pr

JASS: Japanese-specific Sequence to Sequence Pre-training for Neural Machine Translation. (arXiv:2005.03361v1 [cs.CL])

Neural machine translation (NMT) needs large parallel corpora for state-of-the-art translation quality. Low-resource NMT is typically addressed by transfer learning which leverages large monolingual or parallel corpora for pre-training. Monolingual pre-training approaches such as MASS (MAsked Sequence to Sequence) are extremely effective in boosting NMT quality for languages with small parallel corpora. However, they do not account for linguistic information obtained using syntactic analyzers which is known to be invaluable for several Natural Language Processing (NLP) tasks. To this end, we propose JASS, Japanese-specific Sequence to Sequence, as a novel pre-training alternative to MASS for NMT involving Japanese as the source or target language. JASS is joint BMASS (Bunsetsu MASS) and BRSS (Bunsetsu Reordering Sequence to Sequence) pre-training which focuses on Japanese linguistic units called bunsetsus. In our experiments on ASPEC Japanese--English and News Commentary Japanese--Russian translation we show that JASS can give results that are competitive with if not better than those given by MASS. Furthermore, we show for the first time that joint MASS and JASS pre-training gives results that significantly surpass the individual methods indicating their complementary nature. We will release our code, pre-trained models and bunsetsu annotated data as resources for researchers to use in their own NLP tasks.




pr

Estimating Blood Pressure from Photoplethysmogram Signal and Demographic Features using Machine Learning Techniques. (arXiv:2005.03357v1 [eess.SP])

Hypertension is a potentially unsafe health ailment, which can be indicated directly from the Blood pressure (BP). Hypertension always leads to other health complications. Continuous monitoring of BP is very important; however, cuff-based BP measurements are discrete and uncomfortable to the user. To address this need, a cuff-less, continuous and a non-invasive BP measurement system is proposed using Photoplethysmogram (PPG) signal and demographic features using machine learning (ML) algorithms. PPG signals were acquired from 219 subjects, which undergo pre-processing and feature extraction steps. Time, frequency and time-frequency domain features were extracted from the PPG and their derivative signals. Feature selection techniques were used to reduce the computational complexity and to decrease the chance of over-fitting the ML algorithms. The features were then used to train and evaluate ML algorithms. The best regression models were selected for Systolic BP (SBP) and Diastolic BP (DBP) estimation individually. Gaussian Process Regression (GPR) along with ReliefF feature selection algorithm outperforms other algorithms in estimating SBP and DBP with a root-mean-square error (RMSE) of 6.74 and 3.59 respectively. This ML model can be implemented in hardware systems to continuously monitor BP and avoid any critical health conditions due to sudden changes.




pr

DMCP: Differentiable Markov Channel Pruning for Neural Networks. (arXiv:2005.03354v1 [cs.CV])

Recent works imply that the channel pruning can be regarded as searching optimal sub-structure from unpruned networks.

However, existing works based on this observation require training and evaluating a large number of structures, which limits their application.

In this paper, we propose a novel differentiable method for channel pruning, named Differentiable Markov Channel Pruning (DMCP), to efficiently search the optimal sub-structure.

Our method is differentiable and can be directly optimized by gradient descent with respect to standard task loss and budget regularization (e.g. FLOPs constraint).

In DMCP, we model the channel pruning as a Markov process, in which each state represents for retaining the corresponding channel during pruning, and transitions between states denote the pruning process.

In the end, our method is able to implicitly select the proper number of channels in each layer by the Markov process with optimized transitions. To validate the effectiveness of our method, we perform extensive experiments on Imagenet with ResNet and MobilenetV2.

Results show our method can achieve consistent improvement than state-of-the-art pruning methods in various FLOPs settings. The code is available at https://github.com/zx55/dmcp




pr

Pricing under a multinomial logit model with non linear network effects. (arXiv:2005.03352v1 [cs.GT])

We study the problem of pricing under a Multinomial Logit model where we incorporate network effects over the consumer's decisions. We analyse both cases, when sellers compete or collaborate. In particular, we pay special attention to the overall expected revenue and how the behaviour of the no purchase option is affected under variations of a network effect parameter. Where for example we prove that the market share for the no purchase option, is decreasing in terms of the value of the network effect, meaning that stronger communication among costumers increases the expected amount of sales. We also analyse how the customer's utility is altered when network effects are incorporated into the market, comparing the cases where both competitive and monopolistic prices are displayed. We use tools from stochastic approximation algorithms to prove that the probability of purchasing the available products converges to a unique stationary distribution. We model that the sellers can use this stationary distribution to establish their strategies. Finding that under those settings, a pure Nash Equilibrium represents the pricing strategies in the case of competition, and an optimal (that maximises the total revenue) fixed price characterise the case of collaboration.




pr

Nakdan: Professional Hebrew Diacritizer. (arXiv:2005.03312v1 [cs.CL])

