and

Characterization of the Pseudomonas aeruginosa T6SS PldB immunity proteins PA5086, PA5087 and PA5088 explains a novel stockpiling mechanism

The bacterial type VI secretion system (T6SS) secretes many toxic effectors to gain advantage in interbacterial competition and for eukaryotic host infection. The cognate immunity proteins of these effectors protect bacteria from their own effectors. PldB is a T6SS trans-kingdom effector in Pseudomonas aeruginosa that can infect both prokaryotic and eukaryotic cells. Three proteins, PA5086, PA5087 and PA5088, are employed to suppress the toxicity of PldB-family proteins. The structures of PA5087 and PA5088 have previously been reported, but the identification of further distinctions between these immunity proteins is needed. Here, the crystal structure of PA5086 is reported at 1.90 Å resolution. A structural comparison of the three PldB immunity proteins showed vast divergences in their electrostatic potential surfaces. This interesting phenomenon provides an explanation of the stockpiling mechanism of T6SS immunity proteins.




and

Crystallographic snapshots of the EF-hand protein MCFD2 complexed with the intracellular lectin ERGIC-53 involved in glycoprotein transport

The transmembrane intracellular lectin ER–Golgi intermediate compartment protein 53 (ERGIC-53) and the soluble EF-hand multiple coagulation factor deficiency protein 2 (MCFD2) form a complex that functions as a cargo receptor, trafficking various glycoproteins between the endoplasmic reticulum (ER) and the Golgi apparatus. It has been demonstrated that the carbohydrate-recognition domain (CRD) of ERGIC-53 (ERGIC-53CRD) interacts with N-linked glycans on cargo glycoproteins, whereas MCFD2 recognizes polypeptide segments of cargo glycoproteins. Crystal structures of ERGIC-53CRD complexed with MCFD2 and mannosyl oligosaccharides have revealed protein–protein and protein–sugar binding modes. In contrast, the polypeptide-recognition mechanism of MCFD2 remains largely unknown. Here, a 1.60 Å resolution crystal structure of the ERGIC-53CRD–MCFD2 complex is reported, along with three other crystal forms. Comparison of these structures with those previously reported reveal that MCFD2, but not ERGIC-53–CRD, exhibits significant conformational plasticity that may be relevant to its accommodation of various polypeptide ligands.




and

Structure of the 4-hydroxy-tetrahydrodipicolinate synthase from the thermoacidophilic methanotroph Methylacidiphilum fumariolicum SolV and the phylogeny of the aminotransferase pathway

The enzyme 4-hydroxy-tetrahydrodipicolinate synthase (DapA) is involved in the production of lysine and precursor molecules for peptidoglycan synthesis. In a multistep reaction, DapA converts pyruvate and l-aspartate-4-semialdehyde to 4-hydroxy-2,3,4,5-tetrahydrodipicolinic acid. In many organisms, lysine binds allosterically to DapA, causing negative feedback, thus making the enzyme an important regulatory component of the pathway. Here, the 2.1 Å resolution crystal structure of DapA from the thermoacidophilic methanotroph Methylacidiphilum fumariolicum SolV is reported. The enzyme crystallized as a contaminant of a protein preparation from native biomass. Genome analysis reveals that M. fumariolicum SolV utilizes the recently discovered aminotransferase pathway for lysine biosynthesis. Phylogenetic analyses of the genes involved in this pathway shed new light on the distribution of this pathway across the three domains of life.




and

Chirality in Biological Nanospaces: Reactions in Active Sites. By Nilashis Nandi. Pp. 209. CRC Press, 2011. Price £79.99. ISBN 9781439840023.




and

Visualization Bench for the screening of crystallization assays and the automation of in situ experiments




and

Solution structure and assembly of β-amylase 2 from Arabidopsis thaliana

Solution structure of β-amylase 2 from Arabidopsis thaliana shows the role of the conserved N-terminus in enzyme tetramer formation.




and

Industrial cryo-EM facility setup and management

The setup and operation of an industrial cryo-EM laboratory is described.




