ot Viewpoint: COVID-19. This virus is not the real enemy, but our approach to it could be By bjgp.org Published On :: 2020-04-30T16:04:41-07:00 Full Article
ot Implications of the FAST Protocol Beyond Spirituality [Editorials] By www.annfammed.org Published On :: 2020-03-09T14:00:11-07:00 Full Article
ot Pilot Study of Return of Genetic Results to Patients in Adult Nephrology By cjasn.asnjournals.org Published On :: 2020-05-07T10:00:25-07:00 Background and objectives Actionable genetic findings have implications for care of patients with kidney disease, and genetic testing is an emerging tool in nephrology practice. However, there are scarce data regarding best practices for return of results and clinical application of actionable genetic findings for kidney patients. Design, setting, participants, & measurements We developed a return of results workflow in collaborations with clinicians for the retrospective recontact of adult nephrology patients who had been recruited into a biobank research study for exome sequencing and were identified to have medically actionable genetic findings. Results Using this workflow, we attempted to recontact a diverse pilot cohort of 104 nephrology research participants with actionable genetic findings, encompassing 34 different monogenic etiologies of nephropathy and five single-gene disorders recommended by the American College of Medical Genetics and Genomics for return as medically actionable secondary findings. We successfully recontacted 64 (62%) participants and returned results to 41 (39%) individuals. In each case, the genetic diagnosis had meaningful implications for the patients’ nephrology care. Through implementation efforts and qualitative interviews with providers, we identified over 20 key challenges associated with returning results to study participants, and found that physician knowledge gaps in genomics was a recurrent theme. We iteratively addressed these challenges to yield an optimized workflow, which included standardized consultation notes with tailored management recommendations, monthly educational conferences on core topics in genomics, and a curated list of expert clinicians for patients requiring extranephrologic referrals. Conclusions Developing the infrastructure to support return of genetic results in nephrology was resource-intensive, but presented potential opportunities for improving patient care. Podcast This article contains a podcast at https://www.asn-online.org/media/podcast/CJASN/2020_04_16_12481019.mp3 Full Article
ot A Post Hoc Analysis of Statin Use in Tolvaptan Autosomal Dominant Polycystic Kidney Disease Pivotal Trials By cjasn.asnjournals.org Published On :: 2020-05-07T10:00:25-07:00 Background and objectives Tolvaptan is approved to slow kidney function decline in adults with autosomal dominant polycystic kidney disease (ADPKD) at risk of rapid progression. Because in vitro studies indicated that the tolvaptan oxobutyric acid metabolite inhibits organic anion–transporting polypeptide (OATP)1B1 and OATP1B3, United States prescribing information advises avoiding concurrent use with OATP1B1/1B3 substrates, including hepatic hydroxymethyl glutaryl–CoA reductase inhibitors (statins). This post hoc analysis of the pivotal phase 3 tolvaptan trials (Tolvaptan Efficacy and Safety in Management of Autosomal Dominant Polycystic Kidney Disease and Its Outcomes [TEMPO] 3:4 trial [NCT00428948] and Replicating Evidence of Preserved Renal Function: an Investigation of Tolvaptan Safety and Efficacy in ADPKD [REPRISE] trial [NCT02160145]) examined the safety of concurrent tolvaptan/statin use. Design, setting, participants, & measurements The trials randomized a combined total of 2815 subjects with early- to late-stage ADPKD to tolvaptan (n=1644) or placebo (n=1171) for 3 years (TEMPO 3:4) and 1 year (REPRISE). Statin use was unrestricted, and 597 subjects (21.2% overall; 332 [20.2%] tolvaptan, 265 [22.6%] placebo) received statins. Statin use (duration, dose change, statin change, permanent discontinuation), incidences of statin-related adverse events, and hepatic transaminase elevations were determined for subjects who received tolvaptan+statin, placebo+statin, tolvaptan alone, and placebo alone. Results No differences in statin use parameters between tolvaptan- and placebo-treated subjects were observed. No statistically significant increases in commonly reported statin-related adverse events (e.g., musculoskeletal disorders, gastrointestinal symptoms) were seen between subjects receiving tolvaptan+statin and placebo+statin. For example, in TEMPO 3:4, frequencies were 5.4% and 7.8%, respectively, for myalgia (difference –2.4%; 95% confidence interval, –11.2% to 6.4%) and 9.3% and 7.8%, respectively, for abdominal pain (difference 1.5%; –7.9% to 10.9%). In an analysis that excluded participants concurrently using allopurinol, the frequency of alanine transaminase or aspartate transaminase >3x upper limit of normal in the pooled study populations was 3.6% for the tolvaptan+statin group and 2.3% for the placebo+statin group (difference 1.4%; –2.0% to 4.7%). Conclusions Tolvaptan has been used safely in combination with statins in clinical trials. Podcast This article contains a podcast at https://www.asn-online.org/media/podcast/CJASN/2020_04_06_CJN.08170719.mp3 Full Article
ot A Pharmacologic "Stress Test" for Assessing Select Antioxidant Defenses in Patients with CKD By cjasn.asnjournals.org Published On :: 2020-05-07T10:00:25-07:00 Background and objectives Oxidative stress is a hallmark and mediator of CKD. Diminished antioxidant defenses are thought to be partly responsible. However, there is currently no way to prospectively assess antioxidant defenses in humans. Tin protoporphyrin (SnPP) induces mild, transient oxidant stress in mice, triggering increased expression of select antioxidant proteins (e.g., heme oxygenase 1 [HO-1], NAD[P]H dehydrogenase [quinone] 1 [NQO1], ferritin, p21). Hence, we tested the hypothesis that SnPP can also variably increase these proteins in humans and can thus serve as a pharmacologic "stress test" for gauging gene responsiveness and antioxidant reserves. Design, setting, participants, & measurements A total of 18 healthy volunteers and 24 participants with stage 3 CKD (n=12; eGFR 30–59 ml/min per 1.73 m2) or stage 4 CKD (n=12; eGFR 15–29 ml/min per 1.73 m2) were injected once with SnPP (9, 27, or 90 mg). Plasma and/or urinary antioxidant proteins were measured at baseline and for up to 4 days post-SnPP dosing. Kidney safety was gauged by serial measurements of BUN, creatinine, eGFR, albuminuria, and four urinary AKI biomarkers (kidney injury molecule 1, neutrophil gelatinase-associated lipocalin, cystatin C, and N-acetyl glucosaminidase). Results Plasma HO-1, ferritin, p21, and NQO1 were all elevated at baseline in CKD participants. Plasma HO-1 and urine NQO1 levels each inversely correlated with eGFR (r=–0.85 to –0.95). All four proteins manifested statistically significant dose- and time-dependent elevations after SnPP injection. However, marked intersubject differences were observed. p21 responses to high-dose SnPP and HO-1 responses to low-dose SnPP were significantly suppressed in participants with CKD versus healthy volunteers. SnPP was well tolerated by all participants, and no evidence of nephrotoxicity was observed. Conclusions SnPP can be safely administered and, after its injection, the resulting changes in plasma HO-1, NQO1, ferritin, and p21 concentrations can provide information as to antioxidant gene responsiveness/reserves in subjects with and without kidney disease. Clinical Trial registry name and registration number A Study with RBT-1, in Healthy Volunteers and Subjects with Stage 3–4 Chronic Kidney Disease, NCT0363002 and NCT03893799 Full Article
ot Enhanced Immunogenicity of Mitochondrial-Localized Proteins in Cancer Cells By cancerimmunolres.aacrjournals.org Published On :: 2020-05-01T00:05:25-07:00 Epitopes derived from mutated cancer proteins elicit strong antitumor T-cell responses that correlate with clinical efficacy in a proportion of patients. However, it remains unclear whether the subcellular localization of mutated proteins influences the efficiency of T-cell priming. To address this question, we compared the immunogenicity of NY-ESO-1 and OVA localized either in the cytosol or in mitochondria. We showed that tumors expressing mitochondrial-localized NY-ESO-1 and OVA proteins elicit significantdly higher frequencies of antigen-specific CD8+ T cells in vivo. We also demonstrated that this stronger immune response is dependent on the mitochondrial location of the antigenic proteins, which contributes to their higher steady-state amount, compared with cytosolic localized proteins. Consistent with these findings, we showed that injection of mitochondria purified from B16 melanoma cells can protect mice from a challenge with B16 cells, but not with irrelevant tumors. Finally, we extended these findings to cancer patients by demonstrating the presence of T-cell responses specific for mutated mitochondrial-localized proteins. These findings highlight the utility of prioritizing epitopes derived from mitochondrial-localized mutated proteins as targets for cancer vaccination strategies. Full Article
ot IL1{alpha} Antagonizes IL1{beta} and Promotes Adaptive Immune Rejection of Malignant Tumors By cancerimmunolres.aacrjournals.org Published On :: 2020-05-01T00:05:25-07:00 We assessed the contribution of IL1 signaling molecules to malignant tumor growth using IL1β–/–, IL1α–/–, and IL1R1–/– mice. Tumors grew progressively in IL1R–/– and IL1α–/– mice but were often absent in IL1β–/– mice. This was observed whether tumors were implanted intradermally or injected intravenously and was true across multiple distinct tumor lineages. Antibodies to IL1β prevented tumor growth in wild-type (WT) mice but not in IL1R1–/– or IL1α–/– mice. Antibodies to IL1α promoted tumor growth in IL1β–/– mice and reversed the tumor-suppressive effect of anti-IL1β in WT mice. Depletion of CD8+ T cells and blockade of lymphocyte mobilization abrogated the IL1β–/– tumor suppressive effect, as did crossing IL1β–/– mice to SCID or Rag1–/– mice. Finally, blockade of IL1β synergized with blockade of PD-1 to inhibit tumor growth in WT mice. These results suggest that IL1β promotes tumor growth, whereas IL1α inhibits tumor growth by enhancing T-cell–mediated antitumor immunity. Full Article
