ot

Vaccine-Induced Th1-Type Response Protects against Invasive Group A Streptococcus Infection in the Absence of Opsonizing Antibodies

ABSTRACT

Recent global advocacy efforts have highlighted the importance of development of a vaccine against group A Streptococcus (GAS). Combo5 is a non-M protein-based vaccine that provides protection against GAS skin infection in mice and reduces the severity of pharyngitis in nonhuman primates. However, Combo5 with the addition of aluminum hydroxide (alum) as an adjuvant failed to protect against invasive GAS infection of mice. Here, we show that formulation of Combo5 with adjuvants containing saponin QS21 significantly improves protective efficacy, even though all 7 adjuvants tested generated high antigen-specific IgG antibody titers, including alum. Detailed characterization of Combo5 formulated with SMQ adjuvant, a squalene-in-water emulsion containing a TLR4 agonist and QS21, showed significant differences from the results obtained with alum in IgG subclasses generated following immunization, with an absence of GAS opsonizing antibodies. SMQ, but not alum, generated strong interleukin-6 (IL-6), gamma interferon (IFN-), and tumor necrosis alpha (TNF-α) responses. This work highlights the importance of adjuvant selection for non-M protein-based GAS vaccines to optimize immune responses and protective efficacy.

IMPORTANCE Availability of a group A Streptococcus vaccine remains an unmet public health need. Here, we tested different adjuvant formulations to improve the protective efficacy of non-M protein vaccine Combo5 in an invasive disease model. We show that novel adjuvants can dramatically shape the type of immune response developed following immunization with Combo5 and significantly improve protection. In addition, protection afforded by Combo5 is not mediated by opsonizing antibodies, believed to be the main correlate of protection against GAS infections. Overall, this report highlights the importance of adjuvant selection in raising protective immune responses against GAS invasive infection. Adjuvants that can provide a more balanced Th1/Th2-type response may be required to optimize protection of GAS vaccines, particularly those based on non-M protein antigens.




ot

In Vitro Characterization of Protein Effector Export in the Bradyzoite Stage of Toxoplasma gondii

ABSTRACT

The ubiquitous parasite Toxoplasma gondii exhibits an impressive ability to maintain chronic infection of its host for prolonged periods. Despite this, little is known regarding whether and how T. gondii bradyzoites, a quasi-dormant life stage residing within intracellular cysts, manipulate the host cell to maintain persistent infection. A previous proteomic study of the cyst wall, an amorphous layer of proteins that forms underneath the cyst membrane, identified MYR1 as a putative cyst wall protein in vitro. Because MYR1 is known to be involved in the translocation of parasite-derived effector proteins into the host cell, we sought to determine whether parasites transitioning toward the bradyzoite life stage retain the capacity to translocate proteins via this pathway. By epitope tagging the endogenous loci of four known effectors that translocate from the parasitophorous vacuole into the host cell nucleus, we show, by immunofluorescence assays, that most effectors accumulate in the host nucleus at early but not late time points after infection, during the tachyzoite-to-bradyzoite transition and when parasites further along the bradyzoite differentiation continuum invade a new host cell. We demonstrate that the suppression of interferon gamma signaling, which was previously shown to be mediated by the effector TgIST, also occurs in the context of prolonged infection with bradyzoites and that TgIST export is a process that occurs beyond the early stages of host cell infection. These findings have important implications regarding how this highly successful parasite maintains persistent infection of its host.

IMPORTANCE Toxoplasma bradyzoites persist within tissue cysts and are refractory to current treatments, serving as a reservoir for acute complications in settings of compromised immunity. Much remains to be understood regarding how this life stage successfully establishes and maintains persistent infection. In this study, we investigated whether the export of parasite effector proteins into the host cell occurs during the development of in vitro tissue cysts. We quantified the presence of four previously described effectors in host cell nuclei at different time points after bradyzoite differentiation and found that they accumulated largely during the early stages of infection. Despite a decline in nuclear accumulation, we found that one of these effectors still mediated its function after prolonged infection with bradyzoites, and we provide evidence that this effector is exported beyond early infection stages. These findings suggest that effector export from within developing tissue cysts provides one potential mechanism by which this parasite achieves chronic infection.




ot

Concerns about Continuing Claims that a Protein Complex Interacts with the Phosphorelay




ot

Erratum for Townsend et al., "A Master Regulator of Bacteroides thetaiotaomicron Gut Colonization Controls Carbohydrate Utilization and an Alternative Protein Synthesis Factor"




ot

Erratum for Dubrovsky et al., "Inhibition of HIV Replication by Apolipoprotein A-I Binding Protein Targeting the Lipid Rafts"




ot

Structural Basis of Ca2+-Dependent Self-Processing Activity of Repeat-in-Toxin Proteins

ABSTRACT

The posttranslational Ca2+-dependent "clip-and-link" activity of large repeat-in-toxin (RTX) proteins starts by Ca2+-dependent structural rearrangement of a highly conserved self-processing module (SPM). Subsequently, an internal aspartate-proline (Asp-Pro) peptide bond at the N-terminal end of SPM breaks, and the liberated C-terminal aspartyl residue can react with a free -amino group of an adjacent lysine residue to form a new isopeptide bond. Here, we report a solution structure of the calcium-loaded SPM (Ca-SPM) derived from the FrpC protein of Neisseria meningitidis. The Ca-SPM structure defines a unique protein architecture and provides structural insight into the autocatalytic cleavage of the Asp-Pro peptide bond through a "twisted-amide" activation. Furthermore, in-frame deletion of the SPM domain from the ApxIVA protein of Actinobacillus pleuropneumoniae attenuated the virulence of this porcine pathogen in a pig respiratory challenge model. We hypothesize that the Ca2+-dependent clip-and-link activity represents an unconventional strategy for Gram-negative pathogens to adhere to the host target cell surface.

IMPORTANCE The Ca2+-dependent clip-and-link activity of large repeat-in-toxin (RTX) proteins is an exceptional posttranslational process in which an internal domain called a self-processing module (SPM) mediates Ca2+-dependent processing of a highly specific aspartate-proline (Asp-Pro) peptide bond and covalent linkage of the released aspartyl to an adjacent lysine residue through an isopeptide bond. Here, we report the solution structures of the Ca2+-loaded SPM (Ca-SPM) defining the mechanism of the autocatalytic cleavage of the Asp414-Pro415 peptide bond of the Neisseria meningitidis FrpC exoprotein. Moreover, deletion of the SPM domain in the ApxIVA protein, the FrpC homolog of Actinobacillus pleuropneumoniae, resulted in attenuation of virulence of the bacterium in a pig infection model, indicating that the Ca2+-dependent clip-and-link activity plays a role in the virulence of Gram-negative pathogens.




ot

A Solution to Antifolate Resistance in Group B Streptococcus: Untargeted Metabolomics Identifies Human Milk Oligosaccharide-Induced Perturbations That Result in Potentiation of Trimethoprim

ABSTRACT

Adjuvants can be used to potentiate the function of antibiotics whose efficacy has been reduced by acquired or intrinsic resistance. In the present study, we discovered that human milk oligosaccharides (HMOs) sensitize strains of group B Streptococcus (GBS) to trimethoprim (TMP), an antibiotic to which GBS is intrinsically resistant. Reductions in the MIC of TMP reached as high as 512-fold across a diverse panel of isolates. To better understand HMOs’ mechanism of action, we characterized the metabolic response of GBS to HMO treatment using ultrahigh-performance liquid chromatography–high-resolution tandem mass spectrometry (UPLC-HRMS/MS) analysis. These data showed that when challenged by HMOs, GBS undergoes significant perturbations in metabolic pathways related to the biosynthesis and incorporation of macromolecules involved in membrane construction. This study represents reports the metabolic characterization of a cell that is perturbed by HMOs.

IMPORTANCE Group B Streptococcus is an important human pathogen that causes serious infections during pregnancy which can lead to chorioamnionitis, funisitis, premature rupture of gestational membranes, preterm birth, neonatal sepsis, and death. GBS is evolving antimicrobial resistance mechanisms, and the work presented in this paper provides evidence that prebiotics such as human milk oligosaccharides can act as adjuvants to restore the utility of antibiotics.




ot

Viral DNA Binding Protein SUMOylation Promotes PML Nuclear Body Localization Next to Viral Replication Centers

ABSTRACT

Human adenoviruses (HAdVs) have developed mechanisms to manipulate cellular antiviral measures to ensure proper DNA replication, with detailed processes far from being understood. Host cells repress incoming viral genomes through a network of transcriptional regulators that normally control cellular homeostasis. The nuclear domains involved are promyelocytic leukemia protein nuclear bodies (PML-NBs), interferon-inducible, dot-like nuclear structures and hot spots of SUMO posttranslational modification (PTM). In HAdV-infected cells, such SUMO factories are found in close proximity to newly established viral replication centers (RCs) marked by the adenoviral DNA binding protein (DBP) E2A. Here, we show that E2A is a novel target of host SUMOylation, leading to PTMs supporting E2A function in promoting productive infection. Our data show that SUMOylated E2A interacts with PML. Decreasing SUMO-E2A protein levels by generating HAdV variants mutated in the three main SUMO conjugation motifs (SCMs) led to lower numbers of viral RCs and PML-NBs, and these two structures were no longer next to each other. Our data further indicate that SUMOylated E2A binds the host transcription factor Sp100A, promoting HAdV gene expression, and represents the molecular bridge between PML tracks and adjacent viral RCs. Consequently, E2A SCM mutations repressed late viral gene expression and progeny production. These data highlight a novel mechanism used by the virus to benefit from host antiviral responses by exploiting the cellular SUMO conjugation machinery.

IMPORTANCE PML nuclear bodies (PML-NBs) are implicated in general antiviral defense based on recruiting host restriction factors; however, it is not understood so far why viruses would establish viral replication centers (RCs) juxtaposed to such "antiviral" compartments. To understand this enigma, we investigate the cross talk between PML-NB components and viral RCs to find the missing link connecting both compartments to promote efficient viral replication and gene expression. Taken together, the current concept is more intricate than originally believed, since viruses apparently take advantage of several specific PML-NB-associated proteins to promote productive infection. Simultaneously, they efficiently inhibit antiviral measures to maintain the viral infectious program. Our data provide evidence that SUMOylation of the viral RC marker protein E2A represents the basis of this virus-host interface and regulates various downstream events to support HAdV productive infection. These results are the basis of our current attempts to generate and screen for specific E2A SUMOylation inhibitors to constitute novel therapeutic approaches to limit and prevent HAdV-mediated diseases and mortality of immunosuppressed patients.




ot

Role of Plasmodium falciparum Protein GEXP07 in Maurers Cleft Morphology, Knob Architecture, and P. falciparum EMP1 Trafficking

ABSTRACT

The malaria parasite Plasmodium falciparum traffics the virulence protein P. falciparum erythrocyte membrane protein 1 (PfEMP1) to the surface of infected red blood cells (RBCs) via membranous organelles, known as the Maurer’s clefts. We developed a method for efficient enrichment of Maurer’s clefts and profiled the protein composition of this trafficking organelle. We identified 13 previously uncharacterized or poorly characterized Maurer’s cleft proteins. We generated transfectants expressing green fluorescent protein (GFP) fusions of 7 proteins and confirmed their Maurer’s cleft location. Using co-immunoprecipitation and mass spectrometry, we generated an interaction map of proteins at the Maurer’s clefts. We identified two key clusters that may function in the loading and unloading of PfEMP1 into and out of the Maurer’s clefts. We focus on a putative PfEMP1 loading complex that includes the protein GEXP07/CX3CL1-binding protein 2 (CBP2). Disruption of GEXP07 causes Maurer’s cleft fragmentation, aberrant knobs, ablation of PfEMP1 surface expression, and loss of the PfEMP1-mediated adhesion. GEXP07 parasites have a growth advantage compared to wild-type parasites, and the infected RBCs are more deformable and more osmotically fragile.

