k

Nama-Nama Provider Slot Online Terbaik 2024

Industri slot online terus mekar dan mengukir epik baru dalam dunia judi online. Tahun 2024 menjadi saksi bagi loncatan tinggi dalam inovasi dan hiburan, terutama dari para provider terkemuka yang…

The post Nama-Nama Provider Slot Online Terbaik 2024 appeared first on Biosimilarnews.




k

Provider Judi Slot Gacor Online Terbaik serta Populer di Tahun 2024

Seolah-olah melintasi portal waktu, kita memasuki tahun 2024 dengan deretan provider judi slot online yang tidak hanya menemani, tetapi juga menggoda imajinasi. Setiap klik, setiap putaran gulungan, membuka lembaran baru…

The post Provider Judi Slot Gacor Online Terbaik serta Populer di Tahun 2024 appeared first on Biosimilarnews.




k

Link Daftar Situs Slot Gacor Gampang Menang Maxwin Terpercaya Hari Ini

Keuntungan besar dan kegembiraan yang ditawarkan oleh mesin slot online membuatnya semakin populer. Namun, dalam lautan situs slot yang ada, bagaimana Anda bisa menemukan situs slot terbaik yang dapat memberikan…

The post Link Daftar Situs Slot Gacor Gampang Menang Maxwin Terpercaya Hari Ini appeared first on Biosimilarnews.




k

Tiny Biosensor Unlocks the Secrets of Sweat



Sweat: We all do it. It plays an essential role in controlling body temperature by cooling the skin through evaporation. But it can also carry salts and other molecules out of the body in the process. In medieval Europe, people would lick babies; if the skin was salty, they knew that serious illness was likely. (We now know that salty skin can be an indicator for cystic fibrosis.)

Scientists continue to study how the materials in sweat can reveal details about an individual’s health, but often they must rely on gathering samples from subjects during strenuous exercise in order to get samples that are sufficiently large for analysis.

Now researchers in China have developed a wearable sensor system that can collect and process small amounts of sweat while providing continuous detection. They have named the design a “skin-interfaced intelligent graphene nanoelectronic” patch, or SIGN for short. The researchers, who described their work in a paper published in Advanced Functional Materials, did not respond to IEEE Spectrum’s interview requests.

The SIGN sensor patch relies on three separate components to accomplish its task. First, the sweat must be transported from the skin into microfluidic chambers. Next, a special membrane removes impurities from the fluid. Finally, this liquid is delivered to a bioreceptor that can be tuned to detect different metabolites.

The transport system relies on a combination of hydrophilic (water-attracting) and hydrophobic (water-repelling) materials. This system can move aqueous solutions along microchannels, even against gravity. This makes it possible to transport small samples with precision, regardless of the device’s orientation.

The fluid is transported to a Janus membrane, where impurities are blocked. This means that the sample that reaches the sensor is more likely to produce accurate results.

Finally, the purified sweat arrives at a flexible biosensor. This graphene sensor is activated by enzymes designed to detect the desired biomarker. The result is a transistor that can accurately measure the amount of the biomarker in the sample.

At its center, the system has a membrane that removes impurities from sweat and a biosensor that detects biomarkers.Harbin Institute of Technology/Shenyang Aerospace University

One interesting feature of the SIGN patch is that it can provide continuous measurements. The researchers tested the device through multiple cycles of samples with known concentrations of a target biomarker, and it was about as accurate after five cycles as it was after just one. This result suggests that it could be worn over an extended period without having to be replaced.

Continuous measurements can provide useful longitudinal data. However, Tess Skyrme, a senior technology analyst at the research firm IDTechEx, points out that continuous devices can have very different sampling rates. “Overall, the right balance of efficient, comfortable, and granular data collection is necessary to disrupt the market,” she says, noting that devices also need to optimize “battery life, calibration, and data accuracy.”

The researchers have focused on lactate—a metabolite that can be used to assess a person’s levels of exercise and fatigue—as the initial biomarker to be detected. This function is of particular interest to athletes, but it can also be used to monitor the health status of workers in jobs that require strenuous physical activity, especially in hazardous or extreme working conditions.

Not all experts are convinced that biomarkers in sweat can provide accurate health data. Jason Heikenfeld, director of the Novel Device Lab at the University of Cincinnati, has pivoted his research on wearable biosensing from sweat to the interstitial fluid between blood vessels and cells. “Sweat glucose and lactate are way inferior to measures that can be made in interstitial fluid with devices like glucose monitors,” he tells Spectrum.

The researchers also developed a package to house the sensor. It’s designed to minimize power consumption, using a low-power microcontroller, and it includes a Bluetooth communications chip to transmit data wirelessly from the SIGN patch. The initial design provides for 2 hours of continuous use without charging, or up to 20 hours in standby mode.




k

“Snake-like” Probe Images Arteries from Within



Neurosurgeon Vitor Mendes Pereira has grown accustomed to treating brain aneurysms with only blurry images for guidance.

Equipped with a rough picture of the labyrinthine network of arteries in the brain, he does his best to insert mesh stents or coils of platinum wire—interventions intended to promote clotting and to seal off a bulging blood vessel.

The results are not always perfect. Without a precise window into the arterial architecture at the aneurysm site, Pereira says that he and other neurovascular specialists occasionally misplace these implants, leaving patients at a heightened risk of stroke, clotting, inflammation, and life-threatening ruptures. But a new fiber-optic imaging probe offers hope for improved outcomes.

Pereira et al./Science Translational Medicine

According to Pereira’s early clinical experience, the technology—a tiny snake-like device that winds its way through the intricate maze of brain arteries and, using spirals of light, captures high-resolution images from the inside-out—provides an unprecedented level of structural detail that enhances the ability of clinicians to troubleshoot implant placement and better manage disease complications.

“We can see a lot more information that was not accessible before,” says Pereira, director of endovascular research and innovation at St. Michael’s Hospital in Toronto. “This is, for us, an incredible step forward.”

And not just for brain aneurysms. In a report published today in Science Translational Medicine, Pereira and his colleagues describe their first-in-human experience using the platform to guide treatment for 32 people with strokes, artery hardening, and various other conditions arising from aberrant blood vessels in the brain.

Whereas before, with technologies such as CT scans, MRIs, ultrasounds, and x-rays, clinicians had a satellite-like view of the brain’s vascular network, now they have a Google Street View-like perspective, complete with in-depth views of artery walls, plaques, immune cell aggregates, implanted device positions, and more.

“The amount of detail you could get you would never ever see with any other imaging modality,” says Adnan Siddiqui, a neurosurgeon at the University at Buffalo, who was not involved in the research. “This technology holds promise to be able to really transform the way we evaluate success or failure of our procedures, as well as to diagnose complications before they occur.”

A Decade of Innovation

The new fiber-optic probe is flexible enough to snake through the body’s arteries and provide previously unavailable information to surgeons.Pereira et al./Science Translational Medicine

The new imaging platform is the brainchild of Giovanni Ughi, a biomedical engineer at the University of Massachusetts’ Chan Medical School in Worcester. About a decade ago, he set out to adapt a technique called optical coherence tomography (OCT) for imaging inside the brain’s arteries.

OCT relies on the backscattering of near-infrared light to create cross-sectional images with micrometer-scale spatial resolution. Although OCT had long been used in clinical settings to generate pictures from the back of the eye and from inside the arteries that supply blood to the heart, the technology had proven difficult to adapt for brain applications owing to several technical challenges.

One major challenge is that the fiber-optic probes used in the technology are typically quite stiff, making them too rigid to twist and bend through the convoluted passageways of the brain’s vasculature. Additionally, the torque cables—traditionally used to rotate the OCT lens to image surrounding vessels and devices in three dimensions as the probe retracts—were too large to fit inside the catheters that are telescopically advanced into the brain’s arteries to address blockages or other vascular issues.

“We had to invent a new technology,” Ughi explains. “Our probe had to be very, very flexible, but also very, very small to be compatible with the clinical workflow.”

To achieve these design criteria, Ughi and his colleagues altered the properties of the glass at the heart of their fiber-optic cables, devised a new system of rotational control that does away with torque cables, miniaturized the imaging lens, and made a number of other engineering innovations.

The end result: a slender probe, about the size of a fine wire, that spins 250 times per second, snapping images as it glides back through the blood vessel. Researchers flush out blood cells with a tablespoon of liquid, then manually or automatically retract the probe, revealing a section of the artery about the length of a lip balm tube.

St. Michael’s Foundation

Clinical Confirmation

After initial testing in rabbits, dogs, pigs, and human cadavers, Ughi’s team sent the device to two clinical groups: Pereira’s in Toronto and Pedro Lylyk’s at the Sagrada Familia Clinic in Buenos Aires, Argentina. Across the two groups, neurosurgeons treated the 32 participants in the latest study, snaking the imaging probe through the patients’ groins or wrists and into their brains.

The procedure was safe and well-tolerated across different anatomies, underlying disease conditions, and the complexity of prior interventions. Moreover, the information provided frequently led to actionable insights—in one case, prompting clinicians to prescribe anti-platelet drugs when hidden clots were discovered; in another, aiding in the proper placement of stents that were not flush against the arterial wall.

