ad

SUMOylation of the transcription factor ZFHX3 at Lys-2806 requires SAE1, UBC9, and PIAS2 and enhances its stability and function in cell proliferation [Protein Synthesis and Degradation]

SUMOylation is a posttranslational modification (PTM) at a lysine residue and is crucial for the proper functions of many proteins, particularly of transcription factors, in various biological processes. Zinc finger homeobox 3 (ZFHX3), also known as AT motif-binding factor 1 (ATBF1), is a large transcription factor that is active in multiple pathological processes, including atrial fibrillation and carcinogenesis, and in circadian regulation and development. We have previously demonstrated that ZFHX3 is SUMOylated at three or more lysine residues. Here, we investigated which enzymes regulate ZFHX3 SUMOylation and whether SUMOylation modulates ZFHX3 stability and function. We found that SUMO1, SUMO2, and SUMO3 each are conjugated to ZFHX3. Multiple lysine residues in ZFHX3 were SUMOylated, but Lys-2806 was the major SUMOylation site, and we also found that it is highly conserved among ZFHX3 orthologs from different animal species. Using molecular analyses, we identified the enzymes that mediate ZFHX3 SUMOylation; these included SUMO1-activating enzyme subunit 1 (SAE1), an E1-activating enzyme; SUMO-conjugating enzyme UBC9 (UBC9), an E2-conjugating enzyme; and protein inhibitor of activated STAT2 (PIAS2), an E3 ligase. Multiple analyses established that both SUMO-specific peptidase 1 (SENP1) and SENP2 deSUMOylate ZFHX3. SUMOylation at Lys-2806 enhanced ZFHX3 stability by interfering with its ubiquitination and proteasomal degradation. Functionally, Lys-2806 SUMOylation enabled ZFHX3-mediated cell proliferation and xenograft tumor growth of the MDA-MB-231 breast cancer cell line. These findings reveal the enzymes involved in, and the functional consequences of, ZFHX3 SUMOylation, insights that may help shed light on ZFHX3's roles in various cellular and pathophysiological processes.




ad

The streptococcal multidomain fibrillar adhesin CshA has an elongated polymeric architecture [Microbiology]

The cell surfaces of many bacteria carry filamentous polypeptides termed adhesins that enable binding to both biotic and abiotic surfaces. Surface adherence is facilitated by the exquisite selectivity of the adhesins for their cognate ligands or receptors and is a key step in niche or host colonization and pathogenicity. Streptococcus gordonii is a primary colonizer of the human oral cavity and an opportunistic pathogen, as well as a leading cause of infective endocarditis in humans. The fibrillar adhesin CshA is an important determinant of S. gordonii adherence, forming peritrichous fibrils on its surface that bind host cells and other microorganisms. CshA possesses a distinctive multidomain architecture comprising an N-terminal target-binding region fused to 17 repeat domains (RDs) that are each ∼100 amino acids long. Here, using structural and biophysical methods, we demonstrate that the intact CshA repeat region (CshA_RD1–17, domains 1–17) forms an extended polymeric monomer in solution. We recombinantly produced a subset of CshA RDs and found that they differ in stability and unfolding behavior. The NMR structure of CshA_RD13 revealed a hitherto unreported all β-fold, flanked by disordered interdomain linkers. These findings, in tandem with complementary hydrodynamic studies of CshA_RD1–17, indicate that this polypeptide possesses a highly unusual dynamic transitory structure characterized by alternating regions of order and disorder. This architecture provides flexibility for the adhesive tip of the CshA fibril to maintain bacterial attachment that withstands shear forces within the human host. It may also help mitigate deleterious folding events between neighboring RDs that share significant structural identity without compromising mechanical stability.




ad

ADAM10 and ADAM17 proteases mediate proinflammatory cytokine-induced and constitutive cleavage of endomucin from the endothelial surface [Membrane Biology]

Contact between inflammatory cells and endothelial cells (ECs) is a crucial step in vascular inflammation. Recently, we demonstrated that the cell-surface level of endomucin (EMCN), a heavily O-glycosylated single-transmembrane sialomucin, interferes with the interactions between inflammatory cells and ECs. We have also shown that, in response to an inflammatory stimulus, EMCN is cleared from the cell surface by an unknown mechanism. In this study, using adenovirus-mediated overexpression of a tagged EMCN in human umbilical vein ECs, we found that treatment with tumor necrosis factor α (TNF-α) or the strong oxidant pervanadate leads to loss of cell-surface EMCN and increases the levels of the C-terminal fragment of EMCN 3- to 4-fold. Furthermore, treatment with the broad-spectrum matrix metalloproteinase inhibitor batimastat (BB94) or inhibition of ADAM metallopeptidase domain 10 (ADAM10) and ADAM17 with two small-molecule inhibitors, GW280264X and GI254023X, or with siRNA significantly reduced basal and TNFα-induced cell-surface EMCN cleavage. Release of the C-terminal fragment of EMCN by TNF-α treatment was blocked by chemical inhibition of ADAM10 alone or in combination with ADAM17. These results indicate that cell-surface EMCN undergoes constitutive cleavage and that TNF-α treatment dramatically increases this cleavage, which is mediated predominantly by ADAM10 and ADAM17. As endothelial cell-surface EMCN attenuates leukocyte–EC interactions during inflammation, we propose that EMCN is a potential therapeutic target to manage vascular inflammation.