We present a system for automatic diacritization of Hebrew text. The system combines modern neural models with carefully curated declarative linguistic knowledge and comprehensive manually constructed tables and dictionaries. Besides providing state of the art diacritization accuracy, the system also supports an interface for manual editing and correction of the automatic output, and has several features which make it particularly useful for preparation of scientific editions of Hebrew texts. The system supports Modern Hebrew, Rabbinic Hebrew and Poetic Hebrew. The system is freely accessible for all use at this http URL




pr

Expressing Accountability Patterns using Structural Causal Models. (arXiv:2005.03294v1 [cs.SE])

While the exact definition and implementation of accountability depend on the specific context, at its core accountability describes a mechanism that will make decisions transparent and often provides means to sanction "bad" decisions. As such, accountability is specifically relevant for Cyber-Physical Systems, such as robots or drones, that embed themselves into a human society, take decisions and might cause lasting harm. Without a notion of accountability, such systems could behave with impunity and would not fit into society. Despite its relevance, there is currently no agreement on its meaning and, more importantly, no way to express accountability properties for these systems. As a solution we propose to express the accountability properties of systems using Structural Causal Models. They can be represented as human-readable graphical models while also offering mathematical tools to analyze and reason over them. Our central contribution is to show how Structural Causal Models can be used to express and analyze the accountability properties of systems and that this approach allows us to identify accountability patterns. These accountability patterns can be catalogued and used to improve systems and their architectures.




pr

Continuous maximal covering location problems with interconnected facilities. (arXiv:2005.03274v1 [math.OC])

In this paper we analyze a continuous version of the maximal covering location problem, in which the facilities are required to be interconnected by means of a graph structure in which two facilities are allowed to be linked if a given distance is not exceed. We provide a mathematical programming framework for the problem and different resolution strategies. First, we propose a Mixed Integer Non Linear Programming formulation, and derive properties of the problem that allow us to project the continuous variables out avoiding the nonlinear constraints, resulting in an equivalent pure integer programming formulation. Since the number of constraints in the integer programming formulation is large and the constraints are, in general, difficult to handle, we propose two branch-&-cut approaches that avoid the complete enumeration of the constraints resulting in more efficient procedures. We report the results of an extensive battery of computational experiments comparing the performance of the different approaches.




pr

Online Proximal-ADMM For Time-varying Constrained Convex Optimization. (arXiv:2005.03267v1 [eess.SY])

This paper considers a convex optimization problem with cost and constraints that evolve over time. The function to be minimized is strongly convex and possibly non-differentiable, and variables are coupled through linear constraints.In this setting, the paper proposes an online algorithm based on the alternating direction method of multipliers(ADMM), to track the optimal solution trajectory of the time-varying problem; in particular, the proposed algorithm consists of a primal proximal gradient descent step and an appropriately perturbed dual ascent step. The paper derives tracking results, asymptotic bounds, and linear convergence results. The proposed algorithm is then specialized to a multi-area power grid optimization problem, and our numerical results verify the desired properties.




pr

Critique of Boyu Sima's Proof that ${ m P} eq{ m NP}$. (arXiv:2005.03256v1 [cs.CC])

We review and critique Boyu Sima's paper, "A solution of the P versus NP problem based on specific property of clique function," (arXiv:1911.00722) which claims to prove that ${ m P} eq{ m NP}$ by way of removing the gap between the nonmonotone circuit complexity and the monotone circuit complexity of the clique function. We first describe Sima's argument, and then we describe where and why it fails. Finally, we present a simple example that clearly demonstrates the failure.




pr

DFSeer: A Visual Analytics Approach to Facilitate Model Selection for Demand Forecasting. (arXiv:2005.03244v1 [cs.HC])

Selecting an appropriate model to forecast product demand is critical to the manufacturing industry. However, due to the data complexity, market uncertainty and users' demanding requirements for the model, it is challenging for demand analysts to select a proper model. Although existing model selection methods can reduce the manual burden to some extent, they often fail to present model performance details on individual products and reveal the potential risk of the selected model. This paper presents DFSeer, an interactive visualization system to conduct reliable model selection for demand forecasting based on the products with similar historical demand. It supports model comparison and selection with different levels of details. Besides, it shows the difference in model performance on similar products to reveal the risk of model selection and increase users' confidence in choosing a forecasting model. Two case studies and interviews with domain experts demonstrate the effectiveness and usability of DFSeer.




pr

Enhancing Software Development Process Using Automated Adaptation of Object Ensembles. (arXiv:2005.03241v1 [cs.SE])

Software development has been changing rapidly. This development process can be influenced through changing developer friendly approaches. We can save time consumption and accelerate the development process if we can automatically guide programmer during software development. There are some approaches that recommended relevant code snippets and APIitems to the developer. Some approaches apply general code, searching techniques and some approaches use an online based repository mining strategies. But it gets quite difficult to help programmers when they need particular type conversion problems. More specifically when they want to adapt existing interfaces according to their expectation. One of the familiar triumph to guide developers in such situation is adapting collections and arrays through automated adaptation of object ensembles. But how does it help to a novice developer in real time software development that is not explicitly specified? In this paper, we have developed a system that works as a plugin-tool integrated with a particular Data Mining Integrated environment (DMIE) to recommend relevant interface while they seek for a type conversion situation. We have a mined repository of respective adapter classes and related APIs from where developer, search their query and get their result using the relevant transformer classes. The system that recommends developers titled automated objective ensembles (AOE plugin).From the investigation as we have ever made, we can see that our approach much better than some of the existing approaches.




