sh

The teleost fish intestine is a major oxalate-secreting epithelium [SHORT COMMUNICATION]

Jonathan M. Whittamore

Oxalate is a common constituent of kidney stones but the mechanism of its transport across epithelia are not well understood. With prior research on the role of the intestine focused on mammals this study considered oxalate handling by teleost fish. Given the osmotic challenge of seawater (SW), teleosts have limited scope for urinary oxalate excretion relative to freshwater (FW). The marine teleost intestine was hypothesized as the principal route for oxalate elimination thus demanding epithelial secretion. To test this, intestinal 14C-oxalate flux was compared between FW- and SW-acclimated sailfin molly (Poecilia latipinna). In SW, oxalate was secreted at remarkable rates (367.90±22.95 pmol cm–2 h–1) which were similar following FW transfer (387.59±27.82 pmol cm–2 h–1), implying no regulation by salinity. Nevertheless, this ability to secrete oxalate 15-19 times higher than mammalian small intestine supports this proposal of the teleost gut as a previously unrecognized excretory pathway.




sh

The hydrodynamic regime drives flow reversals in suction-feeding larval fishes during early ontogeny [RESEARCH ARTICLE]

Krishnamoorthy Krishnan, Asif Shahriar Nafi, Roi Gurka, and Roi Holzman

Fish larvae are the smallest self-sustaining vertebrates. As such, they face multiple challenges that stem from their minute size, and from the hydrodynamic regime in which they dwell. This regime, of intermediate Reynolds numbers, was shown to affect the swimming of larval fish and impede their ability to capture prey. Prey capture is impeded because smaller larvae produce weaker suction flows, exerting weaker forces on the prey. Previous observations on feeding larvae also showed prey exiting the mouth after initially entering it (hereafter "in-and-out"), although the mechanism causing such failures had been unclear. In this study, we used numerical simulations to investigate the hydrodynamic mechanisms responsible for the failure to feed caused by this in-and-out prey movement. Detailed kinematics of the expanding mouth during prey capture by larval Sparus aurata were used to parameterize age-specific numerical models of the flows inside the mouth. These models revealed that for small larvae which expand their mouth slowly, fluid entering the mouth cavity is expelled through the mouth before it is closed, resulting in flow reversal at the orifice. This relative efflux of water through the mouth was >8% of the influx through the mouth for younger ages. However similar effluxes were found when we simulated slow strikes by larger fish. The simulations can explain the observations of larval fish failing to fish due to the in-and-out movement of the prey. These results further highlight the importance of transporting the prey from the gape deeper into the mouth cavity in determining suction-feeding success.




sh

Magnetoreception in fishes: the effect of magnetic pulses on orientation of juvenile Pacific salmon [RESEARCH ARTICLE]

Lewis C. Naisbett-Jones, Nathan F. Putman, Michelle M. Scanlan, David L. G. Noakes, and Kenneth J. Lohmann

A variety of animals sense Earth's magnetic field and use it to guide movements over a wide range of spatial scales. Little is known, however, about the mechanisms that underlie magnetic field detection. Among teleost fish, growing evidence suggests that crystals of the mineral magnetite provide the physical basis of the magnetic sense. In this study, juvenile Chinook salmon (Oncorhynchus tshawytscha) were exposed to a brief but strong magnetic pulse capable of altering the magnetic dipole moment of biogenic magnetite. Orientation behaviour of pulsed fish and untreated control fish was then compared in a magnetic coil system under two conditions: (1) the local magnetic field; and (2) a magnetic field that exists near the southern boundary of the natural oceanic range of Chinook salmon. In the local field, no significant difference existed between the orientation of the control and pulsed groups. By contrast, orientation of the two groups was significantly different in the magnetic field from the distant site. These results demonstrate that a magnetic pulse can alter the magnetic orientation behaviour of a fish and are consistent with the hypothesis that salmon have magnetite-based magnetoreception.




sh

Near equal compressibility of liver oil and seawater minimises buoyancy changes in deep-sea sharks and chimaeras [RESEARCH ARTICLE]

Imants G. Priede, Rhoderick W. Burgass, Manolis Mandalakis, Apostolos Spyros, Petros Gikas, Finlay Burns, and Jim Drewery

Whereas upper ocean pelagic sharks are negatively buoyant and must swim continuously to generate lift from their fins, deep-sea sharks float or swim slowly buoyed up by large volumes of low-density oils in their livers. Investigation of the Pressure, Volume, Temperature (PVT) relationships for liver oils of 10 species of deep-sea Chondrichthyes shows that the density difference between oil and seawater, remains almost constant with pressure down to full ocean depth (11 km, 1100 bar); theoretically providing buoyancy far beyond the maximum depth of occurrence (3700 m) of sharks. However, , does change significantly with temperature and we show that the combined effects of pressure and temperature can decrease buoyancy of oil by up to 10% between the surface and 3500 m depth across interfaces between warm southern and cold polar waters in the Rockall Trough in the NE Atlantic. This increases drag more than 10 fold compared with neutral buoyancy during horizontal slow swimming (0.1 m s–1) but the effect becomes negligible at high speeds. Chondrichthyes generally experience positive buoyancy change during ascent and negative buoyancy change during descent but contrary effects can occur at interfaces between waters of different densities. During normal vertical migrations buoyancy changes are small, increasing slow-speed drag by no more than 2–3 fold. Equations and tables of density, pressure and temperature are provided for squalene and liver oils of Chimaeriformes (Harriotta raleighana, Chimaera monstrosa, Chimaera monstrosa), Squaliformes (Centrophorus squamosus, Deania calcea, Centroscymnus coelolepis, Centroscyllium fabricii, Etmopterus spinax) and Carcharhiniformes (Apristurus laurussonii, Galeus murinus).




sh

Both sexes produce sounds in vocal fish species: Testing the hypothesis in the pygmy gourami (Labyrinth fishes) [RESEARCH ARTICLE]

Noemie Liesch and Friedrich Ladich

In vocal fish species, males possess larger sound-generating organs and signal acoustically with pronounced sex-specific differences. Sound production is known in two out of three species of croaking gouramis (Trichopsis vittata and T. schalleri). The present study investigates sex-specific differences in sonic organs, vocalizing behaviour and sounds emitted in the third species, the pygmy gourami T. pumila, in order to test the hypothesis that females are able to vocalize despite their less-developed sonic organs, and despite contradictory reports. Croaking gouramis stretch and pluck two enhanced (sonic) pectoral fin tendons during alternate fin beating, resulting in a series of double-pulsed bursts termed croaking sound. We measured the diameter of the first and second sonic tendon and showed that male tendons were twice as large as in same-sized females. We also determined the duration of dyadic contests, visual displays, number of sounds and buttings. Sexes differ in all sound characteristics but in no behavioural variable. Male sounds consisted of twice as many bursts, a higher percentage of double-pulsed bursts and a higher burst period. Additionally, male sounds had a lower dominant frequency and a higher sound level. In summary, female pygmy gouramis possessed sonic organs and vocalized in most dyadic contests. The sexual dimorphism in sonic tendons is clearly reflected in sex-specific differences in sound characteristics, but not in agonistic behaviour, supporting the hypothesis that females are vocal.




sh

On the regeneration of fish scales: structure and mechanical behavior [RESEARCH ARTICLE]

S. Ghods, S. Waddell, E. Weller, C. Renteria, H.-Y. Jiang, J. M. Janak, S. S. Mao, T. J. Linley, and D. Arola

Fish scales serve as a dermal armor that provides protection from physical injury. Due to a number of outstanding properties, fish scales are inspiring new concepts for layered engineered materials and next-generation flexible armors. While past efforts have primarily focused on the structure and mechanical behavior of ontogenetic scales, the structure-property relationships of regenerated scales have received limited attention. In the present study, common carp (Cyprinus carpio) acquired from the wild were held live in an aquatic laboratory at 10° and 20°C. Ontogenetic scales were extracted from the fish for analysis, as well as regenerated scales after approximately 1 year of development and growth. Their microstructure was characterized using microscopy and Raman spectroscopy, and the mechanical properties were evaluated in uniaxial tension to failure under hydrated conditions. The strength, strain to fracture and toughness of the regenerated scales were significantly lower than those of ontogenetic scales from the same fish, regardless of the water temperature. Scales that regenerated at 20°C exhibited significantly higher strength, strain to fracture and toughness than those regenerated at 10°C. The regenerated scales exhibited a highly mineralized outer layer, but no distinct limiting layer or external elasmodine; they also possessed a significantly lower number of plies in the basal layer than in the ontogenetic scales. The results suggest that a mineralized layer develops preferentially during scale regeneration with the topology needed for protection, prior to the development of other qualities.




