id Rapid Recovery in Total Joint Arthroplasty By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9783030412234 978-3-030-41223-4 Full Article
id Pediatric surgery : a quick guide to decision-making By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Author: Roy Choudhury, Subhasis, author.Callnumber: OnlineISBN: 9789811063046 (electronic bk.) Full Article
id Orchid biology : recent trends & challenges By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9789813294561 (electronic bk.) Full Article
id Microbial cyclic di-nucleotide signaling By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9783030333089 Full Article
id Mayo Clinic strategies to reduce burnout : 12 actions to create the ideal workplace By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Author: Swensen, Stephen J., author.Callnumber: OnlineISBN: 9780190848996 electronic book Full Article
id Management of fractured endodontic instruments : a clinical guide By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9783319606514 (electronic bk.) Full Article
id Low-dose radiation effects on animals and ecosystems : long-term study on the Fukushima Nuclear Accident By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9789811382185 (electronic bk.) Full Article
id Ketamine : from abused drug to rapid-acting antidepressant By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9789811529023 Full Article
id Insect collection and identification : techniques for the field and laboratory By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Author: Gibb, Timothy J., author.Callnumber: OnlineISBN: 9780128165713 (ePub ebook) Full Article
id Implants in the aesthetic zone : a guide for treatment of the partially edentulous patient By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9783319726014 (electronic bk.) Full Article
id Healthcare-associated infections in children : a guide to prevention and management By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9783319981222 (electronic bk.) Full Article
id Health consequences of microbial interactions with hydrocarbons, oils, and lipids By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9783319724737 (electronic bk.) Full Article
id Fractures in the elderly : a guide to practical management By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9783319722283 (electronic bk.) Full Article
id Evolutionary developmental biology : a reference guide By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9783319330389 (electronic bk.) Full Article
id Epidemics and society : from the Black Death to the present By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Author: Snowden, Frank M. (Frank Martin), 1946- author.Callnumber: OnlineISBN: 9780300249149 (electronic book) Full Article
id Ecophysiology of pesticides : interface between pesticide chemistry and plant physiology By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Author: Parween, Talat, author.Callnumber: OnlineISBN: 9780128176146 Full Article
id Consequences of microbial interactions with hydrocarbons, oils, and lipids : biodegradation and bioremediation By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9783319445359 (electronic bk.) Full Article
id Common problems in the newborn nursery : an evidence and case-based guide By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9783319956725 (electronic bk.) Full Article
id Carotenoids : properties, processing and applications By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9780128173145 (electronic bk.) Full Article
id Biomedical product development : bench to bedside By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9783030356262 (electronic bk.) Full Article
id Biology and ecology of venomous marine cnidarians By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Author: Santhanam, Ramasamy, 1946- authorCallnumber: OnlineISBN: 9789811516030 (electronic bk.) Full Article
id Anomalies of the Developing Dentition : a Clinical Guide to Diagnosis and Management By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Author: Soxman, Jane A., author.Callnumber: OnlineISBN: 9783030031640 (electronic bk.) Full Article
id Anaerobic utilization of hydrocarbons, oils, and lipids By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9783319503912 (electronic bk.) Full Article
id An encyclopaedia of British bridges By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Author: McFetrich, David, author.Callnumber: OnlineISBN: 9781526752963 (electronic bk.) Full Article
id Advanced age geriatric care : a comprehensive guide By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9783319969985 (electronic bk.) Full Article
id A treatise on topical corticosteroids in dermatology : use, misuse and abuse By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9789811046094 Full Article
id COVID-19 Update By www.eastgwillimbury.ca Published On :: Wed, 06 May 2020 18:48:44 GMT Full Article
