ca

Structure-based screening of binding affinities via small-angle X-ray scattering

Protein–protein and protein–ligand interactions often involve conformational changes or structural rearrangements that can be quantified by solution small-angle X-ray scattering (SAXS). These scattering intensity measurements reveal structural details of the bound complex, the number of species involved and, additionally, the strength of interactions if carried out as a titration. Although a core part of structural biology workflows, SAXS-based titrations are not commonly used in drug discovery contexts. This is because prior knowledge of expected sample requirements, throughput and prediction accuracy is needed to develop reliable ligand screens. This study presents the use of the histidine-binding protein (26 kDa) and other periplasmic binding proteins to benchmark ligand screen performance. Sample concentrations and exposure times were varied across multiple screening trials at four beamlines to investigate the accuracy and precision of affinity prediction. The volatility ratio between titrated scattering curves and a common apo reference is found to most reliably capture the extent of structural and population changes. This obviates the need to explicitly model scattering intensities of bound complexes, which can be strongly ligand-dependent. Where the dissociation constant is within 102 of the protein concentration and the total exposure times exceed 20 s, the titration protocol presented at 0.5 mg ml−1 yields affinities comparable to isothermal titration calorimetry measurements. Estimated throughput ranges between 20 and 100 ligand titrations per day at current synchrotron beamlines, with the limiting step imposed by sample handling and cleaning procedures.




ca

Chirality in Biological Nanospaces: Reactions in Active Sites. By Nilashis Nandi. Pp. 209. CRC Press, 2011. Price £79.99. ISBN 9781439840023.




ca

Confidence maps: statistical inference of cryo-EM maps

The concept of statistical signal detection by controlling the false-discovery rate (FDR) to aid the atomic model interpretation of cryo-EM density maps is reviewed. The recommended usage of the FDR software tool is presented together with its successful integration into the CCP-EM suite.




ca

Scaling diffraction data in the DIALS software package: algorithms and new approaches for multi-crystal scaling

A new scaling program is presented with new features to support multi-sweep workflows and analysis within the DIALS software package.




ca

Structural basis of carbohydrate binding in domain C of a type I pullulanase from Paenibacillus barengoltzii




ca

Structure–function study of AKR4C14, an aldo-keto reductase from Thai Jasmine rice (Oryza sativa L. ssp. Indica cv. KDML105)

Rice AKR in the apo structure reveals the ordered open conformation and its key residues which form the substrate channel wall and determine its substrate preference for straight-chain aldehydes.




ca

Structure of Thermococcus litoralis Δ1-pyrroline-2-carboxylate reductase in complex with NADH and L-proline

The paper reports the structure of a Δ1-pyrroline-2-carboxylate reductase from the archaeon Thermococcus litoralis, a key enzyme involved in the second step of trans-4-Hydroxy-L-proline metabolism, conserved in archaea, bacteria and humans.




ca

Polymeric poly[[decaaquabis(μ6-1,8-disulfonato-9H-carbazole-3,6-dicarboxylato)di-μ3-hydroxy-pentazinc] decahydrate]

The asymmetric unit of the title MOF, [Zn5(C14H5NO10S2)2(OH)2(H2O)10]n comprises three ZnII atoms, one of which is located on a centre of inversion, a tetra-negative carboxyl­ate ligand, one μ3-hydroxide and five water mol­ecules, each of which is coordinated. The ZnII atom, lying on a centre of inversion, is coordinated by trans sulfoxide-O atoms and four water mol­ecules in an octa­hedral geometry. Another ZnII atom is coordinated by two carboxyl­ate-O atoms, one hy­droxy-O, one sulfoxide-O and a water-O atom to define a distorted trigonal–bipyramidal geometry; a close Zn⋯O(carboxyl­ate) inter­action derived from an asymmetrically coordinating ligand (Zn—O = 1.95 and 3.07 Å) suggests a 5 + 1 coordination geometry. The third ZnII atom is coordinated in an octa­hedral fashion by two hy­droxy-O atoms, one carboxyl­ate-O, one sulfoxide-O and two water-O atoms, the latter being mutually cis. In all, the carboxyl­ate ligand binds six ZnII ions leading to a three-dimensional architecture. In the crystal, all acidic donors form hydrogen bonds to oxygen acceptors to contribute to the stability of the three-dimensional architecture.




