nc

Empirical Bayes analysis of RNA sequencing experiments with auxiliary information

Kun Liang.

Source: The Annals of Applied Statistics, Volume 13, Number 4, 2452--2482.

Abstract:
Finding differentially expressed genes is a common task in high-throughput transcriptome studies. While traditional statistical methods rank the genes by their test statistics alone, we analyze an RNA sequencing dataset using the auxiliary information of gene length and the test statistics from a related microarray study. Given the auxiliary information, we propose a novel nonparametric empirical Bayes procedure to estimate the posterior probability of differential expression for each gene. We demonstrate the advantage of our procedure in extensive simulation studies and a psoriasis RNA sequencing study. The companion R package calm is available at Bioconductor.




nc

Propensity score weighting for causal inference with multiple treatments

Fan Li, Fan Li.

Source: The Annals of Applied Statistics, Volume 13, Number 4, 2389--2415.

Abstract:
Causal or unconfounded descriptive comparisons between multiple groups are common in observational studies. Motivated from a racial disparity study in health services research, we propose a unified propensity score weighting framework, the balancing weights, for estimating causal effects with multiple treatments. These weights incorporate the generalized propensity scores to balance the weighted covariate distribution of each treatment group, all weighted toward a common prespecified target population. The class of balancing weights include several existing approaches such as the inverse probability weights and trimming weights as special cases. Within this framework, we propose a set of target estimands based on linear contrasts. We further develop the generalized overlap weights, constructed as the product of the inverse probability weights and the harmonic mean of the generalized propensity scores. The generalized overlap weighting scheme corresponds to the target population with the most overlap in covariates across the multiple treatments. These weights are bounded and thus bypass the problem of extreme propensities. We show that the generalized overlap weights minimize the total asymptotic variance of the moment weighting estimators for the pairwise contrasts within the class of balancing weights. We consider two balance check criteria and propose a new sandwich variance estimator for estimating the causal effects with generalized overlap weights. We apply these methods to study the racial disparities in medical expenditure between several racial groups using the 2009 Medical Expenditure Panel Survey (MEPS) data. Simulations were carried out to compare with existing methods.




nc

Principal nested shape space analysis of molecular dynamics data

Ian L. Dryden, Kwang-Rae Kim, Charles A. Laughton, Huiling Le.

Source: The Annals of Applied Statistics, Volume 13, Number 4, 2213--2234.

Abstract:
Molecular dynamics simulations produce huge datasets of temporal sequences of molecules. It is of interest to summarize the shape evolution of the molecules in a succinct, low-dimensional representation. However, Euclidean techniques such as principal components analysis (PCA) can be problematic as the data may lie far from in a flat manifold. Principal nested spheres gives a fundamentally different decomposition of data from the usual Euclidean subspace based PCA [ Biometrika 99 (2012) 551–568]. Subspaces of successively lower dimension are fitted to the data in a backwards manner with the aim of retaining signal and dispensing with noise at each stage. We adapt the methodology to 3D subshape spaces and provide some practical fitting algorithms. The methodology is applied to cluster analysis of peptides, where different states of the molecules can be identified. Also, the temporal transitions between cluster states are explored.




nc

Microsimulation model calibration using incremental mixture approximate Bayesian computation

Carolyn M. Rutter, Jonathan Ozik, Maria DeYoreo, Nicholson Collier.

Source: The Annals of Applied Statistics, Volume 13, Number 4, 2189--2212.

Abstract:
Microsimulation models (MSMs) are used to inform policy by predicting population-level outcomes under different scenarios. MSMs simulate individual-level event histories that mark the disease process (such as the development of cancer) and the effect of policy actions (such as screening) on these events. MSMs often have many unknown parameters; calibration is the process of searching the parameter space to select parameters that result in accurate MSM prediction of a wide range of targets. We develop Incremental Mixture Approximate Bayesian Computation (IMABC) for MSM calibration which results in a simulated sample from the posterior distribution of model parameters given calibration targets. IMABC begins with a rejection-based ABC step, drawing a sample of points from the prior distribution of model parameters and accepting points that result in simulated targets that are near observed targets. Next, the sample is iteratively updated by drawing additional points from a mixture of multivariate normal distributions and accepting points that result in accurate predictions. Posterior estimates are obtained by weighting the final set of accepted points to account for the adaptive sampling scheme. We demonstrate IMABC by calibrating CRC-SPIN 2.0, an updated version of a MSM for colorectal cancer (CRC) that has been used to inform national CRC screening guidelines.




nc

Statistical inference for partially observed branching processes with application to cell lineage tracking of in vivo hematopoiesis

Jason Xu, Samson Koelle, Peter Guttorp, Chuanfeng Wu, Cynthia Dunbar, Janis L. Abkowitz, Vladimir N. Minin.

Source: The Annals of Applied Statistics, Volume 13, Number 4, 2091--2119.

Abstract:
Single-cell lineage tracking strategies enabled by recent experimental technologies have produced significant insights into cell fate decisions, but lack the quantitative framework necessary for rigorous statistical analysis of mechanistic models describing cell division and differentiation. In this paper, we develop such a framework with corresponding moment-based parameter estimation techniques for continuous-time, multi-type branching processes. Such processes provide a probabilistic model of how cells divide and differentiate, and we apply our method to study hematopoiesis , the mechanism of blood cell production. We derive closed-form expressions for higher moments in a general class of such models. These analytical results allow us to efficiently estimate parameters of much richer statistical models of hematopoiesis than those used in previous statistical studies. To our knowledge, the method provides the first rate inference procedure for fitting such models to time series data generated from cellular barcoding experiments. After validating the methodology in simulation studies, we apply our estimator to hematopoietic lineage tracking data from rhesus macaques. Our analysis provides a more complete understanding of cell fate decisions during hematopoiesis in nonhuman primates, which may be more relevant to human biology and clinical strategies than previous findings from murine studies. For example, in addition to previously estimated hematopoietic stem cell self-renewal rate, we are able to estimate fate decision probabilities and to compare structurally distinct models of hematopoiesis using cross validation. These estimates of fate decision probabilities and our model selection results should help biologists compare competing hypotheses about how progenitor cells differentiate. The methodology is transferrable to a large class of stochastic compartmental and multi-type branching models, commonly used in studies of cancer progression, epidemiology and many other fields.




nc

Estimating abundance from multiple sampling capture-recapture data via a multi-state multi-period stopover model

Hannah Worthington, Rachel McCrea, Ruth King, Richard Griffiths.