ot Prevalent and Diverse Intratumoral Oncoprotein-Specific CD8+ T Cells within Polyomavirus-Driven Merkel Cell Carcinomas By cancerimmunolres.aacrjournals.org Published On :: 2020-05-01T00:05:25-07:00 Merkel cell carcinoma (MCC) is often caused by persistent expression of Merkel cell polyomavirus (MCPyV) T-antigen (T-Ag). These non-self proteins comprise about 400 amino acids (AA). Clinical responses to immune checkpoint inhibitors, seen in about half of patients, may relate to T-Ag–specific T cells. Strategies to increase CD8+ T-cell number, breadth, or function could augment checkpoint inhibition, but vaccines to augment immunity must avoid delivery of oncogenic T-antigen domains. We probed MCC tumor-infiltrating lymphocytes (TIL) with an artificial antigen-presenting cell (aAPC) system and confirmed T-Ag recognition with synthetic peptides, HLA-peptide tetramers, and dendritic cells (DC). TILs from 9 of 12 (75%) subjects contained CD8+ T cells recognizing 1–8 MCPyV epitopes per person. Analysis of 16 MCPyV CD8+ TIL epitopes and prior TIL data indicated that 97% of patients with MCPyV+ MCC had HLA alleles with the genetic potential that restrict CD8+ T-cell responses to MCPyV T-Ag. The LT AA 70–110 region was epitope rich, whereas the oncogenic domains of T-Ag were not commonly recognized. Specific recognition of T-Ag–expressing DCs was documented. Recovery of MCPyV oncoprotein–specific CD8+ TILs from most tumors indicated that antigen indifference was unlikely to be a major cause of checkpoint inhibition failure. The myriad of epitopes restricted by diverse HLA alleles indicates that vaccination can be a rational component of immunotherapy if tumor immune suppression can be overcome, and the oncogenic regions of T-Ag can be modified without impacting immunogenicity. Full Article
ot Intratumoral Delivery of a PD-1-Blocking scFv Encoded in Oncolytic HSV-1 Promotes Antitumor Immunity and Synergizes with TIGIT Blockade By cancerimmunolres.aacrjournals.org Published On :: 2020-05-01T00:05:25-07:00 Oncolytic virotherapy can lead to systemic antitumor immunity, but the therapeutic potential of oncolytic viruses in humans is limited due to their insufficient ability to overcome the immunosuppressive tumor microenvironment (TME). Here, we showed that locoregional oncolytic virotherapy upregulated the expression of PD-L1 in the TME, which was mediated by virus-induced type I and type II IFNs. To explore PD-1/PD-L1 signaling as a direct target in tumor tissue, we developed a novel immunotherapeutic herpes simplex virus (HSV), OVH-aMPD-1, that expressed a single-chain variable fragment (scFv) against PD-1 (aMPD-1 scFv). The virus was designed to locally deliver aMPD-1 scFv in the TME to achieve enhanced antitumor effects. This virus effectively modified the TME by releasing damage-associated molecular patterns, promoting antigen cross-presentation by dendritic cells, and enhancing the infiltration of activated T cells; these alterations resulted in antitumor T-cell activity that led to reduced tumor burdens in a liver cancer model. Compared with OVH, OVH-aMPD-1 promoted the infiltration of myeloid-derived suppressor cells (MDSC), resulting in significantly higher percentages of CD155+ granulocytic-MDSCs (G-MDSC) and monocytic-MDSCs (M-MDSC) in tumors. In combination with TIGIT blockade, this virus enhanced tumor-specific immune responses in mice with implanted subcutaneous tumors or invasive tumors. These findings highlighted that intratumoral immunomodulation with an OV expressing aMPD-1 scFv could be an effective stand-alone strategy to treat cancers or drive maximal efficacy of a combination therapy with other immune checkpoint inhibitors. Full Article
ot The Role of Fnr Paralogs in Controlling Anaerobic Metabolism in the Diazotroph Paenibacillus polymyxa WLY78 [Environmental Microbiology] By aem.asm.org Published On :: 2020-05-05T08:00:35-07:00 Fnr is a transcriptional regulator that controls the expression of a variety of genes in response to oxygen limitation in bacteria. Genome sequencing revealed four genes (fnr1, fnr3, fnr5, and fnr7) coding for Fnr proteins in Paenibacillus polymyxa WLY78. Fnr1 and Fnr3 showed more similarity to each other than to Fnr5 and Fnr7. Also, Fnr1 and Fnr3 exhibited high similarity with Bacillus cereus Fnr and Bacillus subtilis Fnr in sequence and structures. Both the aerobically purified His-tagged Fnr1 and His-tagged Fnr3 in Escherichia coli could bind to the specific DNA promoter. Deletion analysis showed that the four fnr genes, especially fnr1 and fnr3, have significant impacts on growth and nitrogenase activity. Single deletion of fnr1 or fnr3 led to a 50% reduction in nitrogenase activity, and double deletion of fnr1 and fnr3 resulted to a 90% reduction in activity. Genome-wide transcription analysis showed that Fnr1 and Fnr3 indirectly activated expression of nif (nitrogen fixation) genes and Fe transport genes under anaerobic conditions. Fnr1 and Fnr3 inhibited expression of the genes involved in the aerobic respiratory chain and activated expression of genes responsible for anaerobic electron acceptor genes. IMPORTANCE The members of the nitrogen-fixing Paenibacillus spp. have great potential to be used as a bacterial fertilizer in agriculture. However, the functions of the fnr gene(s) in nitrogen fixation and other metabolisms in Paenibacillus spp. are not known. Here, we found that in P. polymyxa WLY78, Fnr1 and Fnr3 were responsible for regulation of numerous genes in response to changes in oxygen levels, but Fnr5 and Fnr7 exhibited little effect. Fnr1 and Fnr3 indirectly or directly regulated many types of important metabolism, such as nitrogen fixation, Fe uptake, respiration, and electron transport. This study not only reveals the function of the fnr genes of P. polymyxa WLY78 in nitrogen fixation and other metabolisms but also will provide insight into the evolution and regulatory mechanisms of fnr in Paenibacillus. Full Article
ot Comparative Whole-Genome Phylogeny of Animal, Environmental, and Human Strains Confirms the Genogroup Organization and Diversity of the Stenotrophomonas maltophilia Complex [Public and Environmental Health Microbiology] By aem.asm.org Published On :: 2020-05-05T08:00:35-07:00 The Stenotrophomonas maltophilia complex (Smc) comprises opportunistic environmental Gram-negative bacilli responsible for a variety of infections in both humans and animals. Beyond its large genetic diversity, its genetic organization in genogroups was recently confirmed through the whole-genome sequencing of human and environmental strains. As they are poorly represented in these analyses, we sequenced the whole genomes of 93 animal strains to determine their genetic background and characteristics. Combining these data with 81 newly sequenced human strains and the genomes available from RefSeq, we performed a genomic analysis that included 375 nonduplicated genomes with various origins (animal, 104; human, 226; environment, 30; unknown, 15). Phylogenetic analysis and clustering based on genome-wide average nucleotide identity confirmed and specified the genetic organization of Smc in at least 20 genogroups. Two new genogroups were identified, and two previously described groups were further divided into two subgroups each. Comparing the strains isolated from different host types and their genogroup affiliation, we observed a clear disequilibrium in certain groups. Surprisingly, some antimicrobial resistance genes, integrons, and/or clusters of attC sites lacking integron-integrase (CALIN) sequences targeting antimicrobial compounds extensively used in animals were mainly identified in animal strains. We also identified genes commonly found in animal strains coding for efflux systems. The result of a large whole-genome analysis performed by us supports the hypothesis of the putative contribution of animals as a reservoir of Stenotrophomonas maltophilia complex strains and/or resistance genes for strains in humans. IMPORTANCE Given its naturally large antimicrobial resistance profile, the Stenotrophomonas maltophilia complex (Smc) is a set of emerging pathogens of immunosuppressed and cystic fibrosis patients. As it is group of environmental microorganisms, this adaptation to humans is an opportunity to understand the genetic and metabolic selective mechanisms involved in this process. The previously reported genomic organization was incomplete, as data from animal strains were underrepresented. We added the missing piece of the puzzle with whole-genome sequencing of 93 strains of animal origin. Beyond describing the phylogenetic organization, we confirmed the genetic diversity of the Smc, which could not be estimated through routine phenotype- or matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF)-based laboratory tests. Animals strains seem to play a key role in the diversity of Smc and could act as a reservoir for mobile resistance genes. Some genogroups seem to be associated with particular hosts; the genetic support of this association and the role of the determinants/corresponding genes need to be explored. Full Article
