as “Falling to Earth: An Apollo 15 Astronaut’s Journey to the Moon” by Al Worden with Francis French By insider.si.edu Published On :: Fri, 19 Aug 2011 15:20:42 +0000 As command module pilot for the Apollo 15 mission to the moon in 1971, Al Worden spent six days orbiting the moon, including three days completely alone, the most isolated human in existence. In Falling to Earth, Worden tells for the first time the full story around the dramatic events that shook NASA and ended his spaceflight career. The post “Falling to Earth: An Apollo 15 Astronaut’s Journey to the Moon” by Al Worden with Francis French appeared first on Smithsonian Insider. Full Article Book Review Science & Nature Space astronomy astrophysics National Air and Space Museum
as New Book: “Birds of South Asia: The Ripley Guide” By insider.si.edu Published On :: Thu, 18 Oct 2012 17:21:43 +0000 When it comes to the birds of South Asia, Pamela Rasmussen wrote the book on it. Literally. Twice. The post New Book: “Birds of South Asia: The Ripley Guide” appeared first on Smithsonian Insider. Full Article Animals Book Review Science & Nature birds conservation biology National Museum of Natural History
as “Darwin: A Graphic Biography,” new release from Smithsonian Books By insider.si.edu Published On :: Mon, 04 Feb 2013 15:38:43 +0000 Now, for the first time, Charles Darwin's life is portrayed pictorially in an illustrated biography in graphic novel-style for all ages to enjoy. The post “Darwin: A Graphic Biography,” new release from Smithsonian Books appeared first on Smithsonian Insider. Full Article Book Review Science & Nature science education
as Book: Airport Towers as Abstract Art By insider.si.edu Published On :: Mon, 07 Dec 2015 15:52:50 +0000 “My recurring theme is the transformation of the ordinary…,” explains National Air and Space Museum photographer Carolyn Russo in reference to her new book, Art […] The post Book: Airport Towers as Abstract Art appeared first on Smithsonian Insider. Full Article Art Book Review aeronautics National Air and Space Museum photography technology visual arts
as SNAP29 mediates the assembly of histidine-induced CTP synthase filaments in proximity to the cytokeratin network [RESEARCH ARTICLE] By jcs.biologists.org Published On :: 2020-03-17T03:51:28-07:00 Archan Chakraborty, Wei-Cheng Lin, Yu-Tsun Lin, Kuang-Jing Huang, Pei-Yu Wang, Yi-Feng Chang, Hsiang-Iu Wang, Kung-Ting Ma, Chun-Yen Wang, Xuan-Rong Huang, Yen-Hsien Lee, Bi-Chang Chen, Ya-Ju Hsieh, Kun-Yi Chien, Tzu-Yang Lin, Ji-Long Liu, Li-Ying Sung, Jau-Song Yu, Yu-Sun Chang, and Li-Mei PaiUnder metabolic stress, cellular components can assemble into distinct membraneless organelles for adaptation. One such example is cytidine 5'-triphosphate synthase (CTPS), which forms filamentous structures under glutamine deprivation. We have previously demonstrated that histidine (His)-mediated methylation regulates the formation of CTPS filaments to suppress enzymatic activity and preserve the CTPS protein under Gln deprivation, which promotes cancer cell growth after stress alleviation. However, it remains unclear where and how these enigmatic structures are assembled. Using CTPS-APEX2-mediated in vivo proximity labeling, we found that SNAP29 regulates the spatiotemporal filament assembly of CTPS along the cytokeratin network in a keratin 8 (KRT8)-dependent manner. Knockdown of synaptosome-associated protein 29 (SNAP29) interfered with assembly and relaxed the filament-induced suppression of CTPS enzymatic activity. Furthermore, APEX2 proximity labeling of keratin 18 (KRT18) revealed a spatiotemporal association of SNAP29 with cytokeratin in response to stress. Super-resolution imaging suggests that during CTPS filament formation, SNAP29 interacts with CTPS along the cytokeratin network. This study links the cytokeratin network to the regulation of metabolism by compartmentalization of metabolic enzymes during nutrient deprivation. Full Article
as Bosutinib prevents vascular leakage by reducing focal adhesion turnover and reinforcing junctional integrity [RESEARCH ARTICLE] By jcs.biologists.org Published On :: 2020-03-20T01:22:24-07:00 Liza Botros MD., Manon C. A. Pronk PhD., Jenny Juschten MD., John Liddle, Sofia K. S. H. Morsing, Jaap D. van Buul PhD., Robert H. Bates, Pieter R. Tuinman MD. PhD., Jan S. M. van Bezu, Stephan Huveneers PhD., Harm Jan Bogaard MD. PhD., Victor W. M. van Hinsbergh PhD., Peter L. Hordijk PhD., and Jurjan Aman MD. PhD.Aims: Endothelial barrier dysfunction leads to edema and vascular leak, carrying high morbidity and mortality. Previously, Abl kinase inhibition was shown to protect against vascular leak. Using the distinct inhibitory profiles of clinically available Abl kinase inhibitors, we aimed to provide a mechanistic basis for novel treatment strategies against vascular leakage syndromes.Methods & Results: Bosutinib most potently protected against inflammation-induced endothelial barrier disruption. In vivo, bosutinib prevented LPS-induced alveolar protein extravasation in an acute lung injury mice model. Mechanistically, Mitogen-activated Protein 4 Kinase 4 (MAP4K4) was identified as important novel mediator of endothelial permeability, which signals via ezrin, radixin and moesin proteins to increase turnover of integrin-based focal adhesions. The combined inhibition of MAP4K4 and Arg by bosutinib preserved adherens junction integrity and reduced turnover of focal adhesions, which synergistically act to stabilize the endothelial barrier during inflammation.Conclusion: MAP4K4 was identified as important regulator of endothelial barrier integrity, increasing focal adhesion turnover and disruption of cell-cell junctions during inflammation. Inhibiting both Arg and MAP4K4, the clinically available drug bosutinib may form a viable strategy against vascular leakage syndromes. Full Article