Source: The Annals of Applied Statistics, Volume 13, Number 4, 2043--2064.

Abstract:
Capture-recapture studies often involve collecting data on numerous capture occasions over a relatively short period of time. For many study species this process is repeated, for example, annually, resulting in capture information spanning multiple sampling periods. To account for the different temporal scales, the robust design class of models have traditionally been applied providing a framework in which to analyse all of the available capture data in a single likelihood expression. However, these models typically require strong constraints, either the assumption of closure within a sampling period (the closed robust design) or conditioning on the number of individuals captured within a sampling period (the open robust design). For real datasets these assumptions may not be appropriate. We develop a general modelling structure that requires neither assumption by explicitly modelling the movement of individuals into the population both within and between the sampling periods, which in turn permits the estimation of abundance within a single consistent framework. The flexibility of the novel model structure is further demonstrated by including the computationally challenging case of multi-state data where there is individual time-varying discrete covariate information. We derive an efficient likelihood expression for the new multi-state multi-period stopover model using the hidden Markov model framework. We demonstrate the significant improvement in parameter estimation using our new modelling approach in terms of both the multi-period and multi-state components through both a simulation study and a real dataset relating to the protected species of great crested newts, Triturus cristatus .




nc

Bayesian methods for multiple mediators: Relating principal stratification and causal mediation in the analysis of power plant emission controls

Chanmin Kim, Michael J. Daniels, Joseph W. Hogan, Christine Choirat, Corwin M. Zigler.

Source: The Annals of Applied Statistics, Volume 13, Number 3, 1927--1956.

Abstract:
Emission control technologies installed on power plants are a key feature of many air pollution regulations in the US. While such regulations are predicated on the presumed relationships between emissions, ambient air pollution and human health, many of these relationships have never been empirically verified. The goal of this paper is to develop new statistical methods to quantify these relationships. We frame this problem as one of mediation analysis to evaluate the extent to which the effect of a particular control technology on ambient pollution is mediated through causal effects on power plant emissions. Since power plants emit various compounds that contribute to ambient pollution, we develop new methods for multiple intermediate variables that are measured contemporaneously, may interact with one another, and may exhibit joint mediating effects. Specifically, we propose new methods leveraging two related frameworks for causal inference in the presence of mediating variables: principal stratification and causal mediation analysis. We define principal effects based on multiple mediators, and also introduce a new decomposition of the total effect of an intervention on ambient pollution into the natural direct effect and natural indirect effects for all combinations of mediators. Both approaches are anchored to the same observed-data models, which we specify with Bayesian nonparametric techniques. We provide assumptions for estimating principal causal effects, then augment these with an additional assumption required for causal mediation analysis. The two analyses, interpreted in tandem, provide the first empirical investigation of the presumed causal pathways that motivate important air quality regulatory policies.




nc

Approximate inference for constructing astronomical catalogs from images

Jeffrey Regier, Andrew C. Miller, David Schlegel, Ryan P. Adams, Jon D. McAuliffe, Prabhat.

Source: The Annals of Applied Statistics, Volume 13, Number 3, 1884--1926.

Abstract:
We present a new, fully generative model for constructing astronomical catalogs from optical telescope image sets. Each pixel intensity is treated as a random variable with parameters that depend on the latent properties of stars and galaxies. These latent properties are themselves modeled as random. We compare two procedures for posterior inference. One procedure is based on Markov chain Monte Carlo (MCMC) while the other is based on variational inference (VI). The MCMC procedure excels at quantifying uncertainty, while the VI procedure is 1000 times faster. On a supercomputer, the VI procedure efficiently uses 665,000 CPU cores to construct an astronomical catalog from 50 terabytes of images in 14.6 minutes, demonstrating the scaling characteristics necessary to construct catalogs for upcoming astronomical surveys.




nc

Incorporating conditional dependence in latent class models for probabilistic record linkage: Does it matter?

Huiping Xu, Xiaochun Li, Changyu Shen, Siu L. Hui, Shaun Grannis.

Source: The Annals of Applied Statistics, Volume 13, Number 3, 1753--1790.

Abstract:
The conditional independence assumption of the Felligi and Sunter (FS) model in probabilistic record linkage is often violated when matching real-world data. Ignoring conditional dependence has been shown to seriously bias parameter estimates. However, in record linkage, the ultimate goal is to inform the match status of record pairs and therefore, record linkage algorithms should be evaluated in terms of matching accuracy. In the literature, more flexible models have been proposed to relax the conditional independence assumption, but few studies have assessed whether such accommodations improve matching accuracy. In this paper, we show that incorporating the conditional dependence appropriately yields comparable or improved matching accuracy than the FS model using three real-world data linkage examples. Through a simulation study, we further investigate when conditional dependence models provide improved matching accuracy. Our study shows that the FS model is generally robust to the conditional independence assumption and provides comparable matching accuracy as the more complex conditional dependence models. However, when the match prevalence approaches 0% or 100% and conditional dependence exists in the dominating class, it is necessary to address conditional dependence as the FS model produces suboptimal matching accuracy. The need to address conditional dependence becomes less important when highly discriminating fields are used. Our simulation study also shows that conditional dependence models with misspecified dependence structure could produce less accurate record matching than the FS model and therefore we caution against the blind use of conditional dependence models.




nc

A hierarchical Bayesian model for single-cell clustering using RNA-sequencing data

Yiyi Liu, Joshua L. Warren, Hongyu Zhao.

Source: The Annals of Applied Statistics, Volume 13, Number 3, 1733--1752.

