j

Lachlan Macquarie land grant to John Laurie




j

John Laurie land grant, 8 October 1816




j

Herbert Compton diaries, 17 May – 29 July 1973




j

Echelet picumne and echelet grimpeur, male / by Jean Gabriel Prêtre, 1824




j

Sydney in 1848 : illustrated by copper-plate engravings of its principal streets, public buildings, churches, chapels, etc. / from drawings by Joseph Fowles.




j

fvwogjiwprjg




j

WNBA Draft Profile: Transcendent guard Sabrina Ionescu projects as top pick

After sweeping every national player of the year award, Sabrina Ionescu is off to the WNBA level where her skills will make an instant impact — not just to her new team but the league as a whole. She averaged 17.5 points, 8.6 rebounds and 9.1 assists for the Ducks in 2019-20, rewriting her own NCAA career triple-double record and becoming the first in college basketball history with at least 2,000 points, 1,000 rebounds and 1,000 assists.




j

WNBA Draft Profile: UCLA guard Japreece Dean ready to lead at the next level

UCLA guard Japreece Dean is primed to shine at the next level as she heads to the WNBA Draft in April. The do-it-all point-woman was an All-Pac-12 honoree last season, and one of only seven D-1 hoopers with at least 13 points and 5.5 assists per game.




j

Dr. Michelle Tom shares journey from ASU women's hoops to treating COVID-19 patients

Pac-12 Networks' Ashley Adamson speaks with former Arizona State women's basketball player Michelle Tom, who is now a doctor treating COVID-19 patients Winslow Indian Health Care Center and Little Colorado Medical Center in Eastern Arizona.




j

Bill Walton joins Pac-12 Perspective to talk about Bike for Humanity

Pac-12 Networks' Yogi Roth and Ashley Adamson talk with Hall of Fame player and Pac-12 Networks talent Bill Walton during Thursday's Pac-12 Perspective podcast.




j

Stanford's Tara VanDerveer on Haley Jones' versatile freshman year: 'It was really incredible'

During Friday's "Pac-12 Perspective," Stanford head coach Tara VanDerveer spoke about Haley Jones' positionless game and how the Cardinal used the dynamic freshman in 2019-20. Download and listen wherever you get your podcasts.




j

On the Letac-Massam conjecture and existence of high dimensional Bayes estimators for graphical models

Emanuel Ben-David, Bala Rajaratnam.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 580--604.

Abstract:
The Wishart distribution defined on the open cone of positive-definite matrices plays a central role in multivariate analysis and multivariate distribution theory. Its domain of parameters is often referred to as the Gindikin set. In recent years, varieties of useful extensions of the Wishart distribution have been proposed in the literature for the purposes of studying Markov random fields and graphical models. In particular, generalizations of the Wishart distribution, referred to as Type I and Type II (graphical) Wishart distributions introduced by Letac and Massam in Annals of Statistics (2007) play important roles in both frequentist and Bayesian inference for Gaussian graphical models. These distributions have been especially useful in high-dimensional settings due to the flexibility offered by their multiple-shape parameters. Concerning Type I and Type II Wishart distributions, a conjecture of Letac and Massam concerns the domain of multiple-shape parameters of these distributions. The conjecture also has implications for the existence of Bayes estimators corresponding to these high dimensional priors. The conjecture, which was first posed in the Annals of Statistics, has now been an open problem for about 10 years. In this paper, we give a necessary condition for the Letac and Massam conjecture to hold. More precisely, we prove that if the Letac and Massam conjecture holds on a decomposable graph, then no two separators of the graph can be nested within each other. For this, we analyze Type I and Type II Wishart distributions on appropriate Markov equivalent perfect DAG models and succeed in deriving the aforementioned necessary condition. This condition in particular identifies a class of counterexamples to the conjecture.




j

Estimation of linear projections of non-sparse coefficients in high-dimensional regression

David Azriel, Armin Schwartzman.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 174--206.