ot Prebiotics Inhibit Proteolysis by Gut Bacteria in a Host Diet-Dependent Manner: a Three-Stage Continuous In Vitro Gut Model Experiment [Food Microbiology] By aem.asm.org Published On :: 2020-05-05T08:00:35-07:00 Dietary protein residue can result in microbial generation of various toxic metabolites in the gut, such as ammonia. A prebiotic is "a substrate that is selectively utilised by host microorganisms conferring a health benefit" (G. R. Gibson, R. Hutkins, M. E. Sanders, S. L. Prescott, et al., Nat Rev Gastroenterol Hepatol 14:491–502, 2017, https://doi.org/10.1038/nrgastro.2017.75). Prebiotics are carbohydrates that may have the potential to reverse the harmful effects of gut bacterial protein fermentation. Three-stage continuous colonic model systems were inoculated with fecal samples from omnivore and vegetarian volunteers. Casein (equivalent to 105 g protein consumption per day) was used within the systems as a protein source. Two different doses of inulin-type fructans (Synergy1) were later added (equivalent to 10 g per day in vivo and 15 g per day) to assess whether this influenced protein fermentation. Bacteria were enumerated by fluorescence in situ hybridization with flow cytometry. Metabolites from bacterial fermentation (short-chain fatty acid [SCFA], ammonia, phenol, indole, and p-cresol) were monitored to further analyze proteolysis and the prebiotic effect. A significantly higher number of bifidobacteria was observed with the addition of inulin together with reduction of Desulfovibrio spp. Furthermore, metabolites from protein fermentation, such as branched-chain fatty acids (BCFA) and ammonia, were significantly lowered with Synergy1. Production of p-cresol varied among donors, as we recognized four high producing models and two low producing models. Prebiotic addition reduced its production only in vegetarian high p-cresol producers. IMPORTANCE Dietary protein levels are generally higher in Western populations than in the world average. We challenged three-stage continuous colonic model systems containing high protein levels and confirmed the production of potentially harmful metabolites from proteolysis, especially replicates of the transverse and distal colon. Fermentations of proteins with a prebiotic supplementation resulted in a change in the human gut microbiota and inhibited the production of some proteolytic metabolites. Moreover, we observed both bacterial and metabolic differences between fecal bacteria from omnivore donors and vegetarian donors. Proteins with prebiotic supplementation showed higher Bacteroides spp. and inhibited Clostridium cluster IX in omnivore models, while in vegetarian modes, Clostridium cluster IX was higher and Bacteroides spp. lower with high protein plus prebiotic supplementation. Synergy1 addition inhibited p-cresol production in vegetarian high p-cresol-producing models while the inhibitory effect was not seen in omnivore models. Full Article
ot Vib-PT, an Aromatic Prenyltransferase Involved in the Biosynthesis of Vibralactone from Stereum vibrans [Enzymology and Protein Engineering] By aem.asm.org Published On :: 2020-05-05T08:00:35-07:00 Vibralactone, a hybrid compound derived from phenols and a prenyl group, is a strong pancreatic lipase inhibitor with a rare fused bicyclic β-lactone skeleton. Recently, a researcher reported a vibralactone derivative (compound C1) that caused inhibition of pancreatic lipase with a half-maximal inhibitory concentration of 14 nM determined by structure-based optimization, suggesting a potential candidate as a new antiobesity treatment. In the present study, we sought to identify the main gene encoding prenyltransferase in Stereum vibrans, which is responsible for the prenylation of phenol leading to vibralactone synthesis. Two RNA silencing transformants of the identified gene (vib-PT) were obtained through Agrobacterium tumefaciens-mediated transformation. Compared to wild-type strains, the transformants showed a decrease in vib-PT expression ranging from 11.0 to 56.0% at 5, 10, and 15 days in reverse transcription-quantitative PCR analysis, along with a reduction in primary vibralactone production of 37 to 64% at 15 and 21 days, respectively, as determined using ultra-high-performance liquid chromatography-mass spectrometry analysis. A soluble and enzymatically active fusion Vib-PT protein was obtained by expressing vib-PT in Escherichia coli, and the enzyme’s optimal reaction conditions and catalytic efficiency (Km/kcat) were determined. In vitro experiments established that Vib-PT catalyzed the C-prenylation at C-3 of 4-hydroxy-benzaldehyde and the O-prenylation at the 4-hydroxy of 4-hydroxy-benzenemethanol in the presence of dimethylallyl diphosphate. Moreover, Vib-PT shows promiscuity toward aromatic compounds and prenyl donors. IMPORTANCE Vibralactone is a lead compound with a novel skeleton structure that shows strong inhibitory activity against pancreatic lipase. Vibralactone is not encoded by the genome directly but rather is synthesized from phenol, followed by prenylation and other enzyme reactions. Here, we used an RNA silencing approach to identify and characterize a prenyltransferase in a basidiomycete species that is responsible for the synthesis of vibralactone. The identified gene, vib-PT, was expressed in Escherichia coli to obtain a soluble and enzymatically active fusion Vib-PT protein. In vitro characterization of the enzyme demonstrated the catalytic mechanism of prenylation and broad substrate range for different aromatic acceptors and prenyl donors. These characteristics highlight the possibility of Vib-PT to generate prenylated derivatives of aromatics and other compounds as improved bioactive agents or potential prodrugs. Full Article
ot Ecological and Ontogenetic Components of Larval Lake Sturgeon Gut Microbiota Assembly, Successional Dynamics, and Ecological Evaluation of Neutral Community Processes [Microbial Ecology] By aem.asm.org Published On :: 2020-05-05T08:00:35-07:00 Gastrointestinal (GI) or gut microbiotas play essential roles in host development and physiology. These roles are influenced partly by the microbial community composition. During early developmental stages, the ecological processes underlying the assembly and successional changes in host GI community composition are influenced by numerous factors, including dispersal from the surrounding environment, age-dependent changes in the gut environment, and changes in dietary regimes. However, the relative importance of these factors to the gut microbiota is not well understood. We examined the effects of environmental (diet and water sources) and host early ontogenetic development on the diversity of and the compositional changes in the gut microbiota of a primitive teleost fish, the lake sturgeon (Acipenser fulvescens), based on massively parallel sequencing of the 16S rRNA gene. Fish larvae were raised in environments that differed in water source (stream versus filtered groundwater) and diet (supplemented versus nonsupplemented Artemia fish). We quantified the gut microbial community structure at three stages (prefeeding and 1 and 2 weeks after exogenous feeding began). The diversity declined and the community composition differed significantly among stages; however, only modest differences associated with dietary or water source treatments were documented. Many taxa present in the gut were over- or underrepresented relative to neutral expectations in each sampling period. The findings indicate dynamic relationships between the gut microbiota composition and host gastrointestinal physiology, with comparatively smaller influences being associated with the rearing environments. Neutral models of community assembly could not be rejected, but selectivity associated with microbe-host GI tract interactions through early ontogenetic stages was evident. The results have implications for sturgeon conservation and aquaculture production specifically and applications of microbe-based management in teleost fish generally. IMPORTANCE We quantified the effects of environment (diet and water sources) and host early ontogenetic development on the diversity of and compositional changes in gut microbial communities based on massively parallel sequencing of the 16S rRNA genes from the GI tracts of larval lake sturgeon (Acipenser fulvescens). The gut microbial community diversity declined and the community composition differed significantly among ontogenetic stages; however, only modest differences associated with dietary or water source treatments were documented. Selectivity associated with microbe-host GI tract interactions through early ontogenetic stages was evident. The results have implications for lake sturgeon and early larval ecology and survival in their natural habitat and for conservation and aquaculture production specifically, as well as applications of microbe-based management in teleost fish generally. Full Article
ot Articles of Significant Interest in This Issue [Spotlight] By aem.asm.org Published On :: 2020-05-05T08:00:35-07:00 Full Article
ot Multifunctional Acidocin 4356 Combats Pseudomonas aeruginosa through Membrane Perturbation and Virulence Attenuation: Experimental Results Confirm Molecular Dynamics Simulation [Biotechnology] By aem.asm.org Published On :: 2020-05-05T08:00:35-07:00 A longstanding awareness in generating resistance to common antimicrobial therapies by Gram-negative bacteria has made them a major threat to global health. The application of antimicrobial peptides as a therapeutic agent would be a great opportunity to combat bacterial diseases. Here, we introduce a new antimicrobial peptide (~8.3 kDa) from probiotic strain Lactobacillus acidophilus ATCC 4356, designated acidocin 4356 (ACD). This multifunctional peptide exerts its anti-infective ability against Pseudomonas aeruginosa through an inhibitory action on virulence factors, bacterial killing, and biofilm degradation. Reliable performance over tough physiological conditions and low hemolytic activity confirmed a new hope for the therapeutic setting. Antibacterial kinetic studies using flow cytometry technique showed that the ACD activity is related to the change in permeability of the membrane. The results obtained from molecular dynamic (MD) simulation were perfectly suited to the experimental data of ACD behavior. The structure-function relationship of this natural compound, along with the results of transmission electron microscopy analysis and MD simulation, confirmed the ability of the ACD aimed at enhancing bacterial membrane perturbation. The peptide was effective in the treatment of P. aeruginosa infection in mouse model. The results support the therapeutic potential of ACD for the treatment of Pseudomonas infections. IMPORTANCE Multidrug-resistant bacteria are a major threat to global health, and the Pseudomonas bacterium with the ability to form biofilms is considered one of the main causative agents of nosocomial infections. Traditional antibiotics have failed because of increased resistance. Thus, finding new biocompatible antibacterial drugs is essential. Antimicrobial peptides are produced by various organisms as a natural defense mechanism against pathogens, inspiring the possible design of the next generation of antibiotics. In this study, a new antimicrobial peptide was isolated from Lactobacillus acidophilus ATCC 4356, counteracting both biofilm and planktonic cells of Pseudomonas aeruginosa. A detailed investigation was then conducted concerning the functional mechanism of this peptide by using fluorescence techniques, electron microscopy, and in silico methods. The antibacterial and antibiofilm properties of this peptide may be important in the treatment of Pseudomonas infections. Full Article
ot Correction for Pozsgai et al., "Modified mariner Transposons for Random Inducible-Expression Insertions and Transcriptional Reporter Fusion Insertions in Bacillus subtilis" [Author Correction] By aem.asm.org Published On :: 2020-05-05T08:00:35-07:00 Full Article