pr

Hierarchical Predictive Coding Models in a Deep-Learning Framework. (arXiv:2005.03230v1 [cs.CV])

Bayesian predictive coding is a putative neuromorphic method for acquiring higher-level neural representations to account for sensory input. Although originating in the neuroscience community, there are also efforts in the machine learning community to study these models. This paper reviews some of the more well known models. Our review analyzes module connectivity and patterns of information transfer, seeking to find general principles used across the models. We also survey some recent attempts to cast these models within a deep learning framework. A defining feature of Bayesian predictive coding is that it uses top-down, reconstructive mechanisms to predict incoming sensory inputs or their lower-level representations. Discrepancies between the predicted and the actual inputs, known as prediction errors, then give rise to future learning that refines and improves the predictive accuracy of learned higher-level representations. Predictive coding models intended to describe computations in the neocortex emerged prior to the development of deep learning and used a communication structure between modules that we name the Rao-Ballard protocol. This protocol was derived from a Bayesian generative model with some rather strong statistical assumptions. The RB protocol provides a rubric to assess the fidelity of deep learning models that claim to implement predictive coding.




pr

Diagnosis of Coronavirus Disease 2019 (COVID-19) with Structured Latent Multi-View Representation Learning. (arXiv:2005.03227v1 [eess.IV])

Recently, the outbreak of Coronavirus Disease 2019 (COVID-19) has spread rapidly across the world. Due to the large number of affected patients and heavy labor for doctors, computer-aided diagnosis with machine learning algorithm is urgently needed, and could largely reduce the efforts of clinicians and accelerate the diagnosis process. Chest computed tomography (CT) has been recognized as an informative tool for diagnosis of the disease. In this study, we propose to conduct the diagnosis of COVID-19 with a series of features extracted from CT images. To fully explore multiple features describing CT images from different views, a unified latent representation is learned which can completely encode information from different aspects of features and is endowed with promising class structure for separability. Specifically, the completeness is guaranteed with a group of backward neural networks (each for one type of features), while by using class labels the representation is enforced to be compact within COVID-19/community-acquired pneumonia (CAP) and also a large margin is guaranteed between different types of pneumonia. In this way, our model can well avoid overfitting compared to the case of directly projecting highdimensional features into classes. Extensive experimental results show that the proposed method outperforms all comparison methods, and rather stable performances are observed when varying the numbers of training data.




pr

Multi-dimensional Avikainen's estimates. (arXiv:2005.03219v1 [math.PR])

Avikainen proved the estimate $mathbb{E}[|f(X)-f(widehat{X})|^{q}] leq C(p,q) mathbb{E}[|X-widehat{X}|^{p}]^{frac{1}{p+1}} $ for $p,q in [1,infty)$, one-dimensional random variables $X$ with the bounded density function and $widehat{X}$, and a function $f$ of bounded variation in $mathbb{R}$. In this article, we will provide multi-dimensional analogues of this estimate for functions of bounded variation in $mathbb{R}^{d}$, Orlicz-Sobolev spaces, Sobolev spaces with variable exponents and fractional Sobolev spaces. The main idea of our arguments is to use Hardy-Littlewood maximal estimates and pointwise characterizations of these function spaces. We will apply main statements to numerical analysis on irregular functionals of a solution to stochastic differential equations based on the Euler-Maruyama scheme and the multilevel Monte Carlo method, and to estimates of the $L^{2}$-time regularity of decoupled forward-backward stochastic differential equations with irregular terminal conditions.




pr

A Stochastic Geometry Approach to Doppler Characterization in a LEO Satellite Network. (arXiv:2005.03205v1 [cs.IT])

A Non-terrestrial Network (NTN) comprising Low Earth Orbit (LEO) satellites can enable connectivity to underserved areas, thus complementing existing telecom networks. The high-speed satellite motion poses several challenges at the physical layer such as large Doppler frequency shifts. In this paper, an analytical framework is developed for statistical characterization of Doppler shift in an NTN where LEO satellites provide communication services to terrestrial users. Using tools from stochastic geometry, the users within a cell are grouped into disjoint clusters to limit the differential Doppler across users. Under some simplifying assumptions, the cumulative distribution function (CDF) and the probability density function are derived for the Doppler shift magnitude at a random user within a cluster. The CDFs are also provided for the minimum and the maximum Doppler shift magnitude within a cluster. Leveraging the analytical results, the interplay between key system parameters such as the cluster size and satellite altitude is examined. Numerical results validate the insights obtained from the analysis.




pr

What comprises a good talking-head video generation?: A Survey and Benchmark. (arXiv:2005.03201v1 [cs.CV])