IMPORTANCE The trafficking of the virulence antigen PfEMP1 and its presentation at the knob structures at the surface of parasite-infected RBCs are central to severe adhesion-related pathologies such as cerebral and placental malaria. This work adds to our understanding of how PfEMP1 is trafficked to the RBC membrane by defining the protein-protein interaction networks that function at the Maurer’s clefts controlling PfEMP1 loading and unloading. We characterize a protein needed for virulence protein trafficking and provide new insights into the mechanisms for host cell remodeling, parasite survival within the host, and virulence.




ot

Snake Deltavirus Utilizes Envelope Proteins of Different Viruses To Generate Infectious Particles

ABSTRACT

Satellite viruses, most commonly found in plants, rely on helper viruses to complete their replication cycle. The only known example of a human satellite virus is the hepatitis D virus (HDV), and it is generally thought to require hepatitis B virus (HBV) to form infectious particles. Until 2018, HDV was the sole representative of the genus Deltavirus and was thought to have evolved in humans, the only known HDV host. The subsequent identification of HDV-like agents in birds, snakes, fish, amphibians, and invertebrates indicated that the evolutionary history of deltaviruses is likely much longer than previously hypothesized. Interestingly, none of the HDV-like agents were found in coinfection with an HBV-like agent, suggesting that these viruses use different helper virus(es). Here we show, using snake deltavirus (SDeV), that HBV and hepadnaviruses represent only one example of helper viruses for deltaviruses. We cloned the SDeV genome into a mammalian expression plasmid, and by transfection could initiate SDeV replication in cultured snake and mammalian cell lines. By superinfecting persistently SDeV-infected cells with reptarenaviruses and hartmaniviruses, or by transfecting their surface proteins, we could induce production of infectious SDeV particles. Our findings indicate that deltaviruses can likely use a multitude of helper viruses or even viral glycoproteins to form infectious particles. This suggests that persistent infections, such as those caused by arenaviruses and orthohantaviruses used in this study, and recurrent infections would be beneficial for the spread of deltaviruses. It seems plausible that further human or animal disease associations with deltavirus infections will be identified in the future.

IMPORTANCE Deltaviruses need a coinfecting enveloped virus to produce infectious particles necessary for transmission to a new host. Hepatitis D virus (HDV), the only known deltavirus until 2018, has been found only in humans, and its coinfection with hepatitis B virus (HBV) is linked with fulminant hepatitis. The recent discovery of deltaviruses without a coinfecting HBV-like agent in several different taxa suggested that deltaviruses could employ coinfection by other enveloped viruses to complete their life cycle. In this report, we show that snake deltavirus (SDeV) efficiently utilizes coinfecting reptarena- and hartmaniviruses to form infectious particles. Furthermore, we demonstrate that cells expressing the envelope proteins of arenaviruses and orthohantaviruses produce infectious SDeV particles. As the envelope proteins are responsible for binding and infecting new host cells, our findings indicate that deltaviruses are likely not restricted in their tissue tropism, implying that they could be linked to animal or human diseases other than hepatitis.




ot

Linking Human Milk Oligosaccharides, Infant Fecal Community Types, and Later Risk To Require Antibiotics

ABSTRACT

Human milk oligosaccharides (HMOs) may provide health benefits to infants partly by shaping the development of the early-life intestinal microbiota. In a randomized double-blinded controlled multicentric clinical trial, healthy term infants received either infant formula (control) or the same formula with two HMOs (2'-fucosyllactose and lacto-N-neotetraose; test) from enrollment (0 to 14 days) to 6 months. Then, all infants received the same follow-up formula without HMOs until 12 months of age. Breastfed infants (BF) served as a reference group. Stool microbiota at 3 and 12 months, analyzed by 16S rRNA gene sequencing, clustered into seven fecal community types (FCTs) with marked differences in total microbial abundances. Three of the four 12-month FCTs were likely precursors of the adult enterotypes. At 3 months, microbiota composition in the test group (n = 58) appeared closer to that of BF (n = 35) than control (n = 63) by microbiota alpha (within group) and beta (between groups) diversity analyses and distribution of FCTs. While bifidobacteriaceae dominated two FCTs, its abundance was significantly higher in one (FCT BiH for Bifidobacteriaceae at high abundance) than in the other (FCT Bi for Bifidobacteriaceae). HMO supplementation increased the number of infants with FCT BiH (predominant in BF) at the expense of FCT Bi (predominant in control). We explored the association of the FCTs with reported morbidities and medication use up to 12 months. Formula-fed infants with FCT BiH at 3 months were significantly less likely to require antibiotics during the first year than those with FCT Bi. Previously reported lower rates of infection-related medication use with HMOs may therefore be linked to gut microbiota community types. (This study has been registered at ClinicalTrials.gov under registration number NCT01715246.)

IMPORTANCE Human milk is the sole and recommended nutrition for the newborn infant and contains one of the largest constituents of diverse oligosaccharides, dubbed human milk oligosaccharides (HMOs). Preclinical and clinical association studies indicate that HMOs have multiple physiological functions largely mediated through the establishment of the gut microbiome. Until recently, HMOs were not available to investigate their role in randomized controlled intervention trials. To our knowledge, this is the first report on the effects of 2 HMOs on establishing microbiota in newborn infants. We provide a detailed description of the microbiota changes observed upon feeding a formula with 2 HMOs in comparison to breastfed reference infants' microbiota. Then, we associate the microbiota to long-term health as assessed by prescribed antibiotic use.




ot

Neutralizing Monoclonal Antibodies against the Gn and the Gc of the Andes Virus Glycoprotein Spike Complex Protect from Virus Challenge in a Preclinical Hamster Model

ABSTRACT

Hantaviruses are the etiological agent of hemorrhagic fever with renal syndrome (HFRS) and hantavirus cardiopulmonary syndrome (HCPS). The latter is associated with case fatality rates ranging from 30% to 50%. HCPS cases are rare, with approximately 300 recorded annually in the Americas. Recently, an HCPS outbreak of unprecedented size has been occurring in and around Epuyén, in the southwestern Argentinian state of Chubut. Since November of 2018, at least 29 cases have been laboratory confirmed, and human-to-human transmission is suspected. Despite posing a significant threat to public health, no treatment or vaccine is available for hantaviral disease. Here, we describe an effort to identify, characterize, and develop neutralizing and protective antibodies against the glycoprotein complex (Gn and Gc) of Andes virus (ANDV), the causative agent of the Epuyén outbreak. Using murine hybridoma technology, we generated 19 distinct monoclonal antibodies (MAbs) against ANDV GnGc. When tested for neutralization against a recombinant vesicular stomatitis virus expressing the Andes glycoprotein (GP) (VSV-ANDV), 12 MAbs showed potent neutralization and 8 showed activity in an antibody-dependent cellular cytotoxicity reporter assay. Escape mutant analysis revealed that neutralizing MAbs targeted both the Gn and the Gc. Four MAbs that bound different epitopes were selected for preclinical studies and were found to be 100% protective against lethality in a Syrian hamster model of ANDV infection. These data suggest the existence of a wide array of neutralizing antibody epitopes on hantavirus GnGc with unique properties and mechanisms of action.

IMPORTANCE Infections with New World hantaviruses are associated with high case fatality rates, and no specific vaccine or treatment options exist. Furthermore, the biology of the hantaviral GnGc complex, its antigenicity, and its fusion machinery are poorly understood. Protective monoclonal antibodies against GnGc have the potential to be developed into therapeutics against hantaviral disease and are also great tools to elucidate the biology of the glycoprotein complex.




ot

Magnaporthe oryzae Auxiliary Activity Protein MoAa91 Functions as Chitin-Binding Protein To Induce Appressorium Formation on Artificial Inductive Surfaces and Suppress Plant Immunity

ABSTRACT

The appressoria that are generated by the rice blast fungus Magnaporthe oryzae in response to surface cues are important for successful colonization. Previous work showed that regulators of G-protein signaling (RGS) and RGS-like proteins play critical roles in appressorium formation. However, the mechanisms by which these proteins orchestrate surface recognition for appressorium induction remain unclear. Here, we performed comparative transcriptomic studies of Morgs mutant and wild-type strains and found that M. oryzae Aa91 (MoAa91), a homolog of the auxiliary activity family 9 protein (Aa9), was required for surface recognition of M. oryzae. We found that MoAA91 was regulated by the MoMsn2 transcription factor and that its disruption resulted in defects in both appressorium formation on the artificial inductive surface and full virulence of the pathogen. We further showed that MoAa91 was secreted into the apoplast space and was capable of competing with the immune receptor chitin elicitor-binding protein precursor (CEBiP) for chitin binding, thereby suppressing chitin-induced plant immune responses. In summary, we have found that MoAa91 is a novel signaling molecule regulated by RGS and RGS-like proteins and that MoAa91 not only governs appressorium development and virulence but also functions as an effector to suppress host immunity.

IMPORTANCE The rice blast fungus Magnaporthe oryzae generates infection structure appressoria in response to surface cues largely due to functions of signaling molecules, including G-proteins, regulators of G-protein signaling (RGS), mitogen-activated protein (MAP) kinase pathways, cAMP signaling, and TOR signaling pathways. M. oryzae encodes eight RGS and RGS-like proteins (MoRgs1 to MoRgs8), and MoRgs1, MoRgs3, MoRgs4, and MoRgs7 were found to be particularly important in appressorium development. To explore the mechanisms by which these proteins regulate appressorium development, we have performed a comparative in planta transcriptomic study and identified an auxiliary activity family 9 protein (Aa9) homolog that we named MoAa91. We showed that MoAa91 was secreted from appressoria and that the recombinant MoAa91 could compete with a chitin elicitor-binding protein precursor (CEBiP) for chitin binding, thereby suppressing chitin-induced plant immunity. By identifying MoAa91 as a novel signaling molecule functioning in appressorium development and an effector in suppressing host immunity, our studies revealed a novel mechanism by which RGS and RGS-like proteins regulate pathogen-host interactions.




ot

Bordetella Dermonecrotic Toxin Is a Neurotropic Virulence Factor That Uses CaV3.1 as the Cell Surface Receptor

ABSTRACT

Dermonecrotic toxin (DNT) is one of the representative toxins produced by Bordetella pertussis, but its role in pertussis, B. pertussis infection, remains unknown. In this study, we identified the T-type voltage-gated Ca2+ channel CaV3.1 as the DNT receptor by CRISPR-Cas9-based genome-wide screening. As CaV3.1 is highly expressed in the nervous system, the neurotoxicity of DNT was examined. DNT affected cultured neural cells and caused flaccid paralysis in mice after intracerebral injection. No neurological symptoms were observed by intracerebral injection with the other major virulence factors of the organisms, pertussis toxin and adenylate cyclase toxin. These results indicate that DNT has aspects of the neurotropic virulence factor of B. pertussis. The possibility of the involvement of DNT in encephalopathy, which is a complication of pertussis, is also discussed.

