 May 2020 00:00:00 PDT Title: How Long Does a Cholecystostomy Tube Stay In?Category: Procedures and TestsCreated: 5/7/2020 12:00:00 AMLast Editorial Review: 5/7/2020 12:00:00 AM Full Article
ow Flu Vaccine Making a Strong Showing This Season By www.medicinenet.com Published On :: Fri, 21 Feb 2020 00:00:00 PDT Title: Flu Vaccine Making a Strong Showing This SeasonCategory: Health NewsCreated: 2/20/2020 12:00:00 AMLast Editorial Review: 2/21/2020 12:00:00 AM Full Article
ow Cough: 19 Tips on How to Stop a Cough By www.medicinenet.com Published On :: Tue, 14 Apr 2020 00:00:00 PDT Title: Cough: 19 Tips on How to Stop a CoughCategory: Diseases and ConditionsCreated: 5/24/2016 12:00:00 AMLast Editorial Review: 4/14/2020 12:00:00 AM Full Article
ow Many Car Crash Deaths Involve Alcohol Levels Below Legal Limit: Study By www.medicinenet.com Published On :: Tue, 17 Mar 2020 00:00:00 PDT Title: Many Car Crash Deaths Involve Alcohol Levels Below Legal Limit: StudyCategory: Health NewsCreated: 3/16/2020 12:00:00 AMLast Editorial Review: 3/17/2020 12:00:00 AM Full Article
ow Broiling in a Heat Wave? Wet T-shirt Can Safely Cool You Down By www.medicinenet.com Published On :: Tue, 14 Apr 2020 00:00:00 PDT Title: Broiling in a Heat Wave? Wet T-shirt Can Safely Cool You DownCategory: Health NewsCreated: 4/13/2020 12:00:00 AMLast Editorial Review: 4/14/2020 12:00:00 AM Full Article
ow Magnetic Brain 'Zap' Shows Promise Against Severe Depression By www.medicinenet.com Published On :: Wed, 8 Apr 2020 00:00:00 PDT Title: Magnetic Brain 'Zap' Shows Promise Against Severe DepressionCategory: Health NewsCreated: 4/7/2020 12:00:00 AMLast Editorial Review: 4/8/2020 12:00:00 AM Full Article
ow How Safe Is It to Fly? By www.medicinenet.com Published On :: Tue, 25 Feb 2020 00:00:00 PDT Title: How Safe Is It to Fly?Category: Health NewsCreated: 2/24/2020 12:00:00 AMLast Editorial Review: 2/25/2020 12:00:00 AM Full Article
ow Too Much Super Bowl Can Mean Too Little Sleep By www.medicinenet.com Published On :: Fri, 31 Jan 2020 00:00:00 PDT Title: Too Much Super Bowl Can Mean Too Little SleepCategory: Health NewsCreated: 1/31/2020 12:00:00 AMLast Editorial Review: 1/31/2020 12:00:00 AM Full Article
ow 3D Printed Teeth with Enamel and Dentin Layer for Educating Dental Students in Crown Preparation By www.jdentaled.org Published On :: 2019-12-01T06:00:19-08:00 Commonly used model teeth are so far uniform in color and hardness. There is no discrimination between enamel and dentin part of a tooth. This condition makes it difficult to train a preparation technique, which is adapted to real tooth substance. The aim of this study was to design and establish a 3D printed tooth with different layers for enamel and dentin for education in crown preparation. A printable tooth with different layers for enamel and dentin was designed, and all 38 fourth-year dental students in the first clinical course in prosthodontics and 30 experienced dentists were trained during a voluntary hands-on course in 2019. Prior to the study, the students had used standard model teeth and real-teeth models in their preclinical education. They had experience in caries removal and preparation on real patients. The perceived benefits of the 3D printed tooth were evaluated by a questionnaire. All individuals in both groups completed the questionnaire, for a 100% response rate. The results showed that the printed tooth was given an overall mean grade of 2.3 (students) and 2.0 (experts) on a scale from 1=excellent to 5=poor. The difference in hardness between the dentin and enamel layer was given a mean of 2.4 (students and experts) and the difference in color a 1.7 (students) and 1.8 (experts). The tooth model with the prepared tooth illustrating an ideal preparation was graded 1.6 (students and experts). In this study, the students had the opportunity to learn a correct crown preparation on a printed tooth with different material properties for enamel and dentin. The learning effect with this tooth model was rated as good on the questionnaire by both students and expert dentists. Full Article
ow Knowledge, Attitudes and Practices of Dental Hygienists Regarding Diabetes Risk Assessments and Screenings By jdh.adha.org Published On :: 2020-04-30T12:39:03-07:00 Purpose: Untreated and poorly controlled diabetes causes increased levels of blood glucose associated with poor periodontal disease outcomes. Dental hygienists can play a significant role in screening patients for diabetes mellitus, leading to referral and early diagnosis. The purpose of this study was to determine the knowledge, attitudes, practices, and barriers faced by clinical dental hygienists regarding diabetes risk assessment and screenings.Methods: A mixed method design was used with a convenience sample of dental hygienists in clinical practice (n=316). A 32 item, electronic survey was validated at item-level, and participants were recruited through multiple dental hygiene Facebook groups. Descriptive statistics were used to analyze the data. The survey also included two