Over the years, performance evaluation has become essential in computer vision, enabling tangible progress in many sub-fields. While talking-head video generation has become an emerging research topic, existing evaluations on this topic present many limitations. For example, most approaches use human subjects (e.g., via Amazon MTurk) to evaluate their research claims directly. This subjective evaluation is cumbersome, unreproducible, and may impend the evolution of new research. In this work, we present a carefully-designed benchmark for evaluating talking-head video generation with standardized dataset pre-processing strategies. As for evaluation, we either propose new metrics or select the most appropriate ones to evaluate results in what we consider as desired properties for a good talking-head video, namely, identity preserving, lip synchronization, high video quality, and natural-spontaneous motion. By conducting a thoughtful analysis across several state-of-the-art talking-head generation approaches, we aim to uncover the merits and drawbacks of current methods and point out promising directions for future work. All the evaluation code is available at: https://github.com/lelechen63/talking-head-generation-survey.




pr

Enabling Cross-chain Transactions: A Decentralized Cryptocurrency Exchange Protocol. (arXiv:2005.03199v1 [cs.CR])

Inspired by Bitcoin, many different kinds of cryptocurrencies based on blockchain technology have turned up on the market. Due to the special structure of the blockchain, it has been deemed impossible to directly trade between traditional currencies and cryptocurrencies or between different types of cryptocurrencies. Generally, trading between different currencies is conducted through a centralized third-party platform. However, it has the problem of a single point of failure, which is vulnerable to attacks and thus affects the security of the transactions. In this paper, we propose a distributed cryptocurrency trading scheme to solve the problem of centralized exchanges, which can achieve trading between different types of cryptocurrencies. Our scheme is implemented with smart contracts on the Ethereum blockchain and deployed on the Ethereum test network. We not only implement transactions between individual users, but also allow transactions between multiple users. The experimental result proves that the cost of our scheme is acceptable.




pr

Distributed Stabilization by Probability Control for Deterministic-Stochastic Large Scale Systems : Dissipativity Approach. (arXiv:2005.03193v1 [eess.SY])

By using dissipativity approach, we establish the stability condition for the feedback connection of a deterministic dynamical system $Sigma$ and a stochastic memoryless map $Psi$. After that, we extend the result to the class of large scale systems in which: $Sigma$ consists of many sub-systems; and $Psi$ consists of many "stochastic actuators" and "probability controllers" that control the actuator's output events. We will demonstrate the proposed approach by showing the design procedures to globally stabilize the manufacturing systems while locally balance the stock levels in any production process.




pr

ContextNet: Improving Convolutional Neural Networks for Automatic Speech Recognition with Global Context. (arXiv:2005.03191v1 [eess.AS])

Convolutional neural networks (CNN) have shown promising results for end-to-end speech recognition, albeit still behind other state-of-the-art methods in performance. In this paper, we study how to bridge this gap and go beyond with a novel CNN-RNN-transducer architecture, which we call ContextNet. ContextNet features a fully convolutional encoder that incorporates global context information into convolution layers by adding squeeze-and-excitation modules. In addition, we propose a simple scaling method that scales the widths of ContextNet that achieves good trade-off between computation and accuracy. We demonstrate that on the widely used LibriSpeech benchmark, ContextNet achieves a word error rate (WER) of 2.1\%/4.6\% without external language model (LM), 1.9\%/4.1\% with LM and 2.9\%/7.0\% with only 10M parameters on the clean/noisy LibriSpeech test sets. This compares to the previous best published system of 2.0\%/4.6\% with LM and 3.9\%/11.3\% with 20M parameters. The superiority of the proposed ContextNet model is also verified on a much larger internal dataset.




pr

An Optimal Control Theory for the Traveling Salesman Problem and Its Variants. (arXiv:2005.03186v1 [math.OC])

We show that the traveling salesman problem (TSP) and its many variants may be modeled as functional optimization problems over a graph. In this formulation, all vertices and arcs of the graph are functionals; i.e., a mapping from a space of measurable functions to the field of real numbers. Many variants of the TSP, such as those with neighborhoods, with forbidden neighborhoods, with time-windows and with profits, can all be framed under this construct. In sharp contrast to their discrete-optimization counterparts, the modeling constructs presented in this paper represent a fundamentally new domain of analysis and computation for TSPs and their variants. Beyond its apparent mathematical unification of a class of problems in graph theory, the main advantage of the new approach is that it facilitates the modeling of certain application-specific problems in their home space of measurable functions. Consequently, certain elements of economic system theory such as dynamical models and continuous-time cost/profit functionals can be directly incorporated in the new optimization problem formulation. Furthermore, subtour elimination constraints, prevalent in discrete optimization formulations, are naturally enforced through continuity requirements. The price for the new modeling framework is nonsmooth functionals. Although a number of theoretical issues remain open in the proposed mathematical framework, we demonstrate the computational viability of the new modeling constructs over a sample set of problems to illustrate the rapid production of end-to-end TSP solutions to extensively-constrained practical problems.




pr

Determinantal Point Processes in Randomized Numerical Linear Algebra. (arXiv:2005.03185v1 [cs.DS])

