al Fibrillar {alpha}-synuclein toxicity depends on functional lysosomes [Cell Biology] By www.jbc.org Published On :: 2020-12-18T00:06:18-08:00 Neurodegeneration in Parkinson's disease (PD) can be recapitulated in animals by administration of α-synuclein preformed fibrils (PFFs) into the brain. However, the mechanism by which these PFFs induce toxicity is unknown. Iron is implicated in PD pathophysiology, so we investigated whether α-synuclein PFFs induce ferroptosis, an iron-dependent cell death pathway. A range of ferroptosis inhibitors were added to a striatal neuron-derived cell line (STHdhQ7/7 cells), a dopaminergic neuron–derived cell line (SN4741 cells), and WT primary cortical neurons, all of which had been intoxicated with α-synuclein PFFs. Viability was not recovered by these inhibitors except for liproxstatin-1, a best-in-class ferroptosis inhibitor, when used at high doses. High-dose liproxstatin-1 visibly enlarged the area of a cell that contained acidic vesicles and elevated the expression of several proteins associated with the autophagy-lysosomal pathway similarly to the known lysosomal inhibitors, chloroquine and bafilomycin A1. Consistent with high-dose liproxstatin-1 protecting via a lysosomal mechanism, we further de-monstrated that loss of viability induced by α-synuclein PFFs was attenuated by chloroquine and bafilomycin A1 as well as the lysosomal cysteine protease inhibitors, leupeptin, E-64D, and Ca-074-Me, but not other autophagy or lysosomal enzyme inhibitors. We confirmed using immunofluorescence microscopy that heparin prevented uptake of α-synuclein PFFs into cells but that chloroquine did not stop α-synuclein uptake into lysosomes despite impairing lysosomal function and inhibiting α-synuclein toxicity. Together, these data suggested that α-synuclein PFFs are toxic in functional lysosomes in vitro. Therapeutic strategies that prevent α-synuclein fibril uptake into lysosomes may be of benefit in PD. Full Article
al Transcription factor NF-{kappa}B promotes acute lung inȷury via microRNA-99b-mediated PRDM1 down-regulation [Developmental Biology] By www.jbc.org Published On :: 2020-12-25T00:06:31-08:00 Acute lung injury (ALI), is a rapidly progressing heterogenous pulmonary disorder that possesses a high risk of mortality. Accumulating evidence has implicated the activation of the p65 subunit of NF-κB [NF-κB(p65)] activation in the pathological process of ALI. microRNAs (miRNAs), a group of small RNA molecules, have emerged as major governors due to their post-transcriptional regulation of gene expression in a wide array of pathological processes, including ALI. The dysregulation of miRNAs and NF-κB activation has been implicated in human diseases. In the current study, we set out to decipher the convergence of miR-99b and p65 NF-κB activation in ALI pathology. We measured the release of pro-inflammatory cytokines (IL-1β, IL-6, and TNFα) in bronchoalveolar lavage fluid using ELISA. MH-S cells were cultured and their viability were detected with cell counting kit 8 (CCK8) assays. The results showed that miR-99b was up-regulated, while PRDM1 was down-regulated in a lipopolysaccharide (LPS)-induced murine model of ALI. Mechanistic investigations showed that NF-κB(p65) was enriched at the miR-99b promoter region, and further promoted its transcriptional activity. Furthermore, miR-99b targeted PRDM1 by binding to its 3'UTR, causing its down-regulation. This in-creased lung injury, as evidenced by increased wet/dry ratio of mouse lung, myeloperoxidase activity and pro-inflammatory cytokine secretion, and enhanced infiltration of inflammatory cells in lung tissues. Together, our findings indicate that NF-κB(p65) promotion of miR-99b can aggravate ALI in mice by down-regulating the expression of PRDM1. Full Article
al PTPN2 regulates the activation of KRAS and plays a critical role in proliferation and survival of KRAS-driven cancer cells [Signal Transduction] By www.jbc.org Published On :: 2020-12-25T00:06:31-08:00 RAS genes are the most commonly mutated in human cancers and play critical roles in tumor initiation, progression, and drug resistance. Identification of targets that block RAS signaling is pivotal to develop therapies for RAS-related cancer. As RAS translocation to the plasma membrane (PM) is essential for its effective signal transduction, we devised a high-content screening assay to search for genes regulating KRAS membrane association. We found that the tyrosine phosphatase PTPN2 regulates the plasma membrane localization of KRAS. Knockdown of PTPN2 reduced the proliferation and promoted apoptosis in KRAS-dependent cancer cells, but not in KRAS-independent cells. Mechanistically, PTPN2 negatively regulates tyrosine phosphorylation of KRAS, which, in turn, affects the activation KRAS and its downstream signaling. Consistently, analysis of the TCGA database demonstrates that high expression of PTPN2 is significantly associated with poor prognosis of patients with KRAS-mutant pancreatic adenocarcinoma. These results indicate that PTPN2 is a key regulator of KRAS and may serve as a new target for therapy of KRAS-driven cancer. Full Article