id Hays County Joins the Texas Purchasing Group by BidNet Direct By www.prweb.com Published On :: Hays County announced it has joined the Texas Purchasing Group and will be publishing and distributing upcoming bid opportunities on the system along with their current platform in these unprecedented...(PRWeb April 09, 2020)Read the full story at https://www.prweb.com/releases/hays_county_joins_the_texas_purchasing_group_by_bidnet_direct/prweb17021429.htm Full Article
id New Partnerships Emerge for COVID-19 Relief: Dade County Farm Bureau... By www.prweb.com Published On :: Harvested produce crops feed Florida Department of Corrections’ (FDC) more than 87,000 inmates; action saves food costs while reducing COVID-19 related supply chain impacts.(PRWeb April 20, 2020)Read the full story at https://www.prweb.com/releases/new_partnerships_emerge_for_covid_19_relief_dade_county_farm_bureau_teams_with_state_leaders_to_launch_farm_to_inmate_program/prweb17052045.htm Full Article
id PMA Reveals New Logo and Brand Identity By www.prweb.com Published On :: PMA, a premier full-service provider of comprehensive financial and investment advisory services to municipalities, school districts, local government pools, insurance companies and other...(PRWeb May 04, 2020)Read the full story at https://www.prweb.com/releases/pma_reveals_new_logo_and_brand_identity/prweb17090459.htm Full Article
id Uniformly valid confidence intervals post-model-selection By projecteuclid.org Published On :: Mon, 17 Feb 2020 04:02 EST François Bachoc, David Preinerstorfer, Lukas Steinberger. Source: The Annals of Statistics, Volume 48, Number 1, 440--463.Abstract: We suggest general methods to construct asymptotically uniformly valid confidence intervals post-model-selection. The constructions are based on principles recently proposed by Berk et al. ( Ann. Statist. 41 (2013) 802–837). In particular, the candidate models used can be misspecified, the target of inference is model-specific, and coverage is guaranteed for any data-driven model selection procedure. After developing a general theory, we apply our methods to practically important situations where the candidate set of models, from which a working model is selected, consists of fixed design homoskedastic or heteroskedastic linear models, or of binary regression models with general link functions. In an extensive simulation study, we find that the proposed confidence intervals perform remarkably well, even when compared to existing methods that are tailored only for specific model selection procedures. Full Article
id Testing for principal component directions under weak identifiability By projecteuclid.org Published On :: Mon, 17 Feb 2020 04:02 EST Davy Paindaveine, Julien Remy, Thomas Verdebout. Source: The Annals of Statistics, Volume 48, Number 1, 324--345.Abstract: We consider the problem of testing, on the basis of a $p$-variate Gaussian random sample, the null hypothesis $mathcal{H}_{0}:oldsymbol{ heta}_{1}=oldsymbol{ heta}_{1}^{0}$ against the alternative $mathcal{H}_{1}:oldsymbol{ heta}_{1} eq oldsymbol{ heta}_{1}^{0}$, where $oldsymbol{ heta}_{1}$ is the “first” eigenvector of the underlying covariance matrix and $oldsymbol{ heta}_{1}^{0}$ is a fixed unit $p$-vector. In the classical setup where eigenvalues $lambda_{1}>lambda_{2}geq cdots geq lambda_{p}$ are fixed, the Anderson ( Ann. Math. Stat. 34 (1963) 122–148) likelihood ratio test (LRT) and the Hallin, Paindaveine and Verdebout ( Ann. Statist. 38 (2010) 3245–3299) Le Cam optimal test for this problem are asymptotically equivalent under the null hypothesis, hence also under sequences of contiguous alternatives. We show that this equivalence does not survive asymptotic scenarios where $lambda_{n1}/lambda_{n2}=1+O(r_{n})$ with $r_{n}=O(1/sqrt{n})$. For such scenarios, the Le Cam optimal test still asymptotically meets the nominal level constraint, whereas the LRT severely overrejects the null hypothesis. Consequently, the former test should be favored over the latter one whenever the two largest sample eigenvalues are close to each other. By relying on the Le Cam’s asymptotic theory of statistical experiments, we study the non-null and optimality properties of the Le Cam optimal test in the aforementioned asymptotic scenarios and show that the null robustness of this test is not obtained at the expense of power. Our asymptotic investigation is extensive in the sense that it allows $r_{n}$ to converge to zero at an arbitrary rate. While we restrict to single-spiked spectra of the form $lambda_{n1}>lambda_{n2}=cdots =lambda_{np}$ to make our results as striking as possible, we extend our results to the more general elliptical case. Finally, we present an illustrative real data example. Full Article