Randomized Numerical Linear Algebra (RandNLA) uses randomness to develop improved algorithms for matrix problems that arise in scientific computing, data science, machine learning, etc. Determinantal Point Processes (DPPs), a seemingly unrelated topic in pure and applied mathematics, is a class of stochastic point processes with probability distribution characterized by sub-determinants of a kernel matrix. Recent work has uncovered deep and fruitful connections between DPPs and RandNLA which lead to new guarantees and improved algorithms that are of interest to both areas. We provide an overview of this exciting new line of research, including brief introductions to RandNLA and DPPs, as well as applications of DPPs to classical linear algebra tasks such as least squares regression, low-rank approximation and the Nystr"om method. For example, random sampling with a DPP leads to new kinds of unbiased estimators for least squares, enabling more refined statistical and inferential understanding of these algorithms; a DPP is, in some sense, an optimal randomized algorithm for the Nystr"om method; and a RandNLA technique called leverage score sampling can be derived as the marginal distribution of a DPP. We also discuss recent algorithmic developments, illustrating that, while not quite as efficient as standard RandNLA techniques, DPP-based algorithms are only moderately more expensive.




pr

A Proposal for Intelligent Agents with Episodic Memory. (arXiv:2005.03182v1 [cs.AI])

In the future we can expect that artificial intelligent agents, once deployed, will be required to learn continually from their experience during their operational lifetime. Such agents will also need to communicate with humans and other agents regarding the content of their experience, in the context of passing along their learnings, for the purpose of explaining their actions in specific circumstances or simply to relate more naturally to humans concerning experiences the agent acquires that are not necessarily related to their assigned tasks. We argue that to support these goals, an agent would benefit from an episodic memory; that is, a memory that encodes the agent's experience in such a way that the agent can relive the experience, communicate about it and use its past experience, inclusive of the agents own past actions, to learn more effective models and policies. In this short paper, we propose one potential approach to provide an AI agent with such capabilities. We draw upon the ever-growing body of work examining the function and operation of the Medial Temporal Lobe (MTL) in mammals to guide us in adding an episodic memory capability to an AI agent composed of artificial neural networks (ANNs). Based on that, we highlight important aspects to be considered in the memory organization and we propose an architecture combining ANNs and standard Computer Science techniques for supporting storage and retrieval of episodic memories. Despite being initial work, we hope this short paper can spark discussions around the creation of intelligent agents with memory or, at least, provide a different point of view on the subject.




pr

On Optimal Control of Discounted Cost Infinite-Horizon Markov Decision Processes Under Local State Information Structures. (arXiv:2005.03169v1 [eess.SY])

This paper investigates a class of optimal control problems associated with Markov processes with local state information. The decision-maker has only local access to a subset of a state vector information as often encountered in decentralized control problems in multi-agent systems. Under this information structure, part of the state vector cannot be observed. We leverage ab initio principles and find a new form of Bellman equations to characterize the optimal policies of the control problem under local information structures. The dynamic programming solutions feature a mixture of dynamics associated unobservable state components and the local state-feedback policy based on the observable local information. We further characterize the optimal local-state feedback policy using linear programming methods. To reduce the computational complexity of the optimal policy, we propose an approximate algorithm based on virtual beliefs to find a sub-optimal policy. We show the performance bounds on the sub-optimal solution and corroborate the results with numerical case studies.




pr

An augmented Lagrangian preconditioner for implicitly-constituted non-Newtonian incompressible flow. (arXiv:2005.03150v1 [math.NA])

We propose an augmented Lagrangian preconditioner for a three-field stress-velocity-pressure discretization of stationary non-Newtonian incompressible flow with an implicit constitutive relation of power-law type. The discretization employed makes use of the divergence-free Scott-Vogelius pair for the velocity and pressure. The preconditioner builds on the work [P. E. Farrell, L. Mitchell, and F. Wechsung, SIAM J. Sci. Comput., 41 (2019), pp. A3073-A3096], where a Reynolds-robust preconditioner for the three-dimensional Newtonian system was introduced. The preconditioner employs a specialized multigrid method for the stress-velocity block that involves a divergence-capturing space decomposition and a custom prolongation operator. The solver exhibits excellent robustness with respect to the parameters arising in the constitutive relation, allowing for the simulation of a wide range of materials.




pr

A Gentle Introduction to Quantum Computing Algorithms with Applications to Universal Prediction. (arXiv:2005.03137v1 [quant-ph])

In this technical report we give an elementary introduction to Quantum Computing for non-physicists. In this introduction we describe in detail some of the foundational Quantum Algorithms including: the Deutsch-Jozsa Algorithm, Shor's Algorithm, Grocer Search, and Quantum Counting Algorithm and briefly the Harrow-Lloyd Algorithm. Additionally we give an introduction to Solomonoff Induction, a theoretically optimal method for prediction. We then attempt to use Quantum computing to find better algorithms for the approximation of Solomonoff Induction. This is done by using techniques from other Quantum computing algorithms to achieve a speedup in computing the speed prior, which is an approximation of Solomonoff's prior, a key part of Solomonoff Induction. The major limiting factors are that the probabilities being computed are often so small that without a sufficient (often large) amount of trials, the error may be larger than the result. If a substantial speedup in the computation of an approximation of Solomonoff Induction can be achieved through quantum computing, then this can be applied to the field of intelligent agents as a key part of an approximation of the agent AIXI.