al GUCY2D mutations in retinal guanylyl cyclase 1 provide biochemical reasons for dominant cone-rod dystrophy but not for stationary night blindness [Cell Biology] By www.jbc.org Published On :: 2020-12-25T00:06:31-08:00 Mutations in the GUCY2D gene coding for the dimeric human retinal membrane guanylyl cyclase (RetGC) isozyme RetGC1 cause various forms of blindness, ranging from rod dysfunction to rod and cone degeneration. We tested how the mutations causing recessive congenital stationary night blindness (CSNB), recessive Leber's congenital amaurosis (LCA1), and dominant cone–rod dystrophy-6 (CORD6) affected RetGC1 activity and regulation by RetGC-activating proteins (GCAPs) and retinal degeneration-3 protein (RD3). CSNB mutations R666W, R761W, and L911F, as well as LCA1 mutations R768W and G982VfsX39, disabled RetGC1 activation by human GCAP1, -2, and -3. The R666W and R761W substitutions compromised binding of GCAP1 with RetGC1 in HEK293 cells. In contrast, G982VfsX39 and L911F RetGC1 retained the ability to bind GCAP1 in cyto but failed to effectively bind RD3. R768W RetGC1 did not bind either GCAP1 or RD3. The co-expression of GUCY2D allelic combinations linked to CSNB did not restore RetGC1 activity in vitro. The CORD6 mutation R838S in the RetGC1 dimerization domain strongly dominated the Ca2+ sensitivity of cyclase regulation by GCAP1 in RetGC1 heterodimer produced by co-expression of WT and the R838S subunits. It required higher Ca2+ concentrations to decelerate GCAP-activated RetGC1 heterodimer—6-fold higher than WT and 2-fold higher than the Ser838-harboring homodimer. The heterodimer was also more resistant than homodimers to inhibition by RD3. The observed biochemical changes can explain the dominant CORD6 blindness and recessive LCA1 blindness, both of which affect rods and cones, but they cannot explain the selective loss of rod function in recessive CSNB. Full Article
al Distant coupling between RNA editing and alternative splicing of the osmosensitive cation channel Tmem63b [Cell Biology] By www.jbc.org Published On :: 2020-12-25T00:06:30-08:00 Post-transcriptional modifications of pre-mRNAs expand the diversity of proteomes in higher eukaryotes. In the brain, these modifications diversify the functional output of many critical neuronal signal molecules. In this study, we identified a brain-specific A-to-I RNA editing that changed glutamine to arginine (Q/R) at exon 20 and an alternative splicing of exon 4 in Tmem63b, which encodes a ubiquitously expressed osmosensitive cation channel. The channel isoforms lacking exon 4 occurred in ∼80% of Tmem63b mRNAs in the brain but were not detected in other tissues, suggesting a brain-specific splicing. We found that the Q/R editing was catalyzed by Adar2 (Adarb1) and required an editing site complementary sequence located in the proximal 5' end of intron 20. Moreover, the Q/R editing was almost exclusively identified in the splicing isoform lacking exon 4, indicating a coupling between the editing and the splicing. Elimination of the Q/R editing in brain-specific Adar2 knockout mice did not affect the splicing efficiency of exon 4. Furthermore, transfection with the splicing isoform containing exon 4 suppressed the Q/R editing in primary cultured cerebellar granule neurons. Thus, our study revealed a coupling between an RNA editing and a distant alternative splicing in the Tmem63b pre-mRNA, in which the splicing plays a dominant role. Finally, physiological analysis showed that the splicing and the editing coordinately regulate Ca2+ permeability and osmosensitivity of channel proteins, which may contribute to their functions in the brain. Full Article