Abstract:
Understanding the heterogeneity of cells is an important biological question. The development of single-cell RNA-sequencing (scRNA-seq) technology provides high resolution data for such inquiry. A key challenge in scRNA-seq analysis is the high variability of measured RNA expression levels and frequent dropouts (missing values) due to limited input RNA compared to bulk RNA-seq measurement. Existing clustering methods do not perform well for these noisy and zero-inflated scRNA-seq data. In this manuscript we propose a Bayesian hierarchical model, called BasClu, to appropriately characterize important features of scRNA-seq data in order to more accurately cluster cells. We demonstrate the effectiveness of our method with extensive simulation studies and applications to three real scRNA-seq datasets.




nc

Sequential decision model for inference and prediction on nonuniform hypergraphs with application to knot matching from computational forestry

Seong-Hwan Jun, Samuel W. K. Wong, James V. Zidek, Alexandre Bouchard-Côté.

Source: The Annals of Applied Statistics, Volume 13, Number 3, 1678--1707.

Abstract:
In this paper, we consider the knot-matching problem arising in computational forestry. The knot-matching problem is an important problem that needs to be solved to advance the state of the art in automatic strength prediction of lumber. We show that this problem can be formulated as a quadripartite matching problem and develop a sequential decision model that admits efficient parameter estimation along with a sequential Monte Carlo sampler on graph matching that can be utilized for rapid sampling of graph matching. We demonstrate the effectiveness of our methods on 30 manually annotated boards and present findings from various simulation studies to provide further evidence supporting the efficacy of our methods.




nc

RCRnorm: An integrated system of random-coefficient hierarchical regression models for normalizing NanoString nCounter data

Gaoxiang Jia, Xinlei Wang, Qiwei Li, Wei Lu, Ximing Tang, Ignacio Wistuba, Yang Xie.

Source: The Annals of Applied Statistics, Volume 13, Number 3, 1617--1647.

Abstract:
Formalin-fixed paraffin-embedded (FFPE) samples have great potential for biomarker discovery, retrospective studies and diagnosis or prognosis of diseases. Their application, however, is hindered by the unsatisfactory performance of traditional gene expression profiling techniques on damaged RNAs. NanoString nCounter platform is well suited for profiling of FFPE samples and measures gene expression with high sensitivity which may greatly facilitate realization of scientific and clinical values of FFPE samples. However, methodological development for normalization, a critical step when analyzing this type of data, is far behind. Existing methods designed for the platform use information from different types of internal controls separately and rely on an overly-simplified assumption that expression of housekeeping genes is constant across samples for global scaling. Thus, these methods are not optimized for the nCounter system, not mentioning that they were not developed for FFPE samples. We construct an integrated system of random-coefficient hierarchical regression models to capture main patterns and characteristics observed from NanoString data of FFPE samples and develop a Bayesian approach to estimate parameters and normalize gene expression across samples. Our method, labeled RCRnorm, incorporates information from all aspects of the experimental design and simultaneously removes biases from various sources. It eliminates the unrealistic assumption on housekeeping genes and offers great interpretability. Furthermore, it is applicable to freshly frozen or like samples that can be generally viewed as a reduced case of FFPE samples. Simulation and applications showed the superior performance of RCRnorm.




nc

Modeling seasonality and serial dependence of electricity price curves with warping functional autoregressive dynamics

Ying Chen, J. S. Marron, Jiejie Zhang.

Source: The Annals of Applied Statistics, Volume 13, Number 3, 1590--1616.

Abstract:
Electricity prices are high dimensional, serially dependent and have seasonal variations. We propose a Warping Functional AutoRegressive (WFAR) model that simultaneously accounts for the cross time-dependence and seasonal variations of the large dimensional data. In particular, electricity price curves are obtained by smoothing over the $24$ discrete hourly prices on each day. In the functional domain, seasonal phase variations are separated from level amplitude changes in a warping process with the Fisher–Rao distance metric, and the aligned (season-adjusted) electricity price curves are modeled in the functional autoregression framework. In a real application, the WFAR model provides superior out-of-sample forecast accuracy in both a normal functioning market, Nord Pool, and an extreme situation, the California market. The forecast performance as well as the relative accuracy improvement are stable for different markets and different time periods.




nc

The classification permutation test: A flexible approach to testing for covariate imbalance in observational studies

Johann Gagnon-Bartsch, Yotam Shem-Tov.

Source: The Annals of Applied Statistics, Volume 13, Number 3, 1464--1483.

Abstract:
The gold standard for identifying causal relationships is a randomized controlled experiment. In many applications in the social sciences and medicine, the researcher does not control the assignment mechanism and instead may rely upon natural experiments or matching methods as a substitute to experimental randomization. The standard testable implication of random assignment is covariate balance between the treated and control units. Covariate balance is commonly used to validate the claim of as good as random assignment. We propose a new nonparametric test of covariate balance. Our Classification Permutation Test (CPT) is based on a combination of classification methods (e.g., random forests) with Fisherian permutation inference. We revisit four real data examples and present Monte Carlo power simulations to demonstrate the applicability of the CPT relative to other nonparametric tests of equality of multivariate distributions.




nc

Identifying multiple changes for a functional data sequence with application to freeway traffic segmentation

Jeng-Min Chiou, Yu-Ting Chen, Tailen Hsing.

Source: The Annals of Applied Statistics, Volume 13, Number 3, 1430--1463.

Abstract:
Motivated by the study of road segmentation partitioned by shifts in traffic conditions along a freeway, we introduce a two-stage procedure, Dynamic Segmentation and Backward Elimination (DSBE), for identifying multiple changes in the mean functions for a sequence of functional data. The Dynamic Segmentation procedure searches for all possible changepoints using the derived global optimality criterion coupled with the local strategy of at-most-one-changepoint by dividing the entire sequence into individual subsequences that are recursively adjusted until convergence. Then, the Backward Elimination procedure verifies these changepoints by iteratively testing the unlikely changes to ensure their significance until no more changepoints can be removed. By combining the local strategy with the global optimal changepoint criterion, the DSBE algorithm is conceptually simple and easy to implement and performs better than the binary segmentation-based approach at detecting small multiple changes. The consistency property of the changepoint estimators and the convergence of the algorithm are proved. We apply DSBE to detect changes in traffic streams through real freeway traffic data. The practical performance of DSBE is also investigated through intensive simulation studies for various scenarios.




nc

Imputation and post-selection inference in models with missing data: An application to colorectal cancer surveillance guidelines

Lin Liu, Yuqi Qiu, Loki Natarajan, Karen Messer.