as {beta}1 integrin-mediated signaling regulates MT1-MMP phosphorylation to promote tumour cell invasion [RESEARCH ARTICLE] By jcs.biologists.org Published On :: 2020-03-23T03:21:37-07:00 Olivia R. Grafinger, Genya Gorshtein, Tyler Stirling, Megan I. Brasher, and Marc G. CoppolinoMalignant cancer cells can invade extracellular matrix (ECM) through the formation of F-actin-rich subcellular structures termed invadopodia. ECM degradation at invadopodia is mediated by matrix metalloproteinases (MMPs), and recent findings indicate that membrane-anchored membrane type 1-matrix metalloproteinase (MT1-MMP) has a primary role in this process. Maintenance of an invasive phenotype is dependent on internalization of MT1-MMP from the plasma membrane and its recycling to sites of ECM remodeling. Internalization of MT1-MMP is dependent on its phosphorylation, and here we examine the role of β1 integrin-mediated signaling in this process. Activation of β1 integrin using the antibody P4G11 induced phosphorylation and internalization of MT1-MMP and resulted in increased cellular invasiveness and invadopodium formation in vitro. We also observed phosphorylation of Src and epidermal growth factor receptor (EGFR) and an increase in their association in response to β1 integrin activation, and determined that Src and EGFR promote phosphorylation of MT1-MMP on Thr567. These results suggest that MT1-MMP phosphorylation is regulated by a β1 integrin-Src-EGFR signaling pathway that promotes recycling of MT1-MMP to sites of invadopodia formation during cancer cell invasion. Full Article
as Mitochondrial-nuclear heme trafficking is regulated by GTPases in control of mitochondrial dynamics and ER contact sites [RESEARCH ARTICLE] By jcs.biologists.org Published On :: 2020-04-07T06:16:39-07:00 Osiris Martinez-Guzman, Mathilda M. Willoughby, Arushi Saini, Jonathan V. Dietz, Iryna Bohovych, Amy E. Medlock, Oleh Khalimonchuk, and Amit R. ReddiHeme is a cofactor and signaling molecule that is essential for much of aerobic life. All heme-dependent processes in eukaryotes require that heme is trafficked from its site of synthesis in the mitochondria to hemoproteins located throughout the cell. However, the mechanisms governing the mobilization of heme out of the mitochondria, and the spatio-temporal dynamics of these processes, are poorly understood. Herein, using genetically encoded fluorescent heme sensors, we developed a live cell assay to monitor heme distribution dynamics between the mitochondrial inner-membrane, where heme is synthesized, and the mitochondrial matrix, cytosol, and nucleus. Surprisingly, heme trafficking to the nucleus is ~25% faster than to the cytosol or mitochondrial matrix, which are nearly identical, potentially supporting a role for heme as a mitochondrial-nuclear retrograde signal. Moreover, we discovered that the heme synthetic enzyme, 5-aminolevulinic acid synthase (ALAS), and GTPases in control of the mitochondrial dynamics machinery, Mgm1 and Dnm1, and ER contact sites, Gem1, regulate the flow of heme between the mitochondria and nucleus. Overall, our results indicate that there are parallel pathways for the distribution of bioavailable heme. Full Article
as Primary myeloid cell proteomics and transcriptomics: importance of ss tubulin isotypes for osteoclast function [RESEARCH ARTICLE] By jcs.biologists.org Published On :: 2020-04-07T06:16:39-07:00 David Guerit, Pauline Marie, Anne Morel, Justine Maurin, Christel Verollet, Brigitte Raynaud-Messina, Serge Urbach, and Anne BlangyAmong hematopoietic cells, osteoclasts (Oc) and immature dendritic cells (Dc) are closely related myeloid cells with distinct functions; Oc participate skeleton maintenance while Dc sample the environment for foreign antigens. Such specificities rely on profound modifications of gene and protein expression during Oc and Dc differentiation. We provide global proteomic and transcriptomic analyses of primary mouse Oc and Dc, based on original SILAC and RNAseq data. We established specific signatures for Oc and Dc including genes and proteins of unknown functions. In particular, we showed that Oc and Dc have the same α and β tubulin isotypes repertoire but that Oc express much more β tubulin isotype Tubb6. In both mouse and human Oc, we demonstrate that elevated expression of Tubb6 in Oc is necessary for correct podosomes organization and thus for the structure of the sealing zone, which sustains the bone resorption apparatus. Hence, lowering Tubb6 expression hindered Oc resorption activity. Overall, we highlight here potential new regulators of Oc and Dc biology and illustrate the functional importance of the tubulin isotype repertoire in the biology of differentiated cells. Full Article
as Canonical nucleators are dispensable for stress granule assembly in intestinal progenitors [RESEARCH ARTICLE] By jcs.biologists.org Published On :: 2020-04-07T06:45:08-07:00 Kasun Buddika, Ishara S. Ariyapala, Mary A. Hazuga, Derek Riffert, and Nicholas S. SokolStressed cells downregulate translation initiation and assemble membrane-less foci termed stress granules (SGs). Extensively characterized in cultured cells, the existence of such structures in stressed adult stem cell pools remain poorly characterized. Here we report that Drosophila orthologs of mammalian SG components AGO1, ATX2, CAPRIN, eIF4E, FMRP, G3BP, LIN-28, PABP, and TIAR are enriched in adult intestinal progenitor cells where they accumulate in small cytoplasmic messenger ribonucleoprotein complexes (mRNPs). Treatment with sodium arsenite or rapamycin reorganized these mRNPs into large cytoplasmic granules. Formation of these intestinal progenitor stress granules (IPSGs) depended on polysome disassembly, led to translational downregulation, and was reversible. While canonical SG nucleators ATX2 and G3BP were sufficient for IPSG formation in the absence of stress, neither of them, nor TIAR, either individually or collectively, were required for stress-induced IPSG formation. This work therefore finds that IPSGs do not assemble via a canonical mechanism, raising the possibility that other stem cell populations employ a similar stress-response mechanism. Full Article