id Bootstrap confidence regions based on M-estimators under nonstandard conditions By projecteuclid.org Published On :: Mon, 17 Feb 2020 04:02 EST Stephen M. S. Lee, Puyudi Yang. Source: The Annals of Statistics, Volume 48, Number 1, 274--299.Abstract: Suppose that a confidence region is desired for a subvector $ heta $ of a multidimensional parameter $xi =( heta ,psi )$, based on an M-estimator $hat{xi }_{n}=(hat{ heta }_{n},hat{psi }_{n})$ calculated from a random sample of size $n$. Under nonstandard conditions $hat{xi }_{n}$ often converges at a nonregular rate $r_{n}$, in which case consistent estimation of the distribution of $r_{n}(hat{ heta }_{n}- heta )$, a pivot commonly chosen for confidence region construction, is most conveniently effected by the $m$ out of $n$ bootstrap. The above choice of pivot has three drawbacks: (i) the shape of the region is either subjectively prescribed or controlled by a computationally intensive depth function; (ii) the region is not transformation equivariant; (iii) $hat{xi }_{n}$ may not be uniquely defined. To resolve the above difficulties, we propose a one-dimensional pivot derived from the criterion function, and prove that its distribution can be consistently estimated by the $m$ out of $n$ bootstrap, or by a modified version of the perturbation bootstrap. This leads to a new method for constructing confidence regions which are transformation equivariant and have shapes driven solely by the criterion function. A subsampling procedure is proposed for selecting $m$ in practice. Empirical performance of the new method is illustrated with examples drawn from different nonstandard M-estimation settings. Extension of our theory to row-wise independent triangular arrays is also explored. Full Article
id Tracy–Widom limit for Kendall’s tau By projecteuclid.org Published On :: Wed, 30 Oct 2019 22:03 EDT Zhigang Bao. Source: The Annals of Statistics, Volume 47, Number 6, 3504--3532.Abstract: In this paper, we study a high-dimensional random matrix model from nonparametric statistics called the Kendall rank correlation matrix, which is a natural multivariate extension of the Kendall rank correlation coefficient. We establish the Tracy–Widom law for its largest eigenvalue. It is the first Tracy–Widom law for a nonparametric random matrix model, and also the first Tracy–Widom law for a high-dimensional U-statistic. Full Article
id On partial-sum processes of ARMAX residuals By projecteuclid.org Published On :: Wed, 30 Oct 2019 22:03 EDT Steffen Grønneberg, Benjamin Holcblat. Source: The Annals of Statistics, Volume 47, Number 6, 3216--3243.Abstract: We establish general and versatile results regarding the limit behavior of the partial-sum process of ARMAX residuals. Illustrations include ARMA with seasonal dummies, misspecified ARMAX models with autocorrelated errors, nonlinear ARMAX models, ARMA with a structural break, a wide range of ARMAX models with infinite-variance errors, weak GARCH models and the consistency of kernel estimation of the density of ARMAX errors. Our results identify the limit distributions, and provide a general algorithm to obtain pivot statistics for CUSUM tests. Full Article
id The middle-scale asymptotics of Wishart matrices By projecteuclid.org Published On :: Fri, 02 Aug 2019 22:04 EDT Didier Chételat, Martin T. Wells. Source: The Annals of Statistics, Volume 47, Number 5, 2639--2670.Abstract: We study the behavior of a real $p$-dimensional Wishart random matrix with $n$ degrees of freedom when $n,p ightarrowinfty$ but $p/n ightarrow0$. We establish the existence of phase transitions when $p$ grows at the order $n^{(K+1)/(K+3)}$ for every $Kinmathbb{N}$, and derive expressions for approximating densities between every two phase transitions. To do this, we make use of a novel tool we call the $mathcal{F}$-conjugate of an absolutely continuous distribution, which is obtained from the Fourier transform of the square root of its density. In the case of the normalized Wishart distribution, this represents an extension of the $t$-distribution to the space of real symmetric matrices. Full Article
id Semiparametrically point-optimal hybrid rank tests for unit roots By projecteuclid.org Published On :: Fri, 02 Aug 2019 22:04 EDT Bo Zhou, Ramon van den Akker, Bas J. M. Werker. Source: The Annals of Statistics, Volume 47, Number 5, 2601--2638.Abstract: We propose a new class of unit root tests that exploits invariance properties in the Locally Asymptotically Brownian Functional limit experiment associated to the unit root model. The invariance structures naturally suggest tests that are based on the ranks of the increments of the observations, their average and an assumed reference density for the innovations. The tests are semiparametric in the sense that they are valid, that is, have the correct (asymptotic) size, irrespective of the true innovation density. For a correctly specified reference density, our test is point-optimal and nearly efficient. For arbitrary reference densities, we establish a Chernoff–Savage-type result, that is, our test performs as well as commonly used tests under Gaussian innovations but has improved power under other, for example, fat-tailed or skewed, innovation distributions. To avoid nonparametric estimation, we propose a simplified version of our test that exhibits the same asymptotic properties, except for the Chernoff–Savage result that we are only able to demonstrate by means of simulations. Full Article