open-ended attitude questions that were interpreted using thematic analysis to pinpoint common patterns within the data.Results: Dental hygienists had high knowledge scores regarding diabetes and oral health, although many were unaware of their states' specific statutes and regulations for screening practices. Nearly all (95.9%), were likely to educate and refer patients (82%), although fewer than half (40.9%), were likely to perform chairside screening for diabetes. Emergent themes for barriers to screening were time, money, patient acceptance/willingness, lack of education, not having the proper tools, and states' rules and regulations.Conclusion: Despite high knowledge scores regarding diabetes and oral health, there is a gap in regards to dental hygienists' willingness to perform diabetes screenings in a clinical setting. Dental hygienists should be capable of integrating chairside diabetes screening practices into the process of care with proper training. Full Article
ow The HIV-1 Accessory Protein Vpu Downregulates Peroxisome Biogenesis By mbio.asm.org Published On :: 2020-03-03T01:30:27-08:00 ABSTRACT Human immunodeficiency virus type 1 (HIV-1) establishes lifelong infections in humans, a process that relies on its ability to thwart innate and adaptive immune defenses of the host. Recently, we reported that HIV-1 infection results in a dramatic reduction of the cellular peroxisome pool. Peroxisomes are metabolic organelles that also function as signaling platforms in the innate immune response. Here, we show that the HIV-1 accessory protein Vpu is necessary and sufficient for the depletion of cellular peroxisomes during infection. Vpu induces the expression of four microRNAs that target mRNAs encoding proteins required for peroxisome formation and metabolic function. The ability of Vpu to downregulate peroxisomes was found to be dependent upon the Wnt/β-catenin signaling pathway. Given the importance of peroxisomes in innate immune signaling and central nervous system function, the roles of Vpu in dampening antiviral signaling appear to be more diverse than previously realized. Finally, our findings highlight a potential role for Wnt/β-catenin signaling in peroxisome homeostasis through modulating the production of biogenesis factors. IMPORTANCE People living with HIV can experience accelerated aging and the development of neurological disorders. Recently, we reported that HIV-1 infection results in a dramatic loss of peroxisomes in macrophages and brain tissue. This is significant because (i) peroxisomes are important for the innate immune response and (ii) loss of peroxisome function is associated with cellular aging and neurodegeneration. Accordingly, understanding how HIV-1 infection causes peroxisome depletion may provide clues regarding how the virus establishes persistent infections and, potentially, the development of neurological disorders. Here, we show that the accessory protein Vpu is necessary and sufficient for the induction of microRNAs that target peroxisome biogenesis factors. The ability of Vpu to downregulate peroxisome formation depends on the Wnt/β-catenin pathway. Thus, in addition to revealing a novel mechanism by which HIV-1 uses intracellular signaling pathways to target antiviral signaling platforms (peroxisomes), we have uncovered a previously unknown link between the Wnt/β-catenin pathway and peroxisome homeostasis. Full Article
ow Direct Observation of the Dynamics of Single-Cell Metabolic Activity during Microbial Diauxic Growth By mbio.asm.org Published On :: 2020-03-03T01:30:27-08:00 ABSTRACT Population-level analyses are rapidly becoming inadequate to answer many of biomedical science and microbial ecology’s most pressing questions. The role of microbial populations within ecosystems and the evolutionary selective pressure on individuals depend fundamentally on the metabolic activity of single cells. Yet, many existing single-cell technologies provide only indirect evidence of metabolic specialization because they rely on correlations between transcription and phenotype established at the level of the population to infer activity. In this study, we take a top-down approach using isotope labels and secondary ion mass spectrometry to track the uptake of carbon and nitrogen atoms from different sources into biomass and directly observe dynamic changes in anabolic specialization at the level of single cells. We investigate the classic microbiological phenomenon of diauxic growth at the single-cell level in the model methylotroph Methylobacterium extorquens. In nature, this organism inhabits the phyllosphere, where it experiences diurnal changes in the available carbon substrates, necessitating an overhaul of central carbon metabolism. We show that the population exhibits a unimodal response to the changing availability of viable substrates, a conclusion that supports the canonical model but has thus far been supported by only indirect evidence. We anticipate that the ability to monitor the dynamics of anabolism in individual