Abstract:
In this work we study estimation of signals when the number of parameters is much larger than the number of observations. A large body of literature assumes for these kind of problems a sparse structure where most of the parameters are zero or close to zero. When this assumption does not hold, one can focus on low-dimensional functions of the parameter vector. In this work we study one-dimensional linear projections. Specifically, in the context of high-dimensional linear regression, the parameter of interest is ${oldsymbol{eta}}$ and we study estimation of $mathbf{a}^{T}{oldsymbol{eta}}$. We show that $mathbf{a}^{T}hat{oldsymbol{eta}}$, where $hat{oldsymbol{eta}}$ is the least squares estimator, using pseudo-inverse when $p>n$, is minimax and admissible. Thus, for linear projections no regularization or shrinkage is needed. This estimator is easy to analyze and confidence intervals can be constructed. We study a high-dimensional dataset from brain imaging where it is shown that the signal is weak, non-sparse and significantly different from zero.




j

Convergences of Regularized Algorithms and Stochastic Gradient Methods with Random Projections

We study the least-squares regression problem over a Hilbert space, covering nonparametric regression over a reproducing kernel Hilbert space as a special case. We first investigate regularized algorithms adapted to a projection operator on a closed subspace of the Hilbert space. We prove convergence results with respect to variants of norms, under a capacity assumption on the hypothesis space and a regularity condition on the target function. As a result, we obtain optimal rates for regularized algorithms with randomized sketches, provided that the sketch dimension is proportional to the effective dimension up to a logarithmic factor. As a byproduct, we obtain similar results for Nystr"{o}m regularized algorithms. Our results provide optimal, distribution-dependent rates that do not have any saturation effect for sketched/Nystr"{o}m regularized algorithms, considering both the attainable and non-attainable cases, in the well-conditioned regimes. We then study stochastic gradient methods with projection over the subspace, allowing multi-pass over the data and minibatches, and we derive similar optimal statistical convergence results.




j

Conjugate Gradients for Kernel Machines

Regularized least-squares (kernel-ridge / Gaussian process) regression is a fundamental algorithm of statistics and machine learning. Because generic algorithms for the exact solution have cubic complexity in the number of datapoints, large datasets require to resort to approximations. In this work, the computation of the least-squares prediction is itself treated as a probabilistic inference problem. We propose a structured Gaussian regression model on the kernel function that uses projections of the kernel matrix to obtain a low-rank approximation of the kernel and the matrix. A central result is an enhanced way to use the method of conjugate gradients for the specific setting of least-squares regression as encountered in machine learning.




j

Q&A with Tara June Winch

Tara June Winch's profound novel The Yield has won three NSW Premier's Literary Awards prizes this year, inclu




j

Application of weighted and unordered majorization orders in comparisons of parallel systems with exponentiated generalized gamma components

Abedin Haidari, Amir T. Payandeh Najafabadi, Narayanaswamy Balakrishnan.

Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 1, 150--166.

Abstract:
Consider two parallel systems, say $A$ and $B$, with respective lifetimes $T_{1}$ and $T_{2}$ wherein independent component lifetimes of each system follow exponentiated generalized gamma distribution with possibly different exponential shape and scale parameters. We show here that $T_{2}$ is smaller than $T_{1}$ with respect to the usual stochastic order (reversed hazard rate order) if the vector of logarithm (the main vector) of scale parameters of System $B$ is weakly weighted majorized by that of System $A$, and if the vector of exponential shape parameters of System $A$ is unordered mojorized by that of System $B$. By means of some examples, we show that the above results can not be extended to the hazard rate and likelihood ratio orders. However, when the scale parameters of each system divide into two homogeneous groups, we verify that the usual stochastic and reversed hazard rate orders can be extended, respectively, to the hazard rate and likelihood ratio orders. The established results complete and strengthen some of the known results in the literature.




j

A joint mean-correlation modeling approach for longitudinal zero-inflated count data

Weiping Zhang, Jiangli Wang, Fang Qian, Yu Chen.

Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 1, 35--50.

Abstract:
Longitudinal zero-inflated count data are widely encountered in many fields, while modeling the correlation between measurements for the same subject is more challenge due to the lack of suitable multivariate joint distributions. This paper studies a novel mean-correlation modeling approach for longitudinal zero-inflated regression model, solving both problems of specifying joint distribution and parsimoniously modeling correlations with no constraint. The joint distribution of zero-inflated discrete longitudinal responses is modeled by a copula model whose correlation parameters are innovatively represented in hyper-spherical coordinates. To overcome the computational intractability in maximizing the full likelihood function of the model, we further propose a computationally efficient pairwise likelihood approach. We then propose separated mean and correlation regression models to model these key quantities, such modeling approach can also handle irregularly and possibly subject-specific times points. The resulting estimators are shown to be consistent and asymptotically normal. Data example and simulations support the effectiveness of the proposed approach.




j

Subjective Bayesian testing using calibrated prior probabilities

Dan J. Spitzner.

Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 4, 861--893.

Abstract:
This article proposes a calibration scheme for Bayesian testing that coordinates analytically-derived statistical performance considerations with expert opinion. In other words, the scheme is effective and meaningful for incorporating objective elements into subjective Bayesian inference. It explores a novel role for default priors as anchors for calibration rather than substitutes for prior knowledge. Ideas are developed for use with multiplicity adjustments in multiple-model contexts, and to address the issue of prior sensitivity of Bayes factors. Along the way, the performance properties of an existing multiplicity adjustment related to the Poisson distribution are clarified theoretically. Connections of the overall calibration scheme to the Schwarz criterion are also explored. The proposed framework is examined and illustrated on a number of existing data sets related to problems in clinical trials, forensic pattern matching, and log-linear models methodology.




j

A Jackson network under general regime

Yair Y. Shaki.

Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 3, 532--548.

Abstract:
We consider a Jackson network in a general heavy traffic diffusion regime with the $alpha$-parametrization . We also assume that each customer may abandon the system while waiting. We show that in this regime the queue-length process converges to a multi-dimensional regulated Ornstein–Uhlenbeck process.




j

Capturing and Explaining Trajectory Singularities using Composite Signal Neural Networks. (arXiv:2003.10810v2 [cs.LG] UPDATED)

Spatial trajectories are ubiquitous and complex signals. Their analysis is crucial in many research fields, from urban planning to neuroscience. Several approaches have been proposed to cluster trajectories. They rely on hand-crafted features, which struggle to capture the spatio-temporal complexity of the signal, or on Artificial Neural Networks (ANNs) which can be more efficient but less interpretable. In this paper we present a novel ANN architecture designed to capture the spatio-temporal patterns characteristic of a set of trajectories, while taking into account the demographics of the navigators. Hence, our model extracts markers linked to both behaviour and demographics. We propose a composite signal analyser (CompSNN) combining three simple ANN modules. Each of these modules uses different signal representations of the trajectory while remaining interpretable. Our CompSNN performs significantly better than its modules taken in isolation and allows to visualise which parts of the signal were most useful to discriminate the trajectories.




j

Joint Multi-Dimensional Model for Global and Time-Series Annotations. (arXiv:2005.03117v1 [cs.LG])

Crowdsourcing is a popular approach to collect annotations for unlabeled data instances. It involves collecting a large number of annotations from several, often naive untrained annotators for each data instance which are then combined to estimate the ground truth. Further, annotations for constructs such as affect are often multi-dimensional with annotators rating multiple dimensions, such as valence and arousal, for each instance. Most annotation fusion schemes however ignore this aspect and model each dimension separately. In this work we address this by proposing a generative model for multi-dimensional annotation fusion, which models the dimensions jointly leading to more accurate ground truth estimates. The model we propose is applicable to both global and time series annotation fusion problems and treats the ground truth as a latent variable distorted by the annotators. The model parameters are estimated using the Expectation-Maximization algorithm and we evaluate its performance using synthetic data and real emotion corpora as well as on an artificial task with human annotations




j

Object-Oriented Software for Functional Data

This paper introduces the funData R package as an object-oriented implementation of functional data. It implements a unified framework for dense univariate and multivariate functional data on one- and higher dimensional domains as well as for irregular functional data. The aim of this package is to provide a user-friendly, self-contained core toolbox for functional data, including important functionalities for creating, accessing and modifying functional data objects, that can serve as a basis for other packages. The package further contains a full simulation toolbox, which is a useful feature when implementing and testing new methodological developments. Based on the theory of object-oriented data analysis, it is shown why it is natural to implement functional data in an object-oriented manner. The classes and methods provided by funData are illustrated in many examples using two freely available datasets. The MFPCA package, which implements multivariate functional principal component analysis, is presented as an example for an advanced methodological package that uses the funData package as a basis, including a case study with real data. Both packages are publicly available on GitHub and the Comprehensive R Archive Network.




j

Semi-Parametric Joint Modeling of Survival and Longitudinal Data: The R Package JSM