and

Sample deposition onto cryo-EM grids: from sprays to jets and back

Sample preparation within single-particle cryo-electron microscopy can still be a significant bottleneck, with issues in reproducibility, ice quality and sample loss. New approaches have recently been reported that use spraying or pin printing instead of the traditional blotting approach. Here, experience in the use of different nozzle designs and spraying regimes is reported together with their influence on the resulting spray and grid quality.




and

Scaling diffraction data in the DIALS software package: algorithms and new approaches for multi-crystal scaling

A new scaling program is presented with new features to support multi-sweep workflows and analysis within the DIALS software package.




and

Development of basic building blocks for cryo-EM: the emcore and emvis software libraries

This article presents an overview of the development of two basic software libraries for image manipulation and data visualization in cryo-EM: emcore and emvis.




and

Crystal and solution structures of fragments of the human leucocyte common antigen-related protein

The crystal and solution SAXS structures of a fragment of human leucocyte common antigen-related protein show that it is less flexible than the homologous proteins tyrosine phosphatase receptors δ and σ.




and

Structural and thermodynamic analysis of interactions between death-associated protein kinase 1 and anthraquinones

Death-associated protein kinase 1 (DAPK1) was found to form a complex with purpurin and the crystal structure of the complex was determined. Purpurin may be a good lead compound for for the discovery of inhibitors of DAPK1.




and

Structure of Thermococcus litoralis Δ1-pyrroline-2-carboxylate reductase in complex with NADH and L-proline

The paper reports the structure of a Δ1-pyrroline-2-carboxylate reductase from the archaeon Thermococcus litoralis, a key enzyme involved in the second step of trans-4-Hydroxy-L-proline metabolism, conserved in archaea, bacteria and humans.




and

Crystal structure of a salt with a protonated sugar cation and a cobalt(II) complex anion: (GlcN–H, K)[Co(NCS)4]·2H2O

The title compound, d-(+)-glucosa­mmonium potassium tetra­thio­cyanato­cobaltate(II) dihydrate, K(C6H14NO5)[Co(NCS)4]·2H2O or (GlcNH)(K)[Co(NCS)4]·2H2O, has been obtained as a side product of an incomplete salt metathesis reaction of d-(+)-glucosa­mine hydro­chloride (GlcN·HCl) and K2[Co(NCS)4]. The asymmetric unit contains a d-(+)-glucos­ammonium cation, a potassium cation, a tetra­iso­thio­cyanato­cobalt(II) complex anion and two water mol­ecules. The water mol­ecules coordinate to the potassium cation, which is further coordinated via three short K+⋯SCN− contacts involving three [Co(NCS)4]2− complex anions and via three O atoms of two d-(+)-glucosa­mmonium cations, leading to an overall eightfold coordination around the potassium cation. Hydrogen-bonding inter­actions between the building blocks consolidate the three-dimensional arrangement.




and

1:1 Co-crystal of 3-ethyl-4-methyl-3-pyrrolin-2-one and 3-ethyl-4-methyl-3-pyrroline-2,5-dione

Crystallization from a 20-year-old commercial source of 3-ethyl-4-methyl-3-pyrrolin-2-one afforded 1:1 co-crystals of this compound (C7H11NO) with its oxidized derivative, 3-ethyl-4-methyl-3-pyrroline-2,5-dione (C7H9NO2). The compound crystallizes in the space group Poverline{1}, with two mol­ecules of each species in the asymmetric unit. These four mol­ecules form a hydrogen-bonded tetra­mer with a dimer of 3-ethyl-4-methyl-3-pyrrolin-2-one as the core flanked by one mol­ecule of the dione on each side.




and

Synthesis and crystal structure of [Cs([2.2.2]crypt)]2[Mo(CO)5]