as The small GTPase Rab32 resides on lysosomes to regulate mTORC1 signaling [RESEARCH ARTICLE] By jcs.biologists.org Published On :: 2020-04-15T01:46:56-07:00 Kristina Drizyte-Miller, Jing Chen, Hong Cao, Micah B. Schott, and Mark A. McNivenEpithelial cells such as liver-resident hepatocytes rely heavily on the Rab family of small GTPases to perform membrane trafficking events that dictate cell physiology and metabolism. Not surprisingly, disruption of several Rabs can manifest in metabolic diseases or cancer. Rab32 is expressed in many secretory epithelial cells but its role in cellular metabolism is virtually unknown. In this study, we find that Rab32 associates with lysosomes and regulates proliferation and cell size of Hep3B hepatoma and HeLa cells. Specifically, we identify that Rab32 supports mTORC1 signaling under basal and amino acid stimulated conditions. Consistent with inhibited mTORC1, an increase in nuclear TFEB localization and lysosome biogenesis is also observed in Rab32-depleted cells. Finally, we find that Rab32 interacts with mTOR kinase and that loss of Rab32 reduces the association of mTOR and mTORC1 pathway proteins with lysosomes, suggesting that Rab32 regulates lysosomal mTOR trafficking. In summary, these findings suggest that Rab32 functions as a novel regulator of cellular metabolism through supporting mTORC1 signaling. Full Article
as Chondrosarcoma-associated gene 1 (CSAG1) maintains the integrity of the mitotic centrosome in cells with defective p53 [RESEARCH ARTICLE] By jcs.biologists.org Published On :: 2020-04-15T01:46:56-07:00 Hem Sapkota, Jonathan D. Wren, and Gary J. GorbskyCentrosomes focus microtubules to promote mitotic spindle bipolarity, a critical requirement for balanced chromosome segregation. Comprehensive understanding of centrosome function and regulation requires a complete inventory of components. While many centrosome components have been identified, others may yet remain undiscovered. We have used a bioinformatics approach, based on "guilt by association" expression to identify novel mitotic components among the large group of predicted human proteins that have yet to be functionally characterized. Here we identify Chondrosarcoma-Associated Gene 1 (CSAG1) in maintaining centrosome integrity during mitosis. Depletion of CSAG1 disrupts centrosomes and leads to multipolar spindles more effectively in cells with compromised p53 function. Thus, CSAG1 may reflect a class of "mitotic addiction" genes whose expression is more essential in transformed cells. Full Article
as Control of assembly of extra-axonemal structures: the paraflagellar rod of trypanosomes [RESEARCH ARTICLE] By jcs.biologists.org Published On :: 2020-04-15T01:46:56-07:00 Aline A. Alves, Heloisa B. Gabriel, Maria J. R. Bezerra, Wanderley de Souza, Sue Vaughan, Narcisa L. Cunha-e-Silva, and Jack D. SunterEukaryotic flagella are complex microtubule based organelles and in many organisms there are extra-axonemal structures present, including the outer dense fibres of mammalian sperm and the paraflagellar rod (PFR) of trypanosomes. Flagellum assembly is a complex process occurring across three main compartments, the cytoplasm, the transition fibre-transition zone, and the flagellum. It begins with translation of protein components, followed by their sorting and trafficking into the flagellum, transport to the assembly site and then incorporation. Flagella are formed from over 500 proteins; the principles governing axonemal component assembly are relatively clear. However, the coordination and sites of extra-axonemal structure assembly processes are less clear.We have discovered two cytoplasmic proteins in T. brucei that are required for PFR formation, PFR assembly factors 1 and 2. Deletion of either PFR-AF1 or PFR-AF2 dramatically disrupted PFR formation and caused a reduction in the amount of major PFR proteins. The presence of cytoplasmic factors required for PFR formation aligns with the concept of processes occurring across multiple compartments to facilitate axoneme assembly and this is likely a common theme for extra-axonemal structure assembly. Full Article
as LDL uptake-dependent phosphatidylethanolamine translocation to the cell surface promotes fusion of osteoclast-like cells [RESEARCH ARTICLE] By jcs.biologists.org Published On :: 2020-04-15T01:46:56-07:00 Victor J. F. Kitano, Yoko Ohyama, Chiyomi Hayashida, Junta Ito, Mari Okayasu, Takuya Sato, Toru Ogasawara, Maki Tsujita, Akemi Kakino, Jun Shimada, Tatsuya Sawamura, and Yoshiyuki HakedaOsteoporosis is associated with vessel diseases attributed to hyperlipidemia, and bone resorption by multinucleated osteoclasts is related to lipid metabolism. In this study, we generated low-density lipoprotein receptor (LDLR)/lectin-like oxidized LDL receptor-1 (LOX-1) double knockout (dKO) mice. We found that, like LDLR single KO (sKO), LDLR/LOX-1 dKO impaired cell-cell fusion of osteoclast-like cells (OCLs). LDLR/LOX-1 dKO and LDLR sKO preosteoclasts exhibited decreased uptake of LDL. The cell surface cholesterol levels of both LDLR/LOX-1 dKO and LDLR sKO osteoclasts were lower than the levels of wild-type OCLs. Additionally, the amount of phosphatidylethanolamine (PE) on the cell surface was attenuated in LDLR/LOX-1 dKO and LDLR sKO pre-OCLs, while the PE distribution in wild-type OCLs was concentrated on the filopodia in contact with neighboring cells. Abrogation of the ATP binding cassette G1 (ABCG1) transporter, which transfers PE to the cell surface, caused decreased PE translocation to the cell surface and subsequent cell-cell fusion. The findings of this study indicate the involvement of a novel cascade (LDLR~ABCG1~PE translocation to cell surface~cell-cell fusion) in multinucleation of OCLs. Full Article