ad

A kinesin adapter directly mediates dendritic mRNA localization during neural development in mice [Neurobiology]

Motor protein-based active transport is essential for mRNA localization and local translation in animal cells, yet how mRNA granules interact with motor proteins remains poorly understood. Using an unbiased yeast two–hybrid screen for interactions between murine RNA-binding proteins (RBPs) and motor proteins, here we identified protein interaction with APP tail-1 (PAT1) as a potential direct adapter between zipcode-binding protein 1 (ZBP1, a β-actin RBP) and the kinesin-I motor complex. The amino acid sequence of mouse PAT1 is similar to that of the kinesin light chain (KLC), and we found that PAT1 binds to KLC directly. Studying PAT1 in mouse primary hippocampal neuronal cultures from both sexes and using structured illumination microscopic imaging of these neurons, we observed that brain-derived neurotrophic factor (BDNF) enhances co-localization of dendritic ZBP1 and PAT1 within granules that also contain kinesin-I. PAT1 is essential for BDNF-stimulated neuronal growth cone development and dendritic protrusion formation, and we noted that ZBP1 and PAT1 co-locate along with β-actin mRNA in actively transported granules in living neurons. Acute disruption of the PAT1–ZBP1 interaction in neurons with PAT1 siRNA or a dominant-negative ZBP1 construct diminished localization of β-actin mRNA but not of Ca2+/calmodulin-dependent protein kinase IIα (CaMKIIα) mRNA in dendrites. The aberrant β-actin mRNA localization resulted in abnormal dendritic protrusions and growth cone dynamics. These results suggest a critical role for PAT1 in BDNF-induced β-actin mRNA transport during postnatal development and reveal a new molecular mechanism for mRNA localization in vertebrates.




ad

The major subunit of widespread competence pili exhibits a novel and conserved type IV pilin fold [Protein Structure and Folding]

Type IV filaments (T4F), which are helical assemblies of type IV pilins, constitute a superfamily of filamentous nanomachines virtually ubiquitous in prokaryotes that mediate a wide variety of functions. The competence (Com) pilus is a widespread T4F, mediating DNA uptake (the first step in natural transformation) in bacteria with one membrane (monoderms), an important mechanism of horizontal gene transfer. Here, we report the results of genomic, phylogenetic, and structural analyses of ComGC, the major pilin subunit of Com pili. By performing a global comparative analysis, we show that Com pili genes are virtually ubiquitous in Bacilli, a major monoderm class of Firmicutes. This also revealed that ComGC displays extensive sequence conservation, defining a monophyletic group among type IV pilins. We further report ComGC solution structures from two naturally competent human pathogens, Streptococcus sanguinis (ComGCSS) and Streptococcus pneumoniae (ComGCSP), revealing that this pilin displays extensive structural conservation. Strikingly, ComGCSS and ComGCSP exhibit a novel type IV pilin fold that is purely helical. Results from homology modeling analyses suggest that the unusual structure of ComGC is compatible with helical filament assembly. Because ComGC displays such a widespread distribution, these results have implications for hundreds of monoderm species.




ad

Quantification of the affinities of CRISPR-Cas9 nucleases for cognate protospacer adȷacent motif (PAM) sequences [Molecular Biophysics]