Reduction of the heteroleptic metal carbonyl complex Mo(CO)3(η5-Cp)H with the metallic salt Cs5Bi4 in the presence of [2.2.2]crypt (= 4,7,13,16,21,24-hexa­oxa-1,10-di­aza­bicyclo­[8.8.8]hexa­cosa­ne) in liquid ammonia led to single crystals of bis­[(4,7,13,16,21,24-hexa­oxa-1,10-di­aza­bicyclo­[8.8.8]hexa­cosa­ne)caesium] penta­carbonyl­molybdate, [Cs(C18H36N2O6)]2[Mo(CO)5] or [Cs([2.2.2]crypt)]2[Mo(CO)5]. The twofold negatively charged anionic complex corresponds to the 18 valence electron rule. It consists of an Mo atom coordinated by five carbonyl ligands in a shape inter­mediate between trigonal–bipyramidal and square-pyramidal. The Mo—C distances range from 1.961 (3) to 2.017 (3) Å, and the C≡O distances from 1.164 (3) to 1.180 (4) Å.





and

Crystal structure and DFT study of (E)-2-chloro-4-{[2-(2,4-di­nitro­phen­yl)hydrazin-1-yl­idene]meth­yl}phenol aceto­nitrile hemisolvate

The title Schiff base compound, C13H9ClN4O5·0.5CH3CN, crystallizes as an aceto­nitrile hemisolvate; the solvent mol­ecule being located on a twofold rotation axis. The mol­ecule is nearly planar, with a dihedral angle between the two benzene rings of 3.7 (2)°. The configuration about the C=N bond is E, and there is an intra­molecular N—H⋯Onitro hydrogen bond present forming an S(6) ring motif. In the crystal, mol­ecules are linked by O—H⋯O and N—H⋯O hydrogen bonds, forming layers lying parallel to (10overline{1}). The layers are linked by C—H⋯Cl hydrogen bonds, forming a supra­molecular framework. Within the framework there are offset π–π stacking inter­actions [inter­centroid distance = 3.833 (2) Å] present involving inversion-related mol­ecules. The DFT study shows that the HOMO and LUMO are localized in the plane extending from the phenol ring to the 2,4-di­nitro­benzene ring, and the HOMO–LUMO gap is found to be 0.13061 a.u.




and

Crystal structure and Hirshfeld surface analysis of 4-[4-(1H-benzo[d]imidazol-2-yl)phen­oxy]phthalo­nitrile dimethyl sulfoxide monosolvate

This work presents the synthesis and structural characterization of [4-(1H-benzo[d]imidazol-2-yl)phen­oxy]phthalo­nitrile, a phthalo­nitrile derivative carrying a benzimidazole moiety. The compound crystallizes as its dimethyl sulfoxide monosolvate, C21H12N4O·(CH3)2SO. The dihedral angle between the two fused rings in the heterocyclic ring system is 2.11 (1)°, while the phenyl ring attached to the imidazole moiety is inclined by 20.7 (1)° to the latter. In the crystal structure, adjacent mol­ecules are connected by pairs of weak inter­molecular C—H⋯N hydrogen bonds into inversion dimers. N—H⋯O and C—H⋯O hydrogen bonds with R21(7) graph-set motifs are also formed between the organic mol­ecule and the disordered dimethyl sulfoxide solvent [occupancy ratio of 0.623 (5):0.377 (5) for the two sites of the sulfur atom]. Hirshfeld surface analysis and fingerprint plots were used to investigate the inter­molecular inter­actions in the crystalline state.




and

Crystal structure, Hirshfeld surface analysis and HOMO–LUMO analysis of (E)-N'-(3-hy­droxy-4-meth­oxy­benzyl­idene)nicotinohydrazide monohydrate

The mol­ecule of the title Schiff base compound, C14H13N3O3·H2O, displays a trans configuration with respect to the C=N bond. The dihedral angle between the benzene and pyridine rings is 29.63 (7)°. The crystal structure features inter­molecular N—H⋯O, C—H⋯O, O—H⋯O and O—H⋯N hydrogen-bonding inter­actions, leading to the formation of a supramolecular framework. A Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H⋯H (37.0%), O⋯H/H⋯O (23.7%)), C⋯H/H⋯C (17.6%) and N⋯H/H⋯N (11.9%) inter­actions. The title compound has also been characterized by frontier mol­ecular orbital analysis.