as Translesion synthesis polymerases contribute to meiotic chromosome segregation and cohesin dynamics in S. pombe [RESEARCH ARTICLE] By jcs.biologists.org Published On :: 2020-04-21T05:32:09-07:00 Tara L. Mastro, Vishnu P. Tripathi, and Susan L. ForsburgTranslesion synthesis polymerases (TLSPs) are non-essential error-prone enzymes that ensure cell survival by facilitating DNA replication in the presence of DNA damage. In addition to their role in bypassing lesions, TLSPs have been implicated in meiotic double strand break repair in several systems. Here we examine the joint contribution of four TLS polymerases to meiotic progression in the fission yeast S. pombe. We observed the dramatic loss of spore viability in fission yeast lacking all four TLSPs which is accompanied by disruptions in chromosome segregation during meiosis I and II. Rec8 cohesin dynamics are altered in the absence of the TLSPs. These data suggest that the TLSPs contribute to multiple aspects of meiotic chromosome dynamics. Full Article
as A stable core of GCPs 4, 5 and 6 promotes the assembly of {gamma}-tubulin ring complexes [RESEARCH ARTICLE] By jcs.biologists.org Published On :: 2020-04-21T05:32:09-07:00 Laurence Haren, Dorian Farache, Laurent Emorine, and Andreas Merdes-tubulin is a major protein involved in the nucleation of microtubules in all eukaryotes. It forms two different complexes with proteins of the GCP family (gamma-tubulin complex proteins): -tubulin small complexes (TuSCs), containing -tubulin and GCPs 2 and 3, and -tubulin ring complexes (TuRCs), containing multiple TuSCs, in addition to GCPs 4, 5, and 6. Whereas the structure and assembly properties of TuSCs have been intensively studied, little is known about the assembly of TuRCs, and about the specific roles of GCPs 4, 5, and 6. Here, we demonstrate that two copies of GCP4 and one copy each of GCP5 and GCP6 form a salt-resistant sub-complex within the TuRC that assembles independently of the presence of TuSCs. Incubation of this sub-complex with cytoplasmic extracts containing TuSCs leads to the reconstitution of TuRCs that are competent to nucleate microtubules. In addition, we investigate sequence extensions and insertions that are specifically found at the amino-terminus of GCP6, and between the GCP6 grip1 and grip2 motifs, and we demonstrate that these are involved in the assembly or stabilization of the TuRC. Full Article
as Kinesin-14s and microtubule dynamics define fission yeast mitotic and meiotic spindle assembly and elongation [RESEARCH ARTICLE] By jcs.biologists.org Published On :: 2020-04-23T01:49:49-07:00 Ana Loncar, Sergio A. Rincon, Manuel Lera Ramirez, Anne Paoletti, and Phong T. TranTo segregate the chromosomes faithfully during cell division, cells assemble a spindle that captures the kinetochores and pulls them towards opposite poles. Proper spindle function requires correct interplay between microtubule motors and non-motor proteins. Defects in spindle assembly or changes in spindle dynamics are associated with diseases like cancer or developmental disorders. Here we compared mitotic and meiotic spindles in fission yeast. We show that even though mitotic and meiotic spindles undergo the typical three phases of spindle elongation, they have distinct features. We found that the relative concentration of kinesin-14 Pkl1 is decreased in meiosis I compared to mitosis, while the concentration of kinesin-5 Cut7 remains constant. We identified the second kinesin-14 Klp2 and microtubule dynamics as factors necessary for proper meiotic spindle assembly. This work defines differences between mitotic and meiotic spindles in fission yeast, and provides prospect for future comparative studies. Full Article
as En bloc TGN recruitment of Aspergillus TRAPPII reveals TRAPP maturation as unlikely to drive RAB1-to-RAB11 transition [RESEARCH ARTICLE] By jcs.biologists.org Published On :: 2020-04-23T01:49:49-07:00 M. Pinar and M. A. PenalvaTRAnsport Protein Particle (TRAPP) complexes regulate membrane traffic. TRAPPII and TRAPPIII share a core hetero-heptamer, also denoted TRAPPI. In fungi TRAPPIII and TRAPPII mediate GDP exchange on RAB1 and RAB11, respectively, regulating traffic across the Golgi, with TRAPPIII also activating RAB1 in autophagosomes. Our finding that Aspergillus nidulans TRAPPII can be assembled by addition of a TRAPPII-specific subcomplex onto core TRAPP prompted us to investigate the possibility that TRAPPI/TRAPPIII already residing in the Golgi matures into TRAPPII to determine a RAB1-to-RAB11 conversion as Golgi cisternae progress from early Golgi to TGN identity. By time-resolved microscopy we determine that the TRAPPII reporter Trs120/TRAPPC9 is recruited to existing TGN cisternae slightly before RAB11 arrives, and resides for~45 sec on them before cisternae tear off into RAB11 secretory carriers. Notably, the core TRAPP reporter Bet3/TRAPPC3 was not detectable in early Golgi cisternae, being instead recruited to TGN cisternae simultaneously with Trs120/TRAPPC9, indicating en bloc recruitment of TRAPPII to the Golgi and arguing strongly against the TRAPP maturation model. Full Article