cells directly will have important applications across the fields of ecology, medicine, and biogeochemistry, especially where regulation downstream of transcription has the potential to manifest as heterogeneity that would be undetectable with other existing single-cell approaches. IMPORTANCE Understanding how genetic information is realized as the behavior of individual cells is a long-term goal of biology but represents a significant technological challenge. In clonal microbial populations, variation in gene regulation is often interpreted as metabolic heterogeneity. This follows the central dogma of biology, in which information flows from DNA to RNA to protein and ultimately manifests as activity. At present, DNA and RNA can be characterized in single cells, but the abundance and activity of proteins cannot. Inferences about metabolic activity usually therefore rely on the assumption that transcription reflects activity. By tracking the atoms from which they build their biomass, we make direct observations of growth rate and substrate specialization in individual cells throughout a period of growth in a changing environment. This approach allows the flow of information from DNA to be constrained from the distal end of the regulatory cascade and will become an essential tool in the rapidly advancing field of single-cell metabolism. Full Article
ow Defining Stage-Specific Activity of Potent New Inhibitors of Cryptosporidium parvum Growth In Vitro By mbio.asm.org Published On :: 2020-03-03T01:30:27-08:00 ABSTRACT Cryptosporidium parvum and Cryptosporidium hominis have emerged as major enteric pathogens of infants in the developing world, in addition to their known importance in immunocompromised adults. Although there has been recent progress in identifying new small molecules that inhibit Cryptosporidium sp. growth in vitro or in animal models, we lack information about their mechanism of action, potency across the life cycle, and cidal versus static activities. Here, we explored four potent classes of compounds that include inhibitors that likely target phosphatidylinositol 4 kinase (PI4K), phenylalanine-tRNA synthetase (PheRS), and several potent inhibitors with unknown mechanisms of action. We utilized monoclonal antibodies and gene expression probes for staging life cycle development to define the timing of when inhibitors were active during the life cycle of Cryptosporidium parvum grown in vitro. These different classes of inhibitors targeted different stages of the life cycle, including compounds that blocked replication (PheRS inhibitors), prevented the segmentation of daughter cells and thus blocked egress (PI4K inhibitors), or affected sexual-stage development (a piperazine compound of unknown mechanism). Long-term cultivation of C. parvum in epithelial cell monolayers derived from intestinal stem cells was used to distinguish between cidal and static activities based on the ability of parasites to recover from treatment. Collectively, these approaches should aid in identifying mechanisms of action and for designing in vivo efficacy studies based on time-dependent concentrations needed to achieve cidal activity. IMPORTANCE Currently, nitazoxanide is the only FDA-approved treatment for cryptosporidiosis; unfortunately, it is ineffective in immunocompromised patients, has varied efficacy in immunocompetent individuals, and is not approved in infants under 1 year of age. Identifying new inhibitors for the treatment of cryptosporidiosis requires standardized and quantifiable in vitro assays for assessing potency, selectivity, timing of activity, and reversibility. Here, we provide new protocols for defining which stages of the life cycle are susceptible to four highly active compound classes that likely inhibit different targets in the parasite. We also utilize a newly developed long-term culture system to define assays for monitoring reversibility as a means of defining cidal activity as a function of concentration and time of treatment. These assays should provide valuable in vitro parameters to establish conditions for efficacious in vivo treatment. Full Article
ow The Absence of (p)ppGpp Renders Initiation of Escherichia coli Chromosomal DNA Synthesis Independent of Growth Rates By mbio.asm.org Published On :: 2020-03-10T01:30:42-07:00 ABSTRACT The initiation of Escherichia coli chromosomal DNA replication starts with the oligomerization of the DnaA protein at repeat sequences within the origin (ori) region. The amount of ori DNA per cell directly correlates with the growth rate. During fast growth, the cell generation time is shorter than the time required for complete DNA replication; therefore, overlapping rounds of chromosome replication are required. Under these circumstances, the ori region DNA abundance exceeds the DNA abundance in the termination (ter) region. Here, high ori/ter ratios are found to persist in (p)ppGpp-deficient [(p)ppGpp0] cells over a wide range of balanced exponential growth rates determined by medium composition. Evidently, (p)ppGpp