“We were successful in every single case,” Ughi says. “So, this was a huge confirmation that the technology is ready to move forward.”

“We can see a lot more information that was not accessible before.” —Vitor Mendes Pereira, St. Michael’s Hospital

A startup called Spryte Medical aims to do just that. According to founder and CEO David Kolstad, the company is in discussions with regulatory authorities in Europe, Japan, and the United States to determine the steps necessary to bring the imaging probe to market.

At the same time, Spryte—with Ughi as senior director of advanced development and software engineering—is working on machine learning software to automate the image analysis process, thus simplifying diagnostics and treatment planning for clinicians.

Bolstered by the latest data, cerebrovascular specialists like Siddiqui now say they are chomping at the bit to get their hands on the imaging probe once it clears regulatory approval.

“I’m really impressed,” Siddiqui says. “This is a tool that many of us who do these procedures wish they had.”




k

Apps Put a Psychiatrist in Your Pocket



Nearly every day since she was a child, Alex Leow, a psychiatrist and computer scientist at the University of Illinois Chicago, has played the piano. Some days she plays well, and other days her tempo lags and her fingers hit the wrong keys. Over the years, she noticed a pattern: How well she plays depends on her mood. A bad mood or lack of sleep almost always leads to sluggish, mistake-prone music.

In 2015, Leow realized that a similar pattern might be true for typing. She wondered if she could help people with psychiatric conditions track their moods by collecting data about their typing style from their phones. She decided to turn her idea into an app.

After conducting a pilot study, in 2018 Leow launched BiAffect, a research app that aims to understand mood-related symptoms of bipolar disorder through keyboard dynamics and sensor data from users’ smartphones. Now in use by more than 2,700 people who have volunteered their data to the project, the app tracks typing speed and accuracy by swapping the phone’s onscreen keyboard with its own nearly identical one.

The software then generates feedback for users, such as a graph displaying hourly keyboard activity. Researchers get access to the donated data from users’ phones, which they use to develop and test machine learning algorithms that interpret data for clinical use. One of the things Leow’s team has observed: When people are manic—a state of being overly excited that accompanies bipolar disorder—they type “ferociously fast,” says Leow.

Compared to a healthy user [top], a person experiencing symptoms of bipolar disorder [middle] or depression [bottom] may use their phone more than usual and late at night. BiAffect measures phone usage and orientation to help track those symptoms. BiAffect

BiAffect is one of the few mental-health apps that take a passive approach to collecting data from a phone to make inferences about users’ mental states. (Leow suspects that fewer than a dozen are currently available to consumers.) These apps run in the background on smartphones, collecting different sets of data not only on typing but also on the user’s movements, screen time, call and text frequency, and GPS location to monitor social activity and sleep patterns. If an app detects an abrupt change in behavior, indicating a potentially hazardous shift in mental state, it could be set up to alert the user, a caretaker, or a physician.

Such apps can’t legally claim to treat or diagnose disease, at least in the United States. Nevertheless, many researchers and people with mental illness have been using them as tools to track signs of depression, schizophrenia, anxiety, and bipolar disorder. “There’s tremendous, immediate clinical value in helping people feel better today by integrating these signals into mental-health care,” says John Torous, director of digital psychiatry at Beth Israel Deaconess Medical Center, in Boston. Globally, one in 8 people live with a mental illness, including 40 million with bipolar disorder.

These apps differ from most of the more than 10,000 mental-health and mood apps available, which typically ask users to actively log how they’re feeling, help users connect to providers, or encourage mindfulness. The popular apps Daylio and Moodnotes, for example, require journaling or rating symptoms. This approach requires more of the user’s time and may make these apps less appealing for long-term use. A 2019 study found that among 22 mood-tracking apps, the median user-retention rate was just 6.1 percent at 30 days of use.

App developers are trying to avoid the pitfalls of previous smartphone-psychiatry startups, some of which oversold their capabilities before validating their technologies.

But despite years of research on passive mental-health apps, their success is far from guaranteed. App developers are trying to avoid the pitfalls of previous smartphone psychiatry startups, some of which oversold their capabilities before validating their technologies. For example, Mindstrong was an early startup with an app that tracked taps, swipes, and keystrokes to identify digital biomarkers of cognitive function. The company raised US $160 million in funding from investors, including $100 million in 2020 alone, and went bankrupt in February 2023.

Mindstrong may have folded because the company was operating on a different timeline from the research, according to an analysis by the health-care news website Stat. The slow, methodical pace of science did not match the startup’s need to return profits to its investors quickly, the report found. Mindstrong also struggled to figure out the marketplace and find enough customers willing to pay for the service. “We were first out of the blocks trying to figure this out,” says Thomas Insel, a psychiatrist who cofounded Mindstrong.

Now that the field has completed a “hype cycle,” Torous says, app developers are focused on conducting the research needed to prove their apps can actually help people. “We’re beginning to put the burden of proof more on those developers and startups, as well as academic teams,” he says. Passive mental-health apps need to prove they can reliably parse the data they’re collecting, while also addressing serious privacy concerns.

Passive sensing catches mood swings early

Mood Sensors

Seven metrics apps use to make inferences about your mood

All icons: Greg Mably

Keyboard dynamics: Typing speed and accuracy can indicate a lot about a person’s mood. For example, people who are manic often type extremely fast.

Accelerometer: This sensor tracks how the user is oriented and moving. Lying in bed would suggest a different mood than going for a run.

Calls and texts: The frequency of text messages and phone conversations signifies a person’s social isolation or activity, which indicates a certain mood.

GPS location: Travel habits signal a person’s activity level and routine, which offer clues about mood. For example, a person experiencing depression may spend more time at home.

Mic and voice: Mood can affect how a person speaks. Microphone-based sensing tracks the rhythm and inflection of a person’s voice.

Sleep: Changes in sleep patterns signify a change in mood. Insomnia is a common symptom of bipolar disorder and can trigger or worsen mood disturbances.

Screen time: An increase in the amount of time a person spends on a phone can be a sign of depressive symptoms and can interfere with sleep.

A crucial component of managing psychiatric illness is tracking changes in mental states that can lead to more severe episodes of the disease. Bipolar disorder, for example, causes intense swings in mood, from extreme highs during periods of mania to extreme lows during periods of depression. Between 30 and 50 percent of people with bipolar disorder will attempt suicide at least once in their lives. Catching early signs of a mood swing can enable people to take countermeasures or seek help before things get bad.

But detecting those changes early is hard, especially for people with mental illness. Observations by other people, such as family members, can be subjective, and doctor and counselor sessions are too infrequent.

That’s where apps come in. Algorithms can be trained to spot subtle deviations from a person’s normal routine that might indicate a change in mood—an objective measure based on data, like a diabetic tracking blood sugar. “The ability to think objectively about my own thinking is really key,” says retired U.S. major general Gregg Martin, who has bipolar disorder and is an advisor for BiAffect.

The data from passive sensing apps could also be useful to doctors who want to see objective data on their patients in between office visits, or for people transitioning from inpatient to outpatient settings. These apps are “providing a service that doesn’t exist,” says Colin Depp, a clinical psychologist and professor at the University of California, San Diego. Providers can’t observe their patients around the clock, he says, but smartphone data can help close the gap.

Depp and his team have developed an app that uses GPS data and microphone-based sensing to determine the frequency of conversations and make inferences about a person’s social interactions and isolation. The app also tracks “location entropy,” a metric of how much a user moves around outside of routine locations. When someone is depressed and mostly stays home, location entropy decreases.

Depp’s team initially developed the app, called CBT2go, as a way to test the effectiveness of cognitive behavioral therapy in between therapy sessions. The app can now intervene in real time with people experiencing depressive or psychotic symptoms. This feature helps people identify when they feel lonely or agitated so they can apply coping skills they’ve learned in therapy. “When people walk out of the therapist’s office or log off, then they kind of forget all that,” Depp says.

Another passive mental-health-app developer, Ellipsis Health in San Francisco, uses software that takes voice samples collected during telehealth calls to gauge a person’s level of depression, anxiety, and stress symptoms. For each set of symptoms, deep-learning models analyze the person’s words, rhythms, and inflections to generate a score. The scores indicate the severity of the person’s mental distress, and are based on the same scales used in standard clinical evaluations, says Michael Aratow, cofounder and chief medical officer at Ellipsis.

Aratow says the software works for people of all demographics, without needing to first capture baseline measures of an individual’s voice and speech patterns. “We’ve trained the models in the most difficult use cases,” he says. The company offers its platform, including an app for collecting the voice data, through health-care providers, health systems, and employers; it’s not directly available to consumers.

In the case of BiAffect, the app can be downloaded for free by the public. Leow and her team are using the app as a research tool in clinical trials sponsored by the U.S. National Institutes of Health. These studies aim to validate whether the app can reliably monitor mood disorders, and determine whether it could also track suicide risk in menstruating women and cognition in people with multiple sclerosis.