sh

The effect of ecological factors on eye morphology in the western rainbowfish, Melanotaenia australis [RESEARCH ARTICLE]

Thomas J. Lisney, Shaun P. Collin, and Jennifer L. Kelley

Ecological factors such as spatial habitat complexity and diet can explain variation in visual morphology, but few studies have sought to determine whether visual specialisation can occur among populations of the same species. We used a small Australian freshwater fish (the western rainbowfish, Melanotaenia australis) to determine whether populations showed variation in eye size and eye position, and whether this variation could be explained by environmental (light availability, turbidity) and ecological (predation risk, habitat complexity, invertebrate abundance) variables. We investigated three aspects of eye morphology, (1) eye size relative to body size, (2) pupil size relative to eye size, and (3) eye position in the head, for fish collected from 14 sites in a major river catchment in northwest Western Australia. We found significant variation among populations in all three measures of eye morphology, but no effect of sex on eye size or eye position. Variation in eye diameter and eye position was best explained by the level of habitat complexity. Specifically, fish occurring in habitats with low complexity (i.e. open water) tended to have smaller, more dorsally-located eyes, than those occurring in more complex habitats (i.e. vegetation present). The size of the pupil relative to the size of the eye was most influenced by the presence of surrounding rock formations; fish living in gorge habitats had significantly smaller pupils (relative to eye size) than those occupying semi-gorge sites or open habitats. Our findings reveal that different ecological and environmental factors contribute to habitat-specific visual specialisations within a species.




sh

Body temperature stability observed in the whale sharks, the world's largest fish [RESEARCH ARTICLE]

Itsumi Nakamura, Rui Matsumoto, and Katsufumi Sato

It is generally assumed that the body temperature of large animals is less likely to change due to their large body size, resulting in a high thermal inertia and a smaller surface area to volume ratio. The goal of this study was to investigate the stability of body temperature in large fish using data from field experiments. We measured the muscle temperatures of free-ranging whale sharks (Rhincodon typus), the largest extant fish globally, and investigated their ectothermic physiology and the stability of their body temperatures. The measured muscle temperature of the whale sharks changed substantially more slowly than the water temperature fluctuations associated with vertical movements, and the whole-body heat-transfer coefficients (HTC) of whale sharks estimated using heat-budget models were lower than those of any other fish species measured to date. The heat-budget models also showed that internal heat production does not contribute to changes in muscle temperature. A comparative analysis showed that the HTC at cooling in various fish species including both ectothermic and endothermic species ranging from 10–4 to 103 kg was proportional to body mass–0.63. This allometry was present regardless of whether the fish were ectothermic or endothermic, and was an extension of the relationship observed in previous studies on small fish. Thus, large fish have the advantage of body temperature stability while moving in environments with large temperature variations. Our results suggest that the large body size of whale sharks aids in preventing a decrease in body temperature during deep excursions to more than 1000 m depths without high metabolic costs of producing heat.




sh

Membrane peroxidation index and maximum lifespan are negatively correlated in fish of genus Nothobranchius [SHORT COMMUNICATION]

Jorge de Costa, Gustavo Barja, and Pedro F. Almaida-Pagan

Lipid composition of cell membranes is linked to metabolic rate and lifespan in mammals and birds but very little information is available for fishes. In this study, three fish species of the short-lived annual genus Nothobranchius with different maximum lifespan potentials (MLSP) and the longer-lived outgroup species Aphyosemion australe were studied to test whether they conform to the predictions of the longevity-homeoviscous adaptation (LHA) theory of aging. Lipid analyses were performed in whole fish samples and peroxidation indexes (PIn) for every PL class and for the whole membrane, were calculated. Total PL content was significantly lower in A. australe and N. korthausae, the two species with the highest MLSP, and a negative correlation between membrane total PIn and fish MLSP was found, this meaning that the longer-lived fish species have more saturated membranes and therefore, a lower susceptibility to oxidative damage, as the LHA theory posits.




sh

Absolute ethanol intake predicts ethanol preference in Drosophila [SHORT COMMUNICATION]

Scarlet J. Park and William W. Ja

Factors that mediate ethanol preference in Drosophila melanogaster are not well understood. A major confound has been the use of diverse methods to estimate ethanol consumption. We measured fly consumptive ethanol preference on base diets varying in nutrients, taste, and ethanol concentration. Both sexes showed ethanol preference that was abolished on high nutrient concentration diets. Additionally, manipulating total food intake without altering the nutritive value of the base diet or the ethanol concentration was sufficient to evoke or eliminate ethanol preference. Absolute ethanol intake and food volume consumed were stronger predictors of ethanol preference than caloric intake or the dietary caloric content. Our findings suggest that the effect of the base diet on ethanol preference is largely mediated by total consumption associated with the delivery medium, which ultimately determines the level of ethanol intake. We speculate that a physiologically relevant threshold for ethanol intake is essential for preferential ethanol consumption.




sh

Whale sharks increase swimming effort while filter feeding, but appear to maintain high foraging efficiencies [RESEARCH ARTICLE]

David E. Cade, J. Jacob Levenson, Robert Cooper, Rafael de la Parra, D. Harry Webb, and Alistair D. M. Dove

Whale sharks (Rhincodon typus Smith 1828) – the largest extant fish species – reside in tropical environments, making them an exception to the general rule that animal size increases with latitude. How this largest fish thrives in tropical environments that promote high metabolism but support less robust zooplankton communities has not been sufficiently explained. We used open-source inertial measurement units (IMU) to log 397 hours of whale shark behavior in Yucatan, Mexico, at a site of both active feeding and intense wildlife tourism. Here we show that the strategies employed by whale sharks to compensate for the increased drag of an open mouth are similar to ram-feeders five orders of magnitude smaller and one order of magnitude larger. Presumed feeding constituted 20% of the total time budget of four sharks, with individual feeding bouts lasting up to 11 consecutive hrs. Compared to normal, sub-surface swimming, three sharks increased their stroke rate and amplitude while surface feeding, while one shark that fed at depth did not demonstrate a greatly increased energetic cost. Additionally, based on time-depth budgets, we estimate that aerial surveys of shark populations should consider including a correction factor of 3 to account for the proportion of daylight hours that sharks are not visible at the surface. With foraging bouts generally lasting several hours, interruptions to foraging during critical feeding periods may represent substantial energetic costs to these endangered species, and this study presents baseline data from which management decisions affecting tourist interactions with whale sharks may be made.




sh

Retinal slip compensation of pitch-constrained blue-bottle flies flying in a flight mill [SHORT COMMUNICATION]

Shih-Jung Hsu and Bo Cheng

In the presence of wind or background image motion, flies are able to maintain a constant retinal slip velocity via regulating flight speed to the extent permitted by their locomotor capacity. Here we investigated the retinal slip compensation of tethered blue-bottle flies (Calliphora vomitoria) flying semi-freely along an annular corridor in a magnetically levitated flight mill enclosed by two motorized cylindrical walls. We perturbed the flies’ retinal slip via spinning the cylindrical walls, generating bilaterally averaged retinal slip perturbations from -0.3 to 0.3 m·s–1 (or -116.4 to 116.4 deg.·s–1) When the perturbation was less than ~0.1 m·s–1 (38.4 deg.·s–1), the flies successfully compensated the perturbations and maintained a retinal slip velocity by adjusting their airspeed up to 20%. However, with greater retinal slip perturbation, the flies’ compensation became saturated, as the flies’ airspeed plateaued, indicating that they were unable to further maintain a constant retinal slip velocity. The compensation gain, i.e., the ratio of airspeed compensation and retinal slip perturbation, depended on the spatial frequency of the grating patterns, being the largest at 12 m–1 (0.04 deg.–1).




sh

Fish embryo vulnerability to combined acidification and warming coincides with low capacity for homeostatic regulation [RESEARCH ARTICLE]

Flemming Dahlke, Magnus Lucassen, Ulf Bickmeyer, Sylke Wohlrab, Velmurugu Puvanendran, Atle Mortensen, Melissa Chierici, Hans-Otto Pörtner, and Daniela Storch