al BMP-9 and LDL crosstalk regulates ALK-1 endocytosis and LDL transcytosis in endothelial cells [Signal Transduction] By www.jbc.org Published On :: 2020-12-25T00:06:30-08:00 Bone morphogenetic protein-9 (BMP-9) is a circulating cytokine that is known to play an essential role in the endothelial homeostasis and the binding of BMP-9 to the receptor activin-like kinase 1 (ALK-1) promotes endothelial cell quiescence. Previously, using an unbiased screen, we identified ALK-1 as a high-capacity receptor for low-density lipoprotein (LDL) in endothelial cells that mediates its transcytosis in a nondegradative manner. Here we examine the crosstalk between BMP-9 and LDL and how it influences their interactions with ALK-1. Treatment of endothelial cells with BMP-9 triggers the extensive endocytosis of ALK-1, and it is mediated by caveolin-1 (CAV-1) and dynamin-2 (DNM2) but not clathrin heavy chain. Knockdown of CAV-1 reduces BMP-9–mediated internalization of ALK-1, BMP-9–dependent signaling and gene expression. Similarly, treatment of endothelial cells with LDL reduces BMP-9–induced SMAD1/5 phosphorylation and gene expression and silencing of CAV-1 and DNM2 diminishes LDL-mediated ALK-1 internalization. Interestingly, BMP-9–mediated ALK-1 internalization strongly re-duces LDL transcytosis to levels seen with ALK-1 deficiency. Thus, BMP-9 levels can control cell surface levels of ALK-1, via CAV-1, to regulate both BMP-9 signaling and LDL transcytosis. Full Article
al PDE5 inhibition rescues mitochondrial dysfunction and angiogenic responses induced by Akt3 inhibition by promotion of PRC expression [Bioenergetics] By www.jbc.org Published On :: 2020-12-25T00:06:30-08:00 Akt3 regulates mitochondrial content in endothelial cells through the inhibition of PGC-1α nuclear localization and is also required for angiogenesis. However, whether there is a direct link between mitochondrial function and angiogenesis is unknown. Here we show that Akt3 depletion in primary endothelial cells results in decreased uncoupled oxygen consumption, increased fission, decreased membrane potential, and increased expression of the mitochondria-specific protein chaperones, HSP60 and HSP10, suggesting that Akt3 is required for mitochondrial homeostasis. Direct inhibition of mitochondrial homeostasis by the model oxidant paraquat results in decreased angiogenesis, showing a direct link between angiogenesis and mitochondrial function. Next, in exploring functional links to PGC-1α, the master regulator of mitochondrial biogenesis, we searched for compounds that induce this process. We found that, sildenafil, a phosphodiesterase 5 inhibitor, induced mitochondrial biogenesis as measured by increased uncoupled oxygen consumption, mitochondrial DNA content, and voltage-dependent anion channel protein expression. Sildenafil rescued the effects on mitochondria by Akt3 depletion or pharmacological inhibition and promoted angiogenesis, further supporting that mitochondrial homeostasis is required for angiogenesis. Sildenafil also induces the expression of PGC-1 family member PRC and can compensate for PGC-1α activity during mitochondrial stress by an Akt3-independent mechanism. The induction of PRC by sildenafil depends upon cAMP and the transcription factor CREB. Thus, PRC can functionally substitute during Akt3 depletion for absent PGC-1α activity to restore mitochondrial homeostasis and promote angiogenesis. These findings show that mitochondrial homeostasis as controlled by the PGC family of transcriptional activators is required for angiogenic responses. Full Article
al Murine GFP-Mx1 forms nuclear condensates and associates with cytoplasmic intermediate filaments: Novel antiviral activity against VSV [Immunology] By www.jbc.org Published On :: 2020-12-25T00:06:30-08:00 Type I and III interferons induce expression of the “myxovirus resistance proteins” MxA in human cells and its ortholog Mx1 in murine cells. Human MxA forms cytoplasmic structures, whereas murine Mx1 forms nuclear bodies. Whereas both HuMxA and MuMx1 are antiviral toward influenza A virus (FLUAV) (an orthomyxovirus), only HuMxA is considered antiviral toward vesicular stomatitis virus (VSV) (a rhabdovirus). We previously reported that the cytoplasmic human GFP-MxA structures were phase-separated membraneless organelles (“biomolecular condensates”). In the present study, we investigated whether nuclear murine Mx1 structures might also represent phase-separated biomolecular condensates. The transient expression of murine GFP-Mx1 in human Huh7 hepatoma, human Mich-2H6 melanoma, and murine NIH 3T3 cells led to the appearance of Mx1 nuclear bodies. These GFP-MuMx1 nuclear bodies were rapidly disassembled by exposing cells to 1,6-hexanediol (5%, w/v), or to hypotonic buffer (40–50 mosm), consistent with properties of membraneless phase-separated condensates. Fluorescence recovery after photobleaching (FRAP) assays revealed that the GFP-MuMx1 nuclear bodies upon photobleaching showed a slow partial recovery (mobile fraction: ∼18%) suggestive of a gel-like consistency. Surprisingly, expression of GFP-MuMx1 in Huh7 cells also led to the appearance of GFP-MuMx1 in 20–30% of transfected cells in a novel cytoplasmic giantin-based intermediate filament meshwork and in cytoplasmic bodies. Remarkably, Huh7 cells with cytoplasmic murine GFP-MuMx1 filaments, but not those with only nuclear bodies, showed antiviral activity toward VSV. Thus, GFP-MuMx1 nuclear bodies comprised phase-separated condensates. Unexpectedly, GFP-MuMx1 in Huh7 cells also associated with cytoplasmic giantin-based intermediate filaments, and such cells showed antiviral activity toward VSV. Full Article
al HIV-1 Gag release from yeast reveals ESCRT interaction with the Gag N-terminal protein region [Molecular Bases of Disease] By www.jbc.org Published On :: 2020-12-25T00:06:30-08:00 The HIV-1 protein Gag assembles at the plasma membrane and drives virion budding, assisted by the cellular endosomal complex required for transport (ESCRT) proteins. Two ESCRT proteins, TSG101 and ALIX, bind to the Gag C-terminal p6 peptide. TSG101 binding is important for efficient HIV-1 release, but how ESCRTs contribute to the budding process and how their activity is coordinated with Gag assembly is poorly understood. Yeast, allowing genetic manipulation that is not easily available in human cells, has been used to characterize the cellular ESCRT function. Previous work reported Gag budding from yeast spheroplasts, but Gag release was ESCRT-independent. We developed a yeast model for ESCRT-dependent Gag release. We combined yeast genetics and Gag mutational analysis with Gag-ESCRT binding studies and the characterization of Gag-plasma membrane binding and Gag release. With our system, we identified a previously unknown interaction between ESCRT proteins and the Gag N-terminal protein region. Mutations in the Gag-plasma membrane–binding matrix domain that reduced Gag-ESCRT binding increased Gag-plasma membrane binding and Gag release. ESCRT knockout mutants showed that the release enhancement was an ESCRT-dependent effect. Similarly, matrix mutation enhanced Gag release from human HEK293 cells. Release enhancement partly depended on ALIX binding to p6, although binding site mutation did not impair WT Gag release. Accordingly, the relative affinity for matrix compared with p6 in GST-pulldown experiments was higher for ALIX than for TSG101. We suggest that a transient matrix-ESCRT interaction is replaced when Gag binds to the plasma membrane. This step may activate ESCRT proteins and thereby coordinate ESCRT function with virion assembly. Full Article
al Exploitation of dihydroorotate dehydrogenase (DHODH) and p53 activation as therapeutic targets: A case study in polypharmacology [Computational Biology] By www.jbc.org Published On :: 2020-12-25T00:06:30-08:00 The tenovins are a frequently studied class of compounds capable of inhibiting sirtuin activity, which is thought to result in increased acetylation and protection of the tumor suppressor p53 from degradation. However, as we and other laboratories have shown previously, certain tenovins are also capable of inhibiting autophagic flux, demonstrating the ability of these compounds to engage with more than one target. In this study, we present two additional mechanisms by which tenovins are able to activate p53 and kill tumor cells in culture. These mechanisms are the inhibition of a key enzyme of the de novo pyrimidine synthesis pathway, dihydroorotate dehydrogenase (DHODH), and the blockage of uridine transport into cells. These findings hold a 3-fold significance: first, we demonstrate that tenovins, and perhaps other compounds that activate p53, may activate p53 by more than one mechanism; second, that work previously conducted with certain tenovins as SirT1 inhibitors should additionally be viewed through the lens of DHODH inhibition as this is a major contributor to the mechanism of action of the most widely used tenovins; and finally, that small changes in the structure of a small molecule can lead to a dramatic change in the target profile of the molecule even when the phenotypic readout remains static. Full Article