Source: The Annals of Applied Statistics, Volume 13, Number 3, 1370--1396.

Abstract:
It is common to encounter missing data among the potential predictor variables in the setting of model selection. For example, in a recent study we attempted to improve the US guidelines for risk stratification after screening colonoscopy ( Cancer Causes Control 27 (2016) 1175–1185), with the aim to help reduce both overuse and underuse of follow-on surveillance colonoscopy. The goal was to incorporate selected additional informative variables into a neoplasia risk-prediction model, going beyond the three currently established risk factors, using a large dataset pooled from seven different prospective studies in North America. Unfortunately, not all candidate variables were collected in all studies, so that one or more important potential predictors were missing on over half of the subjects. Thus, while variable selection was a main focus of the study, it was necessary to address the substantial amount of missing data. Multiple imputation can effectively address missing data, and there are also good approaches to incorporate the variable selection process into model-based confidence intervals. However, there is not consensus on appropriate methods of inference which address both issues simultaneously. Our goal here is to study the properties of model-based confidence intervals in the setting of imputation for missing data followed by variable selection. We use both simulation and theory to compare three approaches to such post-imputation-selection inference: a multiple-imputation approach based on Rubin’s Rules for variance estimation ( Comput. Statist. Data Anal. 71 (2014) 758–770); a single imputation-selection followed by bootstrap percentile confidence intervals; and a new bootstrap model-averaging approach presented here, following Efron ( J. Amer. Statist. Assoc. 109 (2014) 991–1007). We investigate relative strengths and weaknesses of each method. The “Rubin’s Rules” multiple imputation estimator can have severe undercoverage, and is not recommended. The imputation-selection estimator with bootstrap percentile confidence intervals works well. The bootstrap-model-averaged estimator, with the “Efron’s Rules” estimated variance, may be preferred if the true effect sizes are moderate. We apply these results to the colorectal neoplasia risk-prediction problem which motivated the present work.




nc

Frequency domain theory for functional time series: Variance decomposition and an invariance principle

Piotr Kokoszka, Neda Mohammadi Jouzdani.

Source: Bernoulli, Volume 26, Number 3, 2383--2399.

Abstract:
This paper is concerned with frequency domain theory for functional time series, which are temporally dependent sequences of functions in a Hilbert space. We consider a variance decomposition, which is more suitable for such a data structure than the variance decomposition based on the Karhunen–Loéve expansion. The decomposition we study uses eigenvalues of spectral density operators, which are functional analogs of the spectral density of a stationary scalar time series. We propose estimators of the variance components and derive convergence rates for their mean square error as well as their asymptotic normality. The latter is derived from a frequency domain invariance principle for the estimators of the spectral density operators. This principle is established for a broad class of linear time series models. It is a main contribution of the paper.




nc

Convergence of persistence diagrams for topological crackle

Takashi Owada, Omer Bobrowski.

Source: Bernoulli, Volume 26, Number 3, 2275--2310.

Abstract:
In this paper, we study the persistent homology associated with topological crackle generated by distributions with an unbounded support. Persistent homology is a topological and algebraic structure that tracks the creation and destruction of topological cycles (generalizations of loops or holes) in different dimensions. Topological crackle is a term that refers to topological cycles generated by random points far away from the bulk of other points, when the support is unbounded. We establish weak convergence results for persistence diagrams – a point process representation for persistent homology, where each topological cycle is represented by its $({mathit{birth},mathit{death}})$ coordinates. In this work, we treat persistence diagrams as random closed sets, so that the resulting weak convergence is defined in terms of the Fell topology. Using this framework, we show that the limiting persistence diagrams can be divided into two parts. The first part is a deterministic limit containing a densely-growing number of persistence pairs with a shorter lifespan. The second part is a two-dimensional Poisson process, representing persistence pairs with a longer lifespan.




nc

Concentration of the spectral norm of Erdős–Rényi random graphs

Gábor Lugosi, Shahar Mendelson, Nikita Zhivotovskiy.

Source: Bernoulli, Volume 26, Number 3, 2253--2274.

Abstract:
We present results on the concentration properties of the spectral norm $|A_{p}|$ of the adjacency matrix $A_{p}$ of an Erdős–Rényi random graph $G(n,p)$. First, we consider the Erdős–Rényi random graph process and prove that $|A_{p}|$ is uniformly concentrated over the range $pin[Clog n/n,1]$. The analysis is based on delocalization arguments, uniform laws of large numbers, together with the entropy method to prove concentration inequalities. As an application of our techniques, we prove sharp sub-Gaussian moment inequalities for $|A_{p}|$ for all $pin[clog^{3}n/n,1]$ that improve the general bounds of Alon, Krivelevich, and Vu ( Israel J. Math. 131 (2002) 259–267) and some of the more recent results of Erdős et al. ( Ann. Probab. 41 (2013) 2279–2375). Both results are consistent with the asymptotic result of Füredi and Komlós ( Combinatorica 1 (1981) 233–241) that holds for fixed $p$ as $n oinfty$.




nc

Directional differentiability for supremum-type functionals: Statistical applications

Javier Cárcamo, Antonio Cuevas, Luis-Alberto Rodríguez.

Source: Bernoulli, Volume 26, Number 3, 2143--2175.

Abstract:
We show that various functionals related to the supremum of a real function defined on an arbitrary set or a measure space are Hadamard directionally differentiable. We specifically consider the supremum norm, the supremum, the infimum, and the amplitude of a function. The (usually non-linear) derivatives of these maps adopt simple expressions under suitable assumptions on the underlying space. As an application, we improve and extend to the multidimensional case the results in Raghavachari ( Ann. Statist. 1 (1973) 67–73) regarding the limiting distributions of Kolmogorov–Smirnov type statistics under the alternative hypothesis. Similar results are obtained for analogous statistics associated with copulas. We additionally solve an open problem about the Berk–Jones statistic proposed by Jager and Wellner (In A Festschrift for Herman Rubin (2004) 319–331 IMS). Finally, the asymptotic distribution of maximum mean discrepancies over Donsker classes of functions is derived.




nc

Noncommutative Lebesgue decomposition and contiguity with applications in quantum statistics

Akio Fujiwara, Koichi Yamagata.