as A new brain mitochondrial sodium-sensitive potassium channel: effect of sodium ions on respiratory chain activity [RESEARCH ARTICLE] By jcs.biologists.org Published On :: 2020-04-23T01:49:49-07:00 Javad Fahanik-babaei, Bahareh Rezaee, Maryam Nazari, Nihad Torabi, Reza Saghiri, Remy Sauve, and Afsaneh EliassiWe have determined the electropharmacological properties of a new potassium channel from brain mitochondrial membrane by planar lipid bilayer method. Our results showed the presence of a channel with a conductance of 150 pS at potentials between 0 and –60 mV in 200 cis/50 trans mM KCl solutions.The channel was voltage-independent, with an open probability value ~0.6 at different voltages. ATP did not affect current amplitude and Po at positive and negative voltages. Notably, adding iberiotoxin, charybdotoxin, lidocaine, and margatoxin had no effect on the channel behavior. Similarly, no changes were observed by decreasing the cis-pH to 6. Interestingly, the channel was inhibited by adding sodium in a dose dependent manner. Our results also indicated a significant increase in mitochondrial complex IV activity and membrane potential and decrease in complex I activity and mitochondrial ROS production in the presence of sodium ions.We propose that inhibition of mitochondrial K+ transport by Na ions on K+ channel opening may be important for cell protection and ATP synthesis. Full Article
as Cdc24 interacts with the septins to create a positive feedback during bud site assembly in yeast [RESEARCH ARTICLE] By jcs.biologists.org Published On :: 2020-04-29T02:35:34-07:00 Julian Chollet, Alexander Dünkler, Anne Bäuerle, Laura Vivero-Pol, Medhanie A. Mulaw, Thomas Gronemeyer, and Nils JohnssonYeast cells select the position of their new bud at the beginning of each cell cycle. The recruitment of the septins to this prospective bud site is one of the critical events in a complex assembly pathway that culminates in the outgrowth of a new daughter cell. Hereby, the septin-rods follow the high concentration of Cdc42GTP that is generated by the focused localization of its GEF Cdc24. We show that shortly before budding Cdc24 not only activates Cdc42 but also transiently interacts with Cdc11, the septin subunit that caps both ends of the septin rods. Mutations in Cdc24 reducing the affinity to Cdc11 impair septin recruitment and decrease the stability of the polarity patch. The interaction between septins and Cdc24 thus reinforces bud assembly at sites where septin structures are formed. Once the septins polymerize into the ring, Cdc24 is found at the cortex of the bud and directs its further outgrowth from this position. Full Article
as Tetrahymena Poc5 is a transient basal body component that is important for basal body maturation [RESEARCH ARTICLE] By jcs.biologists.org Published On :: 2020-04-29T02:35:34-07:00 Westley Heydeck, Brian A. Bayless, Alexander J. Stemm-Wolf, Eileen T. O'Toole, Amy S. Fabritius, Courtney Ozzello, Marina Nguyen, and Mark WineyBasal bodies (BBs) are microtubule-based organelles that template and stabilize cilia at the cell surface. Centrins ubiquitously associate with BBs and function in BB assembly, maturation, and stability. Human POC5 (hPOC5) is a highly conserved centrin-binding protein that binds centrins through Sfi1p-like repeats and is required for building full-length, mature centrioles. Here, we use the BB-rich cytoskeleton of Tetrahymena thermophila to characterize Poc5 BB functions. Tetrahymena Poc5 (TtPoc5) uniquely incorporates into assembling BBs and is then removed from mature BBs prior to ciliogenesis. Complete genomic knockout of TtPOC5 leads to a significantly increased production of BBs yet a markedly reduced ciliary density, both of which are rescued by reintroduction of TtPoc5. A second Tetrahymena POC5-like gene, SFR1, is similarly implicated in modulating BB production. When TtPOC5 and SFR1 are co-deleted, cell viability is compromised, and levels of BB overproduction are exacerbated. Overproduced BBs display defective transition zone formation and a diminished capacity for ciliogenesis. This study uncovers a requirement for Poc5 in building mature BBs, providing a possible functional link between hPOC5 mutations and impaired cilia. Full Article
as BMP4 promotes the metastasis of gastric cancer by inducing epithelial-mesenchymal transition via Id1 [RESEARCH ARTICLE] By jcs.biologists.org Published On :: 2020-05-06T08:30:40-07:00 Ganlu Deng, Yihong Chen, Cao Guo, Ling Yin, Ying Han, Yiyi Li, Yaojie Fu, Changjing Cai, Hong Shen, and Shan ZengEpithelial-mesenchymal transition (EMT) is a crucial process for cancer cells to acquire metastatic potential, which primarily causes death in gastric cancer (GC) patients. Bone morphogenetic protein 4 (BMP4) is a member of the TGF-β family that plays an indispensable role in human cancers. However, little is known about its roles in GC metastasis. In this study, BMP4 was found to be frequently overexpressed in GC tissues and was correlated with patient's poor prognosis. BMP4 was upregulated in GC cell lines and promoted EMT and metastasis of GC cells both in vitro and in vivo, while knockdown of BMP4 significantly inhibited EMT and metastasis of GC cells. Meanwhile, the inhibitor of DNA binding 1 (Id1) was identified as a downstream target of BMP4 by PCR arrays and upregulated via Smad1/5/8 phosphorylation. Id1 knockdown attenuated BMP4-induced EMT and invasion in GC cells. Moreover, Id1 overexpression in BMP4 knockdown cells restored the promotion of EMT and cell invasion. In summary, BMP4 induced EMT to promote GC metastasis by upregulating Id1 expression. Antagonizing BMP4 may be a potential therapeutic strategy in GC metastasis. Full Article