is necessary to maintain the usual correlation of slow DNA replication initiation with a low growth rate. Conversely, ori/ter ratios are lowered when cell growth is slowed by incrementally increasing even low constitutive basal levels of (p)ppGpp without stress, as if (p)ppGpp alone is sufficient for this response. There are several previous reports of (p)ppGpp inhibition of chromosomal DNA synthesis initiation that occurs with very high levels of (p)ppGpp that stop growth, as during the stringent starvation response or during serine hydroxamate treatment. This work suggests that low physiological levels of (p)ppGpp have significant functions in growing cells without stress through a mechanism involving negative supercoiling, which is likely mediated by (p)ppGpp regulation of DNA gyrase. IMPORTANCE Bacterial cells regulate their own chromosomal DNA synthesis and cell division depending on the growth conditions, producing more DNA when growing in nutritionally rich media than in poor media (i.e., human gut versus water reservoir). The accumulation of the nucleotide analog (p)ppGpp is usually viewed as serving to warn cells of impending peril due to otherwise lethal sources of stress, which stops growth and inhibits DNA, RNA, and protein synthesis. This work importantly finds that small physiological changes in (p)ppGpp basal levels associated with slow balanced exponential growth incrementally inhibit the intricate process of initiation of chromosomal DNA synthesis. Without (p)ppGpp, initiations mimic the high rates present during fast growth. Here, we report that the effect of (p)ppGpp may be due to the regulation of the expression of gyrase, an important enzyme for the replication of DNA that is a current target of several antibiotics. Full Article
ow Latent Toxoplasmosis Effects on Rodents and Humans: How Much is Real and How Much is Media Hype? By mbio.asm.org Published On :: 2020-03-17T01:30:14-07:00 ABSTRACT Toxoplasma gondii is a ubiquitous, intracellular protozoan parasite with a broad range of intermediate hosts, including humans and rodents. In many hosts, T. gondii establishes a latent long-term infection by converting from its rapidly dividing or lytic form to its slowly replicating and encysting form. In humans and rodents, the major organ for encystment is the central nervous system (CNS), which has led many to investigate how this persistent CNS infection might influence rodent and human behavior and, more recently, neurodegenerative diseases. Given the interest in this topic, here we seek to take a global approach to the data for and against the effects of latent T. gondii on behavior and neurodegeneration and the proposed mechanisms that might underlie behavior modifications. Full Article
ow Erratum for Townsend et al., "A Master Regulator of Bacteroides thetaiotaomicron Gut Colonization Controls Carbohydrate Utilization and an Alternative Protein Synthesis Factor" By mbio.asm.org Published On :: 2020-03-17T01:30:14-07:00 Full Article
ow Contextual Flexibility in Pseudomonas aeruginosa Central Carbon Metabolism during Growth in Single Carbon Sources By mbio.asm.org Published On :: 2020-03-17T01:30:15-07:00 ABSTRACT Pseudomonas aeruginosa is an opportunistic human pathogen, particularly noted for causing infections in the lungs of people with cystic fibrosis (CF). Previous studies have shown that the gene expression profile of P. aeruginosa appears to converge toward a common metabolic program as the organism adapts to the CF airway environment. However, we still have only a limited understanding of how these transcriptional changes impact metabolic flux at the systems level. To address this, we analyzed the transcriptome, proteome, and fluxome of P. aeruginosa grown on glycerol or acetate. These carbon sources were chosen because they are the primary breakdown products of an airway surfactant, phosphatidylcholine, which is known to be a major carbon source for P. aeruginosa in CF airways. We show that the fluxes of carbon throughout central metabolism are radically different among carbon sources. For example, the newly recognized "EDEMP cycle" (which incorporates elements of the Entner-Doudoroff [ED] pathway, the Embden-Meyerhof-Parnas [EMP] pathway, and the pentose phosphate [PP] pathway) plays an important role in supplying NADPH during growth on glycerol. In contrast, the EDEMP cycle is attenuated during growth on acetate, and instead, NADPH is primarily supplied by the reaction catalyzed by isocitrate dehydrogenase(s). Perhaps more importantly, our proteomic and transcriptomic analyses revealed a global remodeling of gene expression during growth on the different carbon sources, with unanticipated impacts on aerobic denitrification, electron transport chain architecture, and the redox economy of the cell. Collectively, these data highlight the remarkable metabolic plasticity of P. aeruginosa; that plasticity allows the organism to seamlessly segue between different carbon sources, maximizing the energetic yield from each. IMPORTANCE