This paper is devoted to the R package JSM which performs joint statistical modeling of survival and longitudinal data. In biomedical studies it has been increasingly common to collect both baseline and longitudinal covariates along with a possibly censored survival time. Instead of analyzing the survival and longitudinal outcomes separately, joint modeling approaches have attracted substantive attention in the recent literature and have been shown to correct biases from separate modeling approaches and enhance information. Most existing approaches adopt a linear mixed effects model for the longitudinal component and the Cox proportional hazards model for the survival component. We extend the Cox model to a more general class of transformation models for the survival process, where the baseline hazard function is completely unspecified leading to semiparametric survival models. We also offer a non-parametric multiplicative random effects model for the longitudinal process in JSM in addition to the linear mixed effects model. In this paper, we present the joint modeling framework that is implemented in JSM, as well as the standard error estimation methods, and illustrate the package with two real data examples: a liver cirrhosis data and a Mayo Clinic primary biliary cirrhosis data.




j

Upper extremity injuries in young athletes

9783319566511 (electronic bk.)




j

Structured object-oriented formal language and method : 9th International Workshop, SOFL+MSVL 2019, Shenzhen, China, November 5, 2019, Revised selected papers

SOFL+MSVL (Workshop) (9th : 2019 : Shenzhen, China)
9783030414184 (electronic bk.)




j

Semantic technology : 9th Joint International Conference, JIST 2019, Hangzhou, China, November 25-27, 2019, Revised selected papers

Joint International Semantic Technology Conference (9th : 2019 : Hangzhou, China)
9789811534126 (electronic bk.)




j

Rapid Recovery in Total Joint Arthroplasty

9783030412234 978-3-030-41223-4




j

Radiomics and radiogenomics in neuro-oncology : First International Workshop, RNO-AI 2019, held in conjunction with MICCAI 2019, Shenzhen, China, October 13, proceedings

Radiomics and Radiogenomics in Neuro-oncology using AI Workshop (1st : 2019 : Shenzhen Shi, China)
9783030401245




j

Pediatric injectable drugs : the teddy bear book

9781585285402 (electronic bk.)




j

Imaging of the temporomandibular joint

9783319994680 (electronic book)




j

Green criminology and green theories of justice : an introduction to a political economic view of eco-justice

Lynch, Michael J., author
9783030285739 (electronic bk.)




j

DeJong's the neurologic examination

Campbell, William W., Jr. (William Wesley), author.
9781496386168 (hardcover)




j

Biodiversity of the Himalaya : Jammu and Kashmir State

9789813291744 (electronic bk.)





j

Jamboree Begins Construction on Capstone Development to Change...

In a public-private partnership to develop housing, resident services and hope for 102 working families in Haster Orangewood community, Jamboree Housing Corporation and the City of Anaheim announce...

(PRWeb April 27, 2020)

Read the full story at https://www.prweb.com/releases/jamboree_begins_construction_on_capstone_development_to_change_trajectory_of_neighborhood_in_anaheim_ca/prweb17073166.htm




j

Joint convergence of sample autocovariance matrices when $p/n o 0$ with application

Monika Bhattacharjee, Arup Bose.

Source: The Annals of Statistics, Volume 47, Number 6, 3470--3503.

Abstract:
Consider a high-dimensional linear time series model where the dimension $p$ and the sample size $n$ grow in such a way that $p/n o 0$. Let $hat{Gamma }_{u}$ be the $u$th order sample autocovariance matrix. We first show that the LSD of any symmetric polynomial in ${hat{Gamma }_{u},hat{Gamma }_{u}^{*},ugeq 0}$ exists under independence and moment assumptions on the driving sequence together with weak assumptions on the coefficient matrices. This LSD result, with some additional effort, implies the asymptotic normality of the trace of any polynomial in ${hat{Gamma }_{u},hat{Gamma }_{u}^{*},ugeq 0}$. We also study similar results for several independent MA processes. We show applications of the above results to statistical inference problems such as in estimation of the unknown order of a high-dimensional MA process and in graphical and significance tests for hypotheses on coefficient matrices of one or several such independent processes.




j

Projected spline estimation of the nonparametric function in high-dimensional partially linear models for massive data

Heng Lian, Kaifeng Zhao, Shaogao Lv.

Source: The Annals of Statistics, Volume 47, Number 5, 2922--2949.