IMPORTANCE Bordetella pertussis, which causes pertussis, a contagious respiratory disease, produces three major protein toxins, pertussis toxin, adenylate cyclase toxin, and dermonecrotic toxin (DNT), for which molecular actions have been elucidated. The former two toxins are known to be involved in the emergence of some clinical symptoms and/or contribute to the establishment of bacterial infection. In contrast, the role of DNT in pertussis remains unclear. Our study shows that DNT affects neural cells through specific binding to the T-type voltage-gated Ca2+ channel that is highly expressed in the central nervous system and leads to neurological disorders in mice after intracerebral injection. These data raise the possibility of DNT as an etiological agent for pertussis encephalopathy, a severe complication of B. pertussis infection.




ot

Flagellum-Mediated Mechanosensing and RflP Control Motility State of Pathogenic Escherichia coli

ABSTRACT

Bacterial flagellar motility plays an important role in many processes that occur at surfaces or in hydrogels, including adhesion, biofilm formation, and bacterium-host interactions. Consequently, expression of flagellar genes, as well as genes involved in biofilm formation and virulence, can be regulated by the surface contact. In a few bacterial species, flagella themselves are known to serve as mechanosensors, where an increased load on flagella experienced during surface contact or swimming in viscous media controls gene expression. In this study, we show that gene regulation by motility-dependent mechanosensing is common among pathogenic Escherichia coli strains. This regulatory mechanism requires flagellar rotation, and it enables pathogenic E. coli to repress flagellar genes at low loads in liquid culture, while activating motility in porous medium (soft agar) or upon surface contact. It also controls several other cellular functions, including metabolism and signaling. The mechanosensing response in pathogenic E. coli depends on the negative regulator of motility, RflP (YdiV), which inhibits basal expression of flagellar genes in liquid. While no conditional inhibition of flagellar gene expression in liquid and therefore no upregulation in porous medium was observed in the wild-type commensal or laboratory strains of E. coli, mechanosensitive regulation could be recovered by overexpression of RflP in the laboratory strain. We hypothesize that this conditional activation of flagellar genes in pathogenic E. coli reflects adaptation to the dual role played by flagella and motility during infection.

IMPORTANCE Flagella and motility are widespread virulence factors among pathogenic bacteria. Motility enhances the initial host colonization, but the flagellum is a major antigen targeted by the host immune system. Here, we demonstrate that pathogenic E. coli strains employ a mechanosensory function of the flagellar motor to activate flagellar expression under high loads, while repressing it in liquid culture. We hypothesize that this mechanism allows pathogenic E. coli to regulate its motility dependent on the stage of infection, activating flagellar expression upon initial contact with the host epithelium, when motility is beneficial, but reducing it within the host to delay the immune response.




ot

Towards a Mechanism for Poly(I{middle dot}C) Antiviral Priming in Oysters

ABSTRACT

Viral diseases cause significant losses in aquaculture. Prophylactic measures, such as immune priming, are promising control strategies. Treatment of the Pacific oyster (Crassostrea gigas) with the double-stranded RNA analog poly(I·C) confers long-term protection against infection with ostreid herpesvirus 1, the causative agent of Pacific oyster mortality syndrome. In a recent article in mBio, Lafont and coauthors (M. Lafont, A. Vergnes, J. Vidal-Dupiol, J. de Lorgeril, et al., mBio 11:e02777-19, 2020, https://doi.org/10.1128/mBio.02777-19) characterized the transcriptome of oysters treated with poly(I·C). This immune stimulator induced genes related to the interferon and apoptosis pathways. This response overlaps the response to viral infection, and high expression levels of potential effector genes are maintained for up to 4 months. This work opens the door to characterization of the phenomena of immune priming in a poorly studied invertebrate model. It also highlights the importance of interferon-like responses for invertebrate antiviral immunity.




ot

Protein-Mediated and RNA-Based Origins of Replication of Extrachromosomal Mycobacterial Prophages

ABSTRACT

Temperate bacteriophages are common and establish lysogens of their bacterial hosts in which the prophage is stably inherited. It is typical for such prophages to be integrated into the bacterial chromosome, but extrachromosomally replicating prophages have been described also, with the best characterized being the Escherichia coli phage P1 system. Among the large collection of sequenced mycobacteriophages, more than half are temperate or predicted to be temperate, most of which code for a tyrosine or serine integrase that promotes site-specific prophage integration. However, within the large group of 621 cluster A temperate phages, ~20% lack an integration cassette, which is replaced with a parABS partitioning system. A subset of these phages carry genes coding for a RepA-like protein (RepA phages), which we show here is necessary and sufficient for autonomous extrachromosomal replication. The non-RepA phages appear to replicate using an RNA-based system, as a parABS-proximal region expressing a noncoding RNA is required for replication. Both RepA and non-RepA phage-based plasmids replicate at one or two copies per cell, transform both Mycobacterium smegmatis and Mycobacterium tuberculosis, and are compatible with pAL5000-derived oriM and integration-proficient plasmid vectors. Characterization of these phage-based plasmids offers insights into the variability of lysogenic maintenance systems and provides a large suite of plasmids for actinobacterial genetics that vary in stability, copy number, compatibility, and host range.

IMPORTANCE Bacteriophages are the most abundant biological entities in the biosphere and are a source of uncharacterized biological mechanisms and genetic tools. Here, we identify segments of phage genomes that are used for stable extrachromosomal replication in the prophage state. Autonomous replication of some of these phages requires a RepA-like protein, although most lack repA and use RNA-based systems for replication initiation. We describe a suite of plasmids based on these prophage replication functions that vary in copy number, stability, host range, and compatibility. These plasmids expand the toolbox available for genetic manipulation of Mycobacterium and other Actinobacteria, including Gordonia terrae.




ot

Erratum for Dai et al., "Autoantibody-Mediated Erythrophagocytosis Increases Tuberculosis Susceptibility in HIV Patients"




ot

Deletion of the Zinc Transporter Lipoprotein AdcAII Causes Hyperencapsulation of Streptococcus pneumoniae Associated with Distinct Alleles of the Type I Restriction-Modification System

ABSTRACT

The capsule is the dominant Streptococcus pneumoniae virulence factor, yet how variation in capsule thickness is regulated is poorly understood. Here, we describe an unexpected relationship between mutation of adcAII, which encodes a zinc uptake lipoprotein, and capsule thickness. Partial deletion of adcAII in three of five capsular serotypes frequently resulted in a mucoid phenotype that biochemical analysis and electron microscopy of the D39 adcAII mutants confirmed was caused by markedly increased capsule thickness. Compared to D39, the hyperencapsulated adcAII mutant strain was more resistant to complement-mediated neutrophil killing and was hypervirulent in mouse models of invasive infection. Transcriptome analysis of D39 and the adcAII mutant identified major differences in transcription of the Sp_0505-0508 locus, which encodes an SpnD39III (ST5556II) type I restriction-modification system and allelic variation of which correlates with capsule thickness. A PCR assay demonstrated close linkage of the SpnD39IIIC and F alleles with the hyperencapsulated adcAII strains. However, transformation of adcAII with fixed SpnD39III alleles associated with normal capsule thickness did not revert the hyperencapsulated phenotype. Half of hyperencapsulated adcAII strains contained the same single nucleotide polymorphism in the capsule locus gene cps2E, which is required for the initiation of capsule synthesis. These results provide further evidence for the importance of the SpnD39III (ST5556II) type I restriction-modification system for modulating capsule thickness and identified an unexpected linkage between capsule thickness and mutation of adcAII. Further investigation will be needed to characterize how mutation of adcAII affects SpnD39III (ST5556II) allele dominance and results in the hyperencapsulated phenotype.

IMPORTANCE The Streptococcus pneumoniae capsule affects multiple interactions with the host including contributing to colonization and immune evasion. During infection, the capsule thickness varies, but the mechanisms regulating this are poorly understood. We have identified an unsuspected relationship between mutation of adcAII, a gene that encodes a zinc uptake lipoprotein, and capsule thickness. Mutation of adcAII resulted in a striking hyperencapsulated phenotype, increased resistance to complement-mediated neutrophil killing, and increased S. pneumoniae virulence in mouse models of infection. Transcriptome and PCR analysis linked the hyperencapsulated phenotype of the adcAII strain to specific alleles of the SpnD39III (ST5556II) type I restriction-modification system, a system which has previously been shown to affect capsule thickness. Our data provide further evidence for the importance of the SpnD39III (ST5556II) type I restriction-modification system for modulating capsule thickness and identify an unexpected link between capsule thickness and adcAII, further investigation of which could further characterize mechanisms of capsule regulation.




ot

Avoiding Drug Resistance by Substrate Envelope-Guided Design: Toward Potent and Robust HCV NS3/4A Protease Inhibitors

ABSTRACT

Hepatitis C virus (HCV) infects millions of people worldwide, causing chronic liver disease that can lead to cirrhosis, hepatocellular carcinoma, and liver transplant. In the last several years, the advent of direct-acting antivirals, including NS3/4A protease inhibitors (PIs), has remarkably improved treatment outcomes of HCV-infected patients. However, selection of resistance-associated substitutions and polymorphisms among genotypes can lead to drug resistance and in some cases treatment failure. A proactive strategy to combat resistance is to constrain PIs within evolutionarily conserved regions in the protease active site. Designing PIs using the substrate envelope is a rational strategy to decrease the susceptibility to resistance by using the constraints of substrate recognition. We successfully designed two series of HCV NS3/4A PIs to leverage unexploited areas in the substrate envelope to improve potency, specifically against resistance-associated substitutions at D168. Our design strategy achieved better resistance profiles over both the FDA-approved NS3/4A PI grazoprevir and the parent compound against the clinically relevant D168A substitution. Crystallographic structural analysis and inhibition assays confirmed that optimally filling the substrate envelope is critical to improve inhibitor potency while avoiding resistance. Specifically, inhibitors that enhanced hydrophobic packing in the S4 pocket and avoided an energetically frustrated pocket performed the best. Thus, the HCV substrate envelope proved to be a powerful tool to design robust PIs, offering a strategy that can be translated to other targets for rational design of inhibitors with improved potency and resistance profiles.

IMPORTANCE Despite significant progress, hepatitis C virus (HCV) continues to be a major health problem with millions of people infected worldwide and thousands dying annually due to resulting complications. Recent antiviral combinations can achieve >95% cure, but late diagnosis, low access to treatment, and treatment failure due to drug resistance continue to be roadblocks against eradication of the virus. We report the rational design of two series of HCV NS3/4A protease inhibitors with improved resistance profiles by exploiting evolutionarily constrained regions of the active site using the substrate envelope model. Optimally filling the S4 pocket is critical to avoid resistance and improve potency. Our results provide drug design strategies to avoid resistance that are applicable to other quickly evolving viral drug targets.




ot

A Virus Hosted in Malaria-Infected Blood Protects against T Cell-Mediated Inflammatory Diseases by Impairing DC Function in a Type I IFN-Dependent Manner

ABSTRACT

Coinfections shape immunity and influence the development of inflammatory diseases, resulting in detrimental or beneficial outcome. Coinfections with concurrent Plasmodium species can alter malaria clinical evolution, and malaria infection itself can modulate autoimmune reactions. Yet, the underlying mechanisms remain ill defined. Here, we demonstrate that the protective effects of some rodent malaria strains on T cell-mediated inflammatory pathologies are due to an RNA virus cohosted in malaria-parasitized blood. We show that live and extracts of blood parasitized by Plasmodium berghei K173 or Plasmodium yoelii 17X YM, protect against P. berghei ANKA-induced experimental cerebral malaria (ECM) and myelin oligodendrocyte glycoprotein (MOG)/complete Freund’s adjuvant (CFA)-induced experimental autoimmune encephalomyelitis (EAE), and that protection is associated with a strong type I interferon (IFN-I) signature. We detected the presence of the RNA virus lactate dehydrogenase-elevating virus (LDV) in the protective Plasmodium stabilates and we established that LDV infection alone was necessary and sufficient to recapitulate the protective effects on ECM and EAE. In ECM, protection resulted from an IFN-I-mediated reduction in the abundance of splenic conventional dendritic cell and impairment of their ability to produce interleukin (IL)-12p70, leading to a decrease in pathogenic CD4+ Th1 responses. In EAE, LDV infection induced IFN-I-mediated abrogation of IL-23, thereby preventing the differentiation of granulocyte-macrophage colony-stimulating factor (GM-CSF)-producing encephalitogenic CD4+ T cells. Our work identifies a virus cohosted in several Plasmodium stabilates across the community and deciphers its major consequences on the host immune system. More generally, our data emphasize the importance of considering contemporaneous infections for the understanding of malaria-associated and autoimmune diseases.