id Cross validation for locally stationary processes By projecteuclid.org Published On :: Wed, 22 May 2019 04:01 EDT Stefan Richter, Rainer Dahlhaus. Source: The Annals of Statistics, Volume 47, Number 4, 2145--2173.Abstract: We propose an adaptive bandwidth selector via cross validation for local M-estimators in locally stationary processes. We prove asymptotic optimality of the procedure under mild conditions on the underlying parameter curves. The results are applicable to a wide range of locally stationary processes such linear and nonlinear processes. A simulation study shows that the method works fairly well also in misspecified situations. Full Article
id grid computing By looselycoupled.com Published On :: 2004-08-30T00:00:00-00:00 Pooled computer resources. Grid computing, or simply grid, is the generic term given to techniques and technologies designed to make pools of distributed computer resources available on-demand. Grid computing was originally conceived by research scientists as a way of combining computers across a network to form a distributed supercomputer to tackle complex computations. In the commercial world, grid aims to maximize the utilization of an organization's computing resources by making them shareable across applications (sometimes called virtualization) and, potentially, provide computing on demand to third parties as a utility service. When used with specifications such as WSRF and WS-Notification, grid resources can appear as web services within a service-oriented architecture. Full Article
id middleware By looselycoupled.com Published On :: 2005-01-15T20:00:00-00:00 Integration software. Middleware is the term coined to describe software that connects other software together. In the early days of computing, each software system in an organization was a separate 'stovepipe' or 'silo' that stood alone and was dedicated to automating a specific part of the business or its IT operations. Middleware aims to connect those individual islands of automation, both within an enterprise and out to external systems (for example at customers and suppliers). For a long while, middleware has either been custom coded for individual projects or has come in the form of proprietary products or suites, most notably as enterprise application integration (EAI) software. The emergence of industry-agreed web services specifications is now enabling convergence on standards-based distributed middleware, which in theory should allow all systems to automatically connect together on demand. Full Article
id Integrative survival analysis with uncertain event times in application to a suicide risk study By projecteuclid.org Published On :: Wed, 15 Apr 2020 22:05 EDT Wenjie Wang, Robert Aseltine, Kun Chen, Jun Yan. Source: The Annals of Applied Statistics, Volume 14, Number 1, 51--73.Abstract: The concept of integrating data from disparate sources to accelerate scientific discovery has generated tremendous excitement in many fields. The potential benefits from data integration, however, may be compromised by the uncertainty due to incomplete/imperfect record linkage. Motivated by a suicide risk study, we propose an approach for analyzing survival data with uncertain event times arising from data integration. Specifically, in our problem deaths identified from the hospital discharge records together with reported suicidal deaths determined by the Office of Medical Examiner may still not include all the death events of patients, and the missing deaths can be recovered from a complete database of death records. Since the hospital discharge data can only be linked to the death record data by matching basic patient characteristics, a patient with a censored death time from the first dataset could be linked to multiple potential event records in the second dataset. We develop an integrative Cox proportional hazards regression in which the uncertainty in the matched event times is modeled probabilistically. The estimation procedure combines the ideas of profile likelihood and the expectation conditional maximization algorithm (ECM). Simulation studies demonstrate that under realistic settings of imperfect data linkage the proposed method outperforms several competing approaches including multiple imputation. A marginal screening analysis using the proposed integrative Cox model is performed to identify risk factors associated with death following suicide-related hospitalization in Connecticut. The identified diagnostics codes are consistent with existing literature and provide several new insights on suicide risk, prediction and prevention. Full Article