The vulnerability of fish embryos and larvae to environmental factors is often attributed to a lack of adult-like organ systems (gills) and thus insufficient homeostatic capacity. However, experimental data supporting this hypothesis are scarce. Here, by using Atlantic cod (Gadus morhua) as a model, the relationship between embryo vulnerability (to projected ocean acidification and warming) and homeostatic capacity was explored through parallel analyses of stage-specific mortality and in vitro activity and expression of major ion pumps (ATP-Synthase, Na+/K+-ATPase, H+-ATPase) and co-transporters (NBC1, NKCC1). Immunolocalization of these transporters was used to study ionocyte morphology in newly-hatched larvae. Treatment-related embryo mortality until hatch (+20% due to acidification and warming) occurred primarily during an early period (gastrulation) characterized by extremely low ion transport capacities. Thereafter, embryo mortality decreased in parallel with an exponential increase in activity and expression of all investigated ion transporters. Significant changes in transporter activity and expression in response to acidification (+15% activity) and warming (-30% expression) indicate some potential for short-term acclimatization, although likely associated with energetic trade-offs. Interestingly, whole-larvae enzyme capacities (supported by abundant epidermal ionocytes) reached levels similar to those previously measured in gill tissue of adult cod, suggesting that early-life stages without functional gills are better equipped in terms of ion homeostasis than previously thought. This study implies that the gastrulation period represents a critical transition from inherited (maternal) defenses to active homeostatic regulation, which facilitates enhanced resilience of later stages to environmental factors.




sh

Establishment of 5'-3' interactions in mRNA independent of a continuous ribose-phosphate backbone [ARTICLE]

Functions of eukaryotic mRNAs are characterized by intramolecular interactions between their ends. We have addressed the question whether 5' and 3' ends meet by diffusion-controlled encounter "through solution" or by a mechanism involving the RNA backbone. For this purpose, we used a translation system derived from Drosophila embryos that displays two types of 5'–3' interactions: Cap-dependent translation initiation is stimulated by the poly(A) tail and inhibited by Smaug recognition elements (SREs) in the 3' UTR. Chimeric RNAs were made consisting of one RNA molecule carrying a luciferase coding sequence and a second molecule containing SREs and a poly(A) tail; the two were connected via a protein linker. The poly(A) tail stimulated translation of such chimeras even when disruption of the RNA backbone was combined with an inversion of the 5'–3' polarity between the open reading frame and poly(A) segment. Stimulation by the poly(A) tail also decreased with increasing RNA length. Both observations suggest that contacts between the poly(A) tail and the 5' end are established through solution, independently of the RNA backbone. In the same chimeric constructs, SRE-dependent inhibition of translation was also insensitive to disruption of the RNA backbone. Thus, tracking of the backbone is not involved in the repression of cap-dependent initiation. However, SRE-dependent repression was insensitive to mRNA length, suggesting that the contact between the SREs in the 3' UTR and the 5' end of the RNA might be established in a manner that differs from the contact between the poly(A) tail and the cap.




sh

Determinants of Exercise Capacity Assessed With the Modified Shuttle Test in Individuals With Cystic Fibrosis

BACKGROUND:Patients with cystic fibrosis develop decreased exercise capacity. However, the main factors responsible for this decline are still unclear. Thus, the objective of this study was to evaluate the factors influencing exercise capacity assessed with the modified shuttle test (MST) in individuals with cystic fibrosis.METHODS:A cross-sectional study was carried out in subjects with a diagnosis of cystic fibrosis who were 6–26 y old and were regularly monitored at 2 cystic fibrosis reference centers in Brazil. Individuals who were unable to perform the tests or who exhibited hemodynamic instability and exacerbation of respiratory symptoms were excluded. Anthropometric, clinical, and genotype data were collected. In addition, lung function and exercise capacity were evaluated with the MST.RESULTS:73 subjects (mean age 12.2 ± 4.9 y and FEV1 76.8 ± 23.3%) were included. The mean distance achieved in the MST was 765 ± 258 m (71.6% of predicted). The distance achieved on the MST correlated significantly with age (r = 0.49, P < .001), body mass index (r = 0.41, P < .001), resting heart rate (r = −0.51, P < .001), and FEV1 (r = 0.24, P = .042). Subjects with FEV1 > 67% of predicted (P = .02) and those with resting heart rate < 100 beats/min (P = .01) had a greater exercise capacity. Resting heart rate, age, and FEV1 (%) were found as significant variables to explain the distance achieved on the MST (R2 = 0.48, standard error = 191.0 m).CONCLUSIONS:The main determinants of exercise capacity assessed with the MST in individuals with cystic fibrosis were resting heart rate, age, and lung function.




sh

Evaluation of Quantitative Relationship Between Target Expression and Antibody-Drug Conjugate Exposure Inside Cancer Cells [Articles]

Antibody-drug conjugates (ADCs) employ overexpressed cell surface antigens to deliver cytotoxic payloads inside cancer cells. However, the relationship between target expression and ADC efficacy remains ambiguous. In this manuscript, we have addressed a part of this ambiguity by quantitatively investigating the effect of antigen expression levels on ADC exposure within cancer cells. Trastuzumab-valine-citrulline-monomethyl auristatin E was used as a model ADC, and four different cell lines with diverse levels of human epidermal growth factor receptor 2 (HER2) expression were used as model cells. The pharmacokinetics (PK) of total trastuzumab, released monomethyl auristatin E (MMAE), and total MMAE were measured inside the cells and in the cell culture media following incubation with two different concentrations of ADC. In addition, target expression levels, target internalization rate, and cathepsin B and MDR1 protein concentrations were determined for each cell line. All the PK data were mathematically characterized using a cell-level systems PK model for ADC. It was found that SKBR-3, MDA-MB-453, MCF-7, and MDA-MB-468 cells had ~800,000, ~250,000, ~50,000, and ~10,000 HER2 receptors per cell, respectively. A strong linear relationship (R2 > 0.9) was observed between HER2 receptor count and released MMAE exposure inside the cancer cells. There was an inverse relationship found between HER2 expression level and internalization rate, and cathepsin B and multidrug resistance protein 1 (MDR1) expression level varied slightly among the cell lines. The PK model was able to simultaneously capture all the PK profiles reasonably well while estimating only two parameters. Our results demonstrate a strong quantitative relationship between antigen expression level and intracellular exposure of ADCs in cancer cells.

SIGNIFICANCE STATEMENT

In this manuscript, we have demonstrated a strong linear relationship between target expression level and antibody-drug conjugate (ADC) exposure inside cancer cells. We have also shown that this relationship can be accurately captured using the cell-level systems pharmacokinetics model developed for ADCs. Our results indirectly suggest that the lack of relationship between target expression and efficacy of ADC may stem from differences in the pharmacodynamic properties of cancer cells.




sh

The streptococcal multidomain fibrillar adhesin CshA has an elongated polymeric architecture [Microbiology]

The cell surfaces of many bacteria carry filamentous polypeptides termed adhesins that enable binding to both biotic and abiotic surfaces. Surface adherence is facilitated by the exquisite selectivity of the adhesins for their cognate ligands or receptors and is a key step in niche or host colonization and pathogenicity. Streptococcus gordonii is a primary colonizer of the human oral cavity and an opportunistic pathogen, as well as a leading cause of infective endocarditis in humans. The fibrillar adhesin CshA is an important determinant of S. gordonii adherence, forming peritrichous fibrils on its surface that bind host cells and other microorganisms. CshA possesses a distinctive multidomain architecture comprising an N-terminal target-binding region fused to 17 repeat domains (RDs) that are each ∼100 amino acids long. Here, using structural and biophysical methods, we demonstrate that the intact CshA repeat region (CshA_RD1–17, domains 1–17) forms an extended polymeric monomer in solution. We recombinantly produced a subset of CshA RDs and found that they differ in stability and unfolding behavior. The NMR structure of CshA_RD13 revealed a hitherto unreported all β-fold, flanked by disordered interdomain linkers. These findings, in tandem with complementary hydrodynamic studies of CshA_RD1–17, indicate that this polypeptide possesses a highly unusual dynamic transitory structure characterized by alternating regions of order and disorder. This architecture provides flexibility for the adhesive tip of the CshA fibril to maintain bacterial attachment that withstands shear forces within the human host. It may also help mitigate deleterious folding events between neighboring RDs that share significant structural identity without compromising mechanical stability.




sh

The short variant of optic atrophy 1 (OPA1) improves cell survival under oxidative stress [Bioenergetics]