IMPORTANCE Any infection modifies the host immune status, potentially ameliorating or aggravating the pathophysiology of a simultaneous inflammatory condition. In the course of investigating how malaria infection modulates the severity of contemporaneous inflammatory diseases, we identified a nonpathogenic mouse virus in stabilates of two widely used rodent parasite lines: Plasmodium berghei K173 and Plasmodium yoelii 17X YM. We established that the protective effects of these Plasmodium lines on cerebral malaria and multiple sclerosis are exclusively due to this virus. The virus induces a massive type I interferon (IFN-I) response and causes quantitative and qualitative defects in the ability of dendritic cells to promote pathogenic T cell responses. Beyond revealing a possible confounding factor in rodent malaria models, our work uncovers some bases by which a seemingly innocuous viral (co)infection profoundly changes the immunopathophysiology of inflammatory diseases.




ot

A Chimeric Japanese Encephalitis Vaccine Protects against Lethal Yellow Fever Virus Infection without Inducing Neutralizing Antibodies

ABSTRACT

Recent outbreaks of yellow fever virus (YFV) in West Africa and Brazil resulted in rapid depletion of global vaccine emergency stockpiles and raised concerns about being unprepared against future YFV epidemics. Here we report that a live attenuated virus similar to the Japanese encephalitis virus (JEV) vaccine JE-CVax/Imojev that consists of YFV-17D vaccine from which the structural (prM/E) genes have been replaced with those of the JEV SA14-14-2 vaccine strain confers full protection in mice against lethal YFV challenge. In contrast to the YFV-17D-mediated protection against YFV, this protection is not mediated by neutralizing antibodies but correlates with YFV-specific nonneutralizing antibodies and T cell responses against cell-associated YFV NS1 and other YFV nonstructural (NS) proteins. Our findings reveal the potential of YFV NS proteins to mediate protection and demonstrate that chimeric flavivirus vaccines, such as Imojev, could confer protection against two flaviviruses. This dual protection may have implications for the possible off-label use of JE-CVax in case of emergency and vaccine shortage during YFV outbreaks. In addition, populations in Asia that have been vaccinated with Imojev may already be protected against YFV should outbreaks ever occur on that continent, as several countries/regions in the Asia-Pacific are vulnerable to international spread of the YFV.

IMPORTANCE Efficient and safe vaccines against yellow fever (e.g., YFV-17D) that provide long-lasting protection by rapidly inducing neutralizing antibody responses exist. However, the vaccine supply cannot cope with an increasing demand posed by urban outbreaks in recent years. Here we report that JE-CVax/Imojev, a YFV-17D-based chimeric Japanese encephalitis vaccine, also efficiently protects against YFV infection in mice. In case of shortage of the YFV vaccine during yellow fever outbreaks, (off-label) use of JE-CVax/Imojev may be considered. Moreover, wider use of JE-CVax/Imojev in Asia may lower the risk of the much-feared YFV spillover to the continent. More generally, chimeric vaccines that combine surface antigens and replication machineries of two distinct flaviviruses may be considered dual vaccines for the latter pathogen without induction of surface-specific antibodies. Following this rationale, novel flavivirus vaccines that do not hold a risk for antibody-dependent enhancement (ADE) of infection (inherent to current dengue vaccines and dengue vaccine candidates) could be designed.




ot

Single-Dose, Intranasal Immunization with Recombinant Parainfluenza Virus 5 Expressing Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Spike Protein Protects Mice from Fatal MERS-CoV Infection

ABSTRACT

Middle East respiratory syndrome coronavirus (MERS-CoV) can cause severe and fatal acute respiratory disease in humans and remains endemic in the Middle East since first being identified in 2012. There are currently no approved vaccines or therapies available for MERS-CoV. In this study, we evaluated parainfluenza virus 5 (PIV5)-based vaccine expressing the MERS-CoV envelope spike protein (PIV5/MERS-S) in a human DPP4 knockin C57BL/6 congenic mouse model (hDPP4 KI). Following a single-dose intranasal immunization, PIV5-MERS-S induced neutralizing antibody and robust T cell responses in hDPP4 KI mice. A single intranasal administration of 104 PFU PIV5-MERS-S provided complete protection against a lethal challenge with mouse-adapted MERS-CoV (MERSMA6.1.2) and improved virus clearance in the lung. In comparison, single-dose intramuscular immunization with 106 PFU UV-inactivated MERSMA6.1.2 mixed with Imject alum provided protection to only 25% of immunized mice. Intriguingly, an influx of eosinophils was observed only in the lungs of mice immunized with inactivated MERS-CoV, suggestive of a hypersensitivity-type response. Overall, our study indicated that PIV5-MERS-S is a promising effective vaccine candidate against MERS-CoV infection.

IMPORTANCE MERS-CoV causes lethal infection in humans, and there is no vaccine. Our work demonstrates that PIV5 is a promising vector for developing a MERS vaccine. Furthermore, success of PIV5-based MERS vaccine can be employed to develop a vaccine for emerging CoVs such as SARS-CoV-2, which causes COVID-19.




ot

Visualizing Association of the Retroviral Gag Protein with Unspliced Viral RNA in the Nucleus

ABSTRACT

Packaging of genomic RNA (gRNA) by retroviruses is essential for infectivity, yet the subcellular site of the initial interaction between the Gag polyprotein and gRNA remains poorly defined. Because retroviral particles are released from the plasma membrane, it was previously thought that Gag proteins initially bound to gRNA in the cytoplasm or at the plasma membrane. However, the Gag protein of the avian retrovirus Rous sarcoma virus (RSV) undergoes active nuclear trafficking, which is required for efficient gRNA encapsidation (L. Z. Scheifele, R. A. Garbitt, J. D. Rhoads, and L. J. Parent, Proc Natl Acad Sci U S A 99:3944–3949, 2002, https://doi.org/10.1073/pnas.062652199; R. Garbitt-Hirst, S. P. Kenney, and L. J. Parent, J Virol 83:6790–6797, 2009, https://doi.org/10.1128/JVI.00101-09). These results raise the intriguing possibility that the primary contact between Gag and gRNA might occur in the nucleus. To examine this possibility, we created a RSV proviral construct that includes 24 tandem repeats of MS2 RNA stem-loops, making it possible to track RSV viral RNA (vRNA) in live cells in which a fluorophore-conjugated MS2 coat protein is coexpressed. Using confocal microscopy, we observed that both wild-type Gag and a nuclear export mutant (Gag.L219A) colocalized with vRNA in the nucleus. In live-cell time-lapse images, the wild-type Gag protein trafficked together with vRNA as a single ribonucleoprotein (RNP) complex in the nucleoplasm near the nuclear periphery, appearing to traverse the nuclear envelope into the cytoplasm. Furthermore, biophysical imaging methods suggest that Gag and the unspliced vRNA physically interact in the nucleus. Taken together, these data suggest that RSV Gag binds unspliced vRNA to export it from the nucleus, possibly for packaging into virions as the viral genome.

IMPORTANCE Retroviruses cause severe diseases in animals and humans, including cancer and acquired immunodeficiency syndromes. To propagate infection, retroviruses assemble new virus particles that contain viral proteins and unspliced vRNA to use as gRNA. Despite the critical requirement for gRNA packaging, the molecular mechanisms governing the identification and selection of gRNA by the Gag protein remain poorly understood. In this report, we demonstrate that the Rous sarcoma virus (RSV) Gag protein colocalizes with unspliced vRNA in the nucleus in the interchromatin space. Using live-cell confocal imaging, RSV Gag and unspliced vRNA were observed to move together from inside the nucleus across the nuclear envelope, suggesting that the Gag-gRNA complex initially forms in the nucleus and undergoes nuclear export into the cytoplasm as a viral ribonucleoprotein (vRNP) complex.




ot

Histidine-Triad Hydrolases Provide Resistance to Peptide-Nucleotide Antibiotics

ABSTRACT

The Escherichia coli microcin C (McC) and related compounds are potent Trojan horse peptide-nucleotide antibiotics. The peptide part facilitates transport into sensitive cells. Inside the cell, the peptide part is degraded by nonspecific peptidases releasing an aspartamide-adenylate containing a phosphoramide bond. This nonhydrolyzable compound inhibits aspartyl-tRNA synthetase. In addition to the efficient export of McC outside the producing cells, special mechanisms have evolved to avoid self-toxicity caused by the degradation of the peptide part inside the producers. Here, we report that histidine-triad (HIT) hydrolases encoded in biosynthetic clusters of some McC homologs or by standalone genes confer resistance to McC-like compounds by hydrolyzing the phosphoramide bond in toxic aspartamide-adenosine, rendering them inactive.

IMPORTANCE Uncovering the mechanisms of resistance is a required step for countering the looming antibiotic resistance crisis. In this communication, we show how universally conserved histidine-triad hydrolases provide resistance to microcin C, a potent inhibitor of bacterial protein synthesis.




ot

Prokaryotic and Viral Community Composition of Freshwater Springs in Florida, USA

ABSTRACT

Aquifers, which are essential underground freshwater reservoirs worldwide, are understudied ecosystems that harbor diverse forms of microbial life. This study investigated the abundance and composition of prokaryotic and viral communities in the outflow of five springs across northern Florida, USA, as a proxy of microbial communities found in one of the most productive aquifers in the world, the Floridan aquifer. The average abundances of virus-like particles and prokaryotic cells were slightly lower than those reported from other groundwater systems, ranging from 9.6 x 103 ml–1 to 1.1 x 105 ml–1 and 2.2 x 103 ml–1 to 3.4 x 104 ml–1, respectively. Despite all of the springs being fed by the Floridan aquifer, sequencing of 16S rRNA genes and viral metagenomes (viromes) revealed unique communities in each spring, suggesting that groundwater microbial communities are influenced by land usage in recharge zones. The prokaryotic communities were dominated by Bacteria, and though the most abundant phyla (Proteobacteria, Cyanobacteria, and Bacteroidetes) were found in relatively high abundance across springs, variation was seen at finer taxonomic resolution. The viral sequences were most similar to those described from other aquatic environments. Sequencing resulted in the completion of 58 novel viral genomes representing members of the order Caudovirales as well as prokaryotic and eukaryotic single-stranded DNA (ssDNA) viruses. Sequences similar to those of ssDNA viruses were detected at all spring sites and dominated the identifiable sequences at one spring site, showing that these small viruses merit further investigation in groundwater systems.