BiAffect’s software tracks behaviors like hitting the backspace key frequently, which suggests more errors, and an increase in typing “@” symbols and hashtags, which suggest more social media use. The app combines this typing data with information from the phone’s accelerometer to determine how the user is oriented and moving—for example, whether the user is likely lying down in bed—which yields more clues about mood.

Ellipsis Health analyzes audio captured during telehealth visits to assign scores for depression, anxiety, and stress.Ellipsis Health

The makers of BiAffect and Ellipsis Health don’t claim their apps can treat or diagnose disease. If app developers want to make those claims and sell their product in the United States, they would first have to get regulatory approval from the U.S. Food and Drug Administration. Getting that approval requires rigorous and large-scale clinical trials that most app makers don’t have the resources to conduct.

Digital-health software depends on quality clinical data

The sensing techniques upon which passive apps rely—measuring typing dynamics, movement, voice acoustics, and the like—are well established. But the algorithms used to analyze the data collected by the sensors are still being honed and validated. That process will require considerably more high-quality research among real patient populations.

Greg Mably

For example, clinical studies that include control or placebo groups are crucial and have been lacking in the past. Without control groups, companies can say their technology is effective “compared to nothing,” says Torous at Beth Israel.

Torous and his team aim to build software that is backed by this kind of quality evidence. With participants’ consent, their app, called mindLAMP, passively collects data from their screen time and their phone’s GPS and accelerometer for research use. It’s also customizable for different diseases, including schizophrenia and bipolar disorder. “It’s a great starting point. But to bring it into the medical context, there’s a lot of important steps that we’re now in the middle of,” says Torous. Those steps include conducting clinical trials with control groups and testing the technology in different patient populations, he says.

How the data is collected can make a big difference in the quality of the research. For example, the rate of sampling—how often a data point is collected—matters and must be calibrated for the behavior being studied. What’s more, data pulled from real-world environments tends to be “dirty,” with inaccuracies collected by faulty sensors or inconsistencies in how phone sensors initially process data. It takes more work to make sense of this data, says Casey Bennett, an assistant professor and chair of health informatics at DePaul University, in Chicago, who uses BiAffect data in his research.

One approach to addressing errors is to integrate multiple sources of data to fill in the gaps—like combining accelerometer and typing data. In another approach, the BiAffect team is working to correlate real-world information with cleaner lab data collected in a controlled environment where researchers can more easily tell when errors are introduced.

Who participates in the studies matters too. If participants are limited to a particular geographic area or demographic, it’s unclear whether the results can be applied to the broader population. For example, a night-shift worker will have different activity patterns from those with nine-to-five jobs, and a city dweller may have a different lifestyle from residents of rural areas.

After the research is done, app developers must figure out a way to integrate their products into real-world medical contexts. One looming question is when and how to intervene when a change in mood is detected. These apps should always be used in concert with a professional and not as a replacement for one, says Torous. Otherwise, the app’s assessments could be dangerous and distressing to users, he says.

When mood tracking feels like surveillance

No matter how well these passive mood-tracking apps work, gaining trust from potential users may be the biggest stumbling block. Mood tracking could easily feel like surveillance. That’s particularly true for people with bipolar or psychotic disorders, where paranoia is part of the illness.

Keris Myrick, a mental-health advocate, says she finds passive mental-health apps “both cool and creepy.” Myrick, who is vice president of partnerships and innovation at the mental-health-advocacy organization Inseparable, has used a range of apps to support her mental health as a person with schizophrenia. But when she tested one passive sensing app, she opted to use a dummy phone. “I didn’t feel safe with an app company having access to all of that information on my personal phone,” Myrick says. While she was curious to see if her subjective experience matched the app’s objective measurements, the creepiness factor prevented her from using the app enough to find out.

Keris Myrick, a mental-health advocate, says she finds passive mental-health apps “both cool and creepy.”

Beyond users’ perception, maintaining true digital privacy is crucial. “Digital footprints are pretty sticky these days,” says Katie Shilton, an associate professor at the University of Maryland focused on social-data science. It’s important to be transparent about who has access to personal information and what they can do with it, she says.

“Once a diagnosis is established, once you are labeled as something, that can affect algorithms in other places in your life,” Shilton says. She cites the misuse of personal data in the Cambridge Analytica scandal, in which the consulting firm collected information from Facebook to target political advertising. Without strong privacy policies, companies producing mental-health apps could similarly sell user data—and they may be particularly motivated to do so if an app is free to use.

Conversations about regulating mental-health apps have been ongoing for over a decade, but a Wild West–style lack of regulation persists in the United States, says Bennett of DePaul University. For example, there aren’t yet protections in place to keep insurance companies or employers from penalizing users based on data collected. “If there aren’t legal protections, somebody is going to take this technology and use it for nefarious purposes,” he says.

Some of these concerns may be mediated by confining all the analysis to a user’s phone, rather than collecting data in a central repository. But decisions about privacy policies and data structures are still up to individual app developers.

Leow and the BiAffect team are currently working on a new internal version of their app that incorporates natural-language processing and generative AI extensions to analyze users’ speech. The team is considering commercializing this new version in the future, but only following extensive work with industry partners to ensure strict privacy safeguards are in place. “I really see this as something that people could eventually use,” Leow says. But she acknowledges that researchers’ goals don’t always align with the desires of the people who might use these tools. “It is so important to think about what the users actually want.”

This article appears in the July 2024 print issue as “The Shrink in Your Pocket.”




k

Microneedle Glucose Sensors Keep Monitoring Skin-Deep



For people with diabetes, glucose monitors are a valuable tool to monitor their blood sugar. The current generation of these biosensors detect glucose levels with thin, metallic filaments inserted in subcutaneous tissue, the deepest layer of the skin where most body fat is stored.

Medical technology company Biolinq is developing a new type of glucose sensor that doesn’t go deeper than the dermis, the middle layer of skin that sits above the subcutaneous tissue. The company’s “intradermal” biosensors take advantage of metabolic activity in shallower layers of skin, using an array of electrochemical microsensors to measure glucose—and other chemicals in the body—just beneath the skin’s surface.

Biolinq just concluded a pivotal clinical trial earlier this month, according to CEO Rich Yang, and the company plans to submit the device to the U.S. Food and Drug Administration for approval at the end of the year. In April, Biolinq received US $58 million in funding to support the completion of its clinical trials and subsequent submission to the FDA.

Biolinq’s glucose sensor is “the world’s first intradermal sensor that is completely autonomous,” Yang says. While other glucose monitors require a smartphone or other reader to collect and display the data, Biolinq’s includes an LED display to show when the user’s glucose is within a healthy range (indicated by a blue light) or above that range (yellow light). “We’re providing real-time feedback for people who otherwise could not see or feel their symptoms,” Yang says. (In addition to this real-time feedback, the user can also load long-term data onto a smartphone by placing it next to the sensor, like Abbott’s FreeStyle Libre, another glucose monitor.)

More than 2,000 microsensor components are etched onto each 200-millimeter silicon wafer used to manufacture the biosensors.Biolinq

Biolinq’s hope is that its approach could lead to sustainable changes in behavior on the part of the individual using the sensor. The device is intentionally placed on the upper forearm to be in plain sight, so users can receive immediate feedback without manually checking a reader. “If you drink a glass of orange juice or soda, you’ll see this go from blue to yellow,” Yang explains. That could help users better understand how their actions—such as drinking a sugary beverage—change their blood sugar and take steps to reduce that effect.

Biolinq’s device consists of an array of microneedles etched onto a silicon wafer using semiconductor manufacturing. (Other glucose sensors’ filaments are inserted with an introducer needle.) Each chip has a small 2-millimeter by 2-millimeter footprint and contains seven independent microneedles, which are coated with membranes through a process similar to electroplating in jewelry making. One challenge the industry has faced is ensuring that microsensors do not break at this small scale. The key engineering insight Biolinq introduced, Yang says, was using semiconductor manufacturing to build the biosensors. Importantly, he says, silicon “is harder than titanium and steel at this scale.”

Miniaturization allows for sensing closer to the surface of the skin, where there is a high level of metabolic activity. That makes the shallow depth ideal for monitoring glucose, as well as other important biomarkers, Yang says. Due to this versatility, combined with the use of a sensor array, the device in development can also monitor lactate, an important indicator of muscle fatigue. With the addition of a third data point, ketones (which are produced when the body burns fat), Biolinq aims to “essentially have a metabolic panel on one chip,” Yang says.

Using an array of sensors also creates redundancy, improving the reliability of the device if one sensor fails or becomes less accurate. Glucose monitors tend to drift over the course of wear, but with multiple sensors, Yang says that drift can be better managed.

One downside to the autonomous display is the drain on battery life, Yang says. The battery life limits the biosensor’s wear time to 5 days in the first-generation device. Biolinq aims to extend that to 10 days of continuous wear in its second generation, which is currently in development, by using a custom chip optimized for low-power consumption rather than off-the-shelf components.

The company has collected nearly 1 million hours of human performance data, along with comparators including commercial glucose monitors and venous blood samples, Yang says. Biolinq aims to gain FDA approval first for use in people with type 2 diabetes not using insulin and later expand to other medical indications.