as Smithsonian hydrologist discovers that rainfall has dried up Panama’s drinking water By insider.si.edu Published On :: Tue, 17 May 2011 13:14:56 +0000 To understand the long-term effects of a prolonged tropical storm in the Panama Canal watershed, Robert Stallard, staff scientist at the Smithsonian Tropical Research Institute and research hydrologist at the U.S. Geological Survey, and Armando Ubeda, the LightHawk Mesoamerica program manager, organized four flights over the watershed to create a digital map of landslide scars. The post Smithsonian hydrologist discovers that rainfall has dried up Panama’s drinking water appeared first on Smithsonian Insider. Full Article Earth Science Research News Science & Nature geology rocks & minerals Tropical Research Institute
as Gale Crater to be landing site for NASA’s Mars Science Laboratory By insider.si.edu Published On :: Fri, 22 Jul 2011 16:29:12 +0000 During a press conference Friday, July 22 at the Smithsonian's National Air and Space Museum, NASA announced that Gale Crater will be the landing site for the Mars Science Laboratory. Scheduled to launch in late 2011 and arrive at Mars in August 2012, the Mars Science Laboratory is a rover that will assess the planet’s “habitability”—if it ever was, or is today, an environment able to support microbial life. The post Gale Crater to be landing site for NASA’s Mars Science Laboratory appeared first on Smithsonian Insider. Full Article Earth Science Research News Science & Nature Space astronomy astrophysics National Air and Space Museum rocks & minerals
as Q&A: Smithsonian volcanologist Richard Wunderman answers questions about the Aug. 23, East Coast earthquake By insider.si.edu Published On :: Thu, 22 Sep 2011 00:54:51 +0000 Richard Wunderman is managing editor of the Bulletin of the Global Volcanism Network and a geologist in the Division of Mineral Sciences at the Smithsonian’s […] The post Q&A: Smithsonian volcanologist Richard Wunderman answers questions about the Aug. 23, East Coast earthquake appeared first on Smithsonian Insider. Full Article Earth Science Q & A Science & Nature geology National Museum of Natural History volcanoes
as A hot new island has just surfaced in the Red Sea. What’s going on? Smithsonian scientists explain. By insider.si.edu Published On :: Wed, 11 Jan 2012 16:45:25 +0000 The new island visible in the satellite photograph is the top of a giant shield volcano located on the rift axis in the Red Sea where the continental plates of Africa and Arabia are pulling apart. The post A hot new island has just surfaced in the Red Sea. What’s going on? Smithsonian scientists explain. appeared first on Smithsonian Insider. Full Article Earth Science Marine Science Science & Nature National Museum of Natural History
as Scientists uncover relationship between lavas erupting on sea floor and deep-carbon cycle By insider.si.edu Published On :: Fri, 03 May 2013 00:23:49 +0000 Scientists from the Smithsonian and the University of Rhode Island have found unsuspected linkages between the oxidation state of iron in volcanic rocks and variations […] The post Scientists uncover relationship between lavas erupting on sea floor and deep-carbon cycle appeared first on Smithsonian Insider. Full Article Earth Science Marine Science Research News Science & Nature geology National Museum of Natural History
as Beautiful plastic sculptures tell ugly story of human garbage in the ocean By insider.si.edu Published On :: Mon, 11 Jul 2016 01:56:41 +0000 Great white sharks, killer whales, sea lions, even polar bears—the ocean is full of giant predators. But one of the ocean’s worst enemies is not […] The post Beautiful plastic sculptures tell ugly story of human garbage in the ocean appeared first on Smithsonian Insider. Full Article Animals Art Earth Science Marine Science Science & Nature biodiversity birds conservation conservation biology fishes insects pollution Smithsonian Conservation Biology Institute Smithsonian's National Zoo
as Another Earth? Kepler astronomers pinpoint likeliest candidates By insider.si.edu Published On :: Fri, 05 Aug 2016 13:42:50 +0000 Looking for another Earth? An international team of researchers has pinpointed which of the more than 4,000 exoplanets discovered by NASA’s Kepler mission are most […] The post Another Earth? Kepler astronomers pinpoint likeliest candidates appeared first on Smithsonian Insider. Full Article Earth Science Science & Nature Space astronomy astrophysics Center for Astrophysics | Harvard & Smithsonian
as Asteroid Mission carries Student X-ray Experiment By insider.si.edu Published On :: Thu, 08 Sep 2016 12:40:10 +0000 At 7:05 pm (EDT), Thursday, Sept. 8, NASA plans to launch a spacecraft to a near-Earth asteroid named Bennu. Among that spacecraft’s five instruments is […] The post Asteroid Mission carries Student X-ray Experiment appeared first on Smithsonian Insider. Full Article Earth Science Research News Science & Nature Space Spotlight Center for Astrophysics | Harvard & Smithsonian
as Mercury Joins Earth As Tectonically Active Planet By insider.si.edu Published On :: Mon, 26 Sep 2016 19:36:37 +0000 Images obtained by NASA’s MErcury Surface, Space ENvironment, GEochemistry and Ranging (MESSENGER) spacecraft during the low-altitude orbital phase of the mission have revealed previously undetected […] The post Mercury Joins Earth As Tectonically Active Planet appeared first on Smithsonian Insider. Full Article Earth Science Science & Nature Space astronomy astrophysics Center for Astrophysics | Harvard & Smithsonian National Air and Space Museum