and

Crystal structure and Hirshfeld surface analysis of a conformationally unsymmetrical bis­chalcone: (1E,4E)-1,5-bis­(4-bromo­phen­yl)penta-1,4-dien-3-one

In the title bis­chalcone, C17H12Br2O, the olefinic double bonds are almost coplanar with their attached 4-bromo­phenyl rings [torsion angles = −10.2 (4) and −6.2 (4)°], while the carbonyl double bond is in an s-trans conformation with with respect to one of the C=C bonds and an s-cis conformation with respect to the other [C=C—C=O = 160.7 (3) and −15.2 (4)°, respectively]. The dihedral angle between the 4-bromo­phenyl rings is 51.56 (2)°. In the crystal, mol­ecules are linked into a zigzag chain propagating along [001] by weak C—H⋯π inter­actions. The conformations of related bis­chalcones are surveyed and a Hirshfeld surface analysis is used to investigate and qu­antify the inter­molecular contacts.




and

N-[2-(Tri­fluoro­meth­yl)phen­yl]maleamic acid: crystal structure and Hirshfeld surface analysis

The title mol­ecule, C11H8F3NO3, adopts a cis configuration across the –C=C– double bond in the side chain and the dihedral angle between the phenyl ring and side chain is 47.35 (1)°. The –COOH group adopts a syn conformation (O=C—O—H = 0°), unlike the anti conformation observed in related maleamic acids. In the crystal, inversion dimers linked by pairs of O—H⋯O hydrogen bonds are connected via N—H⋯O hydrogen bonds and C—H⋯O inter­actions into (100) sheets, which are cross-linked by another C—H⋯O inter­action to result in a three-dimensional network. The Hirshfeld surface fingerprint plots show that the highest contribution to surface contacts arises from O⋯H/H⋯O contacts (26.5%) followed by H⋯F/F⋯H (23.4%) and H⋯H (17.3%).




and

Crystal structure and Hirshfeld surface analysis of (Z)-6-[(2-hy­droxy-4-methyl­anilino)­methyl­idene]-4-methyl­cyclo­hexa-2,4-dien-1-one

The title compound, C15H15NO2, is a Schiff base that exists in the keto–enamine tautomeric form and adopts a Z configuration. The mol­ecule is almost planar, with the two phenyl rings twisted relative to each other by 9.60 (18)°. There is an intra­molecular N—H⋯O hydrogen bond present forming an S(6) ring motif. In the crystal, pairs of O—H⋯O hydrogen bonds link adjacent mol­ecules into inversion dimers with an R22(18) ring motif. The dimers are linked by very weak π–π inter­actions, forming layers parallel to (overline{2}01). Hirshfeld surface analysis, two-dimensional fingerprint plots and the mol­ecular electrostatic potential surfaces were used to analyse the inter­molecular inter­actions, indicating that the most important contributions for the crystal packing are from H⋯H (55.2%), C⋯H/H⋯C (22.3%) and O⋯H/H⋯O (13.6%) inter­actions.




and

Crystal structures and Hirshfeld surface analyses of 4,4'-{[1,3-phenyl­enebis(methyl­ene)]bis­(­oxy)}bis­(3-meth­oxy­benzaldehyde) and 4,4'-{[(1,4-phenyl­ene­bis(methyl­ene)]bis­(­oxy)}bis­(