Source: Bernoulli, Volume 26, Number 3, 2105--2142.

Abstract:
We herein develop a theory of contiguity in the quantum domain based upon a novel quantum analogue of the Lebesgue decomposition. The theory thus formulated is pertinent to the weak quantum local asymptotic normality introduced in the previous paper [Yamagata, Fujiwara, and Gill, Ann. Statist. 41 (2013) 2197–2217], yielding substantial enlargement of the scope of quantum statistics.




nc

First-order covariance inequalities via Stein’s method

Marie Ernst, Gesine Reinert, Yvik Swan.

Source: Bernoulli, Volume 26, Number 3, 2051--2081.

Abstract:
We propose probabilistic representations for inverse Stein operators (i.e., solutions to Stein equations) under general conditions; in particular, we deduce new simple expressions for the Stein kernel. These representations allow to deduce uniform and nonuniform Stein factors (i.e., bounds on solutions to Stein equations) and lead to new covariance identities expressing the covariance between arbitrary functionals of an arbitrary univariate target in terms of a weighted covariance of the derivatives of the functionals. Our weights are explicit, easily computable in most cases and expressed in terms of objects familiar within the context of Stein’s method. Applications of the Cauchy–Schwarz inequality to these weighted covariance identities lead to sharp upper and lower covariance bounds and, in particular, weighted Poincaré inequalities. Many examples are given and, in particular, classical variance bounds due to Klaassen, Brascamp and Lieb or Otto and Menz are corollaries. Connections with more recent literature are also detailed.




nc

Matching strings in encoded sequences

Adriana Coutinho, Rodrigo Lambert, Jérôme Rousseau.

Source: Bernoulli, Volume 26, Number 3, 2021--2050.

Abstract:
We investigate the length of the longest common substring for encoded sequences and its asymptotic behaviour. The main result is a strong law of large numbers for a re-scaled version of this quantity, which presents an explicit relation with the Rényi entropy of the source. We apply this result to the zero-inflated contamination model and the stochastic scrabble. In the case of dynamical systems, this problem is equivalent to the shortest distance between two observed orbits and its limiting relationship with the correlation dimension of the pushforward measure. An extension to the shortest distance between orbits for random dynamical systems is also provided.




nc

On estimation of nonsmooth functionals of sparse normal means

O. Collier, L. Comminges, A.B. Tsybakov.

Source: Bernoulli, Volume 26, Number 3, 1989--2020.

Abstract:
We study the problem of estimation of $N_{gamma }( heta )=sum_{i=1}^{d}| heta _{i}|^{gamma }$ for $gamma >0$ and of the $ell _{gamma }$-norm of $ heta $ for $gamma ge 1$ based on the observations $y_{i}= heta _{i}+varepsilon xi _{i}$, $i=1,ldots,d$, where $ heta =( heta _{1},dots , heta _{d})$ are unknown parameters, $varepsilon >0$ is known, and $xi _{i}$ are i.i.d. standard normal random variables. We find the non-asymptotic minimax rate for estimation of these functionals on the class of $s$-sparse vectors $ heta $ and we propose estimators achieving this rate.




nc

On sampling from a log-concave density using kinetic Langevin diffusions

Arnak S. Dalalyan, Lionel Riou-Durand.

Source: Bernoulli, Volume 26, Number 3, 1956--1988.

Abstract:
Langevin diffusion processes and their discretizations are often used for sampling from a target density. The most convenient framework for assessing the quality of such a sampling scheme corresponds to smooth and strongly log-concave densities defined on $mathbb{R}^{p}$. The present work focuses on this framework and studies the behavior of the Monte Carlo algorithm based on discretizations of the kinetic Langevin diffusion. We first prove the geometric mixing property of the kinetic Langevin diffusion with a mixing rate that is optimal in terms of its dependence on the condition number. We then use this result for obtaining improved guarantees of sampling using the kinetic Langevin Monte Carlo method, when the quality of sampling is measured by the Wasserstein distance. We also consider the situation where the Hessian of the log-density of the target distribution is Lipschitz-continuous. In this case, we introduce a new discretization of the kinetic Langevin diffusion and prove that this leads to a substantial improvement of the upper bound on the sampling error measured in Wasserstein distance.




nc

Busemann functions and semi-infinite O’Connell–Yor polymers

Tom Alberts, Firas Rassoul-Agha, Mackenzie Simper.

Source: Bernoulli, Volume 26, Number 3, 1927--1955.

Abstract:
We prove that given any fixed asymptotic velocity, the finite length O’Connell–Yor polymer has an infinite length limit satisfying the law of large numbers with this velocity. By a Markovian property of the quenched polymer this reduces to showing the existence of Busemann functions : almost sure limits of ratios of random point-to-point partition functions. The key ingredients are the Burke property of the O’Connell–Yor polymer and a comparison lemma for the ratios of partition functions. We also show the existence of infinite length limits in the Brownian last passage percolation model.




nc

Functional weak limit theorem for a local empirical process of non-stationary time series and its application

Ulrike Mayer, Henryk Zähle, Zhou Zhou.

Source: Bernoulli, Volume 26, Number 3, 1891--1911.

Abstract:
We derive a functional weak limit theorem for a local empirical process of a wide class of piece-wise locally stationary (PLS) time series. The latter result is applied to derive the asymptotics of weighted empirical quantiles and weighted V-statistics of non-stationary time series. The class of admissible underlying time series is illustrated by means of PLS linear processes and PLS ARCH processes.




nc

Optimal functional supervised classification with separation condition

Sébastien Gadat, Sébastien Gerchinovitz, Clément Marteau.

Source: Bernoulli, Volume 26, Number 3, 1797--1831.