Pseudomonas aeruginosa is an opportunistic human pathogen that is well known for causing infections in the airways of people with cystic fibrosis. Although it is clear that P. aeruginosa is metabolically well adapted to life in the CF lung, little is currently known about how the organism metabolizes the nutrients available in the airways. In this work, we used a combination of gene expression and isotope tracer ("fluxomic") analyses to find out exactly where the input carbon goes during growth on two CF-relevant carbon sources, acetate and glycerol (derived from the breakdown of lung surfactant). We found that carbon is routed ("fluxed") through very different pathways during growth on these substrates and that this is accompanied by an unexpected remodeling of the cell’s electron transfer pathways. Having access to this "blueprint" is important because the metabolism of P. aeruginosa is increasingly being recognized as a target for the development of much-needed antimicrobial agents. Full Article
ow Acknowledgment of Invited Editors By mbio.asm.org Published On :: 2020-03-24T01:31:01-07:00 Full Article
ow Acknowledgment of Reviewers By mbio.asm.org Published On :: 2020-03-24T01:31:01-07:00 Full Article
ow Towards a Mechanism for Poly(I{middle dot}C) Antiviral Priming in Oysters By mbio.asm.org Published On :: 2020-03-24T01:31:01-07:00 ABSTRACT Viral diseases cause significant losses in aquaculture. Prophylactic measures, such as immune priming, are promising control strategies. Treatment of the Pacific oyster (Crassostrea gigas) with the double-stranded RNA analog poly(I·C) confers long-term protection against infection with ostreid herpesvirus 1, the causative agent of Pacific oyster mortality syndrome. In a recent article in mBio, Lafont and coauthors (M. Lafont, A. Vergnes, J. Vidal-Dupiol, J. de Lorgeril, et al., mBio 11:e02777-19, 2020, https://doi.org/10.1128/mBio.02777-19) characterized the transcriptome of oysters treated with poly(I·C). This immune stimulator induced genes related to the interferon and apoptosis pathways. This response overlaps the response to viral infection, and high expression levels of potential effector genes are maintained for up to 4 months. This work opens the door to characterization of the phenomena of immune priming in a poorly studied invertebrate model. It also highlights the importance of interferon-like responses for invertebrate antiviral immunity. Full Article
ow Lipid Anchoring of Archaeosortase Substrates and Midcell Growth in Haloarchaea By mbio.asm.org Published On :: 2020-03-24T01:31:01-07:00 ABSTRACT The archaeal cytoplasmic membrane provides an anchor for many surface proteins. Recently, a novel membrane anchoring mechanism involving a peptidase, archaeosortase A (ArtA), and C-terminal lipid attachment of surface proteins was identified in the model archaeon Haloferax volcanii. ArtA is required for optimal cell growth and morphogenesis, and the S-layer glycoprotein (SLG), the sole component of the H. volcanii cell wall, is one of the targets for this anchoring mechanism. However, how exactly ArtA function and regulation control cell growth and morphogenesis is still elusive. Here, we report that archaeal homologs to the bacterial phosphatidylserine synthase (PssA) and phosphatidylserine decarboxylase (PssD) are involved in ArtA-dependent protein maturation. Haloferax volcanii strains lacking either HvPssA or HvPssD exhibited motility, growth, and morphological phenotypes similar to those of an artA mutant. Moreover, we showed a loss of covalent lipid attachment to SLG in the hvpssA mutant and that proteolytic cleavage of the ArtA substrate HVO_0405 was blocked in the hvpssA and hvpssD mutant strains. Strikingly, ArtA, HvPssA, and HvPssD green fluorescent protein (GFP) fusions colocalized to the midcell position of H. volcanii cells, strongly supporting that they are involved in the same pathway. Finally, we have shown that the SLG is also recruited to the midcell before being secreted and lipid anchored at the cell outer surface. Collectively, our data suggest that haloarchaea use the midcell as the main surface processing hot spot for cell elongation, division, and shape determination. IMPORTANCE The subcellular organization of biochemical processes in space and time is still one of the most mysterious topics in archaeal cell biology. Despite the fact that haloarchaea largely rely on covalent lipid anchoring to coat the cell envelope, little is known about how cells coordinate de novo synthesis and about the insertion of this proteinaceous layer throughout the cell cycle. Here, we report the identification of two novel contributors to ArtA-dependent lipid-mediated protein anchoring to the cell surface, HvPssA and HvPssD. ArtA, HvPssA, and HvPssD, as well as SLG, showed midcell localization during growth and cytokinesis, indicating that haloarchaeal cells confine phospholipid processing in order to promote midcell elongation. Our findings have important implications for the biogenesis of the cell surface. Full Article