Optic atrophy 1 (OPA1) is a dynamin protein that mediates mitochondrial fusion at the inner membrane. OPA1 is also necessary for maintaining the cristae and thus essential for supporting cellular energetics. OPA1 exists as membrane-anchored long form (L-OPA1) and short form (S-OPA1) that lacks the transmembrane region and is generated by cleavage of L-OPA1. Mitochondrial dysfunction and cellular stresses activate the inner membrane–associated zinc metallopeptidase OMA1 that cleaves L-OPA1, causing S-OPA1 accumulation. The prevailing notion has been that L-OPA1 is the functional form, whereas S-OPA1 is an inactive cleavage product in mammals, and that stress-induced OPA1 cleavage causes mitochondrial fragmentation and sensitizes cells to death. However, S-OPA1 contains all functional domains of dynamin proteins, suggesting that it has a physiological role. Indeed, we recently demonstrated that S-OPA1 can maintain cristae and energetics through its GTPase activity, despite lacking fusion activity. Here, applying oxidant insult that induces OPA1 cleavage, we show that cells unable to generate S-OPA1 are more sensitive to this stress under obligatory respiratory conditions, leading to necrotic death. These findings indicate that L-OPA1 and S-OPA1 differ in maintaining mitochondrial function. Mechanistically, we found that cells that exclusively express L-OPA1 generate more superoxide and are more sensitive to Ca2+-induced mitochondrial permeability transition, suggesting that S-OPA1, and not L-OPA1, protects against cellular stress. Importantly, silencing of OMA1 expression increased oxidant-induced cell death, indicating that stress-induced OPA1 cleavage supports cell survival. Our findings suggest that S-OPA1 generation by OPA1 cleavage is a survival mechanism in stressed cells.




sh

The testis-specific LINC component SUN3 is essential for sperm head shaping during mouse spermiogenesis [Cell Biology]

Sperm head shaping is a key event in spermiogenesis and is tightly controlled via the acrosome–manchette network. Linker of nucleoskeleton and cytoskeleton (LINC) complexes consist of Sad1 and UNC84 domain–containing (SUN) and Klarsicht/ANC-1/Syne-1 homology (KASH) domain proteins and form conserved nuclear envelope bridges implicated in transducing mechanical forces from the manchette to sculpt sperm nuclei into a hook-like shape. However, the role of LINC complexes in sperm head shaping is still poorly understood. Here we assessed the role of SUN3, a testis-specific LINC component harboring a conserved SUN domain, in spermiogenesis. We show that CRISPR/Cas9-generated Sun3 knockout male mice are infertile, displaying drastically reduced sperm counts and a globozoospermia-like phenotype, including a missing, mislocalized, or fragmented acrosome, as well as multiple defects in sperm flagella. Further examination revealed that the sperm head abnormalities are apparent at step 9 and that the sperm nuclei fail to elongate because of the absence of manchette microtubules and perinuclear rings. These observations indicate that Sun3 deletion likely impairs the ability of the LINC complex to transduce the cytoskeletal force to the nuclear envelope, required for sperm head elongation. We also found that SUN3 interacts with SUN4 in mouse testes and that the level of SUN4 proteins is drastically reduced in Sun3-null mice. Altogether, our results indicate that SUN3 is essential for sperm head shaping and male fertility, providing molecular clues regarding the underlying pathology of the globozoospermia-like phenotype.




sh

Geology of the Chang 7 Member oil shale of the Yanchang Formation of the Ordos Basin in central north China

We present a review of the Chang 7 Member oil shale, which occurs in the middle–late Triassic Yanchang Formation of the Ordos Basin in central north China. The oil shale has a thickness of 28 m (average), an area of around 30 000 km2 and a Ladinian age. It is mainly brown-black to black in colour with a laminar structure. It is characterized by average values of 18 wt% TOC (total organic carbon), 8 wt% oil yield, a 8.35 MJ kg–1 calorific value, 400 kg t–1 hydrocarbon productivity and kerogen of type I–II1, showing a medium quality. On average, it comprises 49% clay minerals, 29% quartz, 16% feldspar and some iron oxides, which is close to the average mineral composition of global shale. The total SiO2 and Al2O3 comprise 63.69 wt% of the whole rock, indicating a medium ash type. The Sr/Ba is 0.33, the V/Ni is 7.8, the U/Th is 4.8 and the FeO/Fe2O3 is 0.5, indicating formation in a strongly reducing, freshwater or low-salinity sedimentary environment. Multilayered intermediate-acid tuff is developed in the basin, which may have promoted the formation of the oil shale. The Ordos Basin was formed during the northwards subduction of the Qinling oceanic plate during the Ladinian–Norian in a back-arc basin context. The oil shale of the Ordos Basin has a large potential for hydrocarbon generation.

Supplementary material: Tables of oil-shale geochemical composition, proximate and organic matter analyses from the Chang 7 Member oil shale, the Ordos Basin, Central north China are available at https://doi.org/10.6084/m9.figshare.c.4411703




sh

Lithological and chemostratigraphic discrimination of facies within the Bowland Shale Formation within the Craven and Edale basins, UK

The Carboniferous Bowland Shale Formation of the UK is a proven hydrocarbon source rock and currently a target for shale gas exploration. Most existing analysis details lithofacies and geochemical assessment of a small number of boreholes. Given a paucity of relevant borehole cores, surface samples provide a valuable contribution to the assessment of this unconventional gas source. This study reviews existing literature on the formation's hydrocarbon geochemistry and provides new lithological descriptions of seven lithofacies, XRD mineralogy and hydrocarbon-specific geochemical data for 32 outcrop localities within the Craven and Edale basins, respectively in the northern and southern parts of the resource area. Low oxygen indices suggest that the majority of samples are relatively unaltered (in terms of hydrocarbon geochemistry), and therefore suitable for the characterization of the shale organic character. Total organic carbon (TOC) ranges from 0.7 to 6.5 wt%, with highest values associated with maximum flooding surfaces. Mean Tmax values of 447 and 441°C for the Edale and Craven basins, respectively, suggest that nearly all the samples were too immature to have generated appreciable amounts of dry gas. The oil saturation index is consistently below the >100 mg g–1 TOC benchmark, suggesting that they are not prospective for shale oil.

Supplementary material: A table summarizing the location, geological description and age of all of the samples in this paper is available at https://doi.org/10.6084/m9.figshare.c.4444589




sh

Structural constraints on Lower Carboniferous shale gas exploration in the Craven Basin, NW England

Detailed interpretation of a 3D seismic data volume reveals the detrimental effect that post-depositional tectonic deformation has had on buried Lower Carboniferous (Dinantian–Namurian) shales and its consequences for shale gas exploration in the SW part (Fylde area) of the Craven Basin in NW England. The structural styles primarily result from Devono-Carboniferous (syn-sedimentary) extension, post-rift subsidence and Variscan inversion, a renewed phase of Permo-Triassic extension, and Cenozoic uplift and basin exhumation. In contrast to the shallow dips and bedding continuity that characterizes productive shale gas plays in other basins (e.g. in the USA and Argentina), our mapping shows that the area is affected by deformation that results in the Bowland Shale Formation targets being folded and dissected into fault-bound compartments defined by SW–NE striking (Lower Carboniferous and Variscan) reverse faults and SSW–NNE to N–S striking (Permo-Triassic) normal faults. The fault networks and the misalignment between the elongate compartments they contain and the present-day minimum horizontal stress orientation limit the length over which long lateral boreholes can remain in a productive horizon, placing an important constraint on optimal well positioning, reducing the size of the shale gas resource and affecting well productivity. Our subsurface mapping using this high-fidelity dataset provides an accurate picture of the Upper Palaeozoic structure and demonstrates that faulting is denser and more complex than apparent from geological mapping of the surface outcrop. That structural complexity has direct and significant consequences for: the location of well pads; the lateral continuity of target shale gas horizons; the evaluation of the risk of inducing seismicity on seismically resolvable (large displacement) fault planes prior to drilling; and the likelihood of faults with small throws (below seismic resolution) being present.




sh

Geology and petroleum prospectivity of the Larne and Portpatrick basins, North Channel, offshore SW Scotland and Northern Ireland

The Larne and Portpatrick basins, located in the North Channel between SW Scotland and Northern Ireland, have been the target of a small programme of petroleum exploration activities since 1971. A total of five hydrocarbon exploration wells have been drilled within the two basins, although as of yet no commercial discoveries have been made. The presence of hydrocarbon shows alongside the discovery of two good-quality reservoir–seal couplets within Triassic and underlying Permian strata has encouraged exploration within the region. The focus of this study is to evaluate the geology and hydrocarbon prospectivity of the Portpatrick Basin and the offshore section of the Larne Basin. This is achieved through the use of seismic reflection data, and gravity and aeromagnetic data, alongside sedimentological, petrophysical and additional available datasets from both onshore and offshore wells, boreholes and previously published studies. The primary reservoir interval, the Lower–Middle Triassic Sherwood Sandstone Group (c. 600–900 m gross thickness), is distributed across both basins and shows good to excellent porosity (10–25%) and permeability (10–1000 mD) within the Larne Basin. The Middle–Late Triassic Mercia Mudstone Group should provide an excellent top seal where present due to the presence of thick regionally extensive halite deposits, although differential erosion has removed this seal from the margins of the Larne and Portpatrick basins. The Carboniferous, which has been postulated to contain organic-rich source-rock horizons, as inferred from their presence in adjacent basins, has not yet been penetrated within the depocentre of either basin. There is, therefore, some degree of uncertainty regarding the quality and distribution of a potential source rock. The interpretation of seismic reflection profiles presented here, alongside the occurrence of hydrocarbon shows, indicates the presence of organic-rich pre-Permian sedimentary rocks within both basins. 1D petroleum system modelling of the Larne-2 borehole shows that the timing of hydrocarbon generation and migration within the basins is a significant risk, with many traps post-dating the primary hydrocarbon charge. Well-failure analysis has revealed that trap breach associated with kilometre-scale uplift events, and the drilling of wells off-structure due to a lack of good-quality subsurface data, have contributed to the lack of discoveries. While the Larne and Portpatrick basins have many elements required for a working petroleum system, along with supporting hydrocarbon shows, the high risks coupled with the small scale of potential discoveries makes the Portpatrick Basin and offshore section of the Larne Basin poorly prospective for oil and gas discovery.