ot Two Functional Fatty Acyl Coenzyme A Ligases Affect Free Fatty Acid Metabolism To Block Biosynthesis of an Antifungal Antibiotic in Lysobacter enzymogenes [Environmental Microbiology] By aem.asm.org Published On :: 2020-05-05T08:00:35-07:00 In Lysobacter enzymogenes OH11, RpfB1 and RpfB2 were predicted to encode acyl coenzyme A (CoA) ligases. RpfB1 is located in the Rpf gene cluster. Interestingly, we found an RpfB1 homolog (RpfB2) outside this canonical gene cluster, and nothing is known about its functionality or mechanism. Here, we report that rpfB1 and rpfB2 can functionally replace EcFadD in the Escherichia coli fadD mutant JW1794. RpfB activates long-chain fatty acids (n-C16:0 and n-C18:0) for the corresponding fatty acyl-CoA ligase (FCL) activity in vitro, and Glu-361 plays critical roles in the catalytic mechanism of RpfB1 and RpfB2. Deletion of rpfB1 and rpfB2 resulted in significantly increased heat-stable antifungal factor (HSAF) production, and overexpression of rpfB1 or rpfB2 completely suppressed HSAF production. Deletion of rpfB1 and rpfB2 resulted in increased L. enzymogenes diffusible signaling factor 3 (LeDSF3) synthesis in L. enzymogenes. Overall, our results showed that changes in intracellular free fatty acid levels significantly altered HSAF production. Our report shows that intracellular free fatty acids are required for HSAF production and that RpfB affects HSAF production via FCL activity. The global transcriptional regulator Clp directly regulated the expression of rpfB1 and rpfB2. In conclusion, these findings reveal new roles of RpfB in antibiotic biosynthesis in L. enzymogenes. IMPORTANCE Understanding the biosynthetic and regulatory mechanisms of heat-stable antifungal factor (HSAF) could improve the yield in Lysobacter enzymogenes. Here, we report that RpfB1 and RpfB2 encode acyl coenzyme A (CoA) ligases. Our research shows that RpfB1 and RpfB2 affect free fatty acid metabolism via fatty acyl-CoA ligase (FCL) activity to reduce the substrate for HSAF synthesis and, thereby, block HSAF production in L. enzymogenes. Furthermore, these findings reveal new roles for the fatty acyl-CoA ligases RpfB1 and RpfB2 in antibiotic biosynthesis in L. enzymogenes. Importantly, the novelty of this work is the finding that RpfB2 lies outside the Rpf gene cluster and plays a key role in HSAF production, which has not been reported in other diffusible signaling factor (DSF)/Rpf-producing bacteria. Full Article
ot Genetic Influences of the Microbiota on the Life Span of Drosophila melanogaster [Invertebrate Microbiology] By aem.asm.org Published On :: 2020-05-05T08:00:35-07:00 To better understand how associated microorganisms ("microbiota") influence organismal aging, we focused on the model organism Drosophila melanogaster. We conducted a metagenome-wide association (MGWA) as a screen to identify bacterial genes associated with variation in the D. melanogaster life span. The results of the MGWA predicted that bacterial cysteine and methionine metabolism genes influence fruit fly longevity. A mutant analysis, in which flies were inoculated with Escherichia coli strains bearing mutations in various methionine cycle genes, confirmed a role for some methionine cycle genes in extending or shortening fruit fly life span. Initially, we predicted these genes might influence longevity by mimicking or opposing methionine restriction, an established mechanism for life span extension in fruit flies. However, follow-up transcriptome sequencing (RNA-seq) and metabolomic experiments were generally inconsistent with this conclusion and instead implicated glucose and vitamin B6 metabolism in these influences. We then tested if bacteria could influence life span through methionine restriction using a different set of bacterial strains. Flies reared with a bacterial strain that ectopically expressed bacterial transsulfuration genes and lowered the methionine content of the fly diet also extended female D. melanogaster life span. Taken together, the microbial influences shown here overlap with established host genetic mechanisms for aging and therefore suggest overlapping roles for host and microbial metabolism genes in organismal aging. IMPORTANCE Associated microorganisms ("microbiota") are intimately connected to the behavior and physiology of their animal hosts, and defining the mechanisms of these interactions is an urgent imperative. This study focuses on how microorganisms influence the life span of a model host, the fruit fly Drosophila melanogaster. First, we performed a screen that suggested a strong influence of bacterial methionine metabolism on host life span. Follow-up analyses of gene expression and metabolite abundance identified stronger roles for vitamin B6 and glucose than methionine metabolism among the tested mutants, possibly suggesting a more limited role for bacterial methionine metabolism genes in host life span effects. In a parallel set of experiments, we created a distinct bacterial strain that expressed life span-extending methionine metabolism genes and showed that this strain can extend fly life span. Therefore, this work identifies specific bacterial genes that influence host life span, including in ways that are consistent with the expectations of methionine restriction. Full Article
ot Microbial Diversity in Deep-Subsurface Hot Brines of Northwest Poland: from Community Structure to Isolate Characteristics [Geomicrobiology] By aem.asm.org Published On :: 2020-05-05T08:00:35-07:00 Deep-subsurface hot brines in northwest Poland, extracted through boreholes reaching 1.6 and 2.6 km below the ground surface, were microbiologically investigated using culture-independent and culture-dependent methods. The high-throughput sequencing of 16S rRNA gene amplicons showed a very low diversity of bacterial communities, which were dominated by phyla Proteobacteria and Firmicutes. Bacterial genera potentially involved in sulfur oxidation and nitrate reduction (Halothiobacillus and Methylobacterium) prevailed in both waters over the sulfate reducers ("Candidatus Desulforudis" and Desulfotomaculum). Only one archaeal taxon, affiliated with the order Thermoplasmatales, was detected in analyzed samples. Bacterial isolates obtained from these deep hot brines were closely related to Bacillus paralicheniformis based on the 16S rRNA sequence similarity. However, genomic and physiological analyses made for one of the isolates, Bacillus paralicheniformis strain TS6, revealed the existence of more diverse metabolic pathways than those of its moderate-temperature counterpart. These specific traits may be associated with the ecological adaptations to the extreme habitat, which suggest that some lineages of B. paralicheniformis are halothermophilic. IMPORTANCE Deep-subsurface aquifers, buried thousands of meters down the Earth’s crust, belong to the most underexplored microbial habitats. Although a few studies revealed the existence of microbial life at the depths, the knowledge about the microbial life in the deep hydrosphere is still scarce due to the limited access to such environments. Studying the subsurface microbiome provides unique information on microbial diversity, community structure, and geomicrobiological processes occurring under extreme conditions of the deep subsurface. Our study shows that low-diversity microbial assemblages in subsurface hot brines were dominated by the bacteria involved in biogeochemical cycles of sulfur and nitrogen. Based on genomic and physiological analyses, we found that the Bacillus paralicheniformis isolate obtained from the brine under study differed from the mesophilic species in the presence of specific adaptations to harsh environmental conditions. We indicate that some lineages of B. paralicheniformis are halothermophilic, which was not previously reported. Full Article
ot Diazotrophs Show Signs of Restoration in Amazon Rain Forest Soils with Ecosystem Rehabilitation [Microbial Ecology] By aem.asm.org Published On :: 2020-05-05T08:00:35-07:00 Biological nitrogen fixation can be an important source of nitrogen in tropical forests that serve as a major CO2 sink. Extensive deforestation of the Amazon is known to influence microbial communities and the biogeochemical cycles they mediate. However, it is unknown how diazotrophs (nitrogen-fixing microorganisms) respond to deforestation and subsequent ecosystem conversion to agriculture, as well as whether they can recover in secondary forests that are established after agriculture is abandoned. To address these knowledge gaps, we combined a spatially explicit sampling approach with high-throughput sequencing of nifH genes. The main objectives were to assess the functional distance decay relationship of the diazotrophic bacterial community in a tropical forest ecosystem and to quantify the roles of various factors that drive the observed changes in the diazotrophic community structure. We observed an increase in local diazotrophic diversity (α-diversity) with a decrease in community turnover (β-diversity), associated with a shift in diazotrophic community structure as a result of the forest-to-pasture conversion. Both diazotrophic community turnover and structure showed signs of recovery in secondary forests. Changes in the diazotrophic community were primarily driven by the change in land use rather than differences in geochemical characteristics or geographic distances. The diazotroph communities in secondary forests resembled those in primary forests, suggesting that at least partial recovery of diazotrophs is possible following agricultural abandonment. IMPORTANCE The Amazon region is a major tropical forest region that is being deforested at an alarming rate to create space for cattle ranching and agriculture. Diazotrophs (nitrogen-fixing microorganisms) play an important role in supplying soil N for plant growth in tropical forests. It is unknown how diazotrophs respond to deforestation and whether they can recover in secondary forests that establish after agriculture is abandoned. Using high-throughput sequencing of nifH genes, we characterized the response of diazotrophs’ β-diversity and identified major drivers of changes in diazotrophs from forest-to-pasture and pasture-to-secondary-forest conversions. Studying the impact of land use change on diazotrophs is important for a better understanding of the impact of deforestation on tropical forest ecosystem functioning, and our results on the potential recovery of diazotrophs in secondary forests imply the possible restoration of ecosystem functions in secondary forests. Full Article