IMPORTANCE Aquifer systems may hold up to 40% of the total microbial biomass on Earth. However, little is known about the composition of microbial communities within these critical freshwater ecosystems. Here, we took advantage of Florida’s first-magnitude springs (the highest spring classification based on water discharge), each discharging at least 246 million liters of water each day from the Floridan aquifer system (FAS), to investigate prokaryotic and viral communities from the aquifer. The FAS serves as a major source of potable water in the Southeastern United States, providing water for large cities and citizens in three states. Unfortunately, the health of the FAS and its associated springs has declined in the past few decades due to nutrient loading, increased urbanization and agricultural activity in aquifer recharge zones, and saltwater intrusion. This is the first study to describe the prokaryotic and viral communities in Florida’s first-magnitude springs, providing a baseline against which to compare future ecosystem change.




ot

Nonproteolytic K29-Linked Ubiquitination of the PB2 Replication Protein of Influenza A Viruses by Proviral Cullin 4-Based E3 Ligases

ABSTRACT

The multifunctional nature of viral proteins is essentially driven by posttranslational modifications (PTMs) and is key for the successful outcome of infection. For influenza A viruses (IAVs), a composite pattern of PTMs regulates the activity of viral proteins. However, almost none are known that target the PB2 replication protein, except for inducing its degradation. We show here that PB2 undergoes a nonproteolytic ubiquitination during infection. We identified E3 ubiquitin ligases catalyzing this ubiquitination as two multicomponent RING-E3 ligases based on cullin 4 (CRL4s), which are both contributing to the levels of ubiquitinated forms of PB2 in infected cells. The CRL4 E3 ligase activity is required for the normal progression of the viral cycle and for maximal virion production, indicating that the CRL4s mediate a ubiquitin signaling that promotes infection. The CRL4s are recruiting PB2 through an unconventional bimodal interaction with both the DDB1 adaptor and DCAF substrate receptors. While able to bind to PB2 when engaged in the viral polymerase complex, the CRL4 factors do not alter transcription and replication of the viral segments during infection. CRL4 ligases catalyze different patterns of lysine ubiquitination on PB2. Recombinant viruses mutated in the targeted lysines showed attenuated viral production, suggesting that CRL4-mediated ubiquitination of PB2 contributes to IAV infection. We identified K29-linked ubiquitin chains as main components of the nonproteolytic PB2 ubiquitination mediated by the CRL4s, providing the first example of the role of this atypical ubiquitin linkage in the regulation of a viral infection.

IMPORTANCE Successful infection by influenza A virus, a pathogen of major public health importance, involves fine regulation of the multiple functions of the viral proteins, which often relies on post-translational modifications (PTMs). The PB2 protein of influenza A viruses is essential for viral replication and a key determinant of host range. While PTMs of PB2 inducing its degradation have been identified, here we show that PB2 undergoes a regulating PTM signaling detected during infection, based on an atypical K29-linked ubiquitination and mediated by two multicomponent E3 ubiquitin ligases. Recombinant viruses impaired for CRL4-mediated ubiquitination are attenuated, indicating that ubiquitination of PB2 is necessary for an optimal influenza A virus infection. The CRL4 E3 ligases are required for normal viral cycle progression and for maximal virion production. Consequently, they represent potential candidate host factors for antiviral targets.




ot

Modulation of the Gut Microbiota during High-Dose Glycerol Monolaurate-Mediated Amelioration of Obesity in Mice Fed a High-Fat Diet

ABSTRACT

Obesity and associated metabolic disorders are worldwide public health issues. The gut microbiota plays a key role in the pathophysiology of diet-induced obesity. Glycerol monolaurate (GML) is a widely consumed food emulsifier with antibacterial properties. Here, we explore the anti-obesity effect of GML (1,600 mg/kg of body weight) in high-fat diet (HFD)-fed mice. HFD-fed mice were treated with 1,600 mg/kg GML. Integrated microbiome, metabolome, and transcriptome analyses were used to systematically investigate the metabolic effects of GML, and antibiotic treatment was used to assess the effects of GML on the gut microbiota. Our data indicated that GML significantly reduced body weight and visceral fat deposition, improved hyperlipidemia and hepatic lipid metabolism, and ameliorated glucose homeostasis and inflammation in HFD-fed mice. Importantly, GML modulated HFD-induced gut microbiota dysbiosis and selectively increased the abundance of Bifidobacterium pseudolongum. Antibiotic treatment abolished all the GML-mediated metabolic improvements. A multiomics (microbiome, metabolome, and transcriptome) association study showed that GML significantly modulated glycerophospholipid metabolism, and the abundance of Bifidobacterium pseudolongum strongly correlated with the metabolites and genes that participated in glycerophospholipid metabolism. Our results indicated that GML may be provided for obesity prevention by targeting the gut microbiota and regulating glycerophospholipid metabolism.




ot

Synergy between Cell Surface Glycosidases and Glycan-Binding Proteins Dictates the Utilization of Specific Beta(1,3)-Glucans by Human Gut Bacteroides

ABSTRACT

The human gut microbiota (HGM) has far-reaching impacts on human health and nutrition, which are fueled primarily by the metabolism of otherwise indigestible complex carbohydrates commonly known as dietary fiber. However, the molecular basis of the ability of individual taxa of the HGM to address specific dietary glycan structures remains largely unclear. In particular, the utilization of β(1,3)-glucans, which are widespread in the human diet as yeast, seaweed, and plant cell walls, had not previously been resolved. Through a systems-based approach, here we show that the symbiont Bacteroides uniformis deploys a single, exemplar polysaccharide utilization locus (PUL) to access yeast β(1,3)-glucan, brown seaweed β(1,3)-glucan (laminarin), and cereal mixed-linkage β(1,3)/β(1,4)-glucan. Combined biochemical, enzymatic, and structural analysis of PUL-encoded glycoside hydrolases (GHs) and surface glycan-binding proteins (SGBPs) illuminates a concerted molecular system by which B. uniformis recognizes and saccharifies these distinct β-glucans. Strikingly, the functional characterization of homologous β(1,3)-glucan utilization loci (1,3GUL) in other Bacteroides further demonstrated that the ability of individual taxa to utilize β(1,3)-glucan variants and/or β(1,3)/β(1,4)-glucans arises combinatorially from the individual specificities of SGBPs and GHs at the cell surface, which feed corresponding signals to periplasmic hybrid two-component sensors (HTCSs) via TonB-dependent transporters (TBDTs). These data reveal the importance of cooperativity in the adaptive evolution of GH and SGBP cohorts to address individual polysaccharide structures. We anticipate that this fine-grained knowledge of PUL function will inform metabolic network analysis and proactive manipulation of the HGM. Indeed, a survey of 2,441 public human metagenomes revealed the international, yet individual-specific, distribution of each 1,3GUL.

IMPORTANCE Bacteroidetes are a dominant phylum of the human gut microbiota (HGM) that target otherwise indigestible dietary fiber with an arsenal of polysaccharide utilization loci (PULs), each of which is dedicated to the utilization of a specific complex carbohydrate. Here, we provide novel insight into this paradigm through functional characterization of homologous PULs from three autochthonous Bacteroides species, which target the family of dietary β(1,3)-glucans. Through detailed biochemical and protein structural analysis, we observed an unexpected diversity in the substrate specificity of PUL glycosidases and glycan-binding proteins with regard to β(1,3)-glucan linkage and branching patterns. In combination, these individual enzyme and protein specificities support taxon-specific growth on individual β(1,3)-glucans. This detailed metabolic insight, together with a comprehensive survey of individual 1,3GULs across human populations, further expands the fundamental roadmap of the HGM, with potential application to the future development of microbial intervention therapies.




ot

Intercellular Transmission of a Synthetic Bacterial Cytotoxic Prion-Like Protein in Mammalian Cells

ABSTRACT

RepA is a bacterial protein that builds intracellular amyloid oligomers acting as inhibitory complexes of plasmid DNA replication. When carrying a mutation enhancing its amyloidogenesis (A31V), the N-terminal domain (WH1) generates cytosolic amyloid particles that are inheritable within a bacterial lineage. Such amyloids trigger in bacteria a lethal cascade reminiscent of mitochondrial impairment in human cells affected by neurodegeneration. To fulfill all the criteria to qualify as a prion-like protein, horizontal (intercellular) transmissibility remains to be demonstrated for RepA-WH1. Since this is experimentally intractable in bacteria, here we transiently expressed in a murine neuroblastoma cell line the soluble, barely cytotoxic RepA-WH1 wild type [RepA-WH1(WT)] and assayed its response to exposure to in vitro-assembled RepA-WH1(A31V) amyloid fibers. In parallel, murine cells releasing RepA-WH1(A31V) aggregates were cocultured with human neuroblastoma cells expressing RepA-WH1(WT). Both the assembled fibers and donor-derived RepA-WH1(A31V) aggregates induced, in the cytosol of recipient cells, the formation of cytotoxic amyloid particles. Mass spectrometry analyses of the proteomes of both types of injured cells pointed to alterations in mitochondria, protein quality triage, signaling, and intracellular traffic. Thus, a synthetic prion-like protein can be propagated to, and become cytotoxic to, cells of organisms placed at such distant branches of the tree of life as bacteria and mammalia, suggesting that mechanisms of protein aggregate spreading and toxicity follow default pathways.

IMPORTANCE Proteotoxic amyloid seeds can be transmitted between mammalian cells, arguing that the intercellular exchange of prion-like protein aggregates can be a common phenomenon. RepA-WH1 is derived from a bacterial intracellular functional amyloid protein, engineered to become cytotoxic in Escherichia coli. Here, we have studied if such bacterial aggregates can also be transmitted to, and become cytotoxic to, mammalian cells. We demonstrate that RepA-WH1 is capable of entering naive cells, thereby inducing the cytotoxic aggregation of a soluble RepA-WH1 variant expressed in the cytosol, following the same trend that had been described in bacteria. These findings highlight the universality of one of the central principles underlying prion biology: No matter the biological origin of a given prion-like protein, it can be transmitted to a phylogenetically unrelated recipient cell, provided that the latter expresses a soluble protein onto which the incoming protein can readily template its amyloid conformation.




ot

The WblC/WhiB7 Transcription Factor Controls Intrinsic Resistance to Translation-Targeting Antibiotics by Altering Ribosome Composition

ABSTRACT

Bacteria that encounter antibiotics can efficiently change their physiology to develop resistance. This intrinsic antibiotic resistance is mediated by multiple pathways, including a regulatory system(s) that activates specific genes. In some Streptomyces and Mycobacterium spp., the WblC/WhiB7 transcription factor is required for intrinsic resistance to translation-targeting antibiotics. Wide conservation of WblC/WhiB7 within Actinobacteria indicates a critical role of WblC/WhiB7 in developing resistance to such antibiotics. Here, we identified 312 WblC target genes in Streptomyces coelicolor, a model antibiotic-producing bacterium, using a combined analysis of RNA sequencing and chromatin immunoprecipitation sequencing. Interestingly, WblC controls many genes involved in translation, in addition to previously identified antibiotic resistance genes. Moreover, WblC promotes translation rate during antibiotic stress by altering the ribosome-associated protein composition. Our genome-wide analyses highlight a previously unappreciated antibiotic resistance mechanism that modifies ribosome composition and maintains the translation rate in the presence of sub-MIC levels of antibiotics.