ow Avoiding Drug Resistance by Substrate Envelope-Guided Design: Toward Potent and Robust HCV NS3/4A Protease Inhibitors By mbio.asm.org Published On :: 2020-03-31T01:30:58-07:00 ABSTRACT Hepatitis C virus (HCV) infects millions of people worldwide, causing chronic liver disease that can lead to cirrhosis, hepatocellular carcinoma, and liver transplant. In the last several years, the advent of direct-acting antivirals, including NS3/4A protease inhibitors (PIs), has remarkably improved treatment outcomes of HCV-infected patients. However, selection of resistance-associated substitutions and polymorphisms among genotypes can lead to drug resistance and in some cases treatment failure. A proactive strategy to combat resistance is to constrain PIs within evolutionarily conserved regions in the protease active site. Designing PIs using the substrate envelope is a rational strategy to decrease the susceptibility to resistance by using the constraints of substrate recognition. We successfully designed two series of HCV NS3/4A PIs to leverage unexploited areas in the substrate envelope to improve potency, specifically against resistance-associated substitutions at D168. Our design strategy achieved better resistance profiles over both the FDA-approved NS3/4A PI grazoprevir and the parent compound against the clinically relevant D168A substitution. Crystallographic structural analysis and inhibition assays confirmed that optimally filling the substrate envelope is critical to improve inhibitor potency while avoiding resistance. Specifically, inhibitors that enhanced hydrophobic packing in the S4 pocket and avoided an energetically frustrated pocket performed the best. Thus, the HCV substrate envelope proved to be a powerful tool to design robust PIs, offering a strategy that can be translated to other targets for rational design of inhibitors with improved potency and resistance profiles. IMPORTANCE Despite significant progress, hepatitis C virus (HCV) continues to be a major health problem with millions of people infected worldwide and thousands dying annually due to resulting complications. Recent antiviral combinations can achieve >95% cure, but late diagnosis, low access to treatment, and treatment failure due to drug resistance continue to be roadblocks against eradication of the virus. We report the rational design of two series of HCV NS3/4A protease inhibitors with improved resistance profiles by exploiting evolutionarily constrained regions of the active site using the substrate envelope model. Optimally filling the S4 pocket is critical to avoid resistance and improve potency. Our results provide drug design strategies to avoid resistance that are applicable to other quickly evolving viral drug targets. Full Article
ow A Chimeric Japanese Encephalitis Vaccine Protects against Lethal Yellow Fever Virus Infection without Inducing Neutralizing Antibodies By mbio.asm.org Published On :: 2020-04-07T01:31:16-07:00 ABSTRACT Recent outbreaks of yellow fever virus (YFV) in West Africa and Brazil resulted in rapid depletion of global vaccine emergency stockpiles and raised concerns about being unprepared against future YFV epidemics. Here we report that a live attenuated virus similar to the Japanese encephalitis virus (JEV) vaccine JE-CVax/Imojev that consists of YFV-17D vaccine from which the structural (prM/E) genes have been replaced with those of the JEV SA14-14-2 vaccine strain confers full protection in mice against lethal YFV challenge. In contrast to the YFV-17D-mediated protection against YFV, this protection is not mediated by neutralizing antibodies but correlates with YFV-specific nonneutralizing antibodies and T cell responses against cell-associated YFV NS1 and other YFV nonstructural (NS) proteins. Our findings reveal the potential of YFV NS proteins to mediate protection and demonstrate that chimeric flavivirus vaccines, such as Imojev, could confer protection against two flaviviruses. This dual protection may have implications for the possible off-label use of JE-CVax in case of emergency and vaccine shortage during YFV outbreaks. In addition, populations in Asia that have been vaccinated with Imojev may already be protected against YFV should outbreaks ever occur on that continent, as several countries/regions in the Asia-Pacific are vulnerable to international spread of the YFV. IMPORTANCE Efficient and safe vaccines against yellow fever (e.g., YFV-17D) that provide long-lasting protection by rapidly inducing neutralizing antibody responses exist. However, the vaccine supply cannot cope with an increasing demand posed by urban outbreaks in recent years. Here we report that JE-CVax/Imojev, a YFV-17D-based chimeric Japanese encephalitis vaccine, also efficiently protects against YFV infection in mice. In case of shortage of the YFV vaccine during yellow fever outbreaks, (off-label) use of JE-CVax/Imojev may be considered. Moreover, wider use of JE-CVax/Imojev in Asia may lower the risk of the much-feared YFV spillover to the continent. More generally, chimeric vaccines that combine surface antigens and replication machineries of two distinct flaviviruses may be considered dual vaccines for the latter pathogen without induction of surface-specific antibodies. Following this rationale, novel flavivirus vaccines that do not hold a risk for antibody-dependent enhancement (ADE) of infection (inherent to current dengue vaccines and dengue vaccine candidates) could be designed. Full Article