ot Unexpected Abundance and Diversity of Phototrophs in Mats from Morphologically Variable Microbialites in Great Salt Lake, Utah [Microbial Ecology] By aem.asm.org Published On :: 2020-05-05T08:00:35-07:00 Microbial mat communities are associated with extensive (~700 km2) and morphologically variable carbonate structures, termed microbialites, in the hypersaline Great Salt Lake (GSL), Utah. However, whether the composition of GSL mat communities covaries with microbialite morphology and lake environment is unknown. Moreover, the potential adaptations that allow the establishment of these extensive mat communities at high salinity (14% to 17% total salts) are poorly understood. To address these questions, microbial mats were sampled from seven locations in the south arm of GSL representing different lake environments and microbialite morphologies. Despite the morphological differences, microbialite-associated mats were taxonomically similar and were dominated by the cyanobacterium Euhalothece and several heterotrophic bacteria. Metagenomic sequencing of a representative mat revealed Euhalothece and subdominant Thiohalocapsa populations that harbor the Calvin cycle and nitrogenase, suggesting they supply fixed carbon and nitrogen to heterotrophic bacteria. Fifteen of the next sixteen most abundant taxa are inferred to be aerobic heterotrophs and, surprisingly, harbor reaction center, rhodopsin, and/or bacteriochlorophyll biosynthesis proteins, suggesting aerobic photoheterotrophic (APH) capabilities. Importantly, proteins involved in APH are enriched in the GSL community relative to that in microbialite mat communities from lower salinity environments. These findings indicate that the ability to integrate light into energy metabolism is a key adaptation allowing for robust mat development in the hypersaline GSL. IMPORTANCE The earliest evidence of life on Earth is from organosedimentary structures, termed microbialites, preserved in 3.481-billion-year-old (Ga) rocks. Phototrophic microbial mats form in association with an ~700-km2 expanse of morphologically diverse microbialites in the hypersaline Great Salt Lake (GSL), Utah. Here, we show taxonomically similar microbial mat communities are associated with morphologically diverse microbialites across the lake. Metagenomic sequencing reveals an abundance and diversity of autotrophic and heterotrophic taxa capable of harvesting light energy to drive metabolism. The unexpected abundance of and diversity in the mechanisms of harvesting light energy observed in GSL mat populations likely function to minimize niche overlap among coinhabiting taxa, provide a mechanism(s) to increase energy yield and osmotic balance during salt stress, and enhance fitness. Together, these physiological benefits promote the formation of robust mats that, in turn, influence the formation of morphologically diverse microbialite structures that can be imprinted in the rock record. Full Article
ot CosR Is a Global Regulator of the Osmotic Stress Response with Widespread Distribution among Bacteria [Genetics and Molecular Biology] By aem.asm.org Published On :: 2020-05-05T08:00:35-07:00 Bacteria accumulate small, organic compounds called compatible solutes via uptake from the environment or biosynthesis from available precursors to maintain the turgor pressure of the cell in response to osmotic stress. The halophile Vibrio parahaemolyticus has biosynthesis pathways for the compatible solutes ectoine (encoded by ectABC-asp_ect) and glycine betaine (encoded by betIBA-proXWV), four betaine-carnitine-choline transporters (encoded by bccT1 to bccT4), and a second ProU transporter (encoded by proVWX). All of these systems are osmotically inducible with the exception of bccT2. Previously, it was shown that CosR, a MarR-type regulator, was a direct repressor of ectABC-asp_ect in Vibrio species. In this study, we investigated whether CosR has a broader role in the osmotic stress response. Expression analyses demonstrated that betIBA-proXWV, bccT1, bccT3, bccT4, and proVWX are repressed in low salinity. Examination of an in-frame cosR deletion mutant showed that expression of these systems is derepressed in the mutant at low salinity compared with the wild type. DNA binding assays demonstrated that purified CosR binds directly to the regulatory region of both biosynthesis systems and four transporters. In Escherichia coli green fluorescent protein (GFP) reporter assays, we demonstrated that CosR directly represses transcription of betIBA-proXWV, bccT3, and proVWX. Similar to Vibrio harveyi, we showed betIBA-proXWV was directly activated by the quorum-sensing LuxR homolog OpaR, suggesting a conserved mechanism of regulation among Vibrio species. Phylogenetic analysis demonstrated that CosR is ancestral to the Vibrionaceae family, and bioinformatics analysis showed widespread distribution among Gammaproteobacteria in general. Incidentally, in Aliivibrio fischeri, Aliivibrio finisterrensis, Aliivibrio sifiae, and Aliivibrio wodanis, an unrelated MarR-type regulator gene named ectR was clustered with ectABC-asp, which suggests the presence of another novel ectoine biosynthesis regulator. Overall, these data show that CosR is a global regulator of osmotic stress response that is widespread among bacteria. IMPORTANCE Vibrio parahaemolyticus can accumulate compatible solutes via biosynthesis and transport, which allow the cell to survive in high salinity conditions. There is little need for compatible solutes under low salinity conditions, and biosynthesis and transporter systems need to be repressed. However, the mechanism(s) of this repression is not known. In this study, we showed that CosR played a major role in the regulation of multiple compatible solute systems. Phylogenetic analysis showed that CosR is present in all members of the Vibrionaceae family as well as numerous Gammaproteobacteria. Collectively, these data establish CosR as a global regulator of the osmotic stress response that is widespread in bacteria, controlling many more systems than previously demonstrated. Full Article
ot Unnecessary antibiotic prescribing in a Canadian primary care setting: a descriptive analysis using routinely collected electronic medical record data By www.cmajopen.ca Published On :: 2020-05-07T05:57:29-07:00 Background: Unnecessary antibiotic use in the community in Canada is not well defined. Our objective was to quantify unnecessary antibiotic prescribing in a Canadian primary care setting. Methods: We performed a descriptive analysis in Ontario from April 2011 to March 2016 using the Electronic Medical Records Primary Care database linked to other health administrative data sets at ICES. We determined antibiotic prescribing rates (per 100 patient–physician encounters) for 23 common conditions and estimated rates of unnecessary prescribing using predefined expected prescribing rates, both stratified by condition and patient age group. Results: The study included 341 physicians, 204 313 patients and 499 570 encounters. The rate of unnecessary antibiotic prescribing for included conditions was 15.4% overall and was 17.6% for those less than 2 years of age, 18.6% for those aged 2–18, 14.5% for those aged 19–64 and 13.0% for those aged 65 or more. The highest unnecessary prescribing rates were observed for acute bronchitis (52.6%), acute sinusitis (48.4%) and acute otitis media (39.3%). The common cold, acute bronchitis, acute sinusitis and miscellaneous nonbacterial infections were responsible for 80% of the unnecessary antibiotic prescriptions. Of all antibiotics prescribed, 12.0% were for conditions for which they are never indicated, and 12.3% for conditions for which they are rarely indicated. In children, 25% of antibiotics were for conditions for which they are never indicated (e.g., common cold). Interpretation: Antibiotics were prescribed unnecessarily for 15.4% of included encounters in a Canadian primary care setting. Almost one-quarter of antibiotics were prescribed for conditions for which they are rarely or never indicated. These findings should guide safe reductions in the use of antibiotics for the common cold, bronchitis and sinusitis. Full Article
ot Palliative care clinical rotations among undergraduate and postgraduate medical trainees in Canada: a descriptive study By www.cmajopen.ca Published On :: 2020-04-14T05:09:06-07:00 Background: The number of medical undergraduate and postgraduate students completing palliative care clinical rotations in Canadian medical schools is currently unknown. The aim of this study was to assess the proportion of Canadian medical trainees completing clinical rotations in palliative care and to determine whether changes took place between 2008 and 2018. Methods: In this descriptive study, all Canadian medical schools (n = 17) were invited to provide data at the undergraduate and postgraduate levels (2007/08–2015/16 and 2007/08–2017/18, respectively). Information collected included the number, type and length of palliative care clinical rotations offered and the total number of medical trainees or residents enrolled at each school. Results: All 17 Canadian medical schools responded to the request for information. At the undergraduate level, palliative care clinical rotations were not offered in 2 schools, mandatory in 2 and optional in 13. Three schools that offered optional rotations were unable to provide complete data and were therefore excluded from further analyses. In 2015/16, only 29.7% of undergraduate medical students completed palliative care clinical rotations, yet this was a significant improvement compared to 2011/12 (13.6%, p = 0.02). At the postgraduate level, on average, 57.9% of family medicine trainees completed such rotations between 2007/08 and 2016/17. During the same period, palliative care clinical rotations were completed by trainees in specialty or subspecialty programs in anesthesiology (34.2%), geriatric medicine (64.4%), internal medicine (30.9%), neurology (28.2%) and psychiatry (64.5%). Interpretation: Between 2008 and 2018, a large proportion of Canadian medical trainees graduated without the benefit of a clinical rotation in palliative care. Without dedicated clinical exposure to palliative care, many physicians will enter practice without vital palliative care competencies. Full Article