ca

Dodecan-1-aminium sulfate trihydrate

The asymmetric unit of the title salt, 2C12H28N+·SO42−·3H2O, contains two n-do­decyl­ammonium cations, one sulfate anion and three water mol­ecules. In the crystal, N—H⋯O hydrogen bonds link the cations and anions into layers parallel to (100). These layers are further connected through O—H⋯O hydrogen-bonding inter­actions involving the sulfate ions and the isolated water mol­ecules. The three-dimensional structure can also be considered as the superposition of thin inorganic layers of SO42− anions and thick layers of alkyl­ammonium cations perpendicular to the c axis.




ca

Redetermination of the crystal structure of BaTeO3(H2O), including the localization of the hydrogen atoms

The redetermination of the crystal structure of barium oxidotellurate(IV) monohydrate allowed the localization of the hydrogen atoms that were not determined in the previous study [Nielsen, Hazell & Rasmussen (1971). Acta Chem. Scand. 25, 3037–3042], thus making an unambiguous assignment of the hydrogen-bonding scheme possible. The crystal structure shows a layered arrangement parallel to (001), consisting of edge-sharing [BaO6(H2O)] polyhedra and flanked by isolated [TeO3] trigonal pyramids on the top and bottom. O—H⋯O hydrogen bonds of medium strength link adjacent layers along [001].




ca

Bis[benzyl 2-(heptan-4-yl­idene)hydrazine-1-carboxyl­ate]bis­(thio­cyanato)­cobalt(II)

The title compound, [Co(NCS)2(C15H22N2O2)2] or C32H44CoN6O4S2, was prepared from cobalt(II) nitrate, benzyl carbazate and ammonium thio­cyanate in the presence of 4-hepta­none. The compound crystallizes with two centrosymmetric complexes in which the cobalt(II) atoms have a trans-CoO2N4 octa­hedral coordination geometry. In the crystal, N—H⋯S, C—H⋯S and C—H⋯.π contacts stack the complex mol­ecules along the b-axis direction.




ca

Poly[di­aqua­[μ4-2-(carboxyl­atometh­oxy)benzoato][μ2-2-(carboxyl­atometh­oxy)benzoato]dicad­mium(II)]

In the title compound, [Cd2(C9H6O5)2(H2O)2]n, the crystallographically distinct CdII cations are coordinated in penta­gonal–bipyramidal and octa­hedral fashions. The 2-(carb­oxy­meth­oxy)benzoate (cmb) ligands connect the Cd atoms into [Cd2(cmb)2(H2O)2)]n coordination polymer ribbons that are oriented along the a-axis direction. Supra­molecular layers are formed parallel to (01overline{1}) by O—H⋯O hydrogen bonding between the ribbons. The supra­molecular three-dimensional crystal structure of the title compound is then constructed by π–π stacking inter­actions with a centroid–centroid distance of 3.622 (2) Å between cmb ligands in adjacent layer motifs.




ca

Ethyl 4-(4-chloro-3-fluoro­phen­yl)-6-methyl-2-sulfanyl­idene-1,2,3,4-tetra­hydro­pyrimidine-5-carboxyl­ate

In the title compound, C14H14ClFN2O2S, the di­hydro­pyrimidine ring adopts a shallow-boat conformation and subtends a dihedral angle of 81.91 (17)° with the phenyl ring. In the crystal, N—H⋯O, N—H⋯S and C—H⋯F hydrogen bonds and C—H⋯π inter­actions are found.