IMPORTANCE The emergence of antibiotic-resistant bacteria is one of the top threats in human health. Therefore, we need to understand how bacteria acquire resistance to antibiotics and continue growth even in the presence of antibiotics. Streptomyces coelicolor, an antibiotic-producing soil bacterium, intrinsically develops resistance to translation-targeting antibiotics. Intrinsic resistance is controlled by the WblC/WhiB7 transcription factor that is highly conserved within Actinobacteria, including Mycobacterium tuberculosis. Here, identification of the WblC/WhiB7 regulon revealed that WblC/WhiB7 controls ribosome maintenance genes and promotes translation in the presence of antibiotics by altering the composition of ribosome-associated proteins. Also, the WblC-mediated ribosomal alteration is indeed required for resistance to translation-targeting antibiotics. This suggests that inactivation of the WblC/WhiB7 regulon could be a potential target to treat antibiotic-resistant mycobacteria.




ot

Global Trends in Proteome Remodeling of the Outer Membrane Modulate Antimicrobial Permeability in Klebsiella pneumoniae

ABSTRACT

In Gram-negative bacteria, the permeability of the outer membrane governs rates of antibiotic uptake and thus the efficacy of antimicrobial treatment. Hydrophilic drugs like β-lactam antibiotics depend on diffusion through pore-forming outer membrane proteins to reach their intracellular targets. In this study, we investigated the distribution of porin genes in more than 2,700 Klebsiella isolates and found a widespread loss of OmpK35 functionality, particularly in those strains isolated from clinical environments. Using a defined set of outer-membrane-remodeled mutants, the major porin OmpK35 was shown to be largely responsible for β-lactam permeation. Sequence similarity network analysis characterized the porin protein subfamilies and led to discovery of a new porin family member, OmpK38. Structure-based comparisons of OmpK35, OmpK36, OmpK37, OmpK38, and PhoE showed near-identical pore frameworks but defining differences in the sequence characteristics of the extracellular loops. Antibiotic sensitivity profiles of isogenic Klebsiella pneumoniae strains, each expressing a different porin as its dominant pore, revealed striking differences in the antibiotic permeability characteristics of each channel in a physiological context. Since K. pneumoniae is a nosocomial pathogen with high rates of antimicrobial resistance and concurrent mortality, these experiments elucidate the role of porins in conferring specific drug-resistant phenotypes in a global context, informing future research to combat antimicrobial resistance in K. pneumoniae.

IMPORTANCE Klebsiella pneumoniae is a pathogen of humans with high rates of mortality and a recognized global rise in incidence of carbapenem-resistant K. pneumoniae (CRKP). The outer membrane of K. pneumoniae forms a permeability barrier that modulates the ability of antibiotics to reach their intracellular target. OmpK35, OmpK36, OmpK37, OmpK38, PhoE, and OmpK26 are porins in the outer membrane of K. pneumoniae, demonstrated here to have a causative relationship to drug resistance phenotypes in a physiological context. The data highlight that currently trialed combination treatments with a carbapenem and β-lactamase inhibitors could be effective on porin-deficient K. pneumoniae. Together with structural data, the results reveal the role of outer membrane proteome remodeling in antimicrobial resistance of K. pneumoniae and point to the role of extracellular loops, not channel parameters, in drug permeation. This significant finding warrants care in the development of phage therapies for K. pneumoniae infections, given the way porin expression will be modulated to confer phage-resistant—and collateral drug-resistant—phenotypes in K. pneumoniae.




ot

YejM Modulates Activity of the YciM/FtsH Protease Complex To Prevent Lethal Accumulation of Lipopolysaccharide

ABSTRACT

Lipopolysaccharide (LPS) is an essential glycolipid present in the outer membrane (OM) of many Gram-negative bacteria. Balanced biosynthesis of LPS is critical for cell viability; too little LPS weakens the OM, while too much LPS is lethal. In Escherichia coli, this balance is maintained by the YciM/FtsH protease complex, which adjusts LPS levels by degrading the LPS biosynthesis enzyme LpxC. Here, we provide evidence that activity of the YciM/FtsH protease complex is inhibited by the essential protein YejM. Using strains in which LpxC activity is reduced, we show that yciM is epistatic to yejM, demonstrating that YejM acts upstream of YciM to prevent toxic overproduction of LPS. Previous studies have shown that this toxicity can be suppressed by deleting lpp, which codes for a highly abundant OM lipoprotein. It was assumed that deletion of lpp restores lipid balance by increasing the number of acyl chains available for glycerophospholipid biosynthesis. We show that this is not the case. Rather, our data suggest that preventing attachment of lpp to the peptidoglycan sacculus allows excess LPS to be shed in vesicles. We propose that this loss of OM material allows continued transport of LPS to the OM, thus preventing lethal accumulation of LPS within the inner membrane. Overall, our data justify the commitment of three essential inner membrane proteins to avoid toxic over- or underproduction of LPS.

IMPORTANCE Gram-negative bacteria are encapsulated by an outer membrane (OM) that is impermeable to large and hydrophobic molecules. As such, these bacteria are intrinsically resistant to several clinically relevant antibiotics. To better understand how the OM is established or maintained, we sought to clarify the function of the essential protein YejM in Escherichia coli. Here, we show that YejM inhibits activity of the YciM/FtsH protease complex, which regulates synthesis of the essential OM glycolipid lipopolysaccharide (LPS). Our data suggest that disrupting proper communication between LPS synthesis and transport to the OM leads to accumulation of LPS within the inner membrane (IM). The lethality associated with this event can be suppressed by increasing OM vesiculation. Our research has identified a completely novel signaling pathway that we propose coordinates LPS synthesis and transport.




ot

A Sensitive Yellow Fever Virus Entry Reporter Identifies Valosin-Containing Protein (VCP/p97) as an Essential Host Factor for Flavivirus Uncoating

ABSTRACT

While the basic mechanisms of flavivirus entry and fusion are understood, little is known about the postfusion events that precede RNA replication, such as nucleocapsid disassembly. We describe here a sensitive, conditionally replication-defective yellow fever virus (YFV) entry reporter, YFVSK/Nluc, to quantitively monitor the translation of incoming, virus particle-delivered genomes. We validated that YFVSK/Nluc gene expression can be neutralized by YFV-specific antisera and requires known flavivirus entry pathways and cellular factors, including clathrin- and dynamin-mediated endocytosis, endosomal acidification, YFV E glycoprotein-mediated fusion, and cellular LY6E and RPLP1 expression. The initial round of YFV translation was shown to require cellular ubiquitylation, consistent with recent findings that dengue virus capsid protein must be ubiquitylated in order for nucleocapsid uncoating to occur. Importantly, translation of incoming YFV genomes also required valosin-containing protein (VCP)/p97, a cellular ATPase that unfolds and extracts ubiquitylated client proteins from large complexes. RNA transfection and washout experiments showed that VCP/p97 functions at a postfusion, pretranslation step in YFV entry. Finally, VCP/p97 activity was required by other flaviviruses in mammalian cells and by YFV in mosquito cells. Together, these data support a critical role for VCP/p97 in the disassembly of incoming flavivirus nucleocapsids during a postfusion step in virus entry.

IMPORTANCE Flaviviruses are an important group of RNA viruses that cause significant human disease. The mechanisms by which flavivirus nucleocapsids are disassembled during virus entry remain unclear. Here, we used a yellow fever virus entry reporter, which expresses a sensitive reporter enzyme but does not replicate, to show that nucleocapsid disassembly requires the cellular protein-disaggregating enzyme valosin-containing protein, also known as p97.




ot

Targeting Hidden Pathogens: Cell-Penetrating Enzybiotics Eradicate Intracellular Drug-Resistant Staphylococcus aureus

ABSTRACT

Staphylococcus aureus is a major concern in human health care, mostly due to the increasing prevalence of antibiotic resistance. Intracellular localization of S. aureus plays a key role in recurrent infections by protecting the pathogens from antibiotics and immune responses. Peptidoglycan hydrolases (PGHs) are highly specific bactericidal enzymes active against both drug-sensitive and -resistant bacteria. However, PGHs able to effectively target intracellular S. aureus are not yet available. To overcome this limitation, we first screened 322 recombineered PGHs for staphylolytic activity under conditions found inside eukaryotic intracellular compartments. The most active constructs were modified by fusion to different cell-penetrating peptides (CPPs), resulting in increased uptake and enhanced intracellular killing (reduction by up to 4.5 log units) of various S. aureus strains (including methicillin-resistant S. aureus [MRSA]) in different tissue culture infection models. The combined application of synergistic PGH-CPP constructs further enhanced their intracellular efficacy. Finally, synergistically active PGH-CPP cocktails reduced the total S. aureus by more than 2.2 log units in a murine abscess model after peripheral injection. Significantly more intracellular bacteria were killed by the PGH-CPPs than by the PGHs alone. Collectively, our findings show that CPP-fused PGHs are effective novel protein therapeutics against both intracellular and drug-resistant S. aureus.

IMPORTANCE The increasing prevalence of antibiotic-resistant bacteria is one of the most urgent problems of our time. Staphylococcus aureus is an important human pathogen that has acquired several mechanisms to evade antibiotic treatment. In addition, S. aureus is able to invade and persist within human cells, hiding from the immune response and antibiotic therapies. For these reasons, novel antibacterial strategies against these pathogens are needed. Here, we developed lytic enzymes which are able to effectively target drug-resistant and intracellular S. aureus. Fusion of these so-called enzybiotics to cell-penetrating peptides enhanced their uptake and intracellular bactericidal activity in cell culture and in an abscess mouse model. Our results suggest that cell-penetrating enzybiotics are a promising new class of therapeutics against staphylococcal infections.




ot

X-Linked RNA-Binding Motif Protein Modulates HIV-1 Infection of CD4+ T Cells by Maintaining the Trimethylation of Histone H3 Lysine 9 at the Downstream Region of the 5' Long Terminal Repeat of HIV Proviral DNA

ABSTRACT

Reversible repression of HIV-1 5' long terminal repeat (5'-LTR)-mediated transcription represents the main mechanism for HIV-1 to maintain latency. Identification of host factors that modulate LTR activity and viral latency may help develop new antiretroviral therapies. The heterogeneous nuclear ribonucleoproteins (hnRNPs) are known to regulate gene expression and possess multiple physiological functions. hnRNP family members have recently been identified as the sensors for viral nucleic acids to induce antiviral responses, highlighting the crucial roles of hnRNPs in regulating viral infection. A member of the hnRNP family, X-linked RNA-binding motif protein (RBMX), has been identified in this study as a novel HIV-1 restriction factor that modulates HIV-1 5'-LTR-driven transcription of viral genome in CD4+ T cells. Mechanistically, RBMX binds to HIV-1 proviral DNA at the LTR downstream region and maintains the repressive trimethylation of histone H3 lysine 9 (H3K9me3), leading to a blockage of the recruitment of the positive transcription factor phosphorylated RNA polymerase II (RNA pol II) and consequential impediment of transcription elongation. This RBMX-mediated modulation of HIV-1 transcription maintains viral latency by inhibiting viral reactivation from an integrated proviral DNA. Our findings provide a new understanding of how host factors modulate HIV-1 infection and latency and suggest a potential new target for the development of HIV-1 therapies.