ot 25-Hydroxyvitamin D and Risk of Osteoporotic Fractures: Mendelian Randomization Analysis in 2 Large Population-Based Cohorts By academic.oup.com Published On :: Tue, 07 Apr 2020 00:00:00 GMT AbstractBackgroundWhether low plasma 25-hydroxyvitamin D concentrations cause osteoporotic fractures is unclear. We tested the hypothesis that low plasma 25-hydroxyvitamin D concentrations are associated with increased risk of osteoporotic fractures using a Mendelian randomization analysis.MethodsWe genotyped 116 335 randomly chosen white Danish persons aged 20–100 years in 2 population-based cohort studies for plasma 25-hydroxyvitamin D decreasing genotypes in CYP2R1 (rs117913124 and rs12794714), DHCR7 (rs7944926 and rs11234027), GEMIN2 (rs2277458), and HAL (rs3819817); 35 833 had information on plasma 25-hydroxyvitamin D. We assessed risk of total, osteoporotic, and anatomically localized fractures from 1981 through 2017. Information on fractures and vital status was obtained from nationwide registries.ResultsDuring up to 36 years of follow-up, we observed 17 820 total fractures, 10 861 osteoporotic fractures, and 3472 fractures of hip or femur. Compared with individuals with 25-hydroxyvitamin D ≥ 50nmol/L, multivariable adjusted hazard ratios (95% CIs) for total fractures were 1.03 (0.97–1.09) for individuals with 25–49.9 nmol/L, 1.19 (1.10–1.28) for individuals with 12.5–24.9 nmol/L, and 1.39 (1.21–1.60) for individuals with 25-hydroxyvitamin D < 12.5 nmol/L. Corresponding hazard ratios were 1.07 (1.00–1.15), 1.25 (1.13–1.37), and 1.49 (1.25–1.77) for osteoporotic fractures and 1.09 (0.98–1.22), 1.37 (1.18–1.57), and 1.41 (1.09–1.81) for fractures of hip or femur, respectively. Hazard ratios per 1 increase in vitamin D allele score, corresponding to 3.0% (approximately 1.6 nmol/L) lower 25-hydroxyvitamin D concentrations, were 0.99 (0.98–1.00) for total fractures, 0.99 (0.97–1.00) for osteoporotic fractures, and 0.98 (0.95–1.00) for fractures of hip or femur.ConclusionsLow plasma 25-hydroxyvitamin D concentrations were associated with osteoporotic fractures; however, Mendelian randomization analysis provided no evidence supporting a causal role for vitamin D in the risk for osteoporotic fractures. Full Article
ot Analytical Performance Specifications for Lipoprotein(a), Apolipoprotein B-100, and Apolipoprotein A-I Using the Biological Variation Model in the EuBIVAS Population By academic.oup.com Published On :: Wed, 08 Apr 2020 00:00:00 GMT AbstractBackgroundWith increased interest in lipoprotein(a) (Lp[a]) concentration as a target for risk reduction and growing clinical evidence of its impact on cardiovascular disease (CVD) risk, rigorous analytical performance specifications (APS) and accuracy targets for Lp(a) are required. We investigated the biological variation (BV) of Lp(a), and 2 other major biomarkers of CVD, apolipoprotein A-I (apoA-I) and apolipoprotein B-100 (apoB), in the European Biological Variation Study population.MethodSerum samples were drawn from 91 healthy individuals for 10 consecutive weeks at 6 European laboratories and analyzed in duplicate on a Roche Cobas 8000 c702. Outlier, homogeneity, and trend analysis were performed, followed by CV-ANOVA to determine BV estimates and their 95% CIs. These estimates were used to calculate APS and reference change values. For Lp(a), BV estimates were determined on normalized concentration quintiles.ResultsWithin-subject BV estimates were significantly different between sexes for Lp(a) and between women aged <50 and >50 years for apoA-I and apoB. Lp(a) APS was constant across concentration quintiles and, overall, lower than APS based on currently published data, whereas results were similar for apoA-I and apoB.ConclusionUsing a fully Biological Variation Data Critical Appraisal Checklist (BIVAC)–compliant protocol, our study data confirm BV estimates of Lp(a) listed in the European Federation of Clinical Chemistry and Laboratory Medicine database and reinforce concerns expressed in recent articles regarding the suitability of older APS recommendations for Lp(a) measurements. Given the heterogeneity of Lp(a), more BIVAC-compliant studies on large numbers of individuals of different ethnic groups would be desirable. Full Article
ot Detection of ctDNA from Dried Blood Spots after DNA Size Selection By academic.oup.com Published On :: Wed, 08 Apr 2020 00:00:00 GMT AbstractBackgroundRecent advances in the study and clinical applications of circulating tumor DNA (ctDNA) are limited by practical considerations of sample collection. Whole-genome sequencing (WGS) is increasingly used for analysis of ctDNA, identifying copy-number alterations and fragmentation patterns. We hypothesized that low-depth/shallow WGS (sWGS) data may be generated from minute amounts of cell-free DNA, and that fragment-size selection may remove contaminating genomic DNA from small blood volumes. Dried blood spots have practical advantages for sample collection, may facilitate serial sampling, and could support novel study designs in humans and animal models.MethodsWe developed a protocol for the isolation and analysis of cell-free DNA from dried blood spots using filter paper cards and bead-based size selection. DNA extracted and size-selected from dried spots was analyzed using sWGS and polymerase chain reaction (PCR).ResultsAnalyzing a 50 μL dried blood spot from frozen whole blood of a patient with melanoma, we identified ctDNA based on the presence of tumor-specific somatic copy-number alterations, and found a fragment-size profile similar to that observed in plasma DNA. We found alterations in different chromosomes in blood spots from 2 patients with high-grade serous ovarian carcinoma. Extending this approach to serial dried blood spots from mouse xenograft models, we detect tumor-derived cell-free DNA and identified ctDNA from the originally grafted ascites.ConclusionOur data suggest that ctDNA can be detected and monitored in dried blood spots from archived and fresh blood samples, enabling new approaches for sample collection and novel study/trial designs for both patients and in vivo models. Full Article
ot Metabolic Acidosis and Hypoglycemia in a Child with Leigh-Like Phenotype By academic.oup.com Published On :: Thu, 30 Apr 2020 00:00:00 GMT Full Article
ot Limitations of Animal Studies for Predicting Toxicity in Clinical Trials: Part 2: Potential Alternatives to the Use of Animals in Preclinical Trials By www.basictranslational.onlinejacc.org Published On :: 2020-04-27T11:00:20-07:00 Dramatically rising costs in drug development are in large part because of the high failure rates in clinical phase trials. The poor correlation of animal studies to human toxicity and efficacy have led many developers to question the value of requiring animal studies in determining which drugs should enter in-human trials. Part 1 of this 2-part series examined some of the data regarding the lack of concordance between animal toxicity studies and human trials, as well as some of the potential reasons behind it. This second part of the series focuses on some alternatives to animal trials (hereafter referred to as animal research) as well as current regulatory discussions and developments regarding such alternatives. Full Article
ot Therapeutic Antibody Against Phosphorylcholine Preserves Coronary Function and Attenuates Vascular 18F-FDG Uptake in Atherosclerotic Mice By www.basictranslational.onlinejacc.org Published On :: 2020-04-27T11:00:20-07:00 This study showed that treatment with a therapeutic monoclonal immunoglobulin-G1 antibody against phosphorylcholine on oxidized phospholipids preserves coronary flow reserve and attenuates atherosclerotic inflammation as determined by the uptake of 18F-fluorodeoxyglucose in atherosclerotic mice. The noninvasive imaging techniques represent translational tools to assess the efficacy of phosphorylcholine-targeted therapy on coronary artery function and atherosclerosis in clinical studies. Full Article
ot Lung cancer: keep your mind open - it's not always the usual suspects! By breathe.ersjournals.com Published On :: 2020-03-18T06:44:39-07:00 Some years ago, I entered a completely unfamiliar world. This was a landscape that clinicians deal with every day but for the individual suspected of having lung cancer, it can appear hostile and scary, often misrepresented by outdated imagery, information and television portrayal. Lung cancer is not awash with celebrities admitting to having it or grand fundraising campaigns like other conditions. Despite many changes in the treatment landscape, it's still generally much more stigmatised than other cancers. Full Article
ot "ERS International Congress 2019: highlights from Best Abstract awardees". Lorna E. Latimer, Marieke Duiverman, Mahmoud I. Abdel-Aziz, Gulser Caliskan, Sara M. Mensink-Bout, Alberto Mendoza-Valderrey, Aurelien Justet, Junichi Omura, Karthi Srika By breathe.ersjournals.com Published On :: 2020-03-18T06:44:39-07:00 Full Article
ot Recurrent pneumothorax, skin lesions and frequent urination By breathe.ersjournals.com Published On :: 2020-03-18T06:44:39-07:00 A 25-year-old male is admitted with complaints of dry cough for the past 5 years, and increased thirst, urinary frequency and output for the past 18 months. He also complains of shortness of breath on climbing a flight of stairs, and itchy lesions on the scalp and back for the past 2–3 months. There is no history of bone pain or abdominal pain. He has history of bilateral recurrent pneumothoraxes, twice on the right and once on the left side, in the past month. Pleurodesis with povidone iodine is performed on left side and the patient is transferred to your hospital with persistent right pneumothorax with air leak, with an intercostal drainage tube in situ. The patient is a never-smoker with no family history of pneumothorax. On general examination, he has small papules, 1–2 mm in diameter, with scaling over scalp and back. Onycholysis, onychoschisis and subungual splinter haemorrhages are present (figure 1). Full Article
ot Promoting Early Inpatient Transition From IV to Oral Antibiotics By aapgrandrounds.aappublications.org Published On :: 2020-05-01T00:59:36-07:00 Full Article
ot Dissection notes: first day [Humanities] By www.cmaj.ca Published On :: 2020-05-03T21:05:14-07:00 Full Article
ot The authors respond to "The future of colorectal cancer screening: Parentalism or shared decision-making?" [Letters] By www.cmaj.ca Published On :: 2020-05-03T21:05:14-07:00 Full Article