ca

N-[(Pyridin-2-yl)meth­yl]thio­phene-2-carboxamide

In the title compound, C11H10N2OS, the dihedral angle between the thio­phene and pyridine rings is 77.79 (8)°. In the crystal, inversion dimers linked by pairs of N—H⋯N hydrogen bonds generate R22(10) loops. The dimers are reinforced by pairs of C—H⋯N inter­actions and C—H⋯O inter­actions link the dimers into [010] chains.




ca

catena-Poly[[di­aqua­cadmium(II)]-μ2-3-(4-carboxyl­atophen­yl)propionato]

In the title compound, [Cd(C10H8O4)(H2O)2)]n, the CdII cation is coordinated in a distorted trigonal–prismatic fashion. 3-(4-Carb­oxy­phen­yl)propionate (cpp) ligands connect the CdII cations into zigzag [Cd(cpp)(H2O)2)]n coordination polymer chains, which are oriented parallel to [101]. The chains aggregate into supra­molecular layers oriented parallel to (10overline{1}) by means of O—H⋯O hydrogen bonding between bound water mol­ecules and ligating cpp carboxyl­ate O atoms. The layers stack in an ABAB pattern along [100] via other O—H⋯O hydrogen-bonding mechanisms also involving the bound water mol­ecules. The crystal studied was an inversion twin.




ca

Poly[[μ4-4-(carb­oxylato­meth­yl)benzoato]zinc(II)]

In the title compound, [Zn(C9H6O4)]n, the ZnII cations are coordinated in a tetra­hedral fashion by carboxyl­ate O-atom donors belonging to four 4-(carb­oxy­meth­yl) benzoate (4-cmb) ligands. Each 4-cmb ligand binds to four ZnII cations in an exo­tetra­dentate fashion to create a non-inter­penetrated [Zn(4-cmb)]n three-dimensional coordination polymer network with a new non-diamondoid 66 topology. The crystal studied was refined as an inversion twin.




ca

(1,4,8,11-Tetra­aza­cyclo­tetra­deca­ne)palladium(II) diiodide monohydrate

In the title compound, [Pd(C10H24N4)]I2·H2O, the PdII ion is four-coordinated in a slightly distorted square-planar coordination environment defined by four N atoms from a 1,4,8,11-tetra­aza­cyclo­tetra­decane ligand. The cationic complex, two I− anions and the solvent water mol­ecule are linked through inter­molecular hydrogen bonds into a three-dimensional network structure.




ca

(Pyridine-2,6-di­carboxyl­ato-κ3O,N,O')(2,2':6',2''- terpyridine-κ3N,N',N'')nickel(II) di­methyl­formamide monosolvate monohydrate

In the title complex, [Ni(C7H3NO4)(C15H11N3)]·C3H7NO·H2O, the NiII ion is six-coordinated within an octa­hedral geometry defined by three N atoms of the 2,2':6',2''-terpyridine ligand, and two O atoms and the N atom of the pyridine-2,6-di­carboxyl­ate di-anion. In the crystal, the complex mol­ecules are stacked in columns parallel to the a axis being connected by π–π stacking [closest inter-centroid separation between pyridyl rings = 3.669 (3) Å]. The connections between columns and solvent mol­ecules to sustain a three-dimensional architecture are of the type water-O—H⋯O(carbon­yl) and pyridyl-, methyl-C—H⋯O(carbon­yl).




ca

Crystal structure of a salt with a protonated sugar cation and a cobalt(II) complex anion: (GlcN–H, K)[Co(NCS)4]·2H2O

The title compound, d-(+)-glucosa­mmonium potassium tetra­thio­cyanato­cobaltate(II) dihydrate, K(C6H14NO5)[Co(NCS)4]·2H2O or (GlcNH)(K)[Co(NCS)4]·2H2O, has been obtained as a side product of an incomplete salt metathesis reaction of d-(+)-glucosa­mine hydro­chloride (GlcN·HCl) and K2[Co(NCS)4]. The asymmetric unit contains a d-(+)-glucos­ammonium cation, a potassium cation, a tetra­iso­thio­cyanato­cobalt(II) complex anion and two water mol­ecules. The water mol­ecules coordinate to the potassium cation, which is further coordinated via three short K+⋯SCN− contacts involving three [Co(NCS)4]2− complex anions and via three O atoms of two d-(+)-glucosa­mmonium cations, leading to an overall eightfold coordination around the potassium cation. Hydrogen-bonding inter­actions between the building blocks consolidate the three-dimensional arrangement.