The CRISPR/Cas9 nucleases have been widely applied for genome editing in various organisms. Cas9 nucleases complexed with a guide RNA (Cas9–gRNA) find their targets by scanning and interrogating the genomic DNA for sequences complementary to the gRNA. Recognition of the DNA target sequence requires a short protospacer adjacent motif (PAM) located outside this sequence. Given that the efficiency of target location may depend on the strength of interactions that promote target recognition, here we sought to compare affinities of different Cas9 nucleases for their cognate PAM sequences. To this end, we measured affinities of Cas9 nucleases from Streptococcus pyogenes, Staphylococcus aureus, and Francisella novicida complexed with guide RNAs (gRNAs) (SpCas9–gRNA, SaCas9–gRNA, and FnCas9–gRNA, respectively) and of three engineered SpCas9–gRNA variants with altered PAM specificities for short, PAM-containing DNA probes. We used a “beacon” assay that measures the relative affinities of DNA probes by determining their ability to competitively affect the rate of Cas9–gRNA binding to fluorescently labeled target DNA derivatives called “Cas9 beacons.” We observed significant differences in the affinities for cognate PAM sequences among the studied Cas9 enzymes. The relative affinities of SpCas9–gRNA and its engineered variants for canonical and suboptimal PAMs correlated with previous findings on the efficiency of these PAM sequences in genome editing. These findings suggest that high affinity of a Cas9 nuclease for its cognate PAM promotes higher genome-editing efficiency.




ad

Chemical roadblocking of DNA transcription for nascent RNA display [RNA]

Site-specific arrest of RNA polymerases (RNAPs) is fundamental to several technologies that assess RNA structure and function. Current in vitro transcription “roadblocking” approaches inhibit transcription elongation by blocking RNAP with a protein bound to the DNA template. One limitation of protein-mediated transcription roadblocking is that it requires inclusion of a protein factor extrinsic to the minimal in vitro transcription reaction. In this work, we developed a chemical approach for halting transcription by Escherichia coli RNAP. We first established a sequence-independent method for site-specific incorporation of chemical lesions into dsDNA templates by sequential PCR and translesion synthesis. We then show that interrupting the transcribed DNA strand with an internal desthiobiotin-triethylene glycol modification or 1,N6-etheno-2'-deoxyadenosine base efficiently and stably halts Escherichia coli RNAP transcription. By encoding an intrinsic stall site within the template DNA, our chemical transcription roadblocking approach enables display of nascent RNA molecules from RNAP in a minimal in vitro transcription reaction.




ad

Endorepellin evokes an angiostatic stress signaling cascade in endothelial cells [Glycobiology and Extracellular Matrices]

Endorepellin, the C-terminal fragment of the heparan sulfate proteoglycan perlecan, influences various signaling pathways in endothelial cells by binding to VEGFR2. In this study, we discovered that soluble endorepellin activates the canonical stress signaling pathway consisting of PERK, eIF2α, ATF4, and GADD45α. Specifically, endorepellin evoked transient activation of VEGFR2, which, in turn, phosphorylated PERK at Thr980. Subsequently, PERK phosphorylated eIF2α at Ser51, upregulating its downstream effector proteins ATF4 and GADD45α. RNAi-mediated knockdown of PERK or eIF2α abrogated the endorepellin-mediated up-regulation of GADD45α, the ultimate effector protein of this stress signaling cascade. To functionally validate these findings, we utilized an ex vivo model of angiogenesis. Exposure of the aortic rings embedded in 3D fibrillar collagen to recombinant endorepellin for 2–4 h activated PERK and induced GADD45α vis à vis vehicle-treated counterparts. Similar effects were obtained with the established cellular stress inducer tunicamycin. Notably, chronic exposure of aortic rings to endorepellin for 7–9 days markedly suppressed vessel sprouting, an angiostatic effect that was rescued by blocking PERK kinase activity. Our findings unravel a mechanism by which an extracellular matrix protein evokes stress signaling in endothelial cells, which leads to angiostasis.




ad

The testis-specific LINC component SUN3 is essential for sperm head shaping during mouse spermiogenesis [Cell Biology]

Sperm head shaping is a key event in spermiogenesis and is tightly controlled via the acrosome–manchette network. Linker of nucleoskeleton and cytoskeleton (LINC) complexes consist of Sad1 and UNC84 domain–containing (SUN) and Klarsicht/ANC-1/Syne-1 homology (KASH) domain proteins and form conserved nuclear envelope bridges implicated in transducing mechanical forces from the manchette to sculpt sperm nuclei into a hook-like shape. However, the role of LINC complexes in sperm head shaping is still poorly understood. Here we assessed the role of SUN3, a testis-specific LINC component harboring a conserved SUN domain, in spermiogenesis. We show that CRISPR/Cas9-generated Sun3 knockout male mice are infertile, displaying drastically reduced sperm counts and a globozoospermia-like phenotype, including a missing, mislocalized, or fragmented acrosome, as well as multiple defects in sperm flagella. Further examination revealed that the sperm head abnormalities are apparent at step 9 and that the sperm nuclei fail to elongate because of the absence of manchette microtubules and perinuclear rings. These observations indicate that Sun3 deletion likely impairs the ability of the LINC complex to transduce the cytoskeletal force to the nuclear envelope, required for sperm head elongation. We also found that SUN3 interacts with SUN4 in mouse testes and that the level of SUN4 proteins is drastically reduced in Sun3-null mice. Altogether, our results indicate that SUN3 is essential for sperm head shaping and male fertility, providing molecular clues regarding the underlying pathology of the globozoospermia-like phenotype.