id A simple, consistent estimator of SNP heritability from genome-wide association studies By projecteuclid.org Published On :: Wed, 27 Nov 2019 22:01 EST Armin Schwartzman, Andrew J. Schork, Rong Zablocki, Wesley K. Thompson. Source: The Annals of Applied Statistics, Volume 13, Number 4, 2509--2538.Abstract: Analysis of genome-wide association studies (GWAS) is characterized by a large number of univariate regressions where a quantitative trait is regressed on hundreds of thousands to millions of single-nucleotide polymorphism (SNP) allele counts, one at a time. This article proposes an estimator of the SNP heritability of the trait, defined here as the fraction of the variance of the trait explained by the SNPs in the study. The proposed GWAS heritability (GWASH) estimator is easy to compute, highly interpretable and is consistent as the number of SNPs and the sample size increase. More importantly, it can be computed from summary statistics typically reported in GWAS, not requiring access to the original data. The estimator takes full account of the linkage disequilibrium (LD) or correlation between the SNPs in the study through moments of the LD matrix, estimable from auxiliary datasets. Unlike other proposed estimators in the literature, we establish the theoretical properties of the GWASH estimator and obtain analytical estimates of the precision, allowing for power and sample size calculations for SNP heritability estimates and forming a firm foundation for future methodological development. Full Article
id A nonparametric spatial test to identify factors that shape a microbiome By projecteuclid.org Published On :: Wed, 27 Nov 2019 22:01 EST Susheela P. Singh, Ana-Maria Staicu, Robert R. Dunn, Noah Fierer, Brian J. Reich. Source: The Annals of Applied Statistics, Volume 13, Number 4, 2341--2362.Abstract: The advent of high-throughput sequencing technologies has made data from DNA material readily available, leading to a surge of microbiome-related research establishing links between markers of microbiome health and specific outcomes. However, to harness the power of microbial communities we must understand not only how they affect us, but also how they can be influenced to improve outcomes. This area has been dominated by methods that reduce community composition to summary metrics, which can fail to fully exploit the complexity of community data. Recently, methods have been developed to model the abundance of taxa in a community, but they can be computationally intensive and do not account for spatial effects underlying microbial settlement. These spatial effects are particularly relevant in the microbiome setting because we expect communities that are close together to be more similar than those that are far apart. In this paper, we propose a flexible Bayesian spike-and-slab variable selection model for presence-absence indicators that accounts for spatial dependence and cross-dependence between taxa while reducing dimensionality in both directions. We show by simulation that in the presence of spatial dependence, popular distance-based hypothesis testing methods fail to preserve their advertised size, and the proposed method improves variable selection. Finally, we present an application of our method to an indoor fungal community found within homes across the contiguous United States. Full Article
id A latent discrete Markov random field approach to identifying and classifying historical forest communities based on spatial multivariate tree species counts By projecteuclid.org Published On :: Wed, 27 Nov 2019 22:01 EST Stephen Berg, Jun Zhu, Murray K. Clayton, Monika E. Shea, David J. Mladenoff. Source: The Annals of Applied Statistics, Volume 13, Number 4, 2312--2340.Abstract: The Wisconsin Public Land Survey database describes historical forest composition at high spatial resolution and is of interest in ecological studies of forest composition in Wisconsin just prior to significant Euro-American settlement. For such studies it is useful to identify recurring subpopulations of tree species known as communities, but standard clustering approaches for subpopulation identification do not account for dependence between spatially nearby observations. Here, we develop and fit a latent discrete Markov random field model for the purpose of identifying and classifying historical forest communities based on spatially referenced multivariate tree species counts across Wisconsin. We show empirically for the actual dataset and through simulation that our latent Markov random field modeling approach improves prediction and parameter estimation performance. For model fitting we introduce a new stochastic approximation algorithm which enables computationally efficient estimation and classification of large amounts of spatial multivariate count data. Full Article