ca

1-(Cyclo­heptyl­idene)thio­semicarbazide

The asymmetric unit of the title compound, C8H15N3S, contains two independent mol­ecules. In both mol­ecules, the seven-membered cyclo­heptane ring adopts a chair conformation. An intra­molecular N—H⋯N hydrogen bond is observed in both mol­ecules, forming S(5) graph-set motifs. In the crystal, the two independent mol­ecules are connected through N—H⋯S hydrogen bonds, forming dimers which are in turn further connected by N—H⋯S hydrogen bonds into chains along [010].




ca

Poly[di(μ2-2-hy­droxy­propano­ato)cadmium]

The asymmetric unit of the title inorganic–organic salt, poly[di(μ2-2-hy­droxy­propano­ato)cadmium], [Cd(C3H5O3)2]n or [Cd(Hlac)2]n (H2lac = 2-hy­droxy­propanoic acid), comprises of a cadmium cation and two 2-hy­droxy­propano­ate anions. The cadmium cation exhibits a distorted penta­gonal–bipyramidal coordination environment defined by the hy­droxy and carbonyl O atoms of the 2-hy­droxy­propano­ate anions. The coordination mode leads to the formation of layers extending parallel to (010). O—H⋯O hydrogen bonding between the hy­droxy and carbonyl groups stabilizes the structure packing.




ca

3-Bromo­pyridine-2-carbo­nitrile

The title compound, C6H3BrN2, also known as 3-bromo­picolino­nitrile, was synthesized by cyanation of 2,3-di­bromo­pyridine. In the solid state, short inter­molecular Br⋯N contacts are observed. Additionally, the crystal packing is consolidated by π–π stacking inter­actions with centroid–centroid distances of 3.7893 (9) Å.




ca

Decacarbon­yl(μ-ethyl­idenimino-1κN:2κC)-μ-hydrido-triangulo-triosmium(3 Os–Os)

The title complex, [Os3(C2H4N)H(CO)10] or [Os3(CO)10(μ-H)(μ-HN=C—CH3-1κN:2κC)], was synthesized in 41.6% yield by reactions between Os3(CO)11(CH3CN) and 2,4,6-tri­methyl­hexa­hydro-1,3,5-triazine. The central osmium triangle has two OsI atoms bridged by a hydride ligand and a μ-HN= C—CH3-1κN:2κC triazine fragment. Three CO ligands complete the coordination sphere around each OsI atom, while the remaining Os0 atom has four CO ligands. Each Os atom exhibits a pseudo-octa­hedral coordination environment, discounting the bridging Os—Os bond.




ca

(4-Carb­oxy­benz­yl)tri­phenyl­phospho­nium hexa­fluorido­phosphate tetra­hydro­furan monosolvate

The title compound, C26H22O2P+·PF6−·C4H7O, crystallizes as a cation-anion pair with a single solvent mol­ecule in the asymmetric unit. Hydrogen bonding occurs between the carb­oxy­lic acid group on the cation and the oxygen atom of the solvent mol­ecule. Longer hydrogen-bonding inter­actions are observed between fluorine atoms of the anion and H atoms on the phenyl rings of the cation.




ca

2-[1-(1,3-Dioxo-1,3-di­hydro-2H-inden-2-yl­idene)eth­yl]hydrazinecarbo­thio­amide