al A kinetic dissection of the fast and superprocessive kinesin-3 KIF1A reveals a predominant one-head-bound state during its chemomechanical cycle [Molecular Biophysics] By www.jbc.org Published On :: 2020-12-25T00:06:30-08:00 The kinesin-3 family contains the fastest and most processive motors of the three neuronal transport kinesin families, yet the sequence of states and rates of kinetic transitions that comprise the chemomechanical cycle and give rise to their unique properties are poorly understood. We used stopped-flow fluorescence spectroscopy and single-molecule motility assays to delineate the chemomechanical cycle of the kinesin-3, KIF1A. Our bacterially expressed KIF1A construct, dimerized via a kinesin-1 coiled-coil, exhibits fast velocity and superprocessivity behavior similar to WT KIF1A. We established that the KIF1A forward step is triggered by hydrolysis of ATP and not by ATP binding, meaning that KIF1A follows the same chemomechanical cycle as established for kinesin-1 and -2. The ATP-triggered half-site release rate of KIF1A was similar to the stepping rate, indicating that during stepping, rear-head detachment is an order of magnitude faster than in kinesin-1 and kinesin-2. Thus, KIF1A spends the majority of its hydrolysis cycle in a one-head-bound state. Both the ADP off-rate and the ATP on-rate at physiological ATP concentration were fast, eliminating these steps as possible rate-limiting transitions. Based on the measured run length and the relatively slow off-rate in ADP, we conclude that attachment of the tethered head is the rate-limiting transition in the KIF1A stepping cycle. Thus, KIF1A's activity can be explained by a fast rear-head detachment rate, a rate-limiting step of tethered-head attachment that follows ATP hydrolysis, and a relatively strong electrostatic interaction with the microtubule in the weakly bound post-hydrolysis state. Full Article
al Palmitoylation of acetylated tubulin and association with ceramide-rich platforms is critical for ciliogenesis By www.jlr.org Published On :: 2020-12-30 Priyanka TripathiDec 30, 2020; 0:jlr.RA120001190v1-jlr.RA120001190Research Articles Full Article
al Nuclear translocation ability of Lipin differentially affects gene expression and survival in fed and fasting Drosophila By www.jlr.org Published On :: 2020-12-01 Stephanie E. HoodDec 1, 2020; 61:1720-1732Research Articles Full Article
al A novel phosphoglycerol serine-glycine lipodipeptide of Porphyromonas gingivalis is a TLR2 ligand By www.jlr.org Published On :: 2020-12-01 Frank C. NicholsDec 1, 2020; 61:1645-1657Research Articles Full Article
al PLRP2 selectively localizes synaptic membrane proteins via acyl-chain remodeling of phospholipids By www.jlr.org Published On :: 2020-12-01 Hideaki KugeDec 1, 2020; 61:1747-1763Research Articles Full Article
al Progression of chronic kidney disease in familial LCAT deficiency: a follow-up of the Italian cohort By www.jlr.org Published On :: 2020-12-01 Chiara PavanelloDec 1, 2020; 61:1784-1788Patient-Oriented and Epidemiological Research Full Article
al Bioavailability and spatial distribution of fatty acids in the rat retina after dietary omega-3 supplementation By www.jlr.org Published On :: 2020-12-01 Elisa VidalDec 1, 2020; 61:1733-1746Research Articles Full Article
al Depletion of essential isoprenoids and ER stress induction following acute liver-specific deletion of HMG-CoA reductase By www.jlr.org Published On :: 2020-12-01 Marco De GiorgiDec 1, 2020; 61:1675-1686Research Articles Full Article
al Gene Networks and Pathways for Plasma Lipid Traits via Multi-tissue Multi-omics Systems Analysis By www.jlr.org Published On :: 2020-12-23 Montgomery BlencoweDec 23, 2020; 0:jlr.RA120000713v1-jlr.RA120000713Research Articles Full Article
al Spatial profiling of gangliosides in mouse brain by mass spectrometry imaging By www.jlr.org Published On :: 2020-12-01 Douglas A. AndresDec 1, 2020; 61:1537-1537Images in Lipid Research Full Article
al Myeloid deletion and therapeutic activation of AMPK do not alter atherosclerosis in male or female mice By www.jlr.org Published On :: 2020-12-01 Nicholas D. LeBlondDec 1, 2020; 61:1697-1706Research Articles Full Article
al LDL apheresis as an alternate method for plasma LPS purification in healthy volunteers and dyslipidemic and septic patients By www.jlr.org Published On :: 2020-12-01 Auguste DargentDec 1, 2020; 61:1776-1783Research Articles Full Article
al Accessible cholesterol is localized in bacterial plasma membrane protrusions By www.jlr.org Published On :: 2020-12-01 Michael E. AbramsDec 1, 2020; 61:1538-1538Images in Lipid Research Full Article
al Identification of unusual phospholipids from bovine heart mitochondria by HPLC-MS/MS By www.jlr.org Published On :: 2020-12-01 Junhwan KimDec 1, 2020; 61:1707-1719Research Articles Full Article