pr

Evaluation, Tuning and Interpretation of Neural Networks for Meteorological Applications. (arXiv:2005.03126v1 [physics.ao-ph])

Neural networks have opened up many new opportunities to utilize remotely sensed images in meteorology. Common applications include image classification, e.g., to determine whether an image contains a tropical cyclone, and image translation, e.g., to emulate radar imagery for satellites that only have passive channels. However, there are yet many open questions regarding the use of neural networks in meteorology, such as best practices for evaluation, tuning and interpretation. This article highlights several strategies and practical considerations for neural network development that have not yet received much attention in the meteorological community, such as the concept of effective receptive fields, underutilized meteorological performance measures, and methods for NN interpretation, such as synthetic experiments and layer-wise relevance propagation. We also consider the process of neural network interpretation as a whole, recognizing it as an iterative scientist-driven discovery process, and breaking it down into individual steps that researchers can take. Finally, while most work on neural network interpretation in meteorology has so far focused on networks for image classification tasks, we expand the focus to also include networks for image translation.




pr

Electricity-Aware Heat Unit Commitment: A Bid-Validity Approach. (arXiv:2005.03120v1 [eess.SY])

Coordinating the operation of combined heat and power plants (CHPs) and heat pumps (HPs) at the interface between heat and power systems is essential to achieve a cost-effective and efficient operation of the overall energy system. Indeed, in the current sequential market practice, the heat market has no insight into the impacts of heat dispatch on the electricity market. While preserving this sequential practice, this paper introduces an electricity-aware heat unit commitment model. Coordination is achieved through bid validity constraints, which embed the techno-economic linkage between heat and electricity outputs and costs of CHPs and HPs. This approach constitutes a novel market mechanism for the coordination of heat and power systems, defining heat bids conditionally on electricity market prices. The resulting model is a trilevel optimization problem, which we recast as a mixed-integer linear program using a lexicographic function. We use a realistic case study based on the Danish power and heat system, and show that the proposed model yields a 4.5% reduction in total operating cost of heat and power systems compared to a traditional decoupled unit commitment model, while reducing the financial losses of each CHP and HP due to invalid bids by up-to 20.3 million euros.




pr

Strong replica symmetry in high-dimensional optimal Bayesian inference. (arXiv:2005.03115v1 [math.PR])

We consider generic optimal Bayesian inference, namely, models of signal reconstruction where the posterior distribution and all hyperparameters are known. Under a standard assumption on the concentration of the free energy, we show how replica symmetry in the strong sense of concentration of all multioverlaps can be established as a consequence of the Franz-de Sanctis identities; the identities themselves in the current setting are obtained via a novel perturbation of the prior distribution of the signal. Concentration of multioverlaps means that asymptotically the posterior distribution has a particularly simple structure encoded by a random probability measure (or, in the case of binary signal, a non-random probability measure). We believe that such strong control of the model should be key in the study of inference problems with underlying sparse graphical structure (error correcting codes, block models, etc) and, in particular, in the derivation of replica symmetric formulas for the free energy and mutual information in this context.




pr

Constrained de Bruijn Codes: Properties, Enumeration, Constructions, and Applications. (arXiv:2005.03102v1 [cs.IT])

The de Bruijn graph, its sequences, and their various generalizations, have found many applications in information theory, including many new ones in the last decade. In this paper, motivated by a coding problem for emerging memory technologies, a set of sequences which generalize sequences in the de Bruijn graph are defined. These sequences can be also defined and viewed as constrained sequences. Hence, they will be called constrained de Bruijn sequences and a set of such sequences will be called a constrained de Bruijn code. Several properties and alternative definitions for such codes are examined and they are analyzed as generalized sequences in the de Bruijn graph (and its generalization) and as constrained sequences. Various enumeration techniques are used to compute the total number of sequences for any given set of parameters. A construction method of such codes from the theory of shift-register sequences is proposed. Finally, we show how these constrained de Bruijn sequences and codes can be applied in constructions of codes for correcting synchronization errors in the $ell$-symbol read channel and in the racetrack memory channel. For this purpose, these codes are superior in their size on previously known codes.




pr

Inference with Choice Functions Made Practical. (arXiv:2005.03098v1 [cs.AI])

We study how to infer new choices from previous choices in a conservative manner. To make such inferences, we use the theory of choice functions: a unifying mathematical framework for conservative decision making that allows one to impose axioms directly on the represented decisions. We here adopt the coherence axioms of De Bock and De Cooman (2019). We show how to naturally extend any given choice assessment to such a coherent choice function, whenever possible, and use this natural extension to make new choices. We present a practical algorithm to compute this natural extension and provide several methods that can be used to improve its scalability.