ot Levothyroxine prescribing and laboratory test use after a minor change in reference range for thyroid-stimulating hormone [Research] By www.cmaj.ca Published On :: 2020-05-03T21:05:14-07:00 BACKGROUND: Prescribing of levothyroxine and rates of thyroid function testing may be sensitive to minor changes in the upper limit of the reference range for thyroid-stimulating hormone (TSH) that increase the proportion of abnormal results. We evaluated the population-level change in levothyroxine prescribing and TSH testing after a minor planned decrease in the upper limit of the reference range for TSH in a large urban centre with a single medical laboratory. METHODS: Using provincial administrative data, we compared predicted volumes of TSH tests with actual TSH test volumes before and after a planned change in the TSH reference range. We also determined the number of new levothyroxine prescriptions for previously untreated patients and the rate of changes to the prescribed dose for those on previously stable, long-term levothyroxine therapy before and after the change in the TSH reference range. RESULTS: Before the change in the TSH reference range, actual and predicted monthly volumes of TSH testing followed an identical course. After the change, actual test volumes exceeded predicted test volumes by 7.3% (95% confidence interval [CI] 5.3%–9.3%) or about 3000 to 5000 extra tests per month. The proportion of patients with newly "abnormal" TSH results almost tripled, from 3.3% (95% CI 3.2%–3.4%) to 9.1% (95% CI 9.0%–9.2%). The rate of new levothyroxine prescriptions increased from 3.24 (95% CI 3.15–3.33) per 1000 population in 2013 to 4.06 (95% CI 3.96–4.15) per 1000 population in 2014. Among patients with preexisting stable levothyroxine therapy, there was a significant increase in the number of dose escalations (p < 0.001) and a total increase of 500 new prescriptions per month. INTERPRETATION: Our findings suggest that clinicians may have responded to mildly elevated TSH results with new or increased levothyroxine prescriptions and more TSH testing. Knowledge translation efforts may be useful to accompany minor changes in reference ranges. Full Article
ot Synergistic Combination of Oncolytic Virotherapy and Immunotherapy for Glioma By clincancerres.aacrjournals.org Published On :: 2020-05-01T00:05:36-07:00 Purpose: We hypothesized that the combination of a local stimulus for activating tumor-specific T cells and an anti-immunosuppressant would improve treatment of gliomas. Virally encoded IL15Rα-IL15 as the T-cell activating stimulus and a prostaglandin synthesis inhibitor as the anti-immunosuppressant were combined with adoptive transfer of tumor-specific T cells. Experimental Design: Two oncolytic poxviruses, vvDD vaccinia virus and myxoma virus, were each engineered to express the fusion protein IL15Rα-IL15 and a fluorescent protein. Viral gene expression (YFP or tdTomato Red) was confirmed in the murine glioma GL261 in vitro and in vivo. GL261 tumors in immunocompetent C57BL/6J mice were treated with vvDD-IL15Rα-YFP vaccinia virus or vMyx-IL15Rα-tdTr combined with other treatments, including vaccination with GARC-1 peptide (a neoantigen for GL261), rapamycin, celecoxib, and adoptive T-cell therapy. Results: vvDD-IL15Rα-YFP and vMyx-IL15Rα-tdTr each infected and killed GL261 cells in vitro. In vivo, NK cells and CD8+ T cells were increased in the tumor due to the expression of IL15Rα-IL15. Each component of a combination treatment contributed to prolonging survival: an oncolytic virus, the IL15Rα-IL15 expressed by the virus, a source of T cells (whether by prevaccination or adoptive transfer), and prostaglandin inhibition all synergized to produce elimination of gliomas in a majority of mice. vvDD-IL15Rα-YFP occasionally caused ventriculitis-meningitis, but vMyx-IL15Rα-tdTr was safe and effective, causing a strong infiltration of tumor-specific T cells and eliminating gliomas in 83% of treated mice. Conclusions: IL15Rα-IL15–armed oncolytic poxviruses provide potent antitumor effects against brain tumors when combined with adoptive T-cell therapy, rapamycin, and celecoxib. Full Article
ot Preclinical Activity of JNJ-7957, a Novel BCMAxCD3 Bispecific Antibody for the Treatment of Multiple Myeloma, Is Potentiated by Daratumumab By clincancerres.aacrjournals.org Published On :: 2020-05-01T00:05:36-07:00 Purpose: Multiple myeloma (MM) patients with disease refractory to all available drugs have a poor outcome, indicating the need for new agents with novel mechanisms of action. Experimental Design: We evaluated the anti-MM activity of the fully human BCMAxCD3 bispecific antibody JNJ-7957 in cell lines and bone marrow (BM) samples. The impact of several tumor- and host-related factors on sensitivity to JNJ-7957 therapy was also evaluated. Results: We show that JNJ-7957 has potent activity against 4 MM cell lines, against tumor cells in 48 of 49 BM samples obtained from MM patients, and in 5 of 6 BM samples obtained from primary plasma cell leukemia patients. JNJ-7957 activity was significantly enhanced in patients with prior daratumumab treatment, which was partially due to enhanced killing capacity of daratumumab-exposed effector cells. BCMA expression did not affect activity of JNJ-7957. High T-cell frequencies and high effector:target ratios were associated with improved JNJ-7957–mediated lysis of MM cells. The PD-1/PD-L1 axis had a modest negative impact on JNJ-7957 activity against tumor cells from daratumumab-naïve MM patients. Soluble BCMA impaired the ability of JNJ-7957 to kill MM cells, although higher concentrations were able to overcome this negative effect. Conclusions: JNJ-7957 effectively kills MM cells ex vivo, including those from heavily pretreated MM patients, whereby several components of the immunosuppressive BM microenvironment had only modest effects on its killing capacity. Our findings support the ongoing trial with JNJ-7957 as single agent and provide the preclinical rationale for evaluating JNJ-7957 in combination with daratumumab in MM. Full Article
ot Adenosine Signaling Is Prognostic for Cancer Outcome and Has Predictive Utility for Immunotherapeutic Response By clincancerres.aacrjournals.org Published On :: 2020-05-01T00:05:36-07:00 Purpose: There are several agents in early clinical trials targeting components of the adenosine pathway including A2AR and CD73. The identification of cancers with a significant adenosine drive is critical to understand the potential for these molecules. However, it is challenging to measure tumor adenosine levels at scale, thus novel, clinically tractable biomarkers are needed. Experimental Design: We generated a gene expression signature for the adenosine signaling using regulatory networks derived from the literature and validated this in patients. We applied the signature to large cohorts of disease from The Cancer Genome Atlas (TCGA) and cohorts of immune checkpoint inhibitor–treated patients. Results: The signature captures baseline adenosine levels in vivo (r2 = 0.92, P = 0.018), is reduced after small-molecule inhibition of A2AR in mice (r2 = –0.62, P = 0.001) and humans (reduction in 5 of 7 patients, 70%), and is abrogated after A2AR knockout. Analysis of TCGA confirms a negative association between adenosine and overall survival (OS, HR = 0.6, P < 2.2e–16) as well as progression-free survival (PFS, HR = 0.77, P = 0.0000006). Further, adenosine signaling is associated with reduced OS (HR = 0.47, P < 2.2e–16) and PFS (HR = 0.65, P = 0.0000002) in CD8+ T-cell–infiltrated tumors. Mutation of TGFβ superfamily members is associated with enhanced adenosine signaling and worse OS (HR = 0.43, P < 2.2e–16). Finally, adenosine signaling is associated with reduced efficacy of anti-PD1 therapy in published cohorts (HR = 0.29, P = 0.00012). Conclusions: These data support the adenosine pathway as a mediator of a successful antitumor immune response, demonstrate the prognostic potential of the signature for immunotherapy, and inform patient selection strategies for adenosine pathway modulators currently in development. Full Article
ot Proteomic Analysis of CSF from Patients with Leptomeningeal Melanoma Metastases Identifies Signatures Associated with Disease Progression and Therapeutic Resistance By clincancerres.aacrjournals.org Published On :: 2020-05-01T00:05:36-07:00 Purpose: The development of leptomeningeal melanoma metastases (LMM) is a rare and devastating complication of the late-stage disease, for which no effective treatments exist. Here, we performed a multi-omics analysis of the cerebrospinal fluid (CSF) from patients with LMM to determine how the leptomeningeal microenvironment shapes the biology and therapeutic responses of melanoma cells. Experimental Design: A total of 45 serial CSF samples were collected from 16 patients, 8 of these with confirmed LMM. Of those with LMM, 7 had poor survival (<4 months) and one was an extraordinary responder (still alive with survival >35 months). CSF samples were analyzed by mass spectrometry and incubated with melanoma cells that were subjected to RNA sequencing (RNA-seq) analysis. Functional assays were performed to validate the pathways identified. Results: Mass spectrometry analyses showed the CSF of most patients with LMM to be enriched for pathways involved in innate immunity, protease-mediated damage, and IGF-related signaling. All of these were anticorrelated in the extraordinary responder. RNA-seq analysis showed CSF to induce PI3K/AKT, integrin, B-cell activation, S-phase entry, TNFR2, TGFβ, and oxidative stress responses in the melanoma cells. ELISA assays confirmed that TGFβ expression increased in the CSF of patients progressing with LMM. CSF from poorly responding patients conferred tolerance to BRAF inhibitor therapy in apoptosis assays. Conclusions: These analyses identified proteomic/transcriptional signatures in the CSF of patients who succumbed to LMM. We further showed that the CSF from patients with LMM has the potential to modulate BRAF inhibitor responses and may contribute to drug resistance. See related commentary by Glitza Oliva and Tawbi, p. 2083 Full Article