Abstract:
We consider the binary supervised classification problem with the Gaussian functional model introduced in ( Math. Methods Statist. 22 (2013) 213–225). Taking advantage of the Gaussian structure, we design a natural plug-in classifier and derive a family of upper bounds on its worst-case excess risk over Sobolev spaces. These bounds are parametrized by a separation distance quantifying the difficulty of the problem, and are proved to be optimal (up to logarithmic factors) through matching minimax lower bounds. Using the recent works of (In Advances in Neural Information Processing Systems (2014) 3437–3445 Curran Associates) and ( Ann. Statist. 44 (2016) 982–1009), we also derive a logarithmic lower bound showing that the popular $k$-nearest neighbors classifier is far from optimality in this specific functional setting.




nc

Influence of the seed in affine preferential attachment trees

David Corlin Marchand, Ioan Manolescu.

Source: Bernoulli, Volume 26, Number 3, 1665--1705.

Abstract:
We study randomly growing trees governed by the affine preferential attachment rule. Starting with a seed tree $S$, vertices are attached one by one, each linked by an edge to a random vertex of the current tree, chosen with a probability proportional to an affine function of its degree. This yields a one-parameter family of preferential attachment trees $(T_{n}^{S})_{ngeq |S|}$, of which the linear model is a particular case. Depending on the choice of the parameter, the power-laws governing the degrees in $T_{n}^{S}$ have different exponents. We study the problem of the asymptotic influence of the seed $S$ on the law of $T_{n}^{S}$. We show that, for any two distinct seeds $S$ and $S'$, the laws of $T_{n}^{S}$ and $T_{n}^{S'}$ remain at uniformly positive total-variation distance as $n$ increases. This is a continuation of Curien et al. ( J. Éc. Polytech. Math. 2 (2015) 1–34), which in turn was inspired by a conjecture of Bubeck et al. ( IEEE Trans. Netw. Sci. Eng. 2 (2015) 30–39). The technique developed here is more robust than previous ones and is likely to help in the study of more general attachment mechanisms.




nc

On the probability distribution of the local times of diagonally operator-self-similar Gaussian fields with stationary increments

Kamran Kalbasi, Thomas Mountford.

Source: Bernoulli, Volume 26, Number 2, 1504--1534.

Abstract:
In this paper, we study the local times of vector-valued Gaussian fields that are ‘diagonally operator-self-similar’ and whose increments are stationary. Denoting the local time of such a Gaussian field around the spatial origin and over the temporal unit hypercube by $Z$, we show that there exists $lambdain(0,1)$ such that under some quite weak conditions, $lim_{n ightarrow+infty}frac{sqrt[n]{mathbb{E}(Z^{n})}}{n^{lambda}}$ and $lim_{x ightarrow+infty}frac{-logmathbb{P}(Z>x)}{x^{frac{1}{lambda}}}$ both exist and are strictly positive (possibly $+infty$). Moreover, we show that if the underlying Gaussian field is ‘strongly locally nondeterministic’, the above limits will be finite as well. These results are then applied to establish similar statements for the intersection local times of diagonally operator-self-similar Gaussian fields with stationary increments.




nc

The moduli of non-differentiability for Gaussian random fields with stationary increments

Wensheng Wang, Zhonggen Su, Yimin Xiao.

Source: Bernoulli, Volume 26, Number 2, 1410--1430.

Abstract:
We establish the exact moduli of non-differentiability of Gaussian random fields with stationary increments. As an application of the result, we prove that the uniform Hölder condition for the maximum local times of Gaussian random fields with stationary increments obtained in Xiao (1997) is optimal. These results are applicable to fractional Riesz–Bessel processes and stationary Gaussian random fields in the Matérn and Cauchy classes.




nc

On stability of traveling wave solutions for integro-differential equations related to branching Markov processes

Pasha Tkachov.

Source: Bernoulli, Volume 26, Number 2, 1354--1380.

Abstract:
The aim of this paper is to prove stability of traveling waves for integro-differential equations connected with branching Markov processes. In other words, the limiting law of the left-most particle of a (time-continuous) branching Markov process with a Lévy non-branching part is demonstrated. The key idea is to approximate the branching Markov process by a branching random walk and apply the result of Aïdékon [ Ann. Probab. 41 (2013) 1362–1426] on the limiting law of the latter one.




nc

Rates of convergence in de Finetti’s representation theorem, and Hausdorff moment problem

Emanuele Dolera, Stefano Favaro.

Source: Bernoulli, Volume 26, Number 2, 1294--1322.

Abstract:
Given a sequence ${X_{n}}_{ngeq 1}$ of exchangeable Bernoulli random variables, the celebrated de Finetti representation theorem states that $frac{1}{n}sum_{i=1}^{n}X_{i}stackrel{a.s.}{longrightarrow }Y$ for a suitable random variable $Y:Omega ightarrow [0,1]$ satisfying $mathsf{P}[X_{1}=x_{1},dots ,X_{n}=x_{n}|Y]=Y^{sum_{i=1}^{n}x_{i}}(1-Y)^{n-sum_{i=1}^{n}x_{i}}$. In this paper, we study the rate of convergence in law of $frac{1}{n}sum_{i=1}^{n}X_{i}$ to $Y$ under the Kolmogorov distance. After showing that a rate of the type of $1/n^{alpha }$ can be obtained for any index $alpha in (0,1]$, we find a sufficient condition on the distribution of $Y$ for the achievement of the optimal rate of convergence, that is $1/n$. Besides extending and strengthening recent results under the weaker Wasserstein distance, our main result weakens the regularity hypotheses on $Y$ in the context of the Hausdorff moment problem.




nc

Characterization of probability distribution convergence in Wasserstein distance by $L^{p}$-quantization error function

Yating Liu, Gilles Pagès.

Source: Bernoulli, Volume 26, Number 2, 1171--1204.