The title compounds, C24H22O6 (I) and C24H22O6 (II), each crystallize with half a mol­ecule in the asymmetric unit. The whole mol­ecule of compound (I) is generated by twofold rotation symmetry, the twofold axis bis­ecting the central benzene ring. The whole mol­ecule of compound (II) is generated by inversion symmetry, the central benzene ring being located on an inversion center. In (I), the outer benzene rings are inclined to each other by 59.96 (10)° and by 36.74 (9)° to the central benzene ring. The corresponding dihedral angles in (II) are 0.0 and 89.87 (12)°. In the crystal of (I), mol­ecules are linked by C—H⋯O hydrogen bonds and C—H⋯π inter­actions, forming ribbons propagating along the [10overline{1}] direction. In the crystal of (II), mol­ecules are linked by C—H⋯O hydrogen bonds, forming a supra­molecular framework. The Hirshfeld surface analyses indicate that for both compounds the H⋯H contacts are the most significant, followed by O⋯H/H⋯O and C⋯H/H⋯C contacts.




and

Crystal structure and Hirshfeld surface analysis of (Z)-6-[(2-hy­droxy-5-nitro­anilino)methyl­idene]-4-methyl­cyclo­hexa-2,4-dien-1-one

The title compound, C14H12N2O4, is a Schiff base that exists in the keto–enamine tautomeric form and adopts a Z configuration. The mol­ecule is almost planar, the rings making a dihedral angle of 4.99 (7)°. The mol­ecular structure is stabilized by an intra­molecular N—H⋯O hydrogen bond forming an S(6) ring motif. In the crystal, inversion-related mol­ecules are linked by pairs of O—H⋯O hydrogen bonds, forming dimers with an R22(18) ring motif. The dimers are linked by pairs of C—H⋯O contacts with an R22(10) ring motif, forming ribbons extended along the [2overline{1}0] direction. Hirshfeld surface analysis, two-dimensional fingerprint plots and the mol­ecular electrostatic potential surfaces were used to analyse the inter­molecular inter­actions present in the crystal, indicating that the most important contributions for the crystal packing are from H⋯H (33.9%), O⋯H/H⋯O (29.8%) and C⋯H/H⋯C (17.3%) inter­actions.




and

2-[(4-Bromo­phen­yl)sulfan­yl]-2-meth­oxy-1-phenyl­ethan-1-one: crystal structure, Hirshfeld surface analysis and computational chemistry

The title compound, C15H13BrO2S, comprises three different substituents bound to a central (and chiral) methine-C atom, i.e. (4-bromo­phen­yl)sulfanyl, benzaldehyde and meth­oxy residues: crystal symmetry generates a racemic mixture. A twist in the mol­ecule is evident about the methine-C—C(carbon­yl) bond as evidenced by the O—C—C—O torsion angle of −20.8 (7)°. The dihedral angle between the bromo­benzene and phenyl rings is 43.2 (2)°, with the former disposed to lie over the oxygen atoms. The most prominent feature of the packing is the formation of helical supra­molecular chains as a result of methyl- and methine-C—H⋯O(carbon­yl) inter­actions. The chains assemble into a three-dimensional architecture without directional inter­actions between them. The nature of the weak points of contacts has been probed by a combination of Hirshfeld surface analysis, non-covalent inter­action plots and inter­action energy calculations. These point to the importance of weaker H⋯H and C—H⋯C inter­actions in the consolidation of the structure.




and

Crystal structure and Hirshfeld surface analysis of new polymorph of racemic 2-phenyl­butyramide

A new polymorph of the title compound, C10H13NO, was obtained by recrystallization of the commercial product from a water/ethanol mixture (1:1 v/v). Crystals of the previously reported racemic and homochiral forms of 2-phenyl­butyramide were grown from water–aceto­nitrile solution in 1:1 volume ratio [Khrustalev et al. (2014). Cryst. Growth Des. 14, 3360–3369]. While the previously reported racemic and enanti­opure forms of the title compound adopt very similar supra­molecular structures (hydrogen-bonded ribbons), the new racemic polymorph is stabilized by a single N—H⋯O hydrogen bond that links mol­ecules into chains along the c-axis direction with an anti­parallel (centrosymmetric) packing in the crystal. Hirshfeld mol­ecular surface analysis was employed to compare the inter­molecular inter­actions in the polymorphs of the title compound.




and

Hirshfeld surface analysis and crystal structure of N-(2-meth­oxy­phen­yl)acetamide