id Objective Bayes model selection of Gaussian interventional essential graphs for the identification of signaling pathways By projecteuclid.org Published On :: Wed, 27 Nov 2019 22:01 EST Federico Castelletti, Guido Consonni. Source: The Annals of Applied Statistics, Volume 13, Number 4, 2289--2311.Abstract: A signalling pathway is a sequence of chemical reactions initiated by a stimulus which in turn affects a receptor, and then through some intermediate steps cascades down to the final cell response. Based on the technique of flow cytometry, samples of cell-by-cell measurements are collected under each experimental condition, resulting in a collection of interventional data (assuming no latent variables are involved). Usually several external interventions are applied at different points of the pathway, the ultimate aim being the structural recovery of the underlying signalling network which we model as a causal Directed Acyclic Graph (DAG) using intervention calculus. The advantage of using interventional data, rather than purely observational one, is that identifiability of the true data generating DAG is enhanced. More technically a Markov equivalence class of DAGs, whose members are statistically indistinguishable based on observational data alone, can be further decomposed, using additional interventional data, into smaller distinct Interventional Markov equivalence classes. We present a Bayesian methodology for structural learning of Interventional Markov equivalence classes based on observational and interventional samples of multivariate Gaussian observations. Our approach is objective, meaning that it is based on default parameter priors requiring no personal elicitation; some flexibility is however allowed through a tuning parameter which regulates sparsity in the prior on model space. Based on an analytical expression for the marginal likelihood of a given Interventional Essential Graph, and a suitable MCMC scheme, our analysis produces an approximate posterior distribution on the space of Interventional Markov equivalence classes, which can be used to provide uncertainty quantification for features of substantive scientific interest, such as the posterior probability of inclusion of selected edges, or paths. Full Article
id Joint model of accelerated failure time and mechanistic nonlinear model for censored covariates, with application in HIV/AIDS By projecteuclid.org Published On :: Wed, 27 Nov 2019 22:01 EST Hongbin Zhang, Lang Wu. Source: The Annals of Applied Statistics, Volume 13, Number 4, 2140--2157.Abstract: For a time-to-event outcome with censored time-varying covariates, a joint Cox model with a linear mixed effects model is the standard modeling approach. In some applications such as AIDS studies, mechanistic nonlinear models are available for some covariate process such as viral load during anti-HIV treatments, derived from the underlying data-generation mechanisms and disease progression. Such a mechanistic nonlinear covariate model may provide better-predicted values when the covariates are left censored or mismeasured. When the focus is on the impact of the time-varying covariate process on the survival outcome, an accelerated failure time (AFT) model provides an excellent alternative to the Cox proportional hazard model since an AFT model is formulated to allow the influence of the outcome by the entire covariate process. In this article, we consider a nonlinear mixed effects model for the censored covariates in an AFT model, implemented using a Monte Carlo EM algorithm, under the framework of a joint model for simultaneous inference. We apply the joint model to an HIV/AIDS data to gain insights for assessing the association between viral load and immunological restoration during antiretroviral therapy. Simulation is conducted to compare model performance when the covariate model and the survival model are misspecified. Full Article
id Fire seasonality identification with multimodality tests By projecteuclid.org Published On :: Wed, 27 Nov 2019 22:01 EST Jose Ameijeiras-Alonso, Akli Benali, Rosa M. Crujeiras, Alberto Rodríguez-Casal, José M. C. Pereira. Source: The Annals of Applied Statistics, Volume 13, Number 4, 2120--2139.Abstract: Understanding the role of vegetation fires in the Earth system is an important environmental problem. Although fire occurrence is influenced by natural factors, human activity related to land use and management has altered the temporal patterns of fire in several regions of the world. Hence, for a better insight into fires regimes it is of special interest to analyze where human activity has altered fire seasonality. For doing so, multimodality tests are a useful tool for determining the number of annual fire peaks. The periodicity of fires and their complex distributional features motivate the use of nonparametric circular statistics. The unsatisfactory performance of previous circular nonparametric proposals for testing multimodality justifies the introduction of a new approach, considering an adapted version of the excess mass statistic, jointly with a bootstrap calibration algorithm. A systematic application of the test on the Russia–Kazakhstan area is presented in order to determine how many fire peaks can be identified in this region. A False Discovery Rate correction, accounting for the spatial dependence of the data, is also required. Full Article