ow A Sensitive Yellow Fever Virus Entry Reporter Identifies Valosin-Containing Protein (VCP/p97) as an Essential Host Factor for Flavivirus Uncoating By mbio.asm.org Published On :: 2020-04-14T01:31:22-07:00 ABSTRACT While the basic mechanisms of flavivirus entry and fusion are understood, little is known about the postfusion events that precede RNA replication, such as nucleocapsid disassembly. We describe here a sensitive, conditionally replication-defective yellow fever virus (YFV) entry reporter, YFVSK/Nluc, to quantitively monitor the translation of incoming, virus particle-delivered genomes. We validated that YFVSK/Nluc gene expression can be neutralized by YFV-specific antisera and requires known flavivirus entry pathways and cellular factors, including clathrin- and dynamin-mediated endocytosis, endosomal acidification, YFV E glycoprotein-mediated fusion, and cellular LY6E and RPLP1 expression. The initial round of YFV translation was shown to require cellular ubiquitylation, consistent with recent findings that dengue virus capsid protein must be ubiquitylated in order for nucleocapsid uncoating to occur. Importantly, translation of incoming YFV genomes also required valosin-containing protein (VCP)/p97, a cellular ATPase that unfolds and extracts ubiquitylated client proteins from large complexes. RNA transfection and washout experiments showed that VCP/p97 functions at a postfusion, pretranslation step in YFV entry. Finally, VCP/p97 activity was required by other flaviviruses in mammalian cells and by YFV in mosquito cells. Together, these data support a critical role for VCP/p97 in the disassembly of incoming flavivirus nucleocapsids during a postfusion step in virus entry. IMPORTANCE Flaviviruses are an important group of RNA viruses that cause significant human disease. The mechanisms by which flavivirus nucleocapsids are disassembled during virus entry remain unclear. Here, we used a yellow fever virus entry reporter, which expresses a sensitive reporter enzyme but does not replicate, to show that nucleocapsid disassembly requires the cellular protein-disaggregating enzyme valosin-containing protein, also known as p97. Full Article
ow Coping with COVID: How a Research Team Learned To Stay Engaged in This Time of Physical Distancing By mbio.asm.org Published On :: 2020-04-17T14:59:27-07:00 ABSTRACT Physical distancing imposed by the COVID-19 pandemic has led to alterations in routines and new responsibilities for much of the research community. We provide some tips for how research teams can cope with physical distancing, some of which require a change in how we define productivity. Importantly, we need to maintain and strengthen social connections in this time when we can’t be physically together. Full Article
ow X-Linked RNA-Binding Motif Protein Modulates HIV-1 Infection of CD4+ T Cells by Maintaining the Trimethylation of Histone H3 Lysine 9 at the Downstream Region of the 5' Long Terminal Repeat of HIV Proviral DNA By mbio.asm.org Published On :: 2020-04-21T01:31:26-07:00 ABSTRACT Reversible repression of HIV-1 5' long terminal repeat (5'-LTR)-mediated transcription represents the main mechanism for HIV-1 to maintain latency. Identification of host factors that modulate LTR activity and viral latency may help develop new antiretroviral therapies. The heterogeneous nuclear ribonucleoproteins (hnRNPs) are known to regulate gene expression and possess multiple physiological functions. hnRNP family members have recently been identified as the sensors for viral nucleic acids to induce antiviral responses, highlighting the crucial roles of hnRNPs in regulating viral infection. A member of the hnRNP family, X-linked RNA-binding motif protein (RBMX), has been identified in this study as a novel HIV-1 restriction factor that modulates HIV-1 5'-LTR-driven transcription of viral genome in CD4+ T cells. Mechanistically, RBMX binds to HIV-1 proviral DNA at the LTR downstream region and maintains the repressive trimethylation of histone H3 lysine 9 (H3K9me3), leading to a blockage of the recruitment of the positive transcription factor phosphorylated RNA polymerase II (RNA pol II) and consequential impediment of transcription elongation. This RBMX-mediated modulation of HIV-1 transcription maintains viral latency by inhibiting viral reactivation from an integrated proviral DNA. Our findings provide a new understanding of how host factors modulate HIV-1 infection and latency and suggest a potential new target for the development of HIV-1 therapies. IMPORTANCE HIV-1 latency featuring silence of transcription from HIV-1 proviral DNA represents a major obstacle for HIV-1 eradication. Reversible repression of HIV-1 5'-LTR-mediated transcription represents the main mechanism for HIV-1 to maintain latency. The 5'-LTR-driven HIV gene transcription can be modulated by multiple host factors and mechanisms. The hnRNPs are known to regulate gene expression. A member of the hnRNP family, RBMX, has been identified in this study as a novel HIV-1 restriction factor that modulates HIV-1 5'-LTR-driven transcription of viral genome in CD4+ T cells and maintains viral latency. These findings provide a new understanding of how host factors modulate HIV-1 infection and latency and suggest a potential new target for the development of HIV-1 therapies. Full Article