al Mutation in the distal NPxY motif of LRP1 alleviates dietary cholesterol-induced dyslipidemia and tissue inflammation By www.jlr.org Published On :: 2020-12-09 Anja JaeschkeDec 9, 2020; 0:jlr.RA120001141v1-jlr.RA120001141Research Articles Full Article
al Structure dynamics of ApoA-I amyloidogenic variants in small HDL increase their ability to mediate cholesterol efflux By www.jlr.org Published On :: 2020-11-17 Oktawia NilssonNov 17, 2020; 0:jlr.RA120000920v1-jlr.RA120000920Research Articles Full Article
al Apolipoprotein C3 and apolipoprotein B colocalize in proximity to macrophages in atherosclerotic lesions in diabetes By www.jlr.org Published On :: 2020-12-08 Jenny E. KanterDec 8, 2020; 0:jlr.ILR120001217v1-jlr.ILR120001217Images in Lipid Research Full Article
al Distinct patterns of apolipoprotein C-I, C-II and C-III isoforms are associated with markers of Alzheimers disease By www.jlr.org Published On :: 2020-12-11 Yueming HuDec 11, 2020; 0:jlr.RA120000919v1-jlr.RA120000919Research Articles Full Article
al Generation and validation of a conditional knockout mouse model for the study of the Smith-Lemli-Opitz Syndrome By www.jlr.org Published On :: 2020-11-17 Babunageswararao KanuriNov 17, 2020; 0:jlr.RA120001101v1-jlr.RA120001101Research Articles Full Article
al Multi-modal Functional Imaging of Brown Adipose Tissue By www.jlr.org Published On :: 2020-11-18 Amanda D.V. MacCannellNov 18, 2020; 0:jlr.ILR120001204v1-jlr.ILR120001204Images in Lipid Research Full Article
al Mass spectrometry characterization of light chain fragmentation sites in cardiac AL amyloidosis: insights into the timing of proteolysis [Genomics and Proteomics] By www.jbc.org Published On :: 2020-12-04T00:06:05-08:00 Amyloid fibrils are polymeric structures originating from aggregation of misfolded proteins. In vivo, proteolysis may modulate amyloidogenesis and fibril stability. In light chain (AL) amyloidosis, fragmented light chains (LCs) are abundant components of amyloid deposits; however, site and timing of proteolysis are debated. Identification of the N and C termini of LC fragments is instrumental to understanding involved processes and enzymes. We investigated the N and C terminome of the LC proteoforms in fibrils extracted from the hearts of two AL cardiomyopathy patients, using a proteomic approach based on derivatization of N- and C-terminal residues, followed by mapping of fragmentation sites on the structures of native and fibrillar relevant LCs. We provide the first high-specificity map of proteolytic cleavages in natural AL amyloid. Proteolysis occurs both on the LC variable and constant domains, generating a complex fragmentation pattern. The structural analysis indicates extensive remodeling by multiple proteases, largely taking place on poorly folded regions of the fibril surfaces. This study adds novel important knowledge on amyloid LC processing: although our data do not exclude that proteolysis of native LC dimers may destabilize their structure and favor fibril formation, the data show that LC deposition largely precedes the proteolytic events documentable in mature AL fibrils. Full Article
al Problem Notes for SAS®9 - 66537: SAS Customer Intelligence Studio becomes non-responsive when you delete a calculated variable from the Edit Value dialog box By Published On :: Tue, 1 Sep 2020 14:25:38 EST In SAS Customer Intelligence Studio, you might notice that the user interface becomes unresponsive, as shown below: imgalt="SAS Customer Intelligence Studio UI becomes unresponsive" src="{fusion_66537 Full Article CAMPAIGNSDO+SAS+Customer+Intelligence+St
al Problem Notes for SAS®9 - 66539: A new calculated variable that you create in the Edit Value dialog box is not available for selection in SAS Customer Intelligence Studio By Published On :: Tue, 1 Sep 2020 13:44:23 EST In SAS Customer Intelligence Studio, you can choose to create a new calculated variable in the Edit Value dialog box when you populate a treatment custom detail. Following creation of the new calculated Full Article CAMPAIGNSDO+SAS+Customer+Intelligence+St
al Problem Notes for SAS®9 - 66542: The initial loading of a rule set and a rule flow takes significantly longer in SAS Business Rules Manager 3.3 compared with release 3.2 By Published On :: Mon, 31 Aug 2020 16:35:05 EST In SAS Business Rules Manager 3.3, the initial loading of a rule set and a rule flow takes significantly longer than it does in release 3.2. When this problem happens, long time gaps are evident in the local Full Article BRLSTBNDL+SAS+Business+Rules+Manager