The title compound, C12H11N3O2S, was synthesized by a condensation reaction of 2-acetyl­indan-1,3-dione and thio­semicarbazide in ethanol in the presence of glacial acetic acid. The mol­ecule adopts a thio­ketone form. The dihedral angle between the mean planes of 1H-inden-1,3(2H)-dione and hydrazinecarbo­thio­amide units is 86.32 (7)°. Weak intra­molecular N—H⋯O and C—H⋯O hydrogen bonds are observed. In the crystal, mol­ecules are linked via pairs of weak inter­molecular N—H⋯O hydrogen bonds, forming inversion dimers. The dimers are further linked into a three-dimensional network through N—H⋯S and N—H⋯O hydrogen bonds, and π–π inter­actions [centroid–centroid distances = 3.5619 (10)–3.9712 (9) Å].




ca

Ethyl 5-[(eth­oxy­carbon­yl)­oxy]-5,5-di­phenyl­pent-2-ynoate

The title compound, C22H22O5, crystallizes with two mol­ecules in the asymmetric unit, one of which shows disorder of its ethyl acetate group over two sets of sites in a 0.880 (2):0.120 (2) ratio. The C≡C distances in the two mol­ecules are almost the same [1.1939 (16) and 1.199 (2) Å], but the Csp3—C≡C angles differ somewhat [175.92 (12) and 172.53 (16)°]. In the crystal, several weak C—H⋯O inter­actions are seen.




ca

Di-μ3-chlorido-tetra-μ2-chlorido-di­chloridotetra­kis­(N,N-di­ethyl­ethane-1,2-di­amine-κ2N,N')tetra­cadmium(II)

In the title compound, [Cd4Cl8(C6H16N2)4], the Cd2+ cations and Cl− anions form M4Cl8 clusters with six of the Cl− ions bridging Cd2+ cations and two being pendant. Each Cd2+ cation has distorted octa­hedral coordination completed by four Cl− ions and two N atoms of the asymmetrical bidentate amino ligand. The cluster consists of pairs of face-sharing hexa­hedra linked by a shared edge.




ca

(2,2'-Bi­pyridine-κ2N,N')(pyridine-2,6-di­carboxyl­ato-κ2N,O)palladium(II) monohydrate

In the title compound, [Pd(C7H3NO4)(C10H8N2)]·H2O, the PdII cation is four-coordinated in a distorted square-planar coordination geometry defined by the two N atoms of the 2,2'-bi­pyridine ligand, one O atom and one N atom from the pyridine-2,6-di­carboxyl­ate anion. The complex and solvent water mol­ecule are linked by inter­molecular hydrogen bonds. In the crystal, the complex mol­ecules are stacked in columns along the a axis.




ca

Diethyl 4-(3-chloro­phen­yl)-2,6-diphenyl-1,4-di­hydro­pyridine-3,5-di­carboxyl­ate

In the title compound, C29H26ClNO4, the di­hydro­pyridine ring adopts a shallow boat conformation. The mean plane of the di­hydro­pyridine ring (all atoms) subtends dihedral angles of 66.54 (1), 73.71 (1) and 79.47 (1)° with the two phenyl rings and the chloro­phenyl ring, respectively. In the crystal, N—H⋯O hydrogen bonds link the mol­ecules into [001] chains.




ca

5,5'-(1-Phenyl­ethane-1,1-di­yl)bis­(1H-pyrrole-2-carboxaldehyde)

In the title compound, C18H16N2O2, the dihedral angle between the pyrrole rings is 79.47 (9)°, with the N—H groups approximately orthogonal (H—N⋯N—H pseudo torsion angle = −106°). In the crystal, N—H⋯O hydrogen bonds link the mol­ecules into [11overline{1}] chains. A C—H⋯O inter­action is also observed.




ca

N'-(2-Hy­droxy-3-meth­oxy­benzyl­idene)pyrazine-2-carbohydrazide monohydrate

In the title hydrated Schiff base, C13H12N4O3·H2O, the dihedral angle between the aromatic rings is 5.06 (11)° and an intra­molecular O—H⋯N hydrogen bond closes an S(6) ring. In the crystal, Ow—H⋯O and Ow—H⋯N (w = water) hydrogen bonds link the components into centrosymmetric tetra­mers (two Schiff bases and two water mol­ecules). Longer N—H⋯O hydrogen bonds link the tetra­mers into [010] chains. A weak C—H⋯O hydrogen bond and aromatic π–π stacking between the pyrazine and phenyl rings [centroid–centroid separations = 3.604 (2) and 3.715 (2) Å] are also observed.