This article appears in the August 2024 print issue as “Glucose Monitor Takes Page From Chipmaking.”




k

Neuralink’s Blindsight Device Is Likely to Disappoint



Neuralink’s visual prosthesis Blindsight has been designated a breakthrough device by the U.S. Food and Drug Administration, which potentially sets the technology on a fast track to approval.

In confirming the news, an FDA spokesperson emphasized that the designation does not mean that Blindsight is yet considered safe or effective. Technologies in the program have potential to improve the current standard of care and are novel compared to what’s available on the market, but the devices still have to go through full clinical trials before seeking FDA approval.

Still, the announcement is a sign that Neuralink is moving closer to testing Blindsight in human patients. The company is recruiting people with vision loss for studies in the United States, Canada, and the United Kingdom.

Visual prostheses work by capturing visual information with a video camera, typically attached to glasses or a headset. Then a processor converts the data to an electrical signal that can be relayed to the nervous system. Retinal implants have been a common approach, with electrodes feeding the signal to nerves in the retina, at the back of the eye, from where it travels on to the brain. But Blindsight uses a brain implant to send the signal directly to neurons in the visual cortex.

In recent years, other companies developing artificial vision prosthetics have reached clinical research trials or beyond, only to struggle financially, leaving patients without support. Some of these technologies live on with new backing: Second Sight’s Orion cortical implant project is now in a clinical trial with Cortigent, and Pixium Vision’s Prima system is now owned by Science, with ex-Neuralink founder Max Hodak at the helm. No company has yet commercialized a visual prosthetic that uses a brain implant.

Elon Musk’s Claims About Blindsight

Very little information about Blindsight is publicly available. As of this writing, there is no official Blindsight page on the Neuralink website, and Neuralink did not respond to requests for comment. It’s also unclear how exactly Blindsight relates to a brain-computer interface that Neuralink has already implanted in two people with paralysis, who use their devices to control computer cursors.

Experts who spoke with IEEE Spectrum felt that, if judged against the strong claims made by Neuralink’s billionaire co-founder Elon Musk, Blindsight will almost certainly disappoint. However, some were still open to the possibility that Neuralink could successfully bring a device to market that can help people with vision loss, albeit with less dramatic effects on their sense of sight. While Musk’s personal fortune could help Blindsight weather difficulties that would end other projects, experts did not feel it was a guarantee of success.

After Neuralink announced on X (formerly Twitter) that Blindsight had received the breakthrough device designation, Musk wrote:

The Blindsight device from Neuralink will enable even those who have lost both eyes and their optic nerve to see.

Provided the visual cortex is intact, it will even enable those who have been blind from birth to see for the first time.

To set expectations correctly, the vision will be at first be [sic] low resolution, like Atari graphics, but eventually it has the potential be [sic] better than natural vision and enable you to see in infrared, ultraviolet or even radar wavelengths, like Geordi La Forge.

Musk included a picture of La Forge, a character from the science-fiction franchise Star Trek who wears a vision-enhancing visor.

Experts Puncture the Blindsight Hype

“[Musk] will build the best cortical implant we can build with current technology. It will not produce anything like normal vision. [Yet] it might produce vision that can transform the lives of blind people,” said Ione Fine, a computational neuroscientist at the University of Washington, who has written about the potential limitations of cortical implants, given the complexity of the human visual system. Fine previously worked for the company Second Sight.

A successful visual prosthetic might more realistically be thought of as assistive technology than a cure for blindness. “At best, we’re talking about something that’s augmentative to a cane and a guide dog; not something that replaces a cane and a guide dog,” said Philip Troyk, a biomedical engineer at the Illinois Institute of Technology.

Restoring natural vision is beyond the reach of today’s technology. But among Musks recent claims, Troyk says that a form of infrared sensing is plausible and has already been tested with one of his patients, who used it for help locating people within a room. That patient has a 400-electrode device implanted in the visual cortex as part of a collaborative research effort called the Intracortical Visual Prosthesis Project (ICVP). By comparison, Blindsight may have more than 1,000 electrodes, if it’s a similar device to Neuralink’s brain-computer interface.

Experts say they’d like more information about Neuralink’s visual prosthetic. “I’m leery about the fact that they are very superficial in their description of the devices,” said Gislin Dagnelie, a vision scientist at Johns Hopkins University who has been involved in multiple clinical trials for vision prosthetics, including a Second Sight retinal implant, and who is currently collaborating on the ICVP. “There’s no clear evaluation or pre-clinical work that has been published,” says Dagnelie. “It’s all based on: ‘Trust us, we’re Neuralink.’”

In the short term, too much hype could mislead clinical trial participants. It could also degrade interest in small but meaningful advancements in visual prosthetics. “Some of the [Neuralink] technology is exciting, and has potential,” said Troyk. “The way the messaging is being done detracts from that, potentially.”




k

Bluetooth Microscope Reveals the Inner Workings of Mice



This article is part of our exclusive IEEE Journal Watch series in partnership with IEEE Xplore.

Any imaging technique that allows scientists to observe the inner workings of a living organism, in real-time, provides a wealth of information compared to experiments in a test tube. While there are many such imaging approaches in existence, they require test subjects—in this case rodents—to be tethered to the monitoring device. This limits the ability of animals under study to roam freely during experiments.

Researchers have recently designed a new microscope with a unique feature: It’s capable of transmitting real-time imaging from inside live mice via Bluetooth to a nearby phone or laptop. Once the device has been further miniaturized, the wireless connection will allow mice and other test subject animals to roam freely, making it easier to observe them in a more natural state.

“To the best of our knowledge, this is the first Bluetooth wireless microscope,” says Arvind Pathak, a professor at the Johns Hopkins University School of Medicine.

Through a series of experiments, Pathak and his colleagues demonstrate how the novel wireless microscope, called BLEscope, offers continuous monitoring of blood vessels and tumors in the brains of mice. The results are described in a study published 24 September in IEEE Transactions on Biomedical Engineering.

Microscopes have helped shed light on many biological mysteries, but the devices typically require that cells be removed from an organism and studied in a test tube. Any opportunity to study the biological process as it naturally occurs in the in the body (“in vivo”) tends to offer more useful and thorough information.

Several different miniature microscopes designed for in vivo experiments in animals exist. However, Pathak notes that these often require high power consumption or a wire to be tethered to the device to transmit the data—or both—which may restrict an animal’s natural movements and behavior.

“To overcome these hurdles, [Johns Hopkins University Ph.D. candidate] Subhrajit Das and our team designed an imaging system that operates with ultra-low power consumption—below 50 milliwatts—while enabling wireless data transmission and continuous, functional imaging at spatial resolutions of 5 to 10 micrometers in [rodents],” says Pathak.

The researchers created BLEscope using an off-the-shelf, low-power image sensor and microcontroller, which are integrated on a printed circuit board. Importantly, it has two LED lights of different colors—green and blue—that help create contrast during imaging.

“The BLE protocol enabled wireless control of the BLEscope, which then captures and transmits images wirelessly to a laptop or phone,” Pathak explains. “Its low power consumption and portability make it ideal for remote, real-time imaging.”

Pathak and his colleagues tested BLEscope in live mice through two experiments. In the first scenario, they added a fluorescent marker into the blood of mice and used BLEscope to characterize blood flow within the animals’ brains in real-time. In the second experiment, the researchers altered the oxygen and carbon dioxide ratios of the air being breathed in by mice with brain tumors, and were able to observe blood vessel changes in the fluorescently marked tumors.

“The BLEscope’s key strength is its ability to wirelessly conduct high-resolution, multi-contrast imaging for up to 1.5 hours, without the need for a tethered power supply,” Pathak says.

However, Pathak points out that the current prototype is limited by its size and weight. BLEscope will need to be further miniaturized, so that it doesn’t interfere with animals’ abilities to roam freely during experiments.

“We’re planning to miniaturize the necessary electronic components onto a flexible light-weight printed circuit board, which would reduce weight and footprint of the BLEscope to make it suitable for use on freely moving animals,” says Pathak.

This story was updated on 14 October 2024, to correct a statement about the size of the BLEscope.




k

This Eyewear Offers a Buckshot Method to Monitor Health



Emteq Labs wants eyewear to be the next frontier of wearable health technology.

The Brighton, England-based company introduced today its emotion-sensing eyewear, Sense. The glasses contain nine optical sensors distributed across the rims that detect subtle changes in facial expression with more than 93 percent accuracy when paired with Emteq’s current software. “If your face moves, we can capture it,” says Steen Strand, whose appointment as Emteq’s new CEO was also announced today. With that detailed data, “you can really start to decode all kinds of things.” The continuous data could help people uncover patterns in their behavior and mood, similar to an activity or sleep tracker.

Emteq is now aiming to take its tech out of laboratory settings with real-world applications. The company is currently producing a small number of Sense glasses, and they’ll be available to commercial partners in December.

The announcement comes just weeks after Meta and Snap each unveiled augmented reality glasses that remain in development. These glasses are “far from ready,” says Strand, who led the augmented reality eyewear division while working at Snap from 2018 to 2022. “In the meantime, we can serve up lightweight eyewear that we believe can deliver some really cool health benefits.”