al Problem Notes for SAS®9 - 66524: SAS Visual Data Builder uses the wrong SAS Application Server for previewing and scheduling By Published On :: Mon, 31 Aug 2020 12:14:44 EST If you have configured more than one SAS Application Server, then SAS Visual Data Builder might unexpectedly use the wrong application server when you preview or schedule queries. This problem occurs even though you h Full Article VISANLYTBNDL+SAS+Visual+Analytics
al Problem Notes for SAS®9 - 55516: Opening the Edit Action Columns dialog box requires that you wait up to a minute to display a window By Published On :: Fri, 28 Aug 2020 11:23:00 EST Editing and/or saving an action column can take up to a minute to display a window. There are no workarounds identified at this time. Full Article SCDOFR+SAS+Visual+Scenario+Designer
al Problem Notes for SAS®9 - 66509: Several procedures in SAS/STAT Software and SAS/QC Software generate incorrect results when an OBSMARGINS= data set is used By Published On :: Fri, 28 Aug 2020 08:58:34 EST If the response variable is in the CLASS statement variable list before the class variables that also appear in the MODEL statement, and an OM-data-set is used, least squares means results for several of the statistical procedures are incorrect. Full Article STAT+SAS/STAT
al Problem Notes for SAS®9 - 58465: SAS Life Science Analytics Framework 4.6 - Group membership removal fails with an exception for Process Flows that exist in the Recycle Bin By Published On :: Wed, 26 Aug 2020 16:27:10 EST In SAS Life Science Analytics Framework 4.6, group membership removal fails with an exception if a user is set as assignee, a candidate, or a notification recipient in a user task for a Process Flow . The Process Full Article LSAFOFR+SAS+Life+Science+Analytics+Frame
al Problem Notes for SAS®9 - 61815: SAS Episode Analytics 3.1 - Audit table is required in order to capture user interactions with the user interface By Published On :: Wed, 26 Aug 2020 16:09:53 EST SAS Episode Analytics 3.1 requires the ability to capture user interactions with the user interface for auditing purposes. To support the required functionality a new table has been add Full Article AVAECROFR+SAS+Episode+Analytics
al Problem Notes for SAS®9 - 65782: The PLM procedure incorrectly issues the message "ERROR: No valid observation in the OM= data set" By Published On :: Wed, 26 Aug 2020 15:11:09 EST If the OBSMARGINS= or OM= option is specified in an LSMEANS, LSMESTIMATE, or SLICE statement and a user-defined format is applied to any of the effect variables in the OM-data-set , PROC PLM incorrectly stops proce Full Article STAT+SAS/STAT
al Problem Notes for SAS®9 - 66535: You might intermittently see the error "RangeError: Maximum call stack exceeded..." when viewing a SAS Visual Analytics report By Published On :: Wed, 26 Aug 2020 15:06:43 EST When viewing a SAS Visual Analytics report, you might intermittently see an error that includes content similar to the following: Error Message: Full Article VISANLYTBNDL+SAS+Visual+Analytics
al Problem Notes for SAS®9 - 66511: A Russian translation shows the same value for two different variables in the Define Value dialog box for the Reply node in SAS Customer Intelligence Studio By Published On :: Mon, 24 Aug 2020 14:23:55 EST In SAS Customer Intelligence Studio, when you add Reply- node variable values in the Define Value dialog box, you might notice that two identically labeled data-grid variables are Full Article POLICYOFR+SAS+Real-Time+Decision+Manager
al Problem Notes for SAS®9 - 66507: The RegisterFontTask" install task fails during out-of-the-box, add-on, or upgrade-in-place deployments if Hot Fix D7G004 is applied By Published On :: Fri, 21 Aug 2020 11:05:36 EST The SAS 9.4M4 (TS1M4) Hot Fix D7G004 for ODS Templates installs national language support (NLS) content regardless of whether the languages were installed during the initial deployment. Having sparse Full Article
al Problem Notes for SAS®9 - 66494: A SAS Real-Time Decision Manager flow cannot be opened By Published On :: Fri, 21 Aug 2020 09:51:16 EST In SAS Customer Intelligence, a decision campaign can become corrupted and impossible to open. When you try to open the campaign, an error message is displayed that asks you to check the SAS Customer Intel Full Article POLICYOFR+SAS+Real-Time+Decision+Manager
al Problem Notes for SAS®9 - 66504: Clicking a link to pass a group break value to a SAS Web Report Studio report returns an HTTP 400 error By Published On :: Thu, 20 Aug 2020 14:07:26 EST SAS Web Report Studio enables you to link reports based on a group break value. However, when you click the link, it might fail with an HTTP 400 error. The exact message you see depends on which browser you are u Full Article CITATIONWEB+SAS+Web+Report+Studio