pr

Eliminating NB-IoT Interference to LTE System: a Sparse Machine Learning Based Approach. (arXiv:2005.03092v1 [cs.IT])

Narrowband internet-of-things (NB-IoT) is a competitive 5G technology for massive machine-type communication scenarios, but meanwhile introduces narrowband interference (NBI) to existing broadband transmission such as the long term evolution (LTE) systems in enhanced mobile broadband (eMBB) scenarios. In order to facilitate the harmonic and fair coexistence in wireless heterogeneous networks, it is important to eliminate NB-IoT interference to LTE systems. In this paper, a novel sparse machine learning based framework and a sparse combinatorial optimization problem is formulated for accurate NBI recovery, which can be efficiently solved using the proposed iterative sparse learning algorithm called sparse cross-entropy minimization (SCEM). To further improve the recovery accuracy and convergence rate, regularization is introduced to the loss function in the enhanced algorithm called regularized SCEM. Moreover, exploiting the spatial correlation of NBI, the framework is extended to multiple-input multiple-output systems. Simulation results demonstrate that the proposed methods are effective in eliminating NB-IoT interference to LTE systems, and significantly outperform the state-of-the-art methods.




pr

Experiences from Exporting Major Proof Assistant Libraries. (arXiv:2005.03089v1 [cs.SE])

The interoperability of proof assistants and the integration of their libraries is a highly valued but elusive goal in the field of theorem proving. As a preparatory step, in previous work, we translated the libraries of multiple proof assistants, specifically the ones of Coq, HOL Light, IMPS, Isabelle, Mizar, and PVS into a universal format: OMDoc/MMT.

Each translation presented tremendous theoretical, technical, and social challenges, some universal and some system-specific, some solvable and some still open. In this paper, we survey these challenges and compare and evaluate the solutions we chose.

We believe similar library translations will be an essential part of any future system interoperability solution and our experiences will prove valuable to others undertaking such efforts.




pr

CovidCTNet: An Open-Source Deep Learning Approach to Identify Covid-19 Using CT Image. (arXiv:2005.03059v1 [eess.IV])

Coronavirus disease 2019 (Covid-19) is highly contagious with limited treatment options. Early and accurate diagnosis of Covid-19 is crucial in reducing the spread of the disease and its accompanied mortality. Currently, detection by reverse transcriptase polymerase chain reaction (RT-PCR) is the gold standard of outpatient and inpatient detection of Covid-19. RT-PCR is a rapid method, however, its accuracy in detection is only ~70-75%. Another approved strategy is computed tomography (CT) imaging. CT imaging has a much higher sensitivity of ~80-98%, but similar accuracy of 70%. To enhance the accuracy of CT imaging detection, we developed an open-source set of algorithms called CovidCTNet that successfully differentiates Covid-19 from community-acquired pneumonia (CAP) and other lung diseases. CovidCTNet increases the accuracy of CT imaging detection to 90% compared to radiologists (70%). The model is designed to work with heterogeneous and small sample sizes independent of the CT imaging hardware. In order to facilitate the detection of Covid-19 globally and assist radiologists and physicians in the screening process, we are releasing all algorithms and parametric details in an open-source format. Open-source sharing of our CovidCTNet enables developers to rapidly improve and optimize services, while preserving user privacy and data ownership.




pr

Extracting Headless MWEs from Dependency Parse Trees: Parsing, Tagging, and Joint Modeling Approaches. (arXiv:2005.03035v1 [cs.CL])

An interesting and frequent type of multi-word expression (MWE) is the headless MWE, for which there are no true internal syntactic dominance relations; examples include many named entities ("Wells Fargo") and dates ("July 5, 2020") as well as certain productive constructions ("blow for blow", "day after day"). Despite their special status and prevalence, current dependency-annotation schemes require treating such flat structures as if they had internal syntactic heads, and most current parsers handle them in the same fashion as headed constructions. Meanwhile, outside the context of parsing, taggers are typically used for identifying MWEs, but taggers might benefit from structural information. We empirically compare these two common strategies--parsing and tagging--for predicting flat MWEs. Additionally, we propose an efficient joint decoding algorithm that combines scores from both strategies. Experimental results on the MWE-Aware English Dependency Corpus and on six non-English dependency treebanks with frequent flat structures show that: (1) tagging is more accurate than parsing for identifying flat-structure MWEs, (2) our joint decoder reconciles the two different views and, for non-BERT features, leads to higher accuracies, and (3) most of the gains result from feature sharing between the parsers and taggers.




pr

Fault Tree Analysis: Identifying Maximum Probability Minimal Cut Sets with MaxSAT. (arXiv:2005.03003v1 [cs.AI])

In this paper, we present a novel MaxSAT-based technique to compute Maximum Probability Minimal Cut Sets (MPMCSs) in fault trees. We model the MPMCS problem as a Weighted Partial MaxSAT problem and solve it using a parallel SAT-solving architecture. The results obtained with our open source tool indicate that the approach is effective and efficient.