Fly Vision Vectors

While current augmented reality (AR) headsets have large battery packs to power the devices, glasses require a lightweight design. “Every little bit of power, every bit of weight, becomes critically important,” says Strand. The current version of Sense weighs 62 grams, slightly heavier than the Ray-Ban Meta smart glasses, which weigh in at about 50 grams.

Because of the weight constraints, Emteq couldn’t use the power-hungry cameras typically used in headsets. With cameras, motion is detected by looking at how pixels change between consecutive images. The method is effective, but captures a lot of redundant information and uses more power. The eyewear’s engineers instead opted for optical sensors that efficiently capture vectors when points on the face move due to the underlying muscles. These sensors were inspired by the efficiency of fly vision. “Flies are incredibly efficient at measuring motion,” says Emteq founder and CSO Charles Nduka. “That’s why you can’t swat the bloody things. They have a very high sample rate internally.”

Sense glasses can capture data as often as 6,000 times per second. The vector-based approach also adds a third dimension to a typical camera’s 2D view of pixels in a single plane.

These sensors look for activation of facial muscles, and the area around the eyes is an ideal spot. While it’s easy to suppress or force a smile, the upper half of our face tends to have more involuntary responses, explains Nduka, who also works as a plastic surgeon in the United Kingdom. However, the glasses can also collect information about the mouth by monitoring the cheek muscles that control jaw movements, conveniently located near the lower rim of a pair of glasses. The data collected is then transmitted from the glasses to pass through Emteq’s algorithms in order to translate the vector data into usable information.

In addition to interpreting facial expressions, Sense can be used to track food intake, an application discovered by accident when one of Emteq’s developers was wearing the glasses while eating breakfast. By monitoring jaw movement, the glasses detect when a user chews and how quickly they eat. Meanwhile, a downward-facing camera takes a photo to log the food, and uses a large language model to determine what’s in the photo, effectively making food logging a passive activity. Currently, Emteq is using an instance of OpenAI’s GPT-4 large language model to accomplish this, but the company has plans to create their own algorithm in the future. Other applications, including monitoring physical activity and posture, are also in development.

One Platform, Many Uses

Nduka believes Emteq’s glasses represent a “fundamental technology,” similar to how the accelerometer is used for a host of applications in smartphones, including managing screen orientation, tracking activity, and even revealing infrastructure damage.

Similarly, Emteq has chosen to develop the technology as a general facial data platform for a range of uses. “If we went deep on just one, it means that all the other opportunities that can be helped—especially some of those rarer use cases—they’d all be delayed,” says Nduka. For example, Nduka is passionate about developing a tool to help those with facial paralysis. But a specialized device for those patients would have high unit costs and be unaffordable for the target user. Allowing more companies to use Emteq’s intellectual property and algorithms will bring down cost.

In this buckshot approach, the general target for Sense’s potential use cases is health applications. “If you look at the history of wearables, health has been the primary driver,” says Strand. The same may be true for eyewear, and he says there’s potential for diet and emotional data to be “the next pillar of health” after sleep and physical activity.

How the data is delivered is still to be determined. In some applications, it could be used to provide real-time feedback—for instance, vibrating to remind the user to slow down eating. Or, it could be used by health professionals only to collect a week’s worth of at-home data for patients with mental health conditions, which Nduka notes largely lack objective measures. (As a medical device for treatment of diagnosed conditions, Sense would have to go through a more intensive regulatory process.) While some users are hungry for more data, others may require a “much more gentle, qualitative approach,” says Strand. Emteq plans to work with expert providers to appropriately package information for users.

Interpreting the data must be done with care, says Vivian Genaro Motti, an associate professor at George Mason University who leads the Human-Centric Design Lab. What expressions mean may vary based on cultural and demographic factors, and “we need to take into account that people sometimes respond to emotions in different ways,” Motti says. With little regulation of wearable devices, she says it’s also important to ensure privacy and protect user data. But Motti raises these concerns because there is a promising potential for the device. “If this is widespread, it’s important that we think carefully about the implications.”

Privacy is also a concern to Edward Savonov, a professor of electrical and computer engineering at the University of Alabama, who developed a similar device for dietary tracking in his lab. Having a camera mounted on Emteq’s glasses could pose issues, both for the privacy of those around a user and a user’s own personal information. Many people eat in front of their computer or cell phone, so sensitive data may be in view.

For technology like Sense to be adopted, Sazonov says questions about usability and privacy concerns must first be answered. “Eyewear-based technology has potential for a great future—if we get it right.”




k

Dean Kamen Says Inventing Is Easy, but Innovating Is Hard



This article is part of our special report, “Reinventing Invention: Stories from Innovation’s Edge.”

Over the past 20 years, technological advances have enabled inventors to go from strength to strength. And yet, according to the legendary inventor Dean Kamen, innovation has stalled. Kamen made a name for himself with inventions including the first portable insulin pump for diabetics, an advanced wheelchair that can climb steps, and the Segway mobility device. Here, he talks about his plan for enabling innovators.

How has inventing changed since you started in the 1990s?

Dean Kamen: Kids all over the world can now be inventing in the world of synthetic biology the way we played with Tinkertoys and Erector Sets and Lego. I used to put pins and smelly formaldehyde in frogs in high school. Today in high school, kids will do experiments that would have won you the Nobel Prize in Medicine 40 years ago. But none of those kids are likely in any short time to be on the market with a pharmaceutical that will have global impact. Today, while invention is getting easier and easier, I think there are some aspects of innovation that have gotten much more difficult.

Can you explain the difference?

Kamen: Most people think those two words mean the same thing. Invention is coming up with an idea or a thing or a process that has never been done that way before. [Thanks to] more access to technology and 3D printers and simulation programs and virtual ways to make things, the threshold to be able to create something new and different has dramatically lowered.

Historically, inventions were only the starting point to get to innovation. And I’ll define an innovation as something that reached a scale where it impacted a piece of the world, or transformed it: the wheel, steam, electricity, Internet. Getting an invention to the scale it needs to be to become an innovation has gotten easier—if it’s software. But if it’s sophisticated technology that requires mechanical or physical structure in a very competitive world? It’s getting harder and harder to do due to competition, due to global regulatory environments.

[For example,] in proteomics [the study of proteins] and genomics and biomedical engineering, the invention part is, believe it or not, getting a little easier because we know so much, because there are development platforms now to do it. But getting a biotech product cleared by the Food and Drug Administration is getting more expensive and time consuming, and the risks involved are making the investment community much more likely to invest in the next version of Angry Birds than curing cancer.

A lot of ink has been spilled about how AI is changing inventing. Why hasn’t that helped?

Kamen: AI is an incredibly valuable tool. As long as the value you’re looking for is to be able to collect massive amounts of data and being able to process that data effectively. That’s very different than what a lot of people believe, which is that AI is inventing and creating from whole cloth new and different ideas.

How are you using AI to help with innovation?

Kamen: Every medical school has incredibly brilliant professors and grad students with petri dishes. “Look, I can make nephrons. We can grow people a new kidney. They won’t need dialysis.” But they only have petri dishes full of the stuff. And the scale they need is hundreds and hundreds of liters.

I started a not-for-profit called ARMI—the Advanced Regenerative Manufacturing Institute—to help make it practical to manufacture human cells, tissues, and organs. We are using artificial intelligence to speed up our development processes and eliminate going down frustratingly long and expensive [dead-end] paths. We figure out how to bring tissue manufacturing to scale. We build the bioreactors, sensor technologies, robotics, and controls. We’re going to put them together and create an industry that can manufacture hundreds of thousands of replacement kidneys, livers, pancreases, lungs, blood, bone, you name it.

So ARMI’s purpose is to help would-be innovators?

Kamen: We are not going to make a product. We’re not even going to make a whole company. We’re going to create baseline core technologies that will enable all sorts of products and companies to emerge to create an entire new industry. It will be an innovation in health care that will lower costs because cures are much cheaper than chronic treatments. We have to break down the barriers so that these fantastic inventions can become global innovations.

This article appears in the November 2024 print issue as “The Inventor’s Inventor.”




k

Gandhi Inspired a New Kind of Engineering



This article is part of our special report, “Reinventing Invention: Stories from Innovation’s Edge.”

The teachings of Mahatma Gandhi were arguably India’s greatest contribution to the 20th century. Raghunath Anant Mashelkar has borrowed some of that wisdom to devise a frugal new form of innovation he calls “Gandhian engineering.” Coming from humble beginnings, Mashelkar is driven to ensure that the benefits of science and technology are shared more equally. He sums up his philosophy with the epigram “more from less for more.” This engineer has led India’s preeminent R&D organization, the Council of Scientific and Industrial Research, and he has advised successive governments.

What was the inspiration for Gandhian engineering?

Raghunath Anant Mashelkar: There are two quotes of Gandhi’s that were influential. The first was, “The world has enough for everyone’s need, but not enough for everyone’s greed.” He was saying that when resources are exhaustible, you should get more from less. He also said the benefits of science must reach all, even the poor. If you put them together, it becomes “more from less for more.”