The title compound, C9H11NO2, was obtained as unexpected product from the reaction of (4-{2-benz­yloxy-5-[(E)-(3-chloro-4-methyl­phen­yl)diazen­yl]benzyl­idene}-2-phenyl­oxazol-5(4H)-one) with 2-meth­oxy­aniline in the presence of acetic acid as solvent. The amide group is not coplanar with the benzene ring, as shown by the C—N—C—O and C—N—C—C torsion angles of −2.5 (3) and 176.54 (19)°, respectively. Hirshfeld surface analysis and two-dimensional fingerprint plots indicate that the most important contributions to the crystal packing are from H⋯H (53.9%), C⋯H/H⋯C (21.4%), O⋯H/H⋯O (21.4%) and N⋯H/H⋯N (1.7%) inter­actions.




and

Crystal structure and Hirshfeld surface analysis of tris­(2,2'-bi­pyridine)­nickel(II) bis­(1,1,3,3-tetra­cyano-2-eth­oxy­propenide) dihydrate

The title compound, [Ni(C10H8N2)3](C9H5N4O)2·2H2O, crystallizes as a racemic mixture in the monoclinic space group C2/c. In the crystal, the 1,1,3,3-tetracyano-2-ethoxypropenide anions and the water molecules are linked by O—H⋯N hydrogen bonds, forming chains running along the [010] direction. The bpy ligands of the cation are linked to the chain via C—H⋯π(cation) inter­actions involving the CH3 group. The inter­molecular inter­actions were investigated by Hirshfeld surface analysis and two-dimensional fingerprint plots.




and

Bis[μ-bis­(2,6-diiso­propyl­phen­yl) phosphato-κ2O:O']bis­[(2,2'-bi­pyridine-κ2N,N')lithium] toluene disolvate and its catalytic activity in ring-opening polymerization of ∊-caprolactone and l-dilactide

The solvated centrosymmmtric title compound, [Li2(C24H34O4P)2(C10H8N2)2]·2C7H8, was formed in the reaction between {Li[(2,6-iPr2C6H3-O)2POO](MeOH)3}(MeOH) and 2,2'-bi­pyridine (bipy) in toluene. The structure has monoclinic (P21/n) symmetry at 120 K and the asymmetric unit consists of half a complex mol­ecule and one mol­ecule of toluene solvent. The diaryl phosphate ligand demonstrates a μ-κO:κO'-bridging coordination mode and the 2,2'-bi­pyridine ligand is chelating to the Li+ cation, generating a distorted tetra­hedral LiN2O2 coordination polyhedron. The complex exhibits a unique dimeric Li2O4P2 core. One isopropyl group is disordered over two orientations in a 0.621 (4):0.379 (4) ratio. In the crystal, weak C—H⋯O and C—H⋯π inter­actions help to consolidate the packing. Catalytic systems based on the title complex and on the closely related complex {Li[(2,6-iPr2C6H3-O)2POO](MeOH)3}(MeOH) display activity in the ring-opening polymerization of ∊-caprolactone and l-dilactide.




and

Crystal structure of zymonic acid and a redetermination of its precursor, pyruvic acid