as Glittering, mesmerizing, lifesaving: Hospital exhibit showcases minerals used in medicine By insider.si.edu Published On :: Mon, 17 Oct 2016 16:51:14 +0000 Have an upset stomach? Pop a chalky, chewable antacid. Maybe you’ve got a painful cut or burn. No problem; reach for a healing ointment or […] The post Glittering, mesmerizing, lifesaving: Hospital exhibit showcases minerals used in medicine appeared first on Smithsonian Insider. Full Article Earth Science Science & Nature National Museum of Natural History
as NASA, Smithsonian renew hunt for Antarctic meteorites By insider.si.edu Published On :: Mon, 28 Nov 2016 20:28:43 +0000 NASA, the National Science Foundation and the Smithsonian recently renewed their agreement to search for, collect and curate Antarctic meteorites in a partnership known as […] The post NASA, Smithsonian renew hunt for Antarctic meteorites appeared first on Smithsonian Insider. Full Article Earth Science Science & Nature Space Spotlight meteorites National Museum of Natural History
as Pan-STARRS Releases Largest Digital Sky Survey to the World By insider.si.edu Published On :: Mon, 19 Dec 2016 14:03:28 +0000 The Pan-STARRS project at the University of Hawai’i Institute for Astronomy (UH IfA) is publicly releasing the world’s largest digital sky survey today from the […] The post Pan-STARRS Releases Largest Digital Sky Survey to the World appeared first on Smithsonian Insider. Full Article Earth Science Science & Nature Space Smithsonian Astrophysical Observatory
as Microplastics in our environment: A conversation with Odile Madden, Smithsonian plastics scientist By insider.si.edu Published On :: Mon, 20 Mar 2017 18:02:51 +0000 Odile Madden knows a lot about plastic. A materials scientist with the Smithsonian Museum Conservation Institute, she has spent the past eight years studying plastics […] The post Microplastics in our environment: A conversation with Odile Madden, Smithsonian plastics scientist appeared first on Smithsonian Insider. Full Article Earth Science Marine Science Research News Science & Nature
as Battle against invasive marine species comes up short as global shipping surges By insider.si.edu Published On :: Tue, 28 Mar 2017 14:11:35 +0000 In the battle against invasive species, giant commercial ships are on the front lines. But even when they follow the rules, one of their best […] The post Battle against invasive marine species comes up short as global shipping surges appeared first on Smithsonian Insider. Full Article Animals Earth Science Marine Science Research News Science & Nature Chesapeake Bay conservation biology invasive species Smithsonian Environmental Research Center
as Scientists are using the universe as a “cosmological collider” By insider.si.edu Published On :: Thu, 20 Jul 2017 10:12:13 +0000 Cambridge, MA -Physicists are capitalizing on a direct connection between the largest cosmic structures and the smallest known objects to use the universe as a […] The post Scientists are using the universe as a “cosmological collider” appeared first on Smithsonian Insider. Full Article Earth Science Research News Science & Nature Space astronomy astrophysics Center for Astrophysics | Harvard & Smithsonian Smithsonian Astrophysical Observatory
as Scientists race to find genetic clues as malaria decimates rare Hawaiian honeycreepers By insider.si.edu Published On :: Tue, 09 Jan 2018 20:04:39 +0000 As average annual temperatures increase, mosquitoes have also been on the move—up the mountains of the Hawaiian islands. Once a refuge for native birds susceptible […] The post Scientists race to find genetic clues as malaria decimates rare Hawaiian honeycreepers appeared first on Smithsonian Insider. Full Article Animals Earth Science Research News Science & Nature endangered species extinction Smithsonian's National Zoo
as What causes disease outbreaks and how can we stop them? By insider.si.edu Published On :: Tue, 11 Sep 2018 11:57:03 +0000 A hunter touches an infected animal’s blood, a farmer breathes the moist air exhaled by sick cows, contaminated meat is served at an outdoor market—these […] The post What causes disease outbreaks and how can we stop them? appeared first on Smithsonian Insider. Full Article Earth Science Science & Nature National Museum of Natural History
as Bayesian machine learning improves single-wavelength anomalous diffraction phasing By scripts.iucr.org Published On :: 2019-10-07 Single-wavelength X-ray anomalous diffraction (SAD) is a frequently employed technique to solve the phase problem in X-ray crystallography. The precision and accuracy of recovered anomalous differences are crucial for determining the correct phases. Continuous rotation (CR) and inverse-beam geometry (IBG) anomalous data collection methods have been performed on tetragonal lysozyme and monoclinic survivin crystals and analysis carried out of how correlated the pairs of Friedel's reflections are after scaling. A multivariate Bayesian model for estimating anomalous differences was tested, which takes into account the correlation between pairs of intensity observations and incorporates the a priori knowledge about the positivity of intensity. The CR and IBG data collection methods resulted in positive correlation between I(+) and I(−) observations, indicating that the anomalous difference dominates between these observations, rather than different levels of radiation damage. An alternative pairing method based on near simultaneously observed Bijvoet's pairs displayed lower correlation and it was unsuccessful for recovering useful anomalous differences when using the multivariate Bayesian model. In contrast, multivariate Bayesian treatment of Friedel's pairs improved the initial phasing of the two tested crystal systems and the two data collection methods. Full Article text