pr

Football High: Helmets Do Not Prevent Concussions

Despite the improvements in helmet technology, helmets may prevent skull fractures, but they do not prevent concussions.




pr

Retired Soccer Star Briana Scurry on Girls Soccer and Concussion Protocols

One out of two girls will sustain a concussion playing soccer, but most will recover and return to play with ease. Nevertheless, awareness and education are key to keeping players safe.




pr

Retired Soccer Star Briana Scurry on Her Post-Concussion Depression

Was her depression physiological from the hit to her head or because her professional soccer career was over?




pr

5 Best Practices for Breadcrumb Navigation 

Breadcrumbs are a subtle element of a website that helps improve usability and navigation. They’re a utility that often receives little acknowledgment; however, breadcrumbs can have a large impact and provide a plethora of benefits, such as lowering bounce rate, increasing conversions, and improving user satisfaction.   Imagine you’re in a regular grocery store, except […]

The post 5 Best Practices for Breadcrumb Navigation  appeared first on WebFX Blog.




pr

How Personalized Landing Pages Can Make Your Site More Profitable

Personalization is one of the most effective marketing techniques to connect with customers online. While the exact methods are different for every business, adding personalized elements to landing pages is a proven method of driving conversions on your site. But why is it so successful? The simple answer is that personalization shows customers that you […]

The post How Personalized Landing Pages Can Make Your Site More Profitable appeared first on WebFX Blog.




pr

Is My WordPress Site Secure? 13 Tips for Locking Down Your WordPress Site

WordPress powers 35% of all websites, which makes WordPress sites a go-to target for hackers. If you’re like most WordPress site owners, you’re probably asking the same question: Is my WordPress site secure? While you can’t guarantee site security, you can take several steps to improve and maximize your WordPress security. Keep reading to learn […]

The post Is My WordPress Site Secure? 13 Tips for Locking Down Your WordPress Site appeared first on WebFX Blog.




pr

5 Lead Generation Website Design Best Practices

Are you looking to generate more leads and revenue with your website? If so, it’s time to consider web design for lead generation to help you create a website that caters to your audience and encourages them to become leads for your business.  On this page, we’ll provide you with five lead generation website design […]

The post 5 Lead Generation Website Design Best Practices appeared first on WebFX Blog.




pr

Is My WordPress Site ADA Compliant? 3+ Plugins for Finding Out!

Did you know that breaking the Americans with Disabilities Act (ADA) can result in a six-figure fine? For every violation, companies can receive a $150,000 fine — and if you have a WordPress site, you could be liable. While WordPress aims to ensure website accessibility, it cannot guarantee it since every site owner customizes the […]

The post Is My WordPress Site ADA Compliant? 3+ Plugins for Finding Out! appeared first on WebFX Blog.




pr

What is Website Conversion? [+5 Ways to Improve Conversions]

When you’re trying to grow your business online, you must monitor vital metrics to ensure your business is growing. One important metric is your website’s conversions. Conversions help you determine if you’re driving success with your digital marketing campaigns. So, what is website conversion? How can you improve your website conversion rate? Keep reading to […]

The post What is Website Conversion? [+5 Ways to Improve Conversions] appeared first on WebFX Blog.




pr

Website Redesign Process: Your Website Redesign Strategy in 5 Steps

Your website is your virtual business card and it often provides the first impression of your business to future customers — making it one of the most important aspects of your company. But if your website still has cobwebs from the 2000s, it’s time to put together a website redesign process. A website redesign process […]

The post Website Redesign Process: Your Website Redesign Strategy in 5 Steps appeared first on WebFX Blog.




pr

Printed Solar Cells Hold Promise for Unlit Rural Areas

By Sci Dev Net Advances in printed solar cell technology promise clean renewable energy, opening possibilities for 1.3 billion people still without electric power in developing countries. The technology, which only requires the use of existing industrial-size printers, can produce … Continue reading




pr

A Different Approach to Coding With React Hooks

React Hooks, introduced in React 16.8, present us with a fundamentally new approach to coding. Some may think of them as a replacement for lifecycles or classes, however, that would be wrong. Like trying to translate a word from another language, sometimes you’re facing a completely new entity, which seems identical on the surface but is very different semantically and can’t be treated as equivalent. 

React not only changed the approach from OOP to Functional. The method of rendering has changed in principle. React is now fully built on functions instead of classes. And this has to be understood on a conceptual level. 




pr

(Probably) No NaNoWriMo This Year

I’ve been getting the itch again. For the better part of this year, I’ve been looking forward to tackling National Novel Writing Month (NaNoWriMo) once again this November. I’ve been running over plot scenarios in my head…




pr

Writing a WordPress book. Again.

TL;DR: Brad Williams, John James Jacoby, and I will be publishing the 2nd edition of Professional WordPress Plugin Development this year. It is hard to believe, but it has been nine years since I was approached by Brad Williams…




pr

4K UHD Collection: April 2020

I am back in the collecting game. After several months of work and keeping an eye on deals, I am now inching closer toward 100 titles and have built a pretty nice 4K UHD collection. It started with my first DVD…