ca

Diethyl 4-(1H-imidazol-2-yl)-2,6-dimethyl-1,4-di­hydro­pyridine-3,5-di­carboxyl­ate

In the title compound, C16H21N3O4, the 1,4-di­hydro­pyridine ring adopts a flattened boat conformation, with the imidazole substituent in an axial orientation [dihedral angle between ring planes = 82.9 (6)°]. In the crystal structure, pairs of N—H⋯O and N—H⋯N hydrogen bonds with graph-set notation R22(14) connect the mol­ecules into chains running along the c-axis direction.




ca

[4-(4-Meth­oxy­phen­yl)-8-oxo-3-(phenyl­selan­yl)spiro­[4.5]deca-3,6,9-trien-2-yl]methyl­cyanamide

The title compound, C25H22N2O2Se, crystallizes in the space group P21/c with one mol­ecule in the asymmetric unit. The compound was synthesized by the addition of phenyl­selenyl bromide to a cyanamide. The phenyl­selenyl portion and the cyano group, as well as the ketone functional group in the cyclo­hexa-2,5-dien-1-one portion of the structure, are disordered, with occupancy factors of 0.555 (14) and 0.445 (14).




ca

Redetermination of the crystal structure of caesium tetra­fluorido­bromate(III) from single-crystal X-ray diffraction data

Caesium tetra­fluorido­bromate(III), CsBrF4, was crystallized in form of small blocks by melting and recrystallization. The crystal structure of CsBrF4 was redetermined from single-crystal X-ray diffraction data. In comparison with a previous study based on powder X-ray diffraction data [Ivlev et al. (2013). Z. Anorg. Allg. Chem. 639, 2846–2850], bond lengths and angles were determined with higher precision, and all atoms were refined with anisotropic displacement parameters. It was confirmed that the structure of CsBrF4 contains two square-planar [BrF4]− anions each with point group symmetry mmm, and a caesium cation (site symmetry mm2) that is coordinated by twelve fluorine atoms, forming an anti­cubocta­hedron. CsBrF4 is isotypic with CsAuF4.




ca

Dicaesium tetra­magnesium penta­kis­(carbonate) deca­hydrate, Cs2Mg4(CO3)5·10H2O

The title carbonate hydrate, Cs2Mg4(CO3)5·10H2O, was crystallized at room temperature out of aqueous solutions containing caesium bicarbonate and magnesium nitrate. Its monoclinic crystal structure (P21/n) consists of double chains of composition 1∞[Mg(H2O)2/1(CO3)3/3], isolated [Mg(H2O)(CO3)2]2– units, two crystallographically distinct Cs+ ions and a free water mol­ecule. The crystal under investigation was twinned by reticular pseudomerohedry.




ca

12,15-Dimethyl-8-oxa­tetra­cyclo­[8.8.0.02,7.011,16]octa­deca-1(18),2,4,6,11(16),12,14-heptaen-10-ol

In the title compound, C19H18O2, the pyran ring is in a half-chair conformation. The fused ring system comprising the benzene and cyclo­hexene rings is essentially planar (r.m.s. deviation = 0.053 Å) and forms a dihedral angle of 27.95 (6)° with the other benzene ring. In the crystal, O—H⋯O hydrogen bonds connect the mol­ecules into chains propagating along [001].




ca

4-Amino-6-(piperidin-1-yl)pyrimidine-5-carbo­nitrile

In the title compound, C10H13N5, the piperidine ring adopts a chair conformation with the exocyclic N—C bond in an axial orientation, and the dihedral angle between the mean planes of piperidine and pyrimidine rings is 49.57 (11)°. A short intra­molecular C—H⋯N contact generates an S(7) ring. In the crystal, N—H⋯N hydrogen bonds link the mol­ecules into (100) sheets and a weak aromatic π-π stacking inter­action is observed [centroid–centroid separation = 3.5559 (11) Å] between inversion-related pyrimidine rings.