Thematic collection: This article is part of the Under-explored plays and frontier basins of the UK continental shelf collection available at: http://www.lyellcollection.org/cc/under-explored-plays-and-frontier-basins-of-the-uk-continental-shelf




sh

Structural and stratigraphic evolution of the Mid North Sea High region of the UK Continental Shelf

Interpretation of newly acquired seismic and legacy well data has led to a greater understanding of the Upper Paleozoic–Recent geological evolution of the Mid North Sea High (MNSH), an under-explored region of the North Sea. The position of granite-cored blocks controlled the distribution of Devono-Carboniferous highs and basins before Variscan uplift led to peneplanation and the creation of the Base Permian Unconformity. The MNSH became the dominant feature during the Permian when it formed a west–east-striking ridge between the Southern and Northern Permian basins. Following a period of non-deposition, sedimentation was renewed in the Late Permian–Triassic before Middle Jurassic doming caused uplift to the NE. Subsequent Late Jurassic North Sea rifting transected the MNSH to create the Western Platform between the Central Graben and Moray Firth rift arms. Following Cretaceous post-rift deposition, the area experienced a significant easterly tilt in the Cenozoic that led to the demise of the MNSH as a prominent topographical feature. The tectonic and stratigraphic evolution exerts a strong control over reservoir facies distribution, source-rock deposition and maturation. However, the area is not barren of petroleum potential. Despite the lack of Upper Carboniferous source rocks over large areas, hydrocarbon potential is evident through shows in legacy wells, indicating the Lower Carboniferous as a potential source rock. Cenozoic uplift to the west imparted a regional tilt, the effects of which remains key to unlocking the area's prospectivity since it reconfigured structures and formed remigration pathways from Lower Carboniferous and Jurassic source rocks.

Thematic collection: This article is part of the Under-explored plays and frontier basins of the UK continental shelf collection available at: https://www.lyellcollection.org/cc/under-explored-plays-and-frontier-basins-of-the-uk-continental-shelf





sh

Cyclical variations of fluid sources and stress state in a shallow megathrust-zone melange

Differences in REE patterns of calcite from extensional and shear veins of the Sestola Vidiciatico Tectonic Unit in the Northern Apennines suggest variations in fluid source during the seismic cycle in an ancient analogue of a shallow megathrust (Tmax c. 100–150°C). In shear veins, a positive Eu anomaly suggests an exotic fluid source, probably hotter than the fault environment. Small-scale extensional veins were derived instead from a local fluid in equilibrium with the fault rocks. Mutually crosscutting relations between two extensional vein sets, parallel and perpendicular to the megathrust, suggest repeated shifting of the 1 and 3 stresses during the seismic cycle. This is consistent with: (1) a seismic phase, with brittle failure along the thrust, crystallization of shear veins from an exotic fluid, stress drop and stress rotation; (2) a post-seismic phase, with fault-normal compaction and formation of fault-normal extensional veins fed by local fluids; (3) a reloading phase, where shear stress and pore pressure are gradually restored and fault-parallel extensional veins form, until the thrust fails again. The combination of geochemical and structural analyses in veins from exhumed megathrust analogues represents a promising tool to better understand the interplay between stress state and fluids in modern subduction zones.

Supplementary material: Cathodoluminescence microphotographs, methodological details of the microstructural analysis, microphotographs of the location of analysed spots and a geochemical data table are available at https://doi.org/10.6084/m9.figshare.c.4842165

Thematic collection: This article is part of the Polygenetic mélanges collection available at: https://www.lyellcollection.org/cc/polygenetic-melanges




sh

Mid-Eocene giant slope failure (sedimentary melanges) in the Ligurian accretionary wedge (NW Italy) and relationships with tectonics, global climate change and the dissociation of gas hydrates

Upper Lutetian–Bartonian sedimentary mélanges, corresponding to ancient mud-rich submarine mass transport deposits, are widely distributed over an area c. 300 km long and tens of kilometres wide along the exhumed outer part of the External Ligurian accretionary wedge in the Northern Apennines. The occurrence of methane-derived carbonate concretions (septarians) in a specific tectonostratigraphic position below these sedimentary mélanges allows us to document the relationships among a significant period of regional-scale slope failure, climate change (the Early and Mid-Eocene Optimum stages), the dissociation of gas hydrates and accretionary tectonics during the Ligurian Tectonic Phase (early–mid-Lutetian). The distribution of septarians at the core of thrust-related anticlines suggests that the dissociation of gas hydrates was triggered by accretionary tectonics rather than climate change. The different ages of slope failure emplacement and the formation of the septarians support the view that the dissociation of gas hydrates was not the most important trigger for slope failure. The latter occurred during a tectonic quiescence stage associated with a regressive depositional trend, and probably minor residual tectonic pulses, which followed the Ligurian Tectonic Phase, favouring the dynamic re-equilibrium of the External Ligurian accretionary wedge. Our findings provide useful information for a better understanding of the factors controlling giant slope failure events in modern accretionary settings, where they may cause tsunamis.




sh

Basement-cover relationships and deformation in the Northern Paraguai Belt, central Brazil: implications for the Neoproterozoic-early Paleozoic history of western Gondwana

The Northern Paraguai Belt, at the SE border of the Amazonian Craton, central Brazil, has been interpreted as a Brasiliano–Pan-African (c. 650–600 Ma) belt with a foreland basin, recording collisional polyphase tectonism and greenschist-facies metamorphism extending from the late Precambrian to the Cambrian–Ordovician. New structural investigations indicate that the older metasedimentary rocks of the Cuiabá Group represent a Tonian–Cryogenian basement assemblage deformed in two contemporaneous fault-bounded structural sub-domains of wrench-dominated (rake <10°) and contraction-dominated (rake ~30–40°) sinistral transpression, with tectonic vergence towards the SE. The younger late Cryogenian to early Cambrian sedimentary rocks lying to the NW of the Cuiabá Group are non-metamorphic and display only pervasive brittle transtension characterized by normal-oblique faults, fractures and forced drag folds with no consistent vergence pattern. Our analyses suggest that an unconformity separates the metasedimentary Cuiabá Group basement of the Northern Paraguai Belt from the unmetamorphosed sedimentary cover. It is proposed that the latter units were deposited during a post-glacial marine transgression (after c. 635 Ma) in a post-collisional basin. The Paraguai Belt basement and its post-collisional sedimentary cover share a number of significant geological similarities with sequences in the Bassarides Belt and Taoudéni Basin in the SW portion of the West African Craton.




sh

Randomized, Placebo-Controlled, Double-Blind Phase 2 Trial Comparing the Reactogenicity and Immunogenicity of a Single Standard Dose to Those of a High Dose of CVD 103-HgR Live Attenuated Oral Cholera Vaccine, with Shanchol Inactivated Oral Vaccine as an