Abstract:
In this paper, we consider the local asymptotics of the nonparametric function in a partially linear model, within the framework of the divide-and-conquer estimation. Unlike the fixed-dimensional setting in which the parametric part does not affect the nonparametric part, the high-dimensional setting makes the issue more complicated. In particular, when a sparsity-inducing penalty such as lasso is used to make the estimation of the linear part feasible, the bias introduced will propagate to the nonparametric part. We propose a novel approach for estimation of the nonparametric function and establish the local asymptotics of the estimator. The result is useful for massive data with possibly different linear coefficients in each subpopulation but common nonparametric function. Some numerical illustrations are also presented.




j

Bayes and empirical-Bayes multiplicity adjustment in the variable-selection problem

James G. Scott, James O. Berger

Source: Ann. Statist., Volume 38, Number 5, 2587--2619.

Abstract:
This paper studies the multiplicity-correction effect of standard Bayesian variable-selection priors in linear regression. Our first goal is to clarify when, and how, multiplicity correction happens automatically in Bayesian analysis, and to distinguish this correction from the Bayesian Ockham’s-razor effect. Our second goal is to contrast empirical-Bayes and fully Bayesian approaches to variable selection through examples, theoretical results and simulations. Considerable differences between the two approaches are found. In particular, we prove a theorem that characterizes a surprising aymptotic discrepancy between fully Bayes and empirical Bayes. This discrepancy arises from a different source than the failure to account for hyperparameter uncertainty in the empirical-Bayes estimate. Indeed, even at the extreme, when the empirical-Bayes estimate converges asymptotically to the true variable-inclusion probability, the potential for a serious difference remains.




j

J2EE

(Java 2 Platform Enterprise Edition) Java-based software infrastructure. A standardized set of infrastructure software components written in the 'run-anywhere' Java programming language. Although owned by Sun, J2EE has been defined in collaboration with other leading vendors including IBM, Oracle and BEA. Today, it forms the basis of many of the leading web systems software platforms, including IBM WebSphere, BEA WebLogic, Sun ONE and the open-source JBoss. J2EE version 1.4, in beta until late summer 2003, incorporates full support for web services standards and introduces a J2EE version of the Java Connector Architecture (JCA), which simplifies connections and messaging from external resources.




j

object-oriented

(OO) Structured around functional units. Object-oriented programming languages such as C++, SmallTalk and Java are designed to build software made up of objects: discrete bundles of functionality that can act on data only in certain pre-defined ways. This modular building-block approach makes complex software development tasks more flexible and easier to manage within a given programming environment. The emergence of object-oriented programming was a stepping stone to the development of componentization and subsequently of service-oriented architectures.




j

AJAX

(Asynchronous Javascript And Xml) Technique for dynamically updating web pages. AJAX is the term coined in February 2005 to describe a collection of technologies used to automatically update and manipulate the information on a web page while it is being viewed in a browser (ie without the user having to manually refresh the page). This allows developers to create more sophisticated web pages and applications without having to add to the native capabilities of the browser. A key component is the use of XMLHttpRequest, a function originally added to browsers by Microsoft, to exchange data in the background with one or more web servers.




j

EJB

(Enterprise JavaBeans) Software components for networked Java applications. Defined by the Enterprise JavaBeans specification, EJBs are the basic building blocks of software applications on the J2EE platform, which has been the preferred choice for many enterprises when building large-scale, web-accessed applications. Recently, however, many developers have been turning away from the complexity of EJBs in favor of simpler alternatives. The new EJB 3.0 specification attempts to answer these criticisms by simplifying EJB development.




j

Estimating and forecasting the smoking-attributable mortality fraction for both genders jointly in over 60 countries

Yicheng Li, Adrian E. Raftery.

Source: The Annals of Applied Statistics, Volume 14, Number 1, 381--408.