Abstract:
We establish conditions to characterize probability measures by their $L^{p}$-quantization error functions in both $mathbb{R}^{d}$ and Hilbert settings. This characterization is two-fold: static (identity of two distributions) and dynamic (convergence for the $L^{p}$-Wasserstein distance). We first propose a criterion on the quantization level $N$, valid for any norm on $mathbb{R}^{d}$ and any order $p$ based on a geometrical approach involving the Voronoï diagram. Then, we prove that in the $L^{2}$-case on a (separable) Hilbert space, the condition on the level $N$ can be reduced to $N=2$, which is optimal. More quantization based characterization cases in dimension 1 and a discussion of the completeness of a distance defined by the quantization error function can be found at the end of this paper.




nc

Interacting reinforced stochastic processes: Statistical inference based on the weighted empirical means

Giacomo Aletti, Irene Crimaldi, Andrea Ghiglietti.

Source: Bernoulli, Volume 26, Number 2, 1098--1138.

Abstract:
This work deals with a system of interacting reinforced stochastic processes , where each process $X^{j}=(X_{n,j})_{n}$ is located at a vertex $j$ of a finite weighted directed graph, and it can be interpreted as the sequence of “actions” adopted by an agent $j$ of the network. The interaction among the dynamics of these processes depends on the weighted adjacency matrix $W$ associated to the underlying graph: indeed, the probability that an agent $j$ chooses a certain action depends on its personal “inclination” $Z_{n,j}$ and on the inclinations $Z_{n,h}$, with $h eq j$, of the other agents according to the entries of $W$. The best known example of reinforced stochastic process is the Pólya urn. The present paper focuses on the weighted empirical means $N_{n,j}=sum_{k=1}^{n}q_{n,k}X_{k,j}$, since, for example, the current experience is more important than the past one in reinforced learning. Their almost sure synchronization and some central limit theorems in the sense of stable convergence are proven. The new approach with weighted means highlights the key points in proving some recent results for the personal inclinations $Z^{j}=(Z_{n,j})_{n}$ and for the empirical means $overline{X}^{j}=(sum_{k=1}^{n}X_{k,j}/n)_{n}$ given in recent papers (e.g. Aletti, Crimaldi and Ghiglietti (2019), Ann. Appl. Probab. 27 (2017) 3787–3844, Crimaldi et al. Stochastic Process. Appl. 129 (2019) 70–101). In fact, with a more sophisticated decomposition of the considered processes, we can understand how the different convergence rates of the involved stochastic processes combine. From an application point of view, we provide confidence intervals for the common limit inclination of the agents and a test statistics to make inference on the matrix $W$, based on the weighted empirical means. In particular, we answer a research question posed in Aletti, Crimaldi and Ghiglietti (2019).




nc

A Bayesian nonparametric approach to log-concave density estimation

Ester Mariucci, Kolyan Ray, Botond Szabó.

Source: Bernoulli, Volume 26, Number 2, 1070--1097.

Abstract:
The estimation of a log-concave density on $mathbb{R}$ is a canonical problem in the area of shape-constrained nonparametric inference. We present a Bayesian nonparametric approach to this problem based on an exponentiated Dirichlet process mixture prior and show that the posterior distribution converges to the log-concave truth at the (near-) minimax rate in Hellinger distance. Our proof proceeds by establishing a general contraction result based on the log-concave maximum likelihood estimator that prevents the need for further metric entropy calculations. We further present computationally more feasible approximations and both an empirical and hierarchical Bayes approach. All priors are illustrated numerically via simulations.




nc

A unified principled framework for resampling based on pseudo-populations: Asymptotic theory

Pier Luigi Conti, Daniela Marella, Fulvia Mecatti, Federico Andreis.

Source: Bernoulli, Volume 26, Number 2, 1044--1069.

Abstract:
In this paper, a class of resampling techniques for finite populations under $pi $ps sampling design is introduced. The basic idea on which they rest is a two-step procedure consisting in: (i) constructing a “pseudo-population” on the basis of sample data; (ii) drawing a sample from the predicted population according to an appropriate resampling design. From a logical point of view, this approach is essentially based on the plug-in principle by Efron, at the “sampling design level”. Theoretical justifications based on large sample theory are provided. New approaches to construct pseudo populations based on various forms of calibrations are proposed. Finally, a simulation study is performed.




nc

Degeneracy in sparse ERGMs with functions of degrees as sufficient statistics

Sumit Mukherjee.

Source: Bernoulli, Volume 26, Number 2, 1016--1043.

Abstract:
A sufficient criterion for “non-degeneracy” is given for Exponential Random Graph Models on sparse graphs with sufficient statistics which are functions of the degree sequence. This criterion explains why statistics such as alternating $k$-star are non-degenerate, whereas subgraph counts are degenerate. It is further shown that this criterion is “almost” tight. Existence of consistent estimates is then proved for non-degenerate Exponential Random Graph Models.




nc

Distances and large deviations in the spatial preferential attachment model

Christian Hirsch, Christian Mönch.

Source: Bernoulli, Volume 26, Number 2, 927--947.

Abstract:
This paper considers two asymptotic properties of a spatial preferential-attachment model introduced by E. Jacob and P. Mörters (In Algorithms and Models for the Web Graph (2013) 14–25 Springer). First, in a regime of strong linear reinforcement, we show that typical distances are at most of doubly-logarithmic order. Second, we derive a large deviation principle for the empirical neighbourhood structure and express the rate function as solution to an entropy minimisation problem in the space of stationary marked point processes.




nc

Convergence of the age structure of general schemes of population processes

Jie Yen Fan, Kais Hamza, Peter Jagers, Fima Klebaner.

Source: Bernoulli, Volume 26, Number 2, 893--926.

Abstract:
We consider a family of general branching processes with reproduction parameters depending on the age of the individual as well as the population age structure and a parameter $K$, which may represent the carrying capacity. These processes are Markovian in the age structure. In a previous paper ( Proc. Steklov Inst. Math. 282 (2013) 90–105), the Law of Large Numbers as $K o infty $ was derived. Here we prove the central limit theorem, namely the weak convergence of the fluctuation processes in an appropriate Skorokhod space. We also show that the limit is driven by a stochastic partial differential equation.




nc

Recurrence of multidimensional persistent random walks. Fourier and series criteria

Peggy Cénac, Basile de Loynes, Yoann Offret, Arnaud Rousselle.