Reactive immunization with a single-dose cholera vaccine that could rapidly (within days) protect immunologically naive individuals during virgin soil epidemics, when cholera reaches immunologically naive populations that have not experienced cholera for decades, would facilitate cholera control. One dose of attenuated Vibrio cholerae O1 classical Inaba vaccine CVD 103-HgR (Vaxchora) containing ≥2 x 108 CFU induces vibriocidal antibody seroconversion (a correlate of protection) in >90% of U.S. adults. A previous CVD 103-HgR commercial formulation required ≥2 x 109 CFU to elicit high levels of seroconversion in populations in developing countries. We compared the vibriocidal responses of Malians (individuals 18 to 45 years old) randomized to ingest a single ≥2 x 108-CFU standard dose (n = 50) or a ≥2 x 109-CFU high dose (n = 50) of PaxVax CVD 103-HgR with buffer or two doses (n = 50) of Shanchol inactivated cholera vaccine (the immunologic comparator). To maintain blinding, participants were dosed twice 2 weeks apart; CVD 103-HgR recipients ingested placebo 2 weeks before or after ingesting vaccine. Seroconversion (a ≥4-fold vibriocidal titer rise) between the baseline and 14 days after CVD 103-HgR ingestion and following the first and second doses of Shanchol were the main outcomes measured. By day 14 postvaccination, the rates of seroconversion after ingestion of a single standard dose and a high dose of CVD 103-HgR were 71.7% (33/46 participants) and 83.3% (40/48 participants), respectively. The rate of seroconversion following the first dose of Shanchol, 56.0% (28/50 participants), was significantly lower than that following the high dose of CVD 103-HgR (P = 0.003). The vibriocidal geometric mean titer (GMT) of the high dose of CVD 103-HgR exceeded the GMT of the standard dose at day 14 (214 versus 95, P = 0.045) and was ~2-fold higher than the GMT on day 7 and day 14 following the first Shanchol dose (P > 0.05). High-dose CVD 103-HgR is recommended for accelerated evaluation in developing countries to assess its efficacy and practicality in field situations. (This study has been registered at ClinicalTrials.gov under registration no. NCT02145377.)




sh

Stable Chromosomal Expression of Shigella flexneri 2a and 3a O-Antigens in the Live Salmonella Oral Vaccine Vector Ty21a [Vaccines]

We have been exploring the use of the live attenuated Salmonella enterica serovar Typhi Ty21a vaccine strain as a versatile oral vaccine vector for the expression and delivery of multiple foreign antigens, including Shigella O-antigens. In this study, we separately cloned genes necessary for the biosynthesis of the Shigella flexneri serotype 2a and 3a O-antigens, which have been shown to provide broad cross-protection to multiple disease-predominant S. flexneri serotypes. The cloned S. flexneri 2a rfb operon, along with bgt and gtrII, contained on the SfII bacteriophage, was sufficient in Ty21a to express the heterologous S. flexneri 2a O-antigen containing the 3,4 antigenic determinants. Further, this rfb operon, along with gtrA, gtrB, and gtrX contained on the Sfx bacteriophage and oac contained on the Sf6 bacteriophage, was sufficient to express S. flexneri 3a O-antigen containing the 6, 7, and 8 antigenic determinants. Ty21a, with these plasmid-carried or chromosomally inserted genes, demonstrated simultaneous and stable expression of homologous S. Typhi O-antigen plus the heterologous S. flexneri O-antigen. Candidate Ty21a vaccine strains expressing heterologous S. flexneri 2a or 3a lipopolysaccharide (LPS) elicited significant serum antibody responses against both homologous S. Typhi and heterologous Shigella LPS and protected mice against virulent S. flexneri 2a or 3a challenges. These new S. flexneri 2a and 3a O-antigen-expressing Ty21a vaccine strains, together with our previously constructed Ty21a strains expressing Shigella sonnei or Shigella dysenteriae 1 O-antigens, have the potential to be used together for simultaneous protection against the predominant causes of shigellosis worldwide as well as against typhoid fever.




sh

Establishing and quantifying the causal linkage between drainage and earthworks performance for Highways England

Transportation infrastructure owners manage an array of different asset types such as bridges, road pavements, earthworks and drainage. Currently, most organization management procedures are siloed by asset type; however, there are important interactions between these asset groups that need to be managed in a cross-asset way. Although these interactions are known, there is little or no quantification of these interactions. For the first time, this paper quantifies that 74% of Highways England's earthwork failures are a result of drainage-related problems, either the lack of drainage infrastructure or the poor performance of it. The analysis undertaken is an important first step not only in moving towards more connected asset management planning for earthworks and drainage, but to also provide guidance for other owners of earthwork infrastructure assets to improve their strategic asset management procedures.

Thematic collection: This article is part of the Ground-related risk to transportation infrastructure collection available at https://www.lyellcollection.org/cc/Ground-related-risk-to-transportation-infrastructure




sh

The identification and mitigation of geohazards using shallow airborne engineering geophysics and land-based geophysics for brown- and greenfield road investigations

South Africa is a mineral-rich country with a diverse geology and a long history of mining. The rich history of mining activities includes the extraction of coal from the Ecca Group Sediments of the Karoo Supergroup (250 Ma), gold and uranium from the Witwatersrand Supergroup (2900 Ma), as well as platinum, uranium, tin and lead from the layered Bushveld Igneous Complex (BIC) (2150 Ma). The extraction of gold, copper, tin, lead and rare earth minerals also took place in the Archean rocks of Swazium age (3500–3000 Ma). The historical mining records have either not been accurately recorded or have been lost over time. This has resulted in significant geohazard risk during infrastructure development, especially in and around historical mining towns, such as Johannesburg and Ermelo. These geohazard risks require careful appraisal and quantification prior to any infrastructure design or construction.

This case study aims to set out the development aspects of the Multi-Faceted Geophysical Modelling Systems approach, which was used by the South African National Roads Agency SOC Ltd (SANRAL) during an investigation of undermined ground for the historical coal-mining town of Ermelo in South Africa. The N11/N2 ring road was planned to go around Ermelo to ensure mobility between major routes, whilst still maintaining town access.

The systems approach used a combination of airborne geophysics (Versatile Time Domain Electromagnetic System (VTEMTM) and magnetics), generally used in mining exploration, land-based and borehole geophysics, borehole water testing, and ground-truthing. The approach was continuous and iterative, building on the data at hand and reducing unnecessary investigations while eliminating the possibility of anomalies being missed, as in the case of conventional discrete drilling. The investigation ensured that 100% of the route was comprehensively investigated with a high confidence in the geological and geophysical data, and concomitant mitigation of infrastructure risk.

The Multi-Faceted Geophysical Modelling Systems approach was successfully used to identify a previously unknown 1 x 1 m mining stope cavity at 90 m depth and a 3 x 5 m access tunnel at 24 m depth in a timely and cost-effective manner. Seven reverse-circulation percussion boreholes confirmed the structural integrity of these underground cavities, as well as the structural geology along the centreline. Based on the great success achieved in identifying shallow anomalies, this Multi-Faceted Geophysical Modelling Systems approach is now being considered for field trails on the dolomitic formations and the Wild Coast greenfields road project where there are large historical slumps and many fault lines.

Thematic collection: This article is part of the Ground-related risk to transportation infrastructure collection available at https://www.lyellcollection.org/cc/Ground-related-risk-to-transportation-infrastructure




sh

The shear stiffness criterion for rock joints considering rock wear behaviour

Rock is a material that is affected by wear, and the curvature of the asperities on a rock joint surface increases with the degree of wear after shearing. Based on the Greenwood and Williamson (GW) model, a new model considering the change of asperity curvature is proposed to explain the wear behaviour of rock joints. First, the shear stiffness formula for a joint surface is derived when the asperity curvature is constant, which shows that the shear stiffness increases with increase of asperity curvature. According to the Mohr–Coulomb criterion, the yield position of a single asperity under normal force and tangential friction force is discussed. Then, the critical normal force for a single asperity at a specific friction coefficient is obtained, which shows that the normal force corresponds to the curvature radius of the asperity. A rough surface model with multi-level curvature radius is proposed. With increase of normal force, the higher-order asperities gradually fail and the curvature radius become larger. A specific pressure value excites a specific radius of curvature, and the larger the pressure, the larger the radius of curvature. The relation between the normal force and the curvature radius is proposed and a shear stiffness formula considering the change of curvature radius of the asperity is derived. The proposed model is verified on the basis of the published experimental results. The calculation results of the proposed model can reflect the test results well: for a given joint surface, with increase in normal force the joint surface gradually becomes smooth; for different joint surfaces, with increase in roughness, the joint surface is more easily smoothed.




sh

Backfill mining alternatives and strategies for mitigating shallow coal mining hazards in the western mining area of China

This study addresses the major geo-environmental hazards caused by shallow coal mining in China's western eco-environment frangible area. These hazards are related to the high overburden pressure, surface subsidence, soil and water losses, and land desertification, with consequent vegetation and wildlife losses. To mitigate these hazards, three alternative backfill mining methods are proposed, for three typical shallow coal mining conditions, using aeolian sand-based backfilling materials, which are readily available in this area. The main influencing factor is the backfill material compaction ratio. Its effect on aquiclude deformation and water-conducting fracture evolution are assessed by numerical and physical simulation methods. The potential application of the proposed backfill coal mining alternatives is evaluated and discussed in detail. The results obtained are considered to be valuable for developing a strategy for the coordinated exploitation of coal resources and environmental protection in China's western frangible eco-environment area.