Abstract:
Smoking is one of the leading preventable threats to human health and a major risk factor for lung cancer, upper aerodigestive cancer and chronic obstructive pulmonary disease. Estimating and forecasting the smoking attributable fraction (SAF) of mortality can yield insights into smoking epidemics and also provide a basis for more accurate mortality and life expectancy projection. Peto et al. ( Lancet 339 (1992) 1268–1278) proposed a method to estimate the SAF using the lung cancer mortality rate as an indicator of exposure to smoking in the population of interest. Here, we use the same method to estimate the all-age SAF (ASAF) for both genders for over 60 countries. We document a strong and cross-nationally consistent pattern of the evolution of the SAF over time. We use this as the basis for a new Bayesian hierarchical model to project future male and female ASAF from over 60 countries simultaneously. This gives forecasts as well as predictive distributions that can be used to find uncertainty intervals for any quantity of interest. We assess the model using out-of-sample predictive validation and find that it provides good forecasts and well-calibrated forecast intervals, comparing favorably with other methods.




j

Scalable high-resolution forecasting of sparse spatiotemporal events with kernel methods: A winning solution to the NIJ “Real-Time Crime Forecasting Challenge”

Seth Flaxman, Michael Chirico, Pau Pereira, Charles Loeffler.

Source: The Annals of Applied Statistics, Volume 13, Number 4, 2564--2585.

Abstract:
We propose a generic spatiotemporal event forecasting method which we developed for the National Institute of Justice’s (NIJ) Real-Time Crime Forecasting Challenge (National Institute of Justice (2017)). Our method is a spatiotemporal forecasting model combining scalable randomized Reproducing Kernel Hilbert Space (RKHS) methods for approximating Gaussian processes with autoregressive smoothing kernels in a regularized supervised learning framework. While the smoothing kernels capture the two main approaches in current use in the field of crime forecasting, kernel density estimation (KDE) and self-exciting point process (SEPP) models, the RKHS component of the model can be understood as an approximation to the popular log-Gaussian Cox Process model. For inference, we discretize the spatiotemporal point pattern and learn a log-intensity function using the Poisson likelihood and highly efficient gradient-based optimization methods. Model hyperparameters including quality of RKHS approximation, spatial and temporal kernel lengthscales, number of autoregressive lags and bandwidths for smoothing kernels as well as cell shape, size and rotation, were learned using cross validation. Resulting predictions significantly exceeded baseline KDE estimates and SEPP models for sparse events.




j

New formulation of the logistic-Gaussian process to analyze trajectory tracking data

Gianluca Mastrantonio, Clara Grazian, Sara Mancinelli, Enrico Bibbona.

Source: The Annals of Applied Statistics, Volume 13, Number 4, 2483--2508.

Abstract:
Improved communication systems, shrinking battery sizes and the price drop of tracking devices have led to an increasing availability of trajectory tracking data. These data are often analyzed to understand animal behavior. In this work, we propose a new model for interpreting the animal movent as a mixture of characteristic patterns, that we interpret as different behaviors. The probability that the animal is behaving according to a specific pattern, at each time instant, is nonparametrically estimated using the Logistic-Gaussian process. Owing to a new formalization and the way we specify the coregionalization matrix of the associated multivariate Gaussian process, our model is invariant with respect to the choice of the reference element and of the ordering of the probability vector components. We fit the model under a Bayesian framework, and show that the Markov chain Monte Carlo algorithm we propose is straightforward to implement. We perform a simulation study with the aim of showing the ability of the estimation procedure to retrieve the model parameters. We also test the performance of the information criterion we used to select the number of behaviors. The model is then applied to a real dataset where a wolf has been observed before and after procreation. The results are easy to interpret, and clear differences emerge in the two phases.




j

Outline analyses of the called strike zone in Major League Baseball

Dale L. Zimmerman, Jun Tang, Rui Huang.

Source: The Annals of Applied Statistics, Volume 13, Number 4, 2416--2451.

Abstract:
We extend statistical shape analytic methods known as outline analysis for application to the strike zone, a central feature of the game of baseball. Although the strike zone is rigorously defined by Major League Baseball’s official rules, umpires make mistakes in calling pitches as strikes (and balls) and may even adhere to a strike zone somewhat different than that prescribed by the rule book. Our methods yield inference on geometric attributes (centroid, dimensions, orientation and shape) of this “called strike zone” (CSZ) and on the effects that years, umpires, player attributes, game situation factors and their interactions have on those attributes. The methodology consists of first using kernel discriminant analysis to determine a noisy outline representing the CSZ corresponding to each factor combination, then fitting existing elliptic Fourier and new generalized superelliptic models for closed curves to that outline and finally analyzing the fitted model coefficients using standard methods of regression analysis, factorial analysis of variance and variance component estimation. We apply these methods to PITCHf/x data comprising more than three million called pitches from the 2008–2016 Major League Baseball seasons to address numerous questions about the CSZ. We find that all geometric attributes of the CSZ, except its size, became significantly more like those of the rule-book strike zone from 2008–2016 and that several player attribute/game situation factors had statistically and practically significant effects on many of them. We also establish that the variation in the horizontal center, width and area of an individual umpire’s CSZ from pitch to pitch is smaller than their variation among CSZs from different umpires.




j

Objective Bayes model selection of Gaussian interventional essential graphs for the identification of signaling pathways

Federico Castelletti, Guido Consonni.