Source: Bernoulli, Volume 26, Number 2, 858--892.

Abstract:
The recurrence and transience of persistent random walks built from variable length Markov chains are investigated. It turns out that these stochastic processes can be seen as Lévy walks for which the persistence times depend on some internal Markov chain: they admit Markov random walk skeletons. A recurrence versus transience dichotomy is highlighted. Assuming the positive recurrence of the driving chain, a sufficient Fourier criterion for the recurrence, close to the usual Chung–Fuchs one, is given and a series criterion is derived. The key tool is the Nagaev–Guivarc’h method. Finally, we focus on particular two-dimensional persistent random walks, including directionally reinforced random walks, for which necessary and sufficient Fourier and series criteria are obtained. Inspired by ( Adv. Math. 208 (2007) 680–698), we produce a genuine counterexample to the conjecture of ( Adv. Math. 117 (1996) 239–252). As for the one-dimensional case studied in ( J. Theoret. Probab. 31 (2018) 232–243), it is easier for a persistent random walk than its skeleton to be recurrent. However, such examples are much more difficult to exhibit in the higher dimensional context. These results are based on a surprisingly novel – to our knowledge – upper bound for the Lévy concentration function associated with symmetric distributions.




nc

Convergence and concentration of empirical measures under Wasserstein distance in unbounded functional spaces

Jing Lei.

Source: Bernoulli, Volume 26, Number 1, 767--798.

Abstract:
We provide upper bounds of the expected Wasserstein distance between a probability measure and its empirical version, generalizing recent results for finite dimensional Euclidean spaces and bounded functional spaces. Such a generalization can cover Euclidean spaces with large dimensionality, with the optimal dependence on the dimensionality. Our method also covers the important case of Gaussian processes in separable Hilbert spaces, with rate-optimal upper bounds for functional data distributions whose coordinates decay geometrically or polynomially. Moreover, our bounds of the expected value can be combined with mean-concentration results to yield improved exponential tail probability bounds for the Wasserstein error of empirical measures under Bernstein-type or log Sobolev-type conditions.




nc

Robust modifications of U-statistics and applications to covariance estimation problems

Stanislav Minsker, Xiaohan Wei.

Source: Bernoulli, Volume 26, Number 1, 694--727.

Abstract:
Let $Y$ be a $d$-dimensional random vector with unknown mean $mu $ and covariance matrix $Sigma $. This paper is motivated by the problem of designing an estimator of $Sigma $ that admits exponential deviation bounds in the operator norm under minimal assumptions on the underlying distribution, such as existence of only 4th moments of the coordinates of $Y$. To address this problem, we propose robust modifications of the operator-valued U-statistics, obtain non-asymptotic guarantees for their performance, and demonstrate the implications of these results to the covariance estimation problem under various structural assumptions.




nc

Weak convergence of quantile and expectile processes under general assumptions

Tobias Zwingmann, Hajo Holzmann.

Source: Bernoulli, Volume 26, Number 1, 323--351.

Abstract:
We show weak convergence of quantile and expectile processes to Gaussian limit processes in the space of bounded functions endowed with an appropriate semimetric which is based on the concepts of epi- and hypo- convergence as introduced in A. Bücher, J. Segers and S. Volgushev (2014), ‘ When Uniform Weak Convergence Fails: Empirical Processes for Dependence Functions and Residuals via Epi- and Hypographs ’, Annals of Statistics 42 . We impose assumptions for which it is known that weak convergence with respect to the supremum norm generally fails to hold. For quantiles, we consider stationary observations, where the marginal distribution function is assumed to be strictly increasing and continuous except for finitely many points and to admit strictly positive – possibly infinite – left- and right-sided derivatives. For expectiles, we focus on independent and identically distributed (i.i.d.) observations. Only a finite second moment and continuity at the boundary points but no further smoothness properties of the distribution function are required. We also show consistency of the bootstrap for this mode of convergence in the i.i.d. case for quantiles and expectiles.




nc

Prediction and estimation consistency of sparse multi-class penalized optimal scoring

Irina Gaynanova.

Source: Bernoulli, Volume 26, Number 1, 286--322.

Abstract:
Sparse linear discriminant analysis via penalized optimal scoring is a successful tool for classification in high-dimensional settings. While the variable selection consistency of sparse optimal scoring has been established, the corresponding prediction and estimation consistency results have been lacking. We bridge this gap by providing probabilistic bounds on out-of-sample prediction error and estimation error of multi-class penalized optimal scoring allowing for diverging number of classes.




nc

Needles and straw in a haystack: Robust confidence for possibly sparse sequences

Eduard Belitser, Nurzhan Nurushev.

Source: Bernoulli, Volume 26, Number 1, 191--225.

Abstract:
In the general signal$+$noise (allowing non-normal, non-independent observations) model, we construct an empirical Bayes posterior which we then use for uncertainty quantification for the unknown, possibly sparse, signal. We introduce a novel excessive bias restriction (EBR) condition, which gives rise to a new slicing of the entire space that is suitable for uncertainty quantification. Under EBR and some mild exchangeable exponential moment condition on the noise, we establish the local (oracle) optimality of the proposed confidence ball. Without EBR, we propose another confidence ball of full coverage, but its radius contains an additional $sigma n^{1/4}$-term. In passing, we also get the local optimal results for estimation , posterior contraction problems, and the problem of weak recovery of sparsity structure . Adaptive minimax results (also for the estimation and posterior contraction problems) over various sparsity classes follow from our local results.




nc

Fuhlbohm family history : a collection of memorabilia of our ancestors and families in Germany, USA, and Australia / by Oscar Fuhlbohm.

Fuhlbohm (Family)




nc

The story of Thomas & Ann Stone family : including Helping Hobart's Orphans, the King's Orphan School for Boys 1831-1836 / Alexander E.H. Stone.

King's Orphan Schools (New Town, Tas.)




nc

Discover Protestant nonconformity in England and Wales / Paul Blake.

Dissenters, Religious -- Great Britain.




nc

No turning back : stories of our ancestors / by David Gambling.

Gambling (Family)