sh

Discriminating aggregate sources with in situ mineral chemistry: an Irish example

The need to characterize and distinguish geographically adjacent aggregate quarry sources prompted the SEM-EDS analysis of pyrite (FeS2) within fill material taken from eight different quarry sources. This experiment was undertaken to investigate the possibility of geochemically separating these quarry sources based on the major element concentration of their pyrite. The results show that median values for Fe and S vary by up to 7.6 and 8.55 wt% respectively. By implementing statistical methods, including k-means clustering and principal component analysis, it is possible to geochemically discriminate three of the eight sources.




sh

Fecal Shedding of Bovine Astrovirus CH13/NeuroS1 in Veal Calves [Letter To The Editor]




sh

Evaluation of Cycle Threshold, Toxin Concentration, and Clinical Characteristics of Clostridioides difficile Infection in Patients with Discordant Diagnostic Test Results [Bacteriology]

Clostridioides difficile infection (CDI) is one of the most common health care-associated infections that can cause significant morbidity and mortality. CDI diagnosis involves laboratory testing in conjunction with clinical assessment. The objective of this study was to assess the performance of various C. difficile tests and to compare clinical characteristics, Xpert C. difficile/Epi (PCR) cycle threshold (CT), and Singulex Clarity C. diff toxins A/B (Clarity) concentrations between groups with discordant test results. Unformed stool specimens from 200 hospitalized adults (100 PCR positive and 100 negative) were tested by cell cytotoxicity neutralization assay (CCNA), C. diff Quik Chek Complete (Quik Chek), Premier Toxins A and B, and Clarity. Clinical data, including CDI severity and CDI risk factors, were compared between discordant test results. Compared to CCNA, PCR had the highest sensitivity at 100% and Quik Chek had the highest specificity at 100%. Among clinical and laboratory data studied, prevalences of leukocytosis, prior antibiotic use, and hospitalizations were consistently higher across all subgroups in comparisons of toxin-positive to toxin-negative patients. Among PCR-positive samples, the median CT was lower in toxin-positive samples than in toxin-negative samples; however, CT ranges overlapped. Among Clarity-positive samples, the quantitative toxin concentration was significantly higher in toxin-positive samples than in toxin-negative samples as determined by CCNA and Quik Chek Toxin A and B. Laboratory tests for CDI vary in sensitivity and specificity. The quantitative toxin concentration may offer value in guiding CDI diagnosis and treatment. The presence of leukocytosis, prior antibiotic use, and previous hospitalizations may assist with CDI diagnosis, while other clinical parameters may not be consistently reliable.




sh

Impact of Changes in Clinical Microbiology Laboratory Location and Ownership on the Practice of Infectious Diseases [Epidemiology]

The number of onsite clinical microbiology laboratories in hospitals is decreasing, likely related to the business model for laboratory consolidation and labor shortages, and this impacts a variety of clinical practices, including that of banking isolates for clinical or epidemiologic purposes. To determine the impact of these trends, infectious disease (ID) physicians were surveyed regarding their perceptions of offsite services. Clinical microbiology practices for retention of clinical isolates for future use were also determined. Surveys were sent to members of the Infectious Diseases Society of America’s (IDSA) Emerging Infections Network (EIN). The EIN is a sentinel network of ID physicians who care for adult and/or pediatric patients in North America and who are members of IDSA. The response rate was 763 (45%) of 1,680 potential respondents. Five hundred forty (81%) respondents reported interacting with the clinical microbiology laboratory. Eighty-six percent of respondents thought an onsite laboratory very important for timely diagnostic reporting and ongoing communication with the clinical microbiologist. Thirty-five percent practiced in institutions where the core microbiology laboratory has been moved offsite, and an additional 7% (n = 38) reported that movement of core laboratory functions offsite was being considered. The respondents reported that only 24% of laboratories banked all isolates, with the majority saving isolates for less than 30 days. Based on these results, the trend toward centralized core laboratories negatively impacts the practice of ID physicians, potentially delays effective implementation of prompt and targeted care for patients with serious infections, and similarly adversely impacts infection control epidemiologic investigations.




sh

Targeting Asymptomatic Bacteriuria in Antimicrobial Stewardship: the Role of the Microbiology Laboratory [Minireviews]

This minireview focuses on the microbiologic evaluation of patients with asymptomatic bacteriuria, as well as indications for antibiotic treatment. Asymptomatic bacteriuria is defined as two consecutive voided specimens (preferably within 2 weeks) with the same bacterial species, isolated in quantitative counts of ≥105 CFU/ml in women, including pregnant women; a single voided urine specimen with one bacterial species isolated in a quantitative count ≥105 CFU/ml in men; and a single catheterized urine specimen with one or more bacterial species isolated in a quantitative count of ≥105 CFU/ml in either women or men (or ≥102 CFU/ml of a single bacterial species from a single catheterized urine specimen). Any urine specimen with ≥104 CFU/ml group B Streptococcus is significant for asymptomatic bacteriuria in a pregnant woman. Asymptomatic bacteriuria occurs, irrespective of pyuria, in the absence of signs or symptoms of a urinary tract infection. The two groups with the best evidence of adverse outcomes in the setting of untreated asymptomatic bacteriuria include pregnant women and patients who undergo urologic procedures with risk of mucosal injury. Screening and treatment of asymptomatic bacteriuria is not recommended in the following patient populations: pediatric patients, healthy nonpregnant women, older patients in the inpatient or outpatient setting, diabetic patients, patients with an indwelling urethral catheter, patients with impaired voiding following spinal cord injury, patients undergoing nonurologic surgeries, and nonrenal solid-organ transplant recipients. Renal transplant recipients beyond 1 month posttransplant should not undergo screening and treatment for asymptomatic bacteriuria. There is insufficient evidence to recommend for or against screening of renal transplant recipients within 1 month, patients with high-risk neutropenia, or patients with indwelling catheters at the time of catheter removal. Unwarranted antibiotics place patients at increased risk of adverse effects (including Clostridioides difficile diarrhea) and contribute to antibiotic resistance. Methods to reduce unnecessary screening for and treatment of asymptomatic bacteriuria aid in antibiotic stewardship.




sh

Noncoding regions underpin avian bill shape diversification at macroevolutionary scales [RESEARCH]

Recent progress has been made in identifying genomic regions implicated in trait evolution on a microevolutionary scale in many species, but whether these are relevant over macroevolutionary time remains unclear. Here, we directly address this fundamental question using bird beak shape, a key evolutionary innovation linked to patterns of resource use, divergence, and speciation, as a model trait. We integrate class-wide geometric-morphometric analyses with evolutionary sequence analyses of 10,322 protein-coding genes as well as 229,001 genomic regions spanning 72 species. We identify 1434 protein-coding genes and 39,806 noncoding regions for which molecular rates were significantly related to rates of bill shape evolution. We show that homologs of the identified protein-coding genes as well as genes in close proximity to the identified noncoding regions are involved in craniofacial embryo development in mammals. They are associated with embryonic stem cell pathways, including BMP and Wnt signaling, both of which have repeatedly been implicated in the morphological development of avian beaks. This suggests that identifying genotype-phenotype association on a genome-wide scale over macroevolutionary time is feasible. Although the coding and noncoding gene sets are associated with similar pathways, the actual genes are highly distinct, with significantly reduced overlap between them and bill-related phenotype associations specific to noncoding loci. Evidence for signatures of recent diversifying selection on our identified noncoding loci in Darwin finch populations further suggests that regulatory rather than coding changes are major drivers of morphological diversification over macroevolutionary times.




sh

Pharmacological Characterization of Apraglutide, a Novel Long-Acting Peptidic Glucagon-Like Peptide-2 Agonist, for the Treatment of Short Bowel Syndrome [Drug Discovery and Translational Medicine]

Glucagon-like peptide-2 (GLP-2) agonists have therapeutic potential in clinical indications in which the integrity or absorptive function of the intestinal mucosa is compromised, such as in short bowel syndrome (SBS). Native hGLP-2, a 33–amino acid peptide secreted from the small intestine, contributes to nutritional absorption but has a very short half-life because of enzymatic cleavage and renal clearance and thus is of limited therapeutic value. The GLP-2 analog teduglutide (Revestive/Gattex; Shire Inc.) has been approved for use in SBS since 2012 but has a once-daily injection regimen. Pharmacokinetic (PK) and pharmacodynamic studies confirm that apraglutide, a novel GLP-2 analog, has very low clearance, long elimination half-life, and high plasma protein binding compared with GLP-2 analogs teduglutide and glepaglutide. Apraglutide and teduglutide retain potency and selectivity at the GLP-2 receptor comparable to native hGLP-2, whereas glepaglutide was less potent and less selective. In rat intravenous PK studies, hGLP-2, teduglutide, glepaglutide, and apraglutide had clearances of 25, 9.9, 2.8, and 0.27 ml/kg per minute, respectively, and elimination half-lives of 6.4, 19, 16, and 159 minutes, respectively. The unique PK profile of apraglutide administered via intravenous and subcutaneous routes was confirmed in monkey and minipig and translated into significantly greater in vivo pharmacodynamic activity, measured as small intestinal growth in rats. Apraglutide showed greater intestinotrophic activity than the other peptides when administered at less-frequent dosing intervals because of its prolonged half-life. We postulate that apraglutide offers several advantages over existing GLP-2 analogs and is an excellent candidate for the treatment of gastrointestinal diseases, such as SBS.