ow Temporal Dynamics of the Adult Female Lower Urinary Tract Microbiota By mbio.asm.org Published On :: 2020-04-21T01:31:26-07:00 ABSTRACT Temporal dynamics of certain human microbiotas have been described in longitudinal studies; variability often relates to modifiable factors or behaviors. Early studies of the urinary microbiota preferentially used samples obtained by transurethral catheterization to minimize vulvovaginal microbial contributions. Whereas voided specimens are preferred for longitudinal studies, the few studies that reported longitudinal data were limited to women with lower urinary tract (LUT) symptoms, due to ease of accessing a clinical population for sampling and the impracticality and risk of collecting repeated catheterized urine specimens in a nonclinical population. Here, we studied the microbiota of the LUT of nonsymptomatic, premenopausal women using midstream voided urine (MSU) specimens to investigate relationships between microbial dynamics and personal factors. Using 16S rRNA gene sequencing and a metaculturomics method called expanded quantitative urine culture (EQUC), we characterized the microbiotas of MSU and periurethral swab specimens collected daily for approximately 3 months from a small cohort of adult women. Participants were screened for eligibility, including the ability to self-collect paired urogenital specimens prior to enrollment. In this population, we found that measures of microbial dynamics related to specific participant-reported factors, particularly menstruation and vaginal intercourse. Further investigation of the trends revealed differences in the composition and diversity of LUT microbiotas within and across participants. These data, in combination with previous studies showing relationships between the LUT microbiota and LUT symptoms, suggest that personal factors relating to the genitourinary system may be an important consideration in the etiology, prevention, and/or treatment of LUT disorders. IMPORTANCE Following the discovery of the collective human urinary microbiota, important knowledge gaps remain, including the stability and variability of this microbial niche over time. Initial urinary studies preferentially utilized samples obtained by transurethral catheterization to minimize contributions from vulvovaginal microbes. However, catheterization has the potential to alter the urinary microbiota; therefore, voided specimens are preferred for longitudinal studies. In this report, we describe microbial findings obtained by daily assessment over 3 months in a small cohort of adult women. We found that, similarly to vaginal microbiotas, lower urinary tract (LUT) microbiotas are dynamic, with changes relating to several factors, particularly menstruation and vaginal intercourse. Our study results show that LUT microbiotas are both dynamic and resilient. They also offer novel opportunities to target LUT microbiotas by preventative or therapeutic means, through risk and/or protective factor modification. Full Article
ow Minnesota association acknowledges states ancestral lands, residents By thenationshealth.aphapublications.org Published On :: 2020-05-01T05:00:17-07:00 In a nod to the people who came before them — and those who still live among them — the Minnesota Public Health Association is acknowledging ancestral lands. Full Article
ow Engaging the Power of Communities for Better Health By www.ncmedicaljournal.com Published On :: 2020-05-04T06:50:30-07:00 Authentically engaging community residents is necessary to impact social drivers of health. Acknowledging the value of residents' lived experiences in the planning, implementation, and financial decisions of community engagement initiatives is key. Sustainability of community engagement initiatives depends on open communication and follow-through on commitments. Full Article
ow Toward a Health Data Strategy for North Carolina By www.ncmedicaljournal.com Published On :: 2020-05-04T06:50:30-07:00 In recent years, North Carolina has attracted significant national attention due to numerous health care reforms underway across government and the private sector. These reforms encompass new incentives, new partnerships, and new models of delivering care, and collectively, they have important implications for health care data. Full Article