IMPORTANCE HIV-1 latency featuring silence of transcription from HIV-1 proviral DNA represents a major obstacle for HIV-1 eradication. Reversible repression of HIV-1 5'-LTR-mediated transcription represents the main mechanism for HIV-1 to maintain latency. The 5'-LTR-driven HIV gene transcription can be modulated by multiple host factors and mechanisms. The hnRNPs are known to regulate gene expression. A member of the hnRNP family, RBMX, has been identified in this study as a novel HIV-1 restriction factor that modulates HIV-1 5'-LTR-driven transcription of viral genome in CD4+ T cells and maintains viral latency. These findings provide a new understanding of how host factors modulate HIV-1 infection and latency and suggest a potential new target for the development of HIV-1 therapies.




ot

Erratum for Teymournejad et al., "Isolation and Molecular Analysis of a Novel Neorickettsia Species That Causes Potomac Horse Fever"




ot

"Candidatus Ethanoperedens," a Thermophilic Genus of Archaea Mediating the Anaerobic Oxidation of Ethane

ABSTRACT

Cold seeps and hydrothermal vents deliver large amounts of methane and other gaseous alkanes into marine surface sediments. Consortia of archaea and partner bacteria thrive on the oxidation of these alkanes and its coupling to sulfate reduction. The inherently slow growth of the involved organisms and the lack of pure cultures have impeded the understanding of the molecular mechanisms of archaeal alkane degradation. Here, using hydrothermal sediments of the Guaymas Basin (Gulf of California) and ethane as the substrate, we cultured microbial consortia of a novel anaerobic ethane oxidizer, "Candidatus Ethanoperedens thermophilum" (GoM-Arc1 clade), and its partner bacterium "Candidatus Desulfofervidus auxilii," previously known from methane-oxidizing consortia. The sulfate reduction activity of the culture doubled within one week, indicating a much faster growth than in any other alkane-oxidizing archaea described before. The dominance of a single archaeal phylotype in this culture allowed retrieval of a closed genome of "Ca. Ethanoperedens," a sister genus of the recently reported ethane oxidizer "Candidatus Argoarchaeum." The metagenome-assembled genome of "Ca. Ethanoperedens" encoded a complete methanogenesis pathway including a methyl-coenzyme M reductase (MCR) that is highly divergent from those of methanogens and methanotrophs. Combined substrate and metabolite analysis showed ethane as the sole growth substrate and production of ethyl-coenzyme M as the activation product. Stable isotope probing demonstrated that the enzymatic mechanism of ethane oxidation in "Ca. Ethanoperedens" is fully reversible; thus, its enzymatic machinery has potential for the biotechnological development of microbial ethane production from carbon dioxide.

IMPORTANCE In the seabed, gaseous alkanes are oxidized by syntrophic microbial consortia that thereby reduce fluxes of these compounds into the water column. Because of the immense quantities of seabed alkane fluxes, these consortia are key catalysts of the global carbon cycle. Due to their obligate syntrophic lifestyle, the physiology of alkane-degrading archaea remains poorly understood. We have now cultivated a thermophilic, relatively fast-growing ethane oxidizer in partnership with a sulfate-reducing bacterium known to aid in methane oxidation and have retrieved the first complete genome of a short-chain alkane-degrading archaeon. This will greatly enhance the understanding of nonmethane alkane activation by noncanonical methyl-coenzyme M reductase enzymes and provide insights into additional metabolic steps and the mechanisms underlying syntrophic partnerships. Ultimately, this knowledge could lead to the biotechnological development of alkanogenic microorganisms to support the carbon neutrality of industrial processes.




ot

Temporal Dynamics of the Adult Female Lower Urinary Tract Microbiota

ABSTRACT

Temporal dynamics of certain human microbiotas have been described in longitudinal studies; variability often relates to modifiable factors or behaviors. Early studies of the urinary microbiota preferentially used samples obtained by transurethral catheterization to minimize vulvovaginal microbial contributions. Whereas voided specimens are preferred for longitudinal studies, the few studies that reported longitudinal data were limited to women with lower urinary tract (LUT) symptoms, due to ease of accessing a clinical population for sampling and the impracticality and risk of collecting repeated catheterized urine specimens in a nonclinical population. Here, we studied the microbiota of the LUT of nonsymptomatic, premenopausal women using midstream voided urine (MSU) specimens to investigate relationships between microbial dynamics and personal factors. Using 16S rRNA gene sequencing and a metaculturomics method called expanded quantitative urine culture (EQUC), we characterized the microbiotas of MSU and periurethral swab specimens collected daily for approximately 3 months from a small cohort of adult women. Participants were screened for eligibility, including the ability to self-collect paired urogenital specimens prior to enrollment. In this population, we found that measures of microbial dynamics related to specific participant-reported factors, particularly menstruation and vaginal intercourse. Further investigation of the trends revealed differences in the composition and diversity of LUT microbiotas within and across participants. These data, in combination with previous studies showing relationships between the LUT microbiota and LUT symptoms, suggest that personal factors relating to the genitourinary system may be an important consideration in the etiology, prevention, and/or treatment of LUT disorders.

IMPORTANCE Following the discovery of the collective human urinary microbiota, important knowledge gaps remain, including the stability and variability of this microbial niche over time. Initial urinary studies preferentially utilized samples obtained by transurethral catheterization to minimize contributions from vulvovaginal microbes. However, catheterization has the potential to alter the urinary microbiota; therefore, voided specimens are preferred for longitudinal studies. In this report, we describe microbial findings obtained by daily assessment over 3 months in a small cohort of adult women. We found that, similarly to vaginal microbiotas, lower urinary tract (LUT) microbiotas are dynamic, with changes relating to several factors, particularly menstruation and vaginal intercourse. Our study results show that LUT microbiotas are both dynamic and resilient. They also offer novel opportunities to target LUT microbiotas by preventative or therapeutic means, through risk and/or protective factor modification.




ot

Deep Sequencing Uncovers Caste-Associated Diversity of Symbionts in the Social Ant Camponotus japonicus

ABSTRACT

Symbiotic microorganisms can have a profound impact on the host physiology and behavior, and novel relationships between symbionts and their hosts are continually discovered. A colony of social ants consists of various castes that exhibit distinct lifestyles and is, thus, a unique model for investigating how symbionts may be involved in host eusociality. Yet our knowledge of social ant-symbiont dynamics has remained rudimentary. Through 16S rRNA gene deep sequencing of the carpenter ant Camponotus japonicus symbiont community across various castes, we here report caste-dependent diversity of commensal gut microbiota and lineage divergence of "Candidatus Blochmannia," an obligate endosymbiont. While most prevalent gut-associated bacterial populations are found across all castes (Alphaproteobacteria, Gammaproteobacteria, Bacteroidetes, and Cyanobacteria), we also discovered uncultured populations that are found only in males (belonging to Corynebacteriales, Alkanindiges, and Burkholderia). Most of those populations are not detected in laboratory-maintained queens and workers, suggesting that they are facultative gut symbionts introduced via environmental acquisition. Further inspection of "Ca. Blochmannia" endosymbionts reveals that two populations are dominant in all individuals across all castes but that males preferentially contain two different sublineages that are diversified from others. Clearly, each caste has distinct symbiont communities, suggesting an overlooked biological aspect of host-symbiont interaction in social insects.

IMPORTANCE Social animals, such as primates and some insects, have been shown to exchange symbiotic microbes among individuals through sharing diet or habitats, resulting in increased consistency of microbiota among social partners. The ant is a representative of social insects exhibiting various castes within a colony; queens, males, and nonreproductive females (so-called workers) show distinct morphologies, physiologies, and behaviors but tightly interact with each other in the nest. However, how this social context affects their gut microbiota has remained unclear. In this study, we deeply sequenced the gut symbiont community across various castes of the carpenter ant Camponotus japonicus. We report caste-dependent diversity of commensal gut microbial community and lineage divergence of the mutualistic endosymbiont "Candidatus Blochmannia." This report sheds light on the hidden diversity in microbial populations and community structure associated with guts of males in social ants.




ot

The Proteasome Governs Fungal Morphogenesis via Functional Connections with Hsp90 and cAMP-Protein Kinase A Signaling

ABSTRACT

Protein homeostasis is critical for proliferation and viability of all organisms. For Candida albicans, protein homeostasis also modulates the transition between yeast and filamentous forms, which is critical for virulence. A key regulator of morphogenesis is the molecular chaperone Hsp90, which mediates proteostasis under physiological and stress conditions. Hsp90 regulates morphogenesis by repressing cyclic AMP-protein kinase A (cAMP-PKA) signaling, such that inhibition of Hsp90 causes filamentation in the absence of an inducing cue. We explored the effect of perturbation of another facet of protein homeostasis and discovered that morphogenesis is also regulated by the proteasome, a large 33-subunit protein complex consisting of a 20S catalytic core and two 19S regulatory particles, which controls degradation of intracellular proteins. We identified a conserved role of the proteasome in morphogenesis as pharmacological inhibition of the proteasome induced filamentation of C. albicans and the related species Candida dubliniensis, Candida tropicalis, Candida krusei, and Candida parapsilosis. For C. albicans, genetic depletion of any of 29 subunits of the 19S or 20S particle induced filamentation. Filaments induced by inhibition of either the proteasome or Hsp90 have shared structural characteristics, such as aberrant nuclear content, and shared genetic dependencies, such as intact cAMP-PKA signaling. Consistent with a functional connection between these facets of protein homeostasis that modulate morphogenesis, we observed that proteasome inhibition results in an accumulation of ubiquitinated proteins that overwhelm Hsp90 function, relieving Hsp90-mediated repression of morphogenesis. Together, our findings provide a mechanism whereby interconnected facets of proteostasis regulate C. albicans morphogenesis.

IMPORTANCE Fungi cause life-threatening infections and pose a serious threat to human health as there are very few effective antifungal drugs. Candida albicans is a major human fungal pathogen and cause of morbidity and mortality in immunocompromised individuals. A key trait that enables C. albicans virulence is its ability to transition between yeast and filamentous forms. Understanding the mechanisms regulating this virulence trait can facilitate the development of much-needed, novel therapeutic strategies. A key regulator of morphogenesis is the molecular chaperone Hsp90, which is crucial for proteostasis. Here, we expanded our understanding of how proteostasis regulates fungal morphogenesis and identified the proteasome as a repressor of filamentation in C. albicans and related species. Our work suggests that proteasome inhibition overwhelms Hsp90 function, thereby inducing morphogenesis. This work provides a foundation for understanding the role of the proteasome in fungal virulence and offers potential for targeting the proteasome to disarm fungal pathogens.




ot

APOBEC3C Tandem Domain Proteins Create Super Restriction Factors against HIV-1

ABSTRACT

Humans encode proteins, called restriction factors, that inhibit replication of viruses such as HIV-1. The members of one family of antiviral proteins, apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3; shortened here to A3), act by deaminating cytidines to uridines during the reverse transcription reaction of HIV-1. The A3 locus encodes seven genes, named A3A to A3H. These genes have either one or two cytidine deaminase domains, and several of these A3s potently restrict HIV-1. A3C, which has only a single cytidine deaminase domain, however, inhibits HIV-1 only very weakly. We tested novel double domain protein combinations by genetically linking two A3C genes to make a synthetic tandem domain protein. This protein created a "super restriction factor" that had more potent antiviral activity than the native A3C protein, which correlated with increased packaging into virions. Furthermore, disabling one of the active sites of the synthetic tandem domain protein resulted in an even greater increase in the antiviral activity—recapitulating a similar evolution seen in A3F and A3G (double domain A3s that use only a single catalytically active deaminase domain). These A3C tandem domain proteins do not have an increase in mutational activity but instead inhibit formation of reverse transcription products, which correlates with their ability to form large higher-order complexes in cells. Finally, the A3C-A3C super restriction factor largely escaped antagonism by the HIV-1 viral protein Vif.