My own life experience inspired me, too. I was born to a very poor family, and my father died when I was six. My mother was illiterate and brought me to Mumbai in search of a job. Two meals a day was a challenge, and I walked barefoot until I was 12 and studied under streetlights. So it also came from my personal experience of suffering because of a lack of resources.

How does Gandhian engineering differ from existing models of innovation?

Mashelkar: Conventional engineering is market or curiosity driven, but Gandhian engineering is application and impact driven. We look at the end user and what we want to achieve for the betterment of humanity.

Most engineering is about getting more from more. Take an iPhone: They keep creating better models and charging higher prices. For the poor it is less from less: Conventional engineering looks at removing features as the only way to reduce costs.

In Gandhian engineering, the idea is not to create affordable [second-rate] products, but to make high technology work for the poor. So we reinvent the product from the ground up. While the standard approach aims for premium price and high margins, Gandhian engineering will always look at affordable price, but high volumes.

The Jaipur foot is a light, durable, and affordable prosthetic.Gurinder Osan/AP

What is your favorite example of Gandhian engineering?

Mashelkar: My favorite is the Jaipur foot. Normally, a sophisticated prosthetic foot costs a few thousand dollars, but the Jaipur foot does it for [US] $20. And it’s very good technology; there is a video of a person wearing a Jaipur foot climbing a tree, and you can see the flexibility is like a normal foot. Then he runs one kilometer in 4 minutes, 30 seconds.

What is required for Gandhian engineering to become more widespread?

Mashelkar: In our young people, we see innovation and we see passion, but compassion is the key. We also need more soft funding [grants or zero-interest loans], because venture capital companies often turn out to be “vulture capital” in a way, because they want immediate returns.

We need a shift in the mindset of businesses—they can make money not just from premium products for those at the top of the pyramid, but also products with affordable excellence designed for large numbers of people.

This article appears in the November 2024 print issue as “The Gandhi Inspired Inventor.”




k

Scary Stories: Establishing a Field Amid Skepticism



In the spirit of the Halloween season, IEEE Spectrum presents a pair of stories that—although grounded in scientific truth rather than the macabre—were no less harrowing for those who lived them. In today’s installment, Robert Langer had to push back against his field’s conventional wisdom to pioneer a drug-delivery mechanism vital to modern medicine.

Nicknamed the Edison of Medicine, Robert Langer is one of the world’s most-cited researchers, with over 1,600 published papers, 1,400 patents, and a top-dog role as one of MIT’s nine prestigious Institute Professors. Langer pioneered the now-ubiquitous drug delivery systems used in modern cancer treatments and vaccines, indirectly saving countless lives throughout his 50-year career.

But, much like Edison and other inventors, Langer’s big ideas were initially met with skepticism from the scientific establishment.

He came up in the 1970s as a chemical engineering postdoc working in the lab of Dr. Judah Folkman, a pediatric surgeon at the Boston Children’s Hospital. Langer was tasked with solving what many believed was an impossible problem—isolating angiogenesis inhibitors to halt cancer growth. Folkman’s vision of stopping tumors from forming their own self-sustaining blood vessels was compelling enough, but few believed it possible.

Langer encountered both practical and social challenges before his first breakthrough. One day, a lab technician accidentally spilled six months’ worth of samples onto the floor, forcing him to repeat the painstaking process of dialyzing extracts. Those months of additional work steered Langer’s development of novel microspheres that could deliver large molecules of medicine directly to tumors.

In the 1970s, Langer developed these tiny microspheres to release large molecules through solid materials, a groundbreaking proof-of-concept for drug delivery.Robert Langer

Langer then submitted the discovery to prestigious journals and was invited to speak at a conference in Michigan in 1976. He practiced the 20-minute presentation for weeks, hoping for positive feedback from respected materials scientists. But when he stepped off the podium, a group approached him and said bluntly, “We don’t believe anything you just said.” They insisted that macromolecules were simply too large to pass through solid materials, and his choice of organic solvents would destroy many inputs. Conventional wisdom said so.

Nature published Langer’s paper three months later, demonstrating for the first time that non-inflammatory polymers could enable the sustained release of proteins and other macromolecules. The same year, Science published his isolation mechanism to restrict tumor growth.

Langer and Folkman’s research paved the way for modern drug delivery.MIT and Boston Children’s Hospital

Even with impressive publications, Langer still struggled to secure funding for his work in controlling macromolecule delivery, isolating the first angiogenesis inhibitors, and testing their behavior. His first two grant proposals were rejected on the same day, a devastating blow for a young academic. The reviewers doubted his experience as “just an engineer” who knew nothing about cancer or biology. One colleague tried to cheer him up, saying, “It’s probably good those grants were rejected early in your career. Since you’re not supporting any graduate students, you don’t have to let anyone go.” Langer thought the colleague was probably right, but the rejections still stung.

His patent applications, filed alongside Folkman at the Boston Children’s Hospital, were rejected five years in a row. After all, it’s difficult to prove you’ve got something good if you’re the only one doing it. Langer remembers feeling disappointed but not crushed entirely. Eventually, other scientists cited his findings and expanded upon them, giving Langer and Folkman the validation needed for intellectual property development. As of this writing, the pair’s two studies from 1976 have been cited nearly 2,000 times.

As the head of MIT’s Langer Lab, he often shares these same stories of rejection with early-career students and researchers. He leads a team of over 100 undergrads, grad students, postdoctoral fellows, and visiting scientists, all finding new ways to deliver genetically engineered proteins, DNA, and RNA, among other research areas. Langer’s reputation is further bolstered by the many successful companies he co-founded or advised, like mRNA leader Moderna, which rose to prominence after developing its widely used COVID-19 vaccine.

Langer sometimes thinks back to those early days—the shattered samples, the cold rejections, and the criticism from senior scientists. He maintains that “Conventional wisdom isn’t always correct, and it’s important to never give up—(almost) regardless of what others say.”




k

What My Daughter’s Harrowing Alaska Airlines Flight Taught Me About Healthcare

As a leader who has committed much of his career to improving healthcare — an industry that holds millions of people’s lives in its hands — I took from this terrifying incident a new guiding principle. Healthcare needs to pursue a zero-failure rate.

The post What My Daughter’s Harrowing Alaska Airlines Flight Taught Me About Healthcare appeared first on MedCity News.




k

Private Equity Is Picking Up Biologics CDMO Avid Bioservices in $1.1B Acquisition

CDMO Avid Bioservices is being acquired by the private equity firms GHO Capital Partners and Ampersand Capital Partners. Avid specializes in manufacturing biologic products for companies at all stages of development.

The post Private Equity Is Picking Up Biologics CDMO Avid Bioservices in $1.1B Acquisition appeared first on MedCity News.




k

CVS Health Exec: Payers Need to Stop Making Behavioral Health Providers Jump Through Hoops In Order to Participate in Value-Based Care

Value-based care contracting is especially difficult for behavioral health providers, Taft Parsons III, chief psychiatric officer at CVS Health/Aetna, pointed out during a conference this week.

The post CVS Health Exec: Payers Need to Stop Making Behavioral Health Providers Jump Through Hoops In Order to Participate in Value-Based Care appeared first on MedCity News.




k

4 Things Employers Should Know About Psychedelic Medicines

During a panel discussion at the Behavioral Health Tech conference, experts shared the promise psychedelic medicines hold for mental health and why employers may want to consider offering them as a workplace benefit.

The post 4 Things Employers Should Know About Psychedelic Medicines appeared first on MedCity News.




k

FDA Takes Step Toward Removal of Ineffective Decongestants From the Market

The FDA has proposed removing oral phenylephrine from its guidelines for over-the-counter drugs due to inefficacy as a decongestant. Use of this ingredient in cold and allergy medicines grew after a federal law required that pseudoephedrine-containing products be kept behind pharmacy counters.

The post FDA Takes Step Toward Removal of Ineffective Decongestants From the Market appeared first on MedCity News.




k

Measuring Impact in Digital Youth Mental Health: What Investors Look For

Many companies are entering the digital youth mental health space, but it’s important to know which ones are effective, according to a panel of investors at the Behavioral Health Tech conference.

The post Measuring Impact in Digital Youth Mental Health: What Investors Look For appeared first on MedCity News.




k

The Trust-Building Playbook: 5 Tips Every Digital Health Marketer Needs to Know

Building trust while simultaneously building products, selling, recruiting, and fundraising can feel impossible. But it’s required whether you have the time or not, and it doesn’t stop no matter how big you grow.

The post The Trust-Building Playbook: 5 Tips Every Digital Health Marketer Needs to Know appeared first on MedCity News.




k

‘Serial Killing’ Cell Therapy From Autolus Lands FDA Approval in Blood Cancer

Autolus Therapeutics’ Aucatzyl is now FDA approved for treating advanced cases of B-cell precursor acute lymphoblastic leukemia. While it goes after the same target as Gilead Sciences’ Tecartus, Autolus engineered its CAR T-therapy with properties that could improve safety, efficacy, and durability.