The structure of zymonic acid (systematic name: 4-hy­droxy-2-methyl-5-oxo-2,5-di­hydro­furan-2-carb­oxy­lic acid), C6H6O5, which had previously eluded crystallographic determination, is presented here for the first time. It forms by intra­molecular condensation of parapyruvic acid, which is the product of aldol condensation of pyruvic acid. A redetermination of the crystal structure of pyruvic acid (systematic name: 2-oxo­propanoic acid), C3H4O3, at low temperature (90 K) and with increased precision, is also presented [for the previous structure, see: Harata et al. (1977). Acta Cryst. B33, 210–212]. In zymonic acid, the hy­droxy­lactone ring is close to planar (r.m.s. deviation = 0.0108 Å) and the dihedral angle between the ring and the plane formed by the bonds of the methyl and carb­oxy­lic acid carbon atoms to the ring is 88.68 (7)°. The torsion angle of the carb­oxy­lic acid group relative to the ring is 12.04 (16)°. The pyruvic acid mol­ecule is almost planar, having a dihedral angle between the carb­oxy­lic acid and methyl-ketone groups of 3.95 (6)°. Inter­molecular inter­actions in both crystal structures are dominated by hydrogen bonding. The common R22(8) hydrogen-bonding motif links carb­oxy­lic acid groups on adjacent mol­ecules in both structures. In zymonic acid, this results in dimers about a crystallographic twofold of space group C2/c, which forces the carb­oxy­lic acid group to be disordered exactly 50:50, which scrambles the carbonyl and hydroxyl groups and gives an apparent equalization of the C—O bond lengths [1.2568 (16) and 1.2602 (16) Å]. The other hydrogen bonds in zymonic acid (O—H⋯O and weak C—H⋯O), link mol­ecules across a 21-screw axis, and generate an R22(9) motif. These hydrogen-bonding inter­actions propagate to form extended pleated sheets in the ab plane. Stacking of these zigzag sheets along c involves only van der Waals contacts. In pyruvic acid, inversion-related mol­ecules are linked into R22(8) dimers, with van der Waals inter­actions between dimers as the only other inter­molecular contacts.




and

Crystal structures of butyl 2-amino-5-hy­droxy-4-(4-nitro­phen­yl)benzo­furan-3-carboxyl­ate and 2-meth­oxy­ethyl 2-amino-5-hy­droxy-4-(4-nitro­phen­yl)benzo­furan-3-carboxyl­ate

The title benzo­furan derivatives 2-amino-5-hy­droxy-4-(4-nitro­phen­yl)benzo­furan-3-carboxyl­ate (BF1), C19H18N2O6, and 2-meth­oxy­ethyl 2-amino-5-hy­droxy-4-(4-nitro­phen­yl)benzo­furan-3-carboxyl­ate (BF2), C18H16N2O7, recently attracted attention because of their promising anti­tumoral activity. BF1 crystallizes in the space group Poverline{1}. BF2 in the space group P21/c. The nitro­phenyl group is inclined to benzo­furan moiety with a dihedral angle between their mean planes of 69.2 (2)° in BF1 and 60.20 (6)° in BF2. A common feature in the mol­ecular structures of BF1 and BF2 is the intra­molecular N—H⋯Ocarbon­yl hydrogen bond. In the crystal of BF1, the mol­ecules are linked head-to-tail into a one-dimensional hydrogen-bonding pattern along the a-axis direction. In BF2, pairs of head-to-tail hydrogen-bonded chains of mol­ecules along the b-axis direction are linked by O—H⋯Ometh­oxy hydrogen bonds. In BF1, the butyl group is disordered over two orientations with occupancies of 0.557 (13) and 0.443 (13).




and

Crystal structure and Hirshfeld surface analysis of ethyl 2-[5-(3-chloro­benz­yl)-6-oxo-3-phenyl-1,6-di­hydro­pyridazin-1-yl]acetate

The title pyridazinone derivative, C21H19ClN2O3, is not planar. The unsubstituted phenyl ring and the pyridazine ring are inclined to each other, making a dihedral angle of 17.41 (13)° whereas the Cl-substituted phenyl ring is nearly orthogonal to the pyridazine ring [88.19 (13)°]. In the crystal, C—H⋯O hydrogen bonds generate dimers with R22(10) and R22(24) ring motifs which are linked by C—H⋯O inter­actions, forming chains extending parallel to the c-axis direction. The inter­molecular inter­actions were investigated using Hirshfeld surface analysis and two-dimensional fingerprint plots, revealing that the most significant contributions to the crystal packing are from H⋯H (44.5%), C⋯H/H⋯C (18.5%), H⋯O/H⋯O (15.6%), Cl⋯H/H⋯Cl (10.6%) and C⋯C (2.8%) contacts.