Source: The Annals of Applied Statistics, Volume 13, Number 4, 2289--2311.

Abstract:
A signalling pathway is a sequence of chemical reactions initiated by a stimulus which in turn affects a receptor, and then through some intermediate steps cascades down to the final cell response. Based on the technique of flow cytometry, samples of cell-by-cell measurements are collected under each experimental condition, resulting in a collection of interventional data (assuming no latent variables are involved). Usually several external interventions are applied at different points of the pathway, the ultimate aim being the structural recovery of the underlying signalling network which we model as a causal Directed Acyclic Graph (DAG) using intervention calculus. The advantage of using interventional data, rather than purely observational one, is that identifiability of the true data generating DAG is enhanced. More technically a Markov equivalence class of DAGs, whose members are statistically indistinguishable based on observational data alone, can be further decomposed, using additional interventional data, into smaller distinct Interventional Markov equivalence classes. We present a Bayesian methodology for structural learning of Interventional Markov equivalence classes based on observational and interventional samples of multivariate Gaussian observations. Our approach is objective, meaning that it is based on default parameter priors requiring no personal elicitation; some flexibility is however allowed through a tuning parameter which regulates sparsity in the prior on model space. Based on an analytical expression for the marginal likelihood of a given Interventional Essential Graph, and a suitable MCMC scheme, our analysis produces an approximate posterior distribution on the space of Interventional Markov equivalence classes, which can be used to provide uncertainty quantification for features of substantive scientific interest, such as the posterior probability of inclusion of selected edges, or paths.




j

Prediction of small area quantiles for the conservation effects assessment project using a mixed effects quantile regression model

Emily Berg, Danhyang Lee.

Source: The Annals of Applied Statistics, Volume 13, Number 4, 2158--2188.

Abstract:
Quantiles of the distributions of several measures of erosion are important parameters in the Conservation Effects Assessment Project, a survey intended to quantify soil and nutrient loss on crop fields. Because sample sizes for domains of interest are too small to support reliable direct estimators, model based methods are needed. Quantile regression is appealing for CEAP because finding a single family of parametric models that adequately describes the distributions of all variables is difficult and small area quantiles are parameters of interest. We construct empirical Bayes predictors and bootstrap mean squared error estimators based on the linearly interpolated generalized Pareto distribution (LIGPD). We apply the procedures to predict county-level quantiles for four types of erosion in Wisconsin and validate the procedures through simulation.




j

Joint model of accelerated failure time and mechanistic nonlinear model for censored covariates, with application in HIV/AIDS

Hongbin Zhang, Lang Wu.

Source: The Annals of Applied Statistics, Volume 13, Number 4, 2140--2157.

Abstract:
For a time-to-event outcome with censored time-varying covariates, a joint Cox model with a linear mixed effects model is the standard modeling approach. In some applications such as AIDS studies, mechanistic nonlinear models are available for some covariate process such as viral load during anti-HIV treatments, derived from the underlying data-generation mechanisms and disease progression. Such a mechanistic nonlinear covariate model may provide better-predicted values when the covariates are left censored or mismeasured. When the focus is on the impact of the time-varying covariate process on the survival outcome, an accelerated failure time (AFT) model provides an excellent alternative to the Cox proportional hazard model since an AFT model is formulated to allow the influence of the outcome by the entire covariate process. In this article, we consider a nonlinear mixed effects model for the censored covariates in an AFT model, implemented using a Monte Carlo EM algorithm, under the framework of a joint model for simultaneous inference. We apply the joint model to an HIV/AIDS data to gain insights for assessing the association between viral load and immunological restoration during antiretroviral therapy. Simulation is conducted to compare model performance when the covariate model and the survival model are misspecified.