The post ‘Serial Killing’ Cell Therapy From Autolus Lands FDA Approval in Blood Cancer appeared first on MedCity News.





k

AbbVie Drug Expected to Rival Bristol Myers’s New Schizophrenia Med Flunks Phase 2 Test

AbbVie schizophrenia drug candidate emraclidine failed to beat a placebo in two Phase 2 clinical trials. The drug, once projected to compete with Bristol Myers Squibb’s Cobenfy, is from AbbVie’s $8.7 billion acquisition of Cerevel Therapeutics.

The post AbbVie Drug Expected to Rival Bristol Myers’s New Schizophrenia Med Flunks Phase 2 Test appeared first on MedCity News.




k

Unlocking the Future of Radioligand Therapy: From Discovery to Delivering at Scale

As radiopharmaceuticals enter a new phase, industry leaders must rethink external services and internal capabilities to master the complexities of delivering advanced therapies.

The post Unlocking the Future of Radioligand Therapy: From Discovery to Delivering at Scale appeared first on MedCity News.




k

Neurogene Gene Therapy Shows Signs of Efficacy in Small Study, But an Adverse Event Spooks Investors

Neurogene’s Rett syndrome gene therapy has preliminary data supporting safety and efficacy of the one-time treatment. But a late-breaking report of a serious complication in a patient who received the high dose sent shares of the biotech downward.

The post Neurogene Gene Therapy Shows Signs of Efficacy in Small Study, But an Adverse Event Spooks Investors appeared first on MedCity News.




k

What Might the Future of Prescription Drugs Look Like Under Trump?

Experts agree that the incoming Trump administration will likely shake things up in the prescription drug world — most notably when it comes to research and development, drug pricing and PBM reform.

The post What Might the Future of Prescription Drugs Look Like Under Trump? appeared first on MedCity News.




k

Diagnostic Test Regulation Should Rank High on Agenda of New Congress

Faulty diagnostic tests can compromise both patient care and the nation’s response to infectious diseases—as made all too clear earlier this month when the Food and Drug Administration issued a safety alert about a COVID-19 test that carries a high risk of false negative results.




k

Researcher Looks to Plants in Search for New Antibiotics

Dr. Cassandra Quave’s path to her work as a leader in antibiotic drug discovery research initiatives at Emory University in Atlanta started when she was a child and she and her family dealt with her own serious health issues that have had life-long repercussions.




k

4 Key Priorities for Fighting Superbugs in 2021

Over the past year, COVID-19 has taken a grave toll in lives as well as on medical and health care systems worldwide. The pandemic has laid bare the importance of public health readiness and the myriad consequences when such a crisis strikes an unprepared population.




k

PTO Cancer Immunotherapy Fast Track

In response to President Obama’s National Cancer Moonshot initiative to eliminate cancer, the USPTO has launched the “Cancer Immunotherapy Pilot Program.” The Pilot Program provides an accelerated review for applications related to cancer immunotherapy and is set to launch in July 2016. According to the USPTO, this initiative: aims to cut the time it takes to...… Continue Reading




k

Looking Forward/Looking Backward – Day 1 Notes from the JPMorgan Healthcare Conference

A large amount of wind, much discussion about the U.S healthcare, and the public getting soaked again – if you were thinking about Washington, DC and the new Congress, you’re 3,000 miles away from the action. This is the week of the annual JP Morgan Healthcare conference in San Francisco, with many thousands of healthcare...… Continue Reading






k

'I try not to think about myself': Woman battles breast cancer while caring for mum who has gall bladder cancer

To mark Breast Cancer Awareness Month, we speak to inspiring Singaporeans about their journey in battling and overcoming cancer.  Warda Ismail gets anxious about things easily, especially when it comes to her health.  So much so that her doctor once told her that she is a "borderline hypochondriac", she shared with AsiaOne in an interview.  For the uninitiated, hypochondria is a condition where a person is excessively and unduly worried about having a serious illness. To keep her mind at ease, the 44-year-old preschool educator has the habit of going for regular medical checkups.  Though she was vigilant, her worst nightmare came true — she was diagnosed with breast cancer on May 8 this year.  And in the midst of her recovery journey, she got more terrible news — her mother, who had been caring for her, was diagnosed with stage-three gall bladder cancer.  Despite the string of unfortunate events, Warda persevered and tried to have a more positive outlook on life and her health. 




k

Keto life in Singapore: How to eat out without breaking your diet

Singapore's food culture is legendary, with staples such as chicken rice, bak chor mee, laksa, and roti prata feeding generations of locals and visitors alike. But there's one thing they all have in common — carbs! In carb-crazy Singapore, sticking to a keto diet might seem like a gone case and borderline sacrilegious, but trust me, it's doable. I've been through it, and I'm here to share my tips on how you can enjoy our local food scene while staying keto. What is keto? In case you blur about what a ketogenic (keto) diet is, it's all about cutting carbs and eating more fat. Yup, you read that right — more fat. Sounds shiok, right? The goal is to push your body into ketosis, where instead of burning carbs for energy, it burns fat. Hello, weight loss! Beyond that, keto helps you avoid those pesky post-meal sugar crashes — you know, the ones that make want to toh after a heavy meal. My keto experience I first tried keto as a teen, thinking it was just about cutting out rice, bread, and noodles. Wrong! Keto is stricter than that. To stay in ketosis, you've got to limit your carbs to just 20-50g a day.




k

McDonald's rules out beef patties as source of E. coli outbreak

NEW YORK — McDonald's on Sunday (Oct 27) ruled out beef patties as a source of the E. coli outbreak linked to Quarter Pounder hamburgers, which has killed at least one person and sickened nearly 75 others. "We remain very confident that any contaminated product related to this outbreak has been removed from our supply chain and is out of all McDonald's restaurants," the fast-food chain's chief supply chain officer Cesar Pina said in a statement. The Colorado Department of Agriculture said that all subsamples from multiple lots of McDonald's brand fresh and frozen beef patties had tested negative for E. coli, adding that it had completed beef testing and does not anticipate receiving further samples. McDonald's said it would resume distribution of fresh supplies of the Quarter Pounder and that it is expected to be available in all restaurants in the coming week, according to the statement.




k

Onions were likely source of McDonald's E. coli outbreak, US CDC says

The US Centers for Disease Control and Prevention said on Wednesday that slivered onions served on McDonald's, opens new tab Quarter Pounder hamburgers and other menu items were the likely source of an E. coli outbreak that sickened 90 people. The outbreak linked to Quarter Pounder was first reported on Oct 22, and slivered onions were suspected to be the source of the infections. The US Food and Drug Administration and the company have confirmed that Taylor Farms was the supplier for the affected locations, and it has since recalled several batches of yellow onions produced in a Colorado facility. The FDA on Wednesday said it had initiated inspections at a Taylor Farms processing center in Colorado, a state where 29 people have fallen ill due to the outbreak. An onion grower of interest in Washington state is also being investigated, the FDA added. The CDC said the number of infected people has risen by 15 people from 75 and 27 persons have been hospitalised due to the illness, which has already killed one person.




k

Simple therapeutic ways to break the cycle of stress

Life can sometimes feel like a never-ending cycle of stress and decisions. That's usually my weekdays in a nutshell: chasing deadlines, making tough calls, and hopping between meetings. When your brain feels like it's on overdrive, it's time to hit pause. Engaging in some therapeutic activities can give your mind the breather it desperately needs. The good news? They don't have to be complicated or time-consuming. Here are some that can work wonders for your mental clarity and overall well-being. Step outside for a walk Walking is one of the simplest ways to clear your mind. It's amazing what a little fresh air at your nearby PCN can do. Just stepping outside and getting those legs moving can shift your perspective in a matter of minutes — and burn a few calories too! Disconnect from your phone and enjoy the sights and sounds of the great outdoors. I find that a 30-min walk and a change of environment works wonders for me, helping me rationally dissect my worries, such as my crushing feelings of inadequacy at work.




k

David Duchovny and Gillian Anderson didn't speak to each other for 'weeks at a time' while working on The X Files

David Duchovny and Gillian Anderson didn't speak to each other for "weeks at a time" when they worked on The X Files. The 64-year-old actor and Gillian, 56, enjoyed huge success with the iconic sci-fi series — but the duo actually had a turbulent relationship for many years. David said on the Fail Better podcast: "There was a long time, working on the show, where we were just not even dealing with one another off-camera. And there was a lot of tension. Which didn't matter, apparently, for the work cause we're both f****** crazy, I guess. We could just go out there and do what we needed to do." Gillian was amazed that they achieved so much success while their off-screen relationship was so tense.




k

Megan Fox expecting her first child with Machine Gun Kelly

Megan Fox is pregnant. The 38-year-old actress — who has Noah, 12, Bodhi, ten, and Journey, eight, with her ex-husband Brian Austin Green — has confirmed via social media that she's expecting her first child with Machine Gun Kelly.




k

Michelle Yeoh hadn't heard of musical Wicked before being asked to join cast of movie