ot Efficacy and Safety of Pembrolizumab in Previously Treated Advanced Neuroendocrine Tumors: Results From the Phase II KEYNOTE-158 Study By clincancerres.aacrjournals.org Published On :: 2020-05-01T00:05:36-07:00 Purpose: KEYNOTE-158 (ClinicalTrials.gov identifier: NCT02628067) investigated the efficacy and safety of pembrolizumab across multiple cancers. We present results from patients with previously treated advanced well-differentiated neuroendocrine tumors (NET). Patients and Methods: Pembrolizumab 200 mg was administered every 3 weeks for 2 years or until progression, intolerable toxicity, or physician/patient decision. Tumor imaging was performed every 9 weeks for the first year and then every 12 weeks. Endpoints included objective response rate (ORR) per RECIST v1.1 by independent central radiologic review (primary) and duration of response (DOR), progression-free survival (PFS), overall survival (OS), and safety (secondary). Results: A total of 107 patients with NETs of the lung, appendix, small intestine, colon, rectum, or pancreas were treated. Median age was 59.0 years (range, 29–80), 44.9% had ECOG performance status 1, 40.2% had received ≥3 prior therapies for advanced disease, and 15.9% had PD-L1–positive tumors (combined positive score ≥1). Median follow-up was 24.2 months (range, 0.6–33.4). ORR was 3.7% (95% CI, 1.0–9.3), with zero complete responses and four partial responses (three pancreatic and one rectal) all in patients with PD-L1–negative tumors. Median DOR was not reached, with one of four responses ongoing after ≥21 months follow-up. Median PFS was 4.1 months (95% CI, 3.5–5.4); the 6-month PFS rate was 39.3%. Median OS was 24.2 months (95% CI, 15.8–32.5). Treatment-related adverse events (AE) occurred in 75.7% of patients, 21.5% of whom had grade 3–5 AEs. Conclusions: Pembrolizumab monotherapy showed limited antitumor activity and manageable safety in patients with previously treated advanced well-differentiated NETs. Full Article
ot "Liquid Gold" - The unTAPped Potential of Cerebrospinal Fluid Analysis? By clincancerres.aacrjournals.org Published On :: 2020-05-01T00:05:36-07:00 Obtaining blood and cerebrospinal fluid is generally less invasive than standard tumor biopsy, and are increasingly used to develop surrogate biomarkers. Leptomeningeal disease, a devastating complication of cancer, represents a unique opportunity for using liquid biopsies for diagnosis, treatment, and to elucidate underlying mechanisms of resistance to therapy. See related article by Smalley et al., p. 2163 Full Article
ot Systematic Review of Whole-Genome Sequencing Data To Predict Phenotypic Drug Resistance and Susceptibility in Swedish Mycobacterium tuberculosis Isolates, 2016 to 2018 [Mechanisms of Resistance] By aac.asm.org Published On :: 2020-04-21T08:01:10-07:00 In this retrospective study, whole-genome sequencing (WGS) data generated on an Ion Torrent platform was used to predict phenotypic drug resistance profiles for first- and second-line drugs among Swedish clinical Mycobacterium tuberculosis isolates from 2016 to 2018. The accuracy was ~99% for all first-line drugs and 100% for four second-line drugs. Our analysis supports the introduction of WGS into routine diagnostics, which might, at least in Sweden, replace phenotypic drug susceptibility testing in the future. Full Article
ot Novel Endochin-Like Quinolones Exhibit Potent In Vitro Activity against Plasmodium knowlesi but Do Not Synergize with Proguanil [Susceptibility] By aac.asm.org Published On :: 2020-04-21T08:01:10-07:00 Quinolones, such as the antimalarial atovaquone, are inhibitors of the malarial mitochondrial cytochrome bc1 complex, a target critical to the survival of both liver- and blood-stage parasites, making these drugs useful as both prophylaxis and treatment. Recently, several derivatives of endochin have been optimized to produce novel quinolones that are active in vitro and in animal models. While these quinolones exhibit potent ex vivo activity against Plasmodium falciparum and Plasmodium vivax, their activity against the zoonotic agent Plasmodium knowlesi is unknown. We screened several of these novel endochin-like quinolones (ELQs) for their activity against P. knowlesi in vitro and compared this with their activity against P. falciparum tested under identical conditions. We demonstrated that ELQs are potent against P. knowlesi (50% effective concentration, <117 nM) and equally effective against P. falciparum. We then screened selected quinolones and partner drugs using a longer exposure (2.5 life cycles) and found that proguanil is 10-fold less potent against P. knowlesi than P. falciparum, while the quinolones demonstrate similar potency. Finally, we used isobologram analysis to compare combinations of the ELQs with either proguanil or atovaquone. We show that all quinolone combinations with proguanil are synergistic against P. falciparum. However, against P. knowlesi, no evidence of synergy between proguanil and the quinolones was found. Importantly, the combination of the novel quinolone ELQ-300 with atovaquone was synergistic against both species. Our data identify potentially important species differences in proguanil susceptibility and in the interaction of proguanil with quinolones and support the ongoing development of novel quinolones as potent antimalarials that target multiple species. Full Article
ot Synergistic Interactions of Indole-2-Carboxamides and {beta}-Lactam Antibiotics against Mycobacterium abscessus [Mechanisms of Action] By aac.asm.org Published On :: 2020-04-21T08:01:10-07:00 New drugs or therapeutic combinations are urgently needed against Mycobacterium abscessus. Previously, we demonstrated the potent activity of indole-2-carboxamides 6 and 12 against M. abscessus. We show here that these compounds act synergistically with imipenem and cefoxitin in vitro and increase the bactericidal activity of the β-lactams against M. abscessus. In addition, compound 12 also displays synergism with imipenem and cefoxitin within infected macrophages. The clinical potential of these new drug combinations requires further evaluation. Full Article
ot Scope and Predictive Genetic/Phenotypic Signatures of Bicarbonate (NaHCO3) Responsiveness and {beta}-Lactam Sensitization in Methicillin-Resistant Staphylococcus aureus [Susceptibility] By aac.asm.org Published On :: 2020-04-21T08:01:10-07:00 Addition of sodium bicarbonate (NaHCO3) to standard antimicrobial susceptibility testing medium reveals certain methicillin-resistant Staphylococcus aureus (MRSA) strains to be highly susceptible to β-lactams. We investigated the prevalence of this phenotype (NaHCO3 responsiveness) to two β-lactams among 58 clinical MRSA bloodstream isolates. Of note, ~75% and ~36% of isolates displayed the NaHCO3 responsiveness phenotype to cefazolin (CFZ) and oxacillin (OXA), respectively. Neither intrinsic β-lactam MICs in standard Mueller-Hinton broth (MHB) nor population analysis profiles were predictive of this phenotype. Several genotypic markers (clonal complex 8 [CC8]; agr I and spa t008) were associated with NaHCO3 responsiveness for OXA. Full Article
ot Using Genetic Distance from Archived Samples for the Prediction of Antibiotic Resistance in Escherichia coli [Epidemiology and Surveillance] By aac.asm.org Published On :: 2020-04-21T08:01:10-07:00 The rising rates of antibiotic resistance increasingly compromise empirical treatment. Knowing the antibiotic susceptibility of a pathogen’s close genetic relative(s) may improve empirical antibiotic selection. Using genomic and phenotypic data for Escherichia coli isolates from three separate clinically derived databases, we evaluated multiple genomic methods and statistical models for predicting antibiotic susceptibility, focusing on potentially rapidly available information, such as lineage or genetic distance from archived isolates. We applied these methods to derive and validate the prediction of antibiotic susceptibility to common antibiotics. We evaluated 968 separate episodes of suspected and confirmed infection with Escherichia coli from three geographically and temporally separated databases in Ontario, Canada, from 2010 to 2018. Across all approaches, model performance (area under the curve [AUC]) ranges for predicting antibiotic susceptibility were the greatest for ciprofloxacin (AUC, 0.76 to 0.97) and the lowest for trimethoprim-sulfamethoxazole (AUC, 0.51 to 0.80). When a model predicted that an isolate was susceptible, the resulting (posttest) probabilities of susceptibility were sufficient to warrant empirical therapy for most antibiotics (mean, 92%). An approach combining multiple models could permit the use of narrower-spectrum oral agents in 2 out of every 3 patients while maintaining high treatment adequacy (~90%). Methods based on genetic relatedness to archived samples of E. coli could be used to predict antibiotic resistance and improve antibiotic selection. Full Article
ot Antibacterial Monoclonal Antibodies Do Not Disrupt the Intestinal Microbiome or Its Function [Experimental Therapeutics] By aac.asm.org Published On :: 2020-04-21T08:01:10-07:00 Antibiotics revolutionized the treatment of infectious diseases; however, it is now clear that broad-spectrum antibiotics alter the composition and function of the host’s microbiome. The microbiome plays a key role in human health, and its perturbation is increasingly recognized as contributing to many human diseases. Widespread broad-spectrum antibiotic use has also resulted in the emergence of multidrug-resistant pathogens, spurring the development of pathogen-specific strategies such as monoclonal antibodies (MAbs) to combat bacterial infection. Not only are pathogen-specific approaches not expected to induce resistance in nontargeted bacteria, but they are hypothesized to have minimal impact on the gut microbiome. Here, we compare the effects of antibiotics, pathogen-specific MAbs, and their controls (saline or control IgG [c-IgG]) on the gut microbiome of 7-week-old, female, C57BL/6 mice. The magnitude of change in taxonomic abundance, bacterial diversity, and bacterial metabolites, including short-chain fatty acids (SCFA) and bile acids in the fecal pellets from mice treated with pathogen-specific MAbs, was no different from that with animals treated with saline or an IgG control. Conversely, dramatic changes were observed in the relative abundance, as well as alpha and beta diversity, of the fecal microbiome and bacterial metabolites in the feces of all antibiotic-treated mice. Taken together, these results indicate that pathogen-specific MAbs do not alter the fecal microbiome like broad-spectrum antibiotics and may represent a safer, more-targeted approach to antibacterial therapy. Full Article