as Elastic propagation of fast electron vortices through amorphous materials By scripts.iucr.org Published On :: 2019-11-04 This work studies the elastic scattering behavior of electron vortices when propagating through amorphous samples. A formulation of the multislice approach in cylindrical coordinates is used to theoretically investigate the redistribution of intensity between different angular momentum components due to scattering. To corroborate and elaborate on our theoretical results, extensive numerical simulations are performed on three model systems (Si3N4, Fe0.8B0.2, Pt) for a wide variety of experimental parameters to quantify the purity of the vortices, the net angular momentum transfer, and the variability of the results with respect to the random relative position between the electron beam and the scattering atoms. These results will help scientists to further improve the creation of electron vortices and enhance applications involving them. Full Article text
as X-ray diffraction from strongly bent crystals and spectroscopy of X-ray free-electron laser pulses By scripts.iucr.org Published On :: 2020-01-01 The use of strongly bent crystals in spectrometers for pulses of a hard X-ray free-electron laser is explored theoretically. Diffraction is calculated in both dynamical and kinematical theories. It is shown that diffraction can be treated kinematically when the bending radius is small compared with the critical radius given by the ratio of the Bragg-case extinction length for the actual reflection to the Darwin width of this reflection. As a result, the spectral resolution is limited by the crystal thickness, rather than the extinction length, and can become better than the resolution of a planar dynamically diffracting crystal. As an example, it is demonstrated that spectra of the 12 keV pulses can be resolved in the 440 reflection from a 20 µm-thick diamond crystal bent to a radius of 10 cm. Full Article text
as The atomic structure of the Bergman-type icosahedral quasicrystal based on the Ammann–Kramer–Neri tiling By scripts.iucr.org Published On :: 2020-02-11 In this study, the atomic structure of the ternary icosahedral ZnMgTm quasicrystal (QC) is investigated by means of single-crystal X-ray diffraction. The structure is found to be a member of the Bergman QC family, frequently found in Zn–Mg–rare-earth systems. The ab initio structure solution was obtained by the use of the Superflip software. The infinite structure model was founded on the atomic decoration of two golden rhombohedra, with an edge length of 21.7 Å, constituting the Ammann–Kramer–Neri tiling. The refined structure converged well with the experimental diffraction diagram, with the crystallographic R factor equal to 9.8%. The Bergman clusters were found to be bonded by four possible linkages. Only two linkages, b and c, are detected in approximant crystals and are employed to model the icosahedral QCs in the cluster approach known for the CdYb Tsai-type QC. Additional short b and a linkages are found in this study. Short interatomic distances are not generated by those linkages due to the systematic absence of atoms and the formation of split atomic positions. The presence of four linkages allows the structure to be pictured as a complete covering by rhombic triacontahedral clusters and consequently there is no need to define the interstitial part of the structure (i.e. that outside the cluster). The 6D embedding of the solved structure is discussed for the final verification of the model. Full Article text
as Isotopy classes for 3-periodic net embeddings By scripts.iucr.org Published On :: 2020-03-05 Entangled embedded periodic nets and crystal frameworks are defined, along with their dimension type, homogeneity type, adjacency depth and periodic isotopy type. Periodic isotopy classifications are obtained for various families of embedded nets with small quotient graphs. The 25 periodic isotopy classes of depth-1 embedded nets with a single-vertex quotient graph are enumerated. Additionally, a classification is given of embeddings of n-fold copies of pcu with all connected components in a parallel orientation and n vertices in a repeat unit, as well as demonstrations of their maximal symmetry periodic isotopes. The methodology of linear graph knots on the flat 3-torus [0,1)3 is introduced. These graph knots, with linear edges, are spatial embeddings of the labelled quotient graphs of an embedded net which are associated with its periodicity bases. Full Article text
as Chasing down scam / spam emails without going in-seine By www.bleepingcomputer.com Published On :: 2020-04-29T11:12:50-05:00 Full Article
as Basic Troubleshooting Probing Questions By www.bleepingcomputer.com Published On :: 2011-05-11T04:01:16-05:00 Full Article
as How to use Telnet Client to view Starwars ASCIIMation By www.bleepingcomputer.com Published On :: 2013-07-11T11:11:00-05:00 Full Article
as Basic BBCode Tutorial By www.bleepingcomputer.com Published On :: 2013-08-16T23:01:53-05:00 Full Article
as Basic tutorial of "Performance Monitor" By www.bleepingcomputer.com Published On :: 2013-09-23T12:21:06-05:00 Full Article
as need assistance on Basic Troubleshooting of Lenovo Computer/ Desktop By www.bleepingcomputer.com Published On :: 2014-12-19T22:26:13-05:00 Full Article