ca

Tris­(4,4'-di-tert-butyl-2,2'-bi­pyridine)(trans-4-tert-butyl­cyclo­hexa­nolato)­deca-μ-oxido-hepta­oxido­hepta­vanadium aceto­nitrile monosolvate including another unknown solvent mol­ecule

The title hepta­nuclear alkoxido(oxido)vanadium(V) oxide cluster complex, [V7(C10H19O)O17(C18H24N2)3]·CH3CN, was obtained by the reaction of [V8O20(C18H24N2)4] with 4-tert-butyl­cyclo­hexa­nol (mixture of cis and trans) in a mixed CHCl3/CH3CN solvent. The complex has a V7O18N6 core with approximately Cs symmetry, which is composed of two VO4 tetra­hedra, two VO6 octa­hedra and three VO4N2 octa­hedra. In the crystal, these complexes are linked together by weak inter­molecular C—H⋯O hydrogen bonds between the 4,4'-di-tert-butyl-2,2'-bi­pyridine ligand and the V7O18N6 core, forming a one-dimensional network along the c-axis direction. Besides the complex, the asymmetric unit contains one CH3CN solvent mol­ecule. The contribution of other disordered solvent mol­ecules to the scattering was removed using the SQUEEZE option in PLATON [Spek (2015). Acta Cryst. C71, 9–18]. The unknown solvent mol­ecules are not considered in the chemical formula and other crystal data.




ca

Crystal structure of pirfenidone (5-methyl-1-phenyl-1H-pyridin-2-one): an active pharmaceutical ingredient (API)

The crystal structure of pirfenidone, C12H11NO [alternative name: 5-methyl-1-phenyl­pyridin-2(1H)-one], an active pharmaceutical ingredient (API) approved in Europe and Japan for the treatment of Idiopathic pulmonary fibrosis (IPF), is reported here for the first time. It was crystallized from toluene by the temperature gradient technique, and crystallizes in the chiral monoclinic space group P21. The phenyl and pyridone rings are inclined to each other by 50.30 (11)°. In the crystal, mol­ecules are linked by C–H⋯O hydrogen bonds involving the same acceptor atom, forming undulating layers lying parallel to the ab plane.




ca

Crystal structure and Hirshfeld surface analysis of a conformationally unsymmetrical bis­chalcone: (1E,4E)-1,5-bis­(4-bromo­phen­yl)penta-1,4-dien-3-one

In the title bis­chalcone, C17H12Br2O, the olefinic double bonds are almost coplanar with their attached 4-bromo­phenyl rings [torsion angles = −10.2 (4) and −6.2 (4)°], while the carbonyl double bond is in an s-trans conformation with with respect to one of the C=C bonds and an s-cis conformation with respect to the other [C=C—C=O = 160.7 (3) and −15.2 (4)°, respectively]. The dihedral angle between the 4-bromo­phenyl rings is 51.56 (2)°. In the crystal, mol­ecules are linked into a zigzag chain propagating along [001] by weak C—H⋯π inter­actions. The conformations of related bis­chalcones are surveyed and a Hirshfeld surface analysis is used to investigate and qu­antify the inter­molecular contacts.




ca

Crystal structure of tetra­kis­[μ-3-carboxy-1-(1,2,4-triazol-4-yl)adamantane-κ2N1:N2]tetra­fluoridodi-μ2-oxido-dioxidodisilver(I)divanadium(V) tetra­hydrate