al Problem Notes for SAS®9 - 66294: The SAS Federation Server SPD driver fails to create a table that has a column name in UTF-8 encoding that also contains Latin5 characters By Published On :: Wed, 19 Aug 2020 15:57:34 EST Certain tables that are created in SAS Scalable Performance Data (SPD) Server might not be displayed correctly by SAS Federation Server Manager. Tables that have Latin5 characters in column names encounter this Full Article SPDS+SAS+Scalable+Peformance+Data+Server
al WITHDRAWN: Structural and mechanistic studies of hydroperoxide conversions catalyzed by a CYP74 clan epoxy alcohol synthase from amphioxus (Branchiostoma floridae) [Research Articles] By www.jlr.org Published On :: 2014-03-04T09:59:12-08:00 This manuscript has been withdrawn by the Author. Full Article
al WITHDRAWN: The Fundamental And Pathological Importance Of Oxysterol Binding Protein And Its Related Proteins [Thematic Reviews] By www.jlr.org Published On :: 2018-10-15T08:42:37-07:00 This article has been withdrawn by the authors as part of this review overlapped with the contents of Pietrangelo A and Ridgway ND. 2018. Cellular and Molecular Life Sciences. 75; 3079-98. Full Article
al Bisretinoid phospholipid and vitamin A aldehyde: Shining a light [Thematic Reviews] By www.jlr.org Published On :: 2020-05-05T13:30:26-07:00 Vitamin A aldehyde covalently bound to opsin protein is embedded in a phospholipid-rich membrane that supports photon absorption and phototransduction in photoreceptor cell outer segments. Following absorption of a photon, the 11-cis-retinal chromophore of visual pigment in photoreceptor cells isomerizes to all-trans-retinal. To maintain photosensitivity 11-cis-retinal must be replaced. At the same time, however, all-trans-retinal has to be handled so as to prevent nonspecific aldehyde activity. Some molecules of retinaldehyde upon release from opsin are efficiently reduced to retinol. Other molecules are released into the lipid phase of the disc membrane where they form a conjugate (N-retinylidene-PE, NRPE) through a Schiff base linkage with phosphatidylethanolamine (PE). The reversible formation of NRPE serves as a transient sink for retinaldehyde that is intended to return retinaldehyde to the visual cycle. However, if instead of hydrolyzing to PE and retinaldehyde, NRPE reacts with a second molecule of retinaldehyde a synthetic pathway is initiated that leads to the formation of multiple species of unwanted bisretinoid fluorophores. We report on recently identified members of the bisretinoid family some of which differ with respect to the acyl chains associated with the glycerol backbone. We discuss processing of the lipid moieties of these fluorophores in lysosomes of retinal pigment epithelial (RPE) cells, their fluorescence characters and new findings related to light and iron-associated oxidation of bisretinoids. Full Article
al Retinoids in the visual cycle: Role of the retinal G protein-coupled receptor [Thematic Reviews] By www.jlr.org Published On :: 2020-06-03T16:30:29-07:00 Driven by the energy of a photon, the visual pigments in rod and cone photoreceptor cells isomerize 11-cis-retinal to the all-trans configuration. This photochemical reaction initiates the signal transduction pathway that eventually leads to the transmission of a visual signal to the brain and leaves the opsins insensitive to further light stimulation. For the eye to restore light sensitivity, opsins require recharging with 11-cis-retinal. This trans–cis back conversion is achieved through a series of enzymatic reactions composing the retinoid (visual) cycle. Although it is evident that the classical retinoid cycle is critical for vision, the existence of an adjunct pathway for 11-cis-retinal regeneration has been debated for many years. Retinal pigment epithelium (RPE)–retinal G protein-coupled receptor (RGR) has been identified previously as a mammalian retinaldehyde photoisomerase homologous to retinochrome found in invertebrates. Using pharmacological, genetic, and biochemical approaches, researchers have now established the physiological relevance of the RGR in 11-cis-retinal regeneration. The photoisomerase activity of RGR in the RPE and Müller glia explains how the eye can remain responsive in daylight. In this review, we will focus on retinoid metabolism in the eye and visual chromophore regeneration mediated by RGR. Full Article