id Robust elastic net estimators for variable selection and identification of proteomic biomarkers By projecteuclid.org Published On :: Wed, 27 Nov 2019 22:01 EST Gabriela V. Cohen Freue, David Kepplinger, Matías Salibián-Barrera, Ezequiel Smucler. Source: The Annals of Applied Statistics, Volume 13, Number 4, 2065--2090.Abstract: In large-scale quantitative proteomic studies, scientists measure the abundance of thousands of proteins from the human proteome in search of novel biomarkers for a given disease. Penalized regression estimators can be used to identify potential biomarkers among a large set of molecular features measured. Yet, the performance and statistical properties of these estimators depend on the loss and penalty functions used to define them. Motivated by a real plasma proteomic biomarkers study, we propose a new class of penalized robust estimators based on the elastic net penalty, which can be tuned to keep groups of correlated variables together in the selected model and maintain robustness against possible outliers. We also propose an efficient algorithm to compute our robust penalized estimators and derive a data-driven method to select the penalty term. Our robust penalized estimators have very good robustness properties and are also consistent under certain regularity conditions. Numerical results show that our robust estimators compare favorably to other robust penalized estimators. Using our proposed methodology for the analysis of the proteomics data, we identify new potentially relevant biomarkers of cardiac allograft vasculopathy that are not found with nonrobust alternatives. The selected model is validated in a new set of 52 test samples and achieves an area under the receiver operating characteristic (AUC) of 0.85. Full Article
id Identifying multiple changes for a functional data sequence with application to freeway traffic segmentation By projecteuclid.org Published On :: Wed, 16 Oct 2019 22:03 EDT Jeng-Min Chiou, Yu-Ting Chen, Tailen Hsing. Source: The Annals of Applied Statistics, Volume 13, Number 3, 1430--1463.Abstract: Motivated by the study of road segmentation partitioned by shifts in traffic conditions along a freeway, we introduce a two-stage procedure, Dynamic Segmentation and Backward Elimination (DSBE), for identifying multiple changes in the mean functions for a sequence of functional data. The Dynamic Segmentation procedure searches for all possible changepoints using the derived global optimality criterion coupled with the local strategy of at-most-one-changepoint by dividing the entire sequence into individual subsequences that are recursively adjusted until convergence. Then, the Backward Elimination procedure verifies these changepoints by iteratively testing the unlikely changes to ensure their significance until no more changepoints can be removed. By combining the local strategy with the global optimal changepoint criterion, the DSBE algorithm is conceptually simple and easy to implement and performs better than the binary segmentation-based approach at detecting small multiple changes. The consistency property of the changepoint estimators and the convergence of the algorithm are proved. We apply DSBE to detect changes in traffic streams through real freeway traffic data. The practical performance of DSBE is also investigated through intensive simulation studies for various scenarios. Full Article
id A hidden Markov model approach to characterizing the photo-switching behavior of fluorophores By projecteuclid.org Published On :: Wed, 16 Oct 2019 22:03 EDT Lekha Patel, Nils Gustafsson, Yu Lin, Raimund Ober, Ricardo Henriques, Edward Cohen. Source: The Annals of Applied Statistics, Volume 13, Number 3, 1397--1429.Abstract: Fluorescing molecules (fluorophores) that stochastically switch between photon-emitting and dark states underpin some of the most celebrated advancements in super-resolution microscopy. While this stochastic behavior has been heavily exploited, full characterization of the underlying models can potentially drive forward further imaging methodologies. Under the assumption that fluorophores move between fluorescing and dark states as continuous time Markov processes, the goal is to use a sequence of images to select a model and estimate the transition rates. We use a hidden Markov model to relate the observed discrete time signal to the hidden continuous time process. With imaging involving several repeat exposures of the fluorophore, we show the observed signal depends on both the current and past states of the hidden process, producing emission probabilities that depend on the transition rate parameters to be estimated. To tackle this unusual coupling of the transition and emission probabilities, we conceive transmission (transition-emission) matrices that capture all dependencies of the model. We provide a scheme of computing these matrices and adapt the forward-backward algorithm to compute a likelihood which is readily optimized to provide rate estimates. When confronted with several model proposals, combining this procedure with the Bayesian Information Criterion provides accurate model selection. Full Article