The crystal structure of the title mol­ecular complex, [Ag2{VO2F2}2(C13H17N3O2)4]·4H2O, supported by the heterofunctional ligand tr-ad-COOH [1-(1,2,4-triazol-4-yl)-3-carb­oxy­adamantane] is reported. Four 1,2,4-triazole groups of the ligand link two AgI atoms, as well as AgI and VV centres, forming the heterobimetallic coordination cluster {AgI2(VVO2F2)2(tr)4}. VV exists as a vanadium oxofluoride anion and possesses a distorted trigonal–bipyramidal coordination environment [VO2F2N]. A carb­oxy­lic acid functional group of the ligand stays in a neutral form and is involved in hydrogen bonding with solvent water mol­ecules and VO2F2− ions of adjacent mol­ecules. The extended hydrogen-bonding network is responsible for the crystal packing in the structure.




ca

Crystal structure of di-μ-chlorido-bis­[di­chlorido(l-histidinium-κO)cadmium(II)]

In the title compound, [Cd2(C6H9N3O2)2Cl6], the coordination polyhedra around the CdII cations are distorted trigonal bipyramids. Two of the chloride ions (one axial and one equatorial) are bridging to the other metal atom, leading to a Cd⋯Cd separation of 3.9162 (4) Å. The O atom of the l-histidinium cation lies in an axial site. In the crystal, numerous N—H⋯Cl, N—H⋯O, C—H⋯O and C—H⋯Cl hydrogen bonds link the mol­ecules into a three-dimensional network. Theoretical calculations and spectroscopic data are available as supporting information.




ca

Bis[μ-bis­(2,6-diiso­propyl­phen­yl) phosphato-κ2O:O']bis­[(2,2'-bi­pyridine-κ2N,N')lithium] toluene disolvate and its catalytic activity in ring-opening polymerization of ∊-caprolactone and l-dilactide

The solvated centrosymmmtric title compound, [Li2(C24H34O4P)2(C10H8N2)2]·2C7H8, was formed in the reaction between {Li[(2,6-iPr2C6H3-O)2POO](MeOH)3}(MeOH) and 2,2'-bi­pyridine (bipy) in toluene. The structure has monoclinic (P21/n) symmetry at 120 K and the asymmetric unit consists of half a complex mol­ecule and one mol­ecule of toluene solvent. The diaryl phosphate ligand demonstrates a μ-κO:κO'-bridging coordination mode and the 2,2'-bi­pyridine ligand is chelating to the Li+ cation, generating a distorted tetra­hedral LiN2O2 coordination polyhedron. The complex exhibits a unique dimeric Li2O4P2 core. One isopropyl group is disordered over two orientations in a 0.621 (4):0.379 (4) ratio. In the crystal, weak C—H⋯O and C—H⋯π inter­actions help to consolidate the packing. Catalytic systems based on the title complex and on the closely related complex {Li[(2,6-iPr2C6H3-O)2POO](MeOH)3}(MeOH) display activity in the ring-opening polymerization of ∊-caprolactone and l-dilactide.




ca

Crystal structure of 7,8,15,16,17-penta­thiadi­spiro­[5.2.59.36]hepta­deca­ne

The title compound, C12H20S5, crystallizes in the monoclinic space group P21/c with four mol­ecules in the unit cell. In the crystal, the asymmetric unit comprises the entire mol­ecule with the three cyclic moieties arranged in a line. The mol­ecules in the unit cell pack in a parallel fashion, with their longitudinal axes arranged along a uniform direction. The packing is stabilized by the one-dimensional propagation of non-classical hydrogen-bonding contacts between the central sulfur atom of the S3 fragment and the C—H of a cyclo­hexyl group from a glide-related mol­ecule [C⋯S = 3.787 (2) Å].




ca

Crystal structure of butane-1,4-diyl bis­(furan-2-carboxyl­ate)

The asymmetric unit of the title compound, C14H14O6, a monomeric compound of poly(butyl­ene 2,5-furandi­carboxyl­ate), consists of one half-mol­ecule, the whole all-trans mol­ecule being generated by an inversion centre. In the crystal, the mol­ecules are inter­connected via C—H⋯O inter­actions, forming a mol­ecular sheet parallel to (10overline{2}). The mol­ecular sheets are further linked by C—H⋯π inter­actions.