Michelle Yeoh had never heard of Wicked before she was asked to join the cast of the movie-musical. The Oscar-winning actress plays Madame Morrible in the new film version of the hit stage show, which is based around characters first seen on screen in 1939 movie The Wizard of Oz. She's confessed she knew nothing about the popular musical before she was approached by director Jon M. Chu about joining the cast. According to The Hollywood Reporter, she said: "At that point, I had no clue what he was talking about because I had not seen Wicked the musical before. I knew Wizard of Oz, who doesn't, but not Wicked because I hadn't been going to the theatres and was not doing what I love which is watching musicals for quite a while, I hate to say." The new movie stars Cynthia Erivo as Elphaba and Ariana Grande as Glinda during their time at Shiz University in the Land of Oz with Michelle's character Madame Morrible serving as the school's headmistress. Michelle went on to say: "So I read it [the script] and called Jon back and said, 'This is a musical and she sings'. And he said, 'Oh easy, you'll have fun, you're up for the challenge.'




k

Blackpink's Lisa holds 1st Singapore fan-meet; fans fight over signed T-shirts while others dress up for chance to meet her

Monday blues were non-existent at the Singapore Indoor Stadium yesterday (Nov 11) as fans of Blackpink's Lisa strolled into the venue in their Y2K-style outfits inspired by the Thai singer's Rockstar music video. Singapore was the first stop for the 27-year-old's first solo fan-meet tour and needless to say, the excitement could be felt, and heard. Once the lights turned off and Lisa appeared, the screams were deafening. The show started with a bang, fittingly with her self-titled hit song Lalisa. Usually at fan-meets of K-pop idols, the special effects are kept to a minimum unlike concerts. PHOTO: UnUsUaL Entertainment But at Lisa's, the performances were elevated with bursts of pyrotechnics and visual effects. After the first song, she sat down for a few interactive segments. During Welcome Lisa, she tried local delicacies like kaya toast and chicken rice.




k

Denzel Washington confirms he will star in Black Panther 3 before retirement

Denzel Washington has confirmed he will star in Black Panther 3 before his retirement. The 69-year-old actor is the first to talk about the existence of a third film in the blockbuster Marvel franchise — which will follow the 2018 original and 2022 sequel Black Panther: Wakanda Forever — and has also revealed the film will be among a handful of roles he will take on before he bows out of acting after a career spanning four decades. Confirming director Ryan Coogler has written a role just for the Oscar-winner for the third instalment, Denzel told Australia's Today show: "At this point in my career, I'm only interested in working with the best, I don't know how many more films I will make, probably not that many. I want to do things that I haven't done." Sharing the roles he has lined up before he bids farewell to his Hollywood career, he said: "I played Othello at 22, I'm now going to play it at 70. After that, I'm playing Hannibal. After that, I've been talking with Steve McQueen about a film. After that, Ryan Coogler is writing a part for me in the next Black Panther.




k

South Korean actor Song Jae-rim dies aged 39, celebrities pay tribute

South Korean actor Song Jae-rim died yesterday (Nov 12) at the age of 39. The Seongdong Police Station in Seoul confirmed that he was found deceased in his apartment at around 12.30pm. According to media reports, a friend whom he was supposed to meet for lunch had visited his home and reported the death. A two-page letter was reportedly found at the scene but the cause of death has not been confirmed. A police official, however, stated that there are "no signs of foul play". His wake was held at Yeouido St. Mary’s Hospital Funeral Hall at 5.30pm yesterday. His funeral will be held tomorrow at Seoul City Crematorium. Jae-rim gained popularity after starring in the 2012 drama The Moon Embracing the Sun and the 2014 reality series We Got Married. This year, he starred in two dramas — My Military Valentine and Queen Woo. Following news of his death, comedian Hong Seok-cheon and other celebrities posted tributes to Jae-rim on social media.




k

Who are Trump's cabinet picks so far and who is in the running?

Donald Trump has begun the process of choosing a cabinet and selecting other high-ranking administration officials following his presidential election victory. Here are the early picks and top contenders for some of the key posts overseeing defence, intelligence, diplomacy, trade, immigration and economic policymaking. Some are in contention for a range of posts. Susie Wiles, chief of staff Susie Wiles reacts as Republican presidential nominee and former US President Donald Trump speaks, following early results from the 2024 US presidential election in Palm Beach County Convention Center, in West Palm Beach, Florida, US on Nov 6, 2024. PHOTO: Reuters Trump announced last week that Wiles, one of his two campaign managers, will be his White House chief of staff.




k

Princess Kate returns to the fore with Christmas carol service

LONDON - Kate, UK's Princess of Wales, will make her most prominent return to royal engagements since having treatment for cancer next month when she hosts an annual Christmas carol service at London's Westminster Abbey. Kate, the wife of heir to the throne Prince William, has only made a handful of public appearances after having major abdominal surgery in January, and then undergoing a course of preventative chemotherapy when subsequent tests revealed the presence of cancer. Last weekend, she attended two high-profile Remembrance events to commemorate those who lost their lives in conflict as part of her gradual return to official duties, but the carol service — ​​​​​the fourth she has organised, will be the first major royal event she has hosted herself. "This year's service provides a moment to reflect upon the importance of love and empathy, and how much we need each other, especially in the most difficult times of our lives," her office, Kensington Palace, said in a statement.




k

Trump names Musk to co-lead newly formed Department of Government Efficiency

WASHINGTON — US President-elect Donald Trump said on Nov 12 that Elon Musk and former Republican presidential hopeful Vivek Ramaswamy will lead the newly created Department of Government Efficiency. Musk and Ramaswamy "will pave the way for my Administration to dismantle Government Bureaucracy, slash excess regulations, cut wasteful expenditures, and restructure Federal Agencies", Trump said in a statement. Trump said their work would conclude by July 4, 2026, adding that a smaller and more efficient government would be a "gift" to the country on the 250th anniversary of the signing of the Declaration of Independence. Businessman and former Republican presidential candidate Vivek Ramaswamy attends Donald Trump's campaign event sponsored by conservative group Turning Point Action, in Las Vegas, Nevada, US, Oct 24, 2024. PHOTO: Reuters file The appointments reward two Trump supporters from the private sector.




k

Israeli strikes pound Lebanon, Hezbollah strikes back

BEIRUT/JERUSALEM — The Israeli military pounded Beirut's southern suburbs with airstrikes on Tuesday (Nov 12), mounting one of its heaviest daytime attacks yet on the Hezbollah-controlled area, and struck the middle of the country where more than 20 people were killed. Smoke billowed over Beirut as around a dozen strikes hit the southern suburbs starting in midmorning. After posting warnings to civilians on social media, the Israeli military said it struck Hezbollah targets in Beirut's Dahiyeh area and later said it dismantled most of the group's weapons and missile facilities. Israel said it had taken steps to reduce harm to civilians and repeated its standing accusation that Hezbollah deliberately embeds itself into civilian areas to use residents as human shields, a charge Hezbollah rejects. In northern Israel, two people were killed in the city of Nahariya when a residential building was struck, Israeli police said. Hezbollah later claimed responsibility for a drone attack that it said was aimed at a military base east of Nahariya.




k

US aircraft carrier joins military drills with South Korea and Japan

SEOUL - South Korea's military said it will hold a three-day joint exercise with the United States and Japan starting on Wednesday (Nov 13), featuring fighter jets and marine patrol aircraft as well as the US nuclear-powered aircraft carrier USS George Washington. The Freedom Edge exercise is a response to what the South Korean military said were threats from North Korea, which recently conducted an intercontinental ballistic missile test, drawing condemnation from Seoul, Tokyo and Washington. It also comes as the US State Department said North Korean troops have started engaging in combat operations in Russia's war with Ukraine. The exercise will include South Korean and Japanese fighter jets and maritime patrol aircraft, as well as the USS George Washington, Seoul's Joint Chiefs of Staff (JCS) said in a statement. The trilateral exercise follows a first round held earlier this year after the leaders of the three countries agreed at a summit in 2023 to hold annual training drills. Pyongyang has long condemned joint drills between South Korea and the United States, calling them a rehearsal for invasion.




k

Public service committed to flexible work arrangements to meet workforce's changing needs: Govt

The Public Service has expressed its commitment to implementing flexible work arrangements (FWAs) for its employees, taking into account the workforce's changing needs. In a written answer to a Parliamentary question posed by Choa Chu Kang GRC MP Zhulkarnain Abdul Rahim on Monday (Nov 11), Minister-in-charge of the Public Service Chan Chun Sing said the Government recognises the growing need for FWAs, given Singapore's demographic changes and its ever-changing demands on Singaporeans. Zhulkarnain had asked whether the Civil Service will continue to support flexible working arrangements despite some companies in the private sector requiring employees to work from the office five days a week. Grab Singapore, for example, said it will enforce its five-day return-to-office mandate starting Dec 2, reported CNA. Referencing the Tripartite Guidelines on FWA Requests (TG-FWAR), which will be enforced starting Dec 1, Chan stressed the importance of such arrangements in supporting working caregivers, encouraging workforce re-entry, sustaining labour force participation, and attracting and retaining talent.