IMPORTANCE As a part of the innate immune system, humans encode proteins that inhibit viruses such as HIV-1. These broadly acting antiviral proteins do not protect humans from viral infections because viruses encode proteins that antagonize the host antiviral proteins to evade the innate immune system. One such example of a host antiviral protein is APOBEC3C (A3C), which weakly inhibits HIV-1. Here, we show that we can improve the antiviral activity of A3C by duplicating the DNA sequence to create a synthetic tandem domain and, furthermore, that the proteins thus generated are relatively resistant to the viral antagonist Vif. Together, these data give insights about how nature has evolved a defense against viral pathogens such as HIV.




ot

Structural Analysis of an L-Cysteine Desulfurase from an Ssp DNA Phosphorothioation System

ABSTRACT

DNA phosphorothioate (PT) modification, in which the nonbridging oxygen in the sugar-phosphate backbone is substituted by sulfur, is catalyzed by DndABCDE or SspABCD in a double-stranded or single-stranded manner, respectively. In Dnd and Ssp systems, mobilization of sulfur in PT formation starts with the activation of the sulfur atom of cysteine catalyzed by the DndA and SspA cysteine desulfurases, respectively. Despite playing the same biochemical role, SspA cannot be functionally replaced by DndA, indicating its unique physiological properties. In this study, we solved the crystal structure of Vibrio cyclitrophicus SspA in complex with its natural substrate, cysteine, and cofactor, pyridoxal phosphate (PLP), at a resolution of 1.80 Å. Our solved structure revealed the molecular mechanism that SspA employs to recognize its cysteine substrate and PLP cofactor, suggesting a common binding mode shared by cysteine desulfurases. In addition, although the distance between the catalytic Cys314 and the substrate cysteine is 8.9 Å, which is too far for direct interaction, our structural modeling and biochemical analysis revealed a conformational change in the active site region toward the cysteine substrate to move them close to each other to facilitate the nucleophilic attack. Finally, the pulldown analysis showed that SspA could form a complex with SspD, an ATP pyrophosphatase, suggesting that SspD might potentially accept the activated sulfur atom directly from SspA, providing further insights into the biochemical pathway of Ssp-mediated PT modification.

IMPORTANCE Apart from its roles in Fe-S cluster assembly, tRNA thiolation, and sulfur-containing cofactor biosynthesis, cysteine desulfurase serves as a sulfur donor in the DNA PT modification, in which a sulfur atom substitutes a nonbridging oxygen in the DNA phosphodiester backbone. The initial sulfur mobilization from l-cysteine is catalyzed by the SspA cysteine desulfurase in the SspABCD-mediated DNA PT modification system. By determining the crystal structure of SspA, the study presents the molecular mechanism that SspA employs to recognize its cysteine substrate and PLP cofactor. To overcome the long distance (8.9 Å) between the catalytic Cys314 and the cysteine substrate, a conformational change occurs to bring Cys314 to the vicinity of the substrate, allowing for nucleophilic attack.




ot

Novel Divisome-Associated Protein Spatially Coupling the Z-Ring with the Chromosomal Replication Terminus in Caulobacter crescentus

ABSTRACT

Cell division requires proper spatial coordination with the chromosome, which undergoes dynamic changes during chromosome replication and segregation. FtsZ is a bacterial cytoskeletal protein that assembles into the Z-ring, providing a platform to build the cell division apparatus. In the model bacterium Caulobacter crescentus, the cellular localization of the Z-ring is controlled during the cell cycle in a chromosome replication-coupled manner. Although dynamic localization of the Z-ring at midcell is driven primarily by the replication origin-associated FtsZ inhibitor MipZ, the mechanism ensuring accurate positioning of the Z-ring remains unclear. In this study, we showed that the Z-ring colocalizes with the replication terminus region, located opposite the origin, throughout most of the C. crescentus cell cycle. Spatial organization of the two is mediated by ZapT, a previously uncharacterized protein that interacts with the terminus region and associates with ZapA and ZauP, both of which are part of the incipient division apparatus. While the Z-ring and the terminus region coincided with the presence of ZapT, colocalization of the two was perturbed in cells lacking zapT, which is accompanied by delayed midcellular positioning of the Z-ring. Moreover, cells overexpressing ZapT showed compromised positioning of the Z-ring and MipZ. These findings underscore the important role of ZapT in controlling cell division processes. We propose that ZapT acts as a molecular bridge that physically links the terminus region to the Z-ring, thereby ensuring accurate site selection for the Z-ring. Because ZapT is conserved in proteobacteria, these findings may define a general mechanism coordinating cell division with chromosome organization.

IMPORTANCE Growing bacteria require careful tuning of cell division processes with dynamic organization of replicating chromosomes. In enteric bacteria, ZapA associates with the cytoskeletal Z-ring and establishes a physical linkage to the chromosomal replication terminus through its interaction with ZapB-MatP-DNA complexes. However, because ZapB and MatP are found only in enteric bacteria, it remains unclear how the Z-ring and the terminus are coordinated in the vast majority of bacteria. Here, we provide evidence that a novel conserved protein, termed ZapT, mediates colocalization of the Z-ring with the terminus in Caulobacter crescentus, a model organism that is phylogenetically distant from enteric bacteria. Given that ZapT facilitates cell division processes in C. crescentus, this study highlights the universal importance of the physical linkage between the Z-ring and the terminus in maintaining cell integrity.




ot

Advances in Understanding the Human Urinary Microbiome and Its Potential Role in Urinary Tract Infection

ABSTRACT

Recent advances in the analysis of microbial communities colonizing the human body have identified a resident microbial community in the human urinary tract (UT). Compared to many other microbial niches, the human UT harbors a relatively low biomass. Studies have identified many genera and species that may constitute a core urinary microbiome. However, the contribution of the UT microbiome to urinary tract infection (UTI) and recurrent UTI (rUTI) pathobiology is not yet clearly understood. Evidence suggests that commensal species within the UT and urogenital tract (UGT) microbiomes, such as Lactobacillus crispatus, may act to protect against colonization with uropathogens. However, the mechanisms and fundamental biology of the urinary microbiome-host relationship are not understood. The ability to measure and characterize the urinary microbiome has been enabled through the development of next-generation sequencing and bioinformatic platforms that allow for the unbiased detection of resident microbial DNA. Translating technological advances into clinical insight will require further study of the microbial and genomic ecology of the urinary microbiome in both health and disease. Future diagnostic, prognostic, and therapeutic options for the management of UTI may soon incorporate efforts to measure, restore, and/or preserve the native, healthy ecology of the urinary microbiomes.




ot

Minnesota association acknowledges states ancestral lands, residents

In a nod to the people who came before them — and those who still live among them — the Minnesota Public Health Association is acknowledging ancestral lands.




ot

Indirect Evidence of Bourbon Virus (Thogotovirus, Orthomyxoviridae) Infection in North Carolina

To the Editor—Bourbon virus (Thogotovirus, Orthomyxoviridae) was discovered in 2014 when a patient with history of multiple tick bites in Kansas died from an unknown infection [1]. Human infections from Bourbon virus have now been recognized in several states (i.e., Kansas, Oklahoma, Missouri). The virus was detected in collections of the lone star tick (Amblyomma americanum) in Missouri [2]. A serosurvey of domestic and wild mammals in Missouri noted the presence of Bourbon virus-neutralizing antibodies in serum samples collected from a variety of species, but most frequently in white-tailed deer (Odocoileus virginianus) and raccoon (Procyon lotor) [3]. We report here that neutralizing antibodies against Bourbon virus were detected in white-tailed deer in North Carolina, suggesting that the virus is present in the state. We screened 32 white-tailed deer for the presence of Bourbon virus-specific neutralizing antibodies. Of 20 plasma samples that reacted with the virus, 18 were confirmed with neutralizing antibody titers ranging from 10 to ≥ 320 for a seroprevalence rate of 56% (95% confidence interval 39%–72%). The seropositive samples were from deer killed during the 2014 hunting season from Stanly and New Hanover counties.

The incidence of Bourbon virus infection in humans in North Carolina is unknown. However, given the abundance of the lone star tick in the state, and the notable proportion of deer with evidence of infection, human infections have likely gone unnoticed or possibly misdiagnosed. Human infection with Bourbon virus results in a nonspecific viral syndrome that includes fever, nausea, diarrhea, myalgia (muscle pain), arthralgia...




ot

Sometimes You Seek the Spotlight. Sometimes it Finds You.

For decades, government, health systems, universities, foundations, exceptional individuals, and thought leaders across North Carolina have been testing, implementing, modifying, and just plain trying new ways of improving the way we seek, receive, and experience health care.

More recently, North Carolina has been striving to not simply address the cost, efficiency, and value that are so frustratingly elusive in health care, but also recognizing that we simply need to improve the health of our residents. We have looked to interventions both compatible with and beyond health care to do this.

The National Academy of Medicine, formerly the National Institute of Medicine, since 2016 has boldly laid out Vital Directions in Health Care, focusing on 19 priority issues and recommendations for health policy to better achieve health and well-being for all Americans. They have taken their show on the road, beyond the halls of Congress and think tanks and universities to the people on the ground in states across the country to present, discuss, listen, and learn how policy recommendations come to life.

This issue of the journal highlights the National Academy of Medicine bringing its spotlight to North Carolina last November, an acknowledgment that states are often where policy is put into action, and that North Carolina has been a leader in innovating, planning, implementing, and evaluating again and again to get better and better results for our residents. Pull your chair up to the edge of the stage for a good read in the glow of the spotlight.




ot

Clinical and pathologic phenotype of a large family with heterozygous STUB1 mutation

Objective

To describe the clinical and pathologic features of a novel pedigree with heterozygous STUB1 mutation causing SCA48.

Methods

We report a large pedigree of Dutch decent. Clinical and pathologic data were reviewed, and genetic analyses (whole-exome sequencing, whole-genome sequencing, and linkage analysis) were performed on multiple family members.

Results

Patients presented with adult-onset gait disturbance (ataxia or parkinsonism), combined with prominent cognitive decline and behavioral changes. Whole-exome sequencing identified a novel heterozygous frameshift variant c.731_732delGC (p.C244Yfs*24) in STUB1 segregating with the disease. This variant was present in a linkage peak on chromosome 16p13.3. Neuropathologic examination of 3 cases revealed a consistent pattern of ubiquitin/p62-positive neuronal inclusions in the cerebellum, neocortex, and brainstem. In addition, tau pathology was present in 1 case.

Conclusions

This study confirms previous findings of heterozygous STUB1 mutations as the cause of SCA48 and highlights its prominent cognitive involvement, besides cerebellar ataxia and movement disorders as cardinal features. The presence of intranuclear inclusions is a pathologic hallmark of the disease. Future studies will provide more insight into its pathologic heterogeneity.




ot

TGM6 L517W is not a pathogenic variant for spinocerebellar ataxia type 35

Objective

To investigate the pathogenicity of the TGM6 variant for spinocerebellar ataxia 35 (SCA35), which was previously reported to be caused by pathogenic mutations in the gene TGM6.

Methods

Neurologic assessment and brain MRI were performed to provide detailed description of the phenotype. Whole-exome sequencing and dynamic mutation analysis were performed to identify the genotype.

Results

The proband, presenting with myoclonic epilepsy, cognitive decline, and ataxia, harbored both the TGM6 p.L517W variant and expanded CAG repeats in gene ATN1. Further analysis of the other living family members in this pedigree revealed that the CAG repeat number was expanded in all the patients and within normal range in all the unaffected family members. However, the TGM6 p.L517W variant was absent in 2 affected family members, but present in 3 healthy individuals.

Conclusions

The nonsegregation of the TGM6 variant with phenotype does not support this variant as the disease-causing gene in this pedigree, questioning the pathogenicity of TGM6 in SCA35.