SIGNIFICANCE STATEMENT

Apraglutide is a potent and selective GLP-2 agonist with an extremely low clearance and prolonged elimination half-life, which differentiates it from teduglutide (the only approved GLP-2 agonist). The enhanced pharmacokinetics of apraglutide will benefit patients by enabling a reduced dosing frequency and removing the need for daily injections.




sh

PIP3 depletion rescues myoblast fusion defects in human rhabdomyosarcoma cells [SHORT REPORT]

Yen-Ling Lian, Kuan-Wei Chen, Yu-Ting Chou, Ting-Ling Ke, Bi-Chang Chen, Yu-Chun Lin, and Linyi Chen

Myoblast fusion is required for myotube formation during myogenesis, and defects in myoblast differentiation and fusion have been implicated in a number of diseases, including human rhabdomyosarcoma. Although transcriptional regulation of the myogenic program has been studied extensively, the mechanisms controlling myoblast fusion remain largely unknown. This study identified and characterized the dynamics of a distinct class of blebs, termed bubbling blebs, which are smaller than those that participate in migration. The formation of these bubbling blebs occurred during differentiation and decreased alongside a decline in phosphatidylinositol-(3,4,5)-trisphosphate (PIP3) at the plasma membrane before myoblast fusion. In a human rhabdomyosarcoma-derived (RD) cell line that exhibits strong blebbing dynamics and myoblast fusion defects, PIP3 was constitutively abundant on the membrane during myogenesis. Targeting phosphatase and tensin homolog (PTEN) to the plasma membrane reduced PIP3 levels, inhibited bubbling blebs and rescued myoblast fusion defects in RD cells. These findings highlight the differential distribution and crucial role of PIP3 during myoblast fusion and reveal a novel mechanism underlying myogenesis defects in human rhabdomyosarcoma.




sh

Direct interaction between CEP85 and STIL mediates PLK4-driven directed cell migration [SHORT REPORT]

Yi Liu, Jaeyoun Kim, Reuben Philip, Vaishali Sridhar, Megha Chandrashekhar, Jason Moffat, Mark van Breugel, and Laurence Pelletier

PLK4 has emerged as a prime target for cancer therapeutics, and its overexpression is frequently observed in various types of human cancer. Recent studies have further revealed an unexpected oncogenic activity of PLK4 in regulating cancer cell migration and invasion. However, the molecular basis behind the role of PLK4 in these processes still remains only partly understood. Our previous work has demonstrated that an intact CEP85–STIL binding interface is necessary for robust PLK4 activation and centriole duplication. Here, we show that CEP85 and STIL are also required for directional cancer cell migration. Mutational and functional analyses reveal that the interactions between CEP85, STIL and PLK4 are essential for effective directional cell motility. Mechanistically, we show that PLK4 can drive the recruitment of CEP85 and STIL to the leading edge of cells to promote protrusive activity, and that downregulation of CEP85 and STIL leads to a reduction in ARP2 (also known as ACTR2) phosphorylation and reorganization of the actin cytoskeleton, which in turn impairs cell migration. Collectively, our studies provide molecular insight into the important role of the CEP85–STIL complex in modulating PLK4-driven cancer cell migration.

This article has an associated First Person interview with the first author of the paper.




sh

Cofilin regulates axon growth and branching of Drosophila {gamma}-neurons [SHORT REPORT]

Sriram Sudarsanam, Shiri Yaniv, Hagar Meltzer, and Oren Schuldiner

The mechanisms that control intrinsic axon growth potential, and thus axon regeneration following injury, are not well understood. Developmental axon regrowth of Drosophila mushroom body -neurons during neuronal remodeling offers a unique opportunity to study the molecular mechanisms controlling intrinsic growth potential. Motivated by the recently uncovered developmental expression atlas of -neurons, we here focus on the role of the actin-severing protein cofilin during axon regrowth. We show that Twinstar (Tsr), the fly cofilin, is a crucial regulator of both axon growth and branching during developmental remodeling of -neurons. tsr mutant axons demonstrate growth defects both in vivo and in vitro, and also exhibit actin-rich filopodial-like structures at failed branch points in vivo. Our data is inconsistent with Tsr being important for increasing G-actin availability. Furthermore, analysis of microtubule localization suggests that Tsr is required for microtubule infiltration into the axon tips and branch points. Taken together, we show that Tsr promotes axon growth and branching, likely by clearing F-actin to facilitate protrusion of microtubules.




sh

IAEA Launches Curie Fellowships for Women




sh

SNMMI Leadership Update: SNMMI Strong: Advancing the Profession through Advocacy, Collaboration, and Awareness




sh

Impact of a Multidisciplinary, Endocrinologist-Led Shared Medical Appointment Model on Diabetes-Related Outcomes in an Underserved Population

A multidisciplinary endocrinologist-led shared medical appointment (SMA) model showed statistically significant reductions in A1C from baseline over 3 years that were not significantly different from appointments with endocrinologists or primary care providers alone within a resource-poor population. Similarly, the SMA model achieved clinical outcomes on par with endocrinologist-only visits with the added benefit of improving endocrine provider productivity and specialty access for patients. Greater patient engagement with the SMA model was associated with significantly lower A1C.




sh

About Kamlesh Khunti, MD, PHD, FRCP, FRCGP, FMEDSCI: Guest Editor, Improving Outcomes of People With Diabetes Through Overcoming Therapeutic InertiaPreface




sh

Case 4: Unexpected Rash in a 12-year-old Girl




sh

The Antiactivator of Type III Secretion, OspD1, Is Transcriptionally Regulated by VirB and H-NS from Remote Sequences in Shigella flexneri [Article]

Shigella species, the causal agents of bacillary dysentery, use a type III secretion system (T3SS) to inject two waves of virulence proteins, known as effectors, into the colonic epithelium to subvert host cell machinery. Prior to host cell contact and secretion of the first wave of T3SS effectors, OspD1, an effector and antiactivator protein, prevents premature production of the second wave of effectors. Despite this important role, regulation of the ospD1 gene is not well understood. While ospD1 belongs to the large regulon of VirB, a transcriptional antisilencing protein that counters silencing mediated by the histone-like nucleoid structuring protein H-NS, it remains unclear if VirB directly or indirectly regulates ospD1. Additionally, it is not known if ospD1 is regulated by H-NS. Here, we identify the primary ospD1 transcription start site (+1) and show that the ospD1 promoter is remotely regulated by both VirB and H-NS. Our findings demonstrate that VirB regulation of ospD1 requires at least one of the two newly identified VirB regulatory sites, centered at –978 and –1270 relative to the ospD1 +1. Intriguingly, one of these sites lies on a 193-bp sequence found in three conserved locations on the large virulence plasmids of Shigella. The region required for H-NS-dependent silencing of ospD1 lies between –1120 and –820 relative to the ospD1 +1. Thus, our study provides further evidence that cis-acting regulatory sequences for transcriptional antisilencers and silencers, such as VirB and H-NS, can lie far upstream of the canonical bacterial promoter region (i.e., –250 to +1).

IMPORTANCE Transcriptional silencing and antisilencing mechanisms regulate virulence gene expression in many important bacterial pathogens. In Shigella species, plasmid-borne virulence genes, such as those encoding the type III secretion system (T3SS), are silenced by the histone-like nucleoid structuring protein H-NS and antisilenced by VirB. Previous work at the plasmid-borne icsP locus revealed that VirB binds to a remotely located cis-acting regulatory site to relieve transcriptional silencing mediated by H-NS. Here, we characterize a second example of remote VirB antisilencing at ospD1, which encodes a T3SS antiactivator and effector. Our study highlights that remote transcriptional silencing and antisilencing occur more frequently in Shigella than previously thought, and it raises the possibility that long-range transcriptional regulation in bacteria is commonplace.