ad

Acknowledgment of Ad Hoc Reviewers [Editorial]




ad

A Single Intramuscular Dose of a Plant-Made Virus-Like Particle Vaccine Elicits a Balanced Humoral and Cellular Response and Protects Young and Aged Mice from Influenza H1N1 Virus Challenge despite a Modest/Absent Humoral Response [Vaccines]

Virus-like-particle (VLP) influenza vaccines can be given intramuscularly (i.m.) or intranasally (i.n.) and may have advantages over split-virion formulations in the elderly. We tested a plant-made VLP vaccine candidate bearing the viral hemagglutinin (HA) delivered either i.m. or i.n. in young and aged mice. Young adult (5- to 8-week-old) and aged (16- to 20-month-old) female BALB/c mice received a single 3-μg dose based on the HA (A/California/07/2009 H1N1) content of a plant-made H1-VLP (i.m. or i.n.) split-virion vaccine (i.m.) or were left naive. After vaccination, humoral and splenocyte responses were assessed, and some mice were challenged. Both VLP and split vaccines given i.m. protected 100% of the young animals, but the VLP group lost the least weight and had stronger humoral and cellular responses. Compared to split-vaccine recipients, aged animals vaccinated i.m. with VLP were more likely to survive challenge (80% versus 60%). The lung viral load postchallenge was lowest in the VLP i.m. groups. Mice vaccinated with VLP i.n. had little detectable immune response, but survival was significantly increased. In both age groups, i.m. administration of the H1-VLP vaccine elicited more balanced humoral and cellular responses and provided better protection from homologous challenge than the split-virion vaccine.




ad

Editorial Board [Masthead]




ad

Neurologic syndromes related to anti-GAD65: Clinical and serologic response to treatment

In the article "Neurologic syndromes related to anti-GAD65: Clinical and serologic response to treatment" by Muñoz-Lopetegi et al.,1 published online March 2, 2020, the y-axis label for figure 5’s right graph should be "CSF anti-GAD65 concentration (IU/mL)." The editorial office regrets the error.




ad

Guillain-Barre syndrome and chronic inflammatory demyelinating polyradiculoneuropathy after alemtuzumab therapy in kidney transplant recipients

Alemtuzumab is approved for the treatment of relapsing-remitting MS and is used off-label for patients with chronic lymphocytic leukemia and as induction and antirejection therapy in kidney transplant recipients.1 Guillain-Barré syndrome (GBS) or chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) complicating alemtuzumab treatment was reported in 9 patients with hematologic malignancy or MS.1–3 The risk of GBS or CIDP in solid organ transplant recipients treated with alemtuzumab is unknown.




ad

Monitoring of radiologic disease activity by serum neurofilaments in MS

Objective

To determine whether serum neurofilament light chain (sNfL) levels are associated with recent MRI activity in patients with relapsing-remitting MS (RRMS).

Methods

This observational study included 163 patients (405 samples) with early RRMS from the Study of Early interferon-beta1a (IFN-β1a) Treatment (SET) cohort and 179 patients (664 samples) with more advanced RRMS from the Genome-Wide Association Study of Multiple Sclerosis (GeneMSA) cohort. Based on annual brain MRI, we assessed the ability of sNfL cutoffs to reflect the presence of combined unique active lesions, defined as new/enlarging lesion compared with MRI in the preceding year or contrast-enhancing lesion. The probability of active MRI lesions among patients with different sNfL levels was estimated with generalized estimating equations models.

Results

From the sNfL samples ≥90th percentile, 81.6% of the SET (OR = 3.4, 95% CI = 1.8-6.4) and 48.9% of the GeneMSA cohort samples (OR = 2.6, 95% CI = 1.7-3.9) was associated with radiological disease activity on MRI. The sNfL level between the 10th and 30th percentile was reflective of negligible MRI activity: 1.4% (SET) and 6.5% (GeneMSA) of patients developed ≥3 active lesions, 5.8% (SET) and 6.5% (GeneMSA) developed ≥2 active lesions, and 34.8% (SET) and 11.8% (GeneMSA) showed ≥1 active lesion on brain MRI. The sNfL level <10th percentile was associated with even lower MRI activity. Similar results were found in a subgroup of clinically stable patients.

Conclusions

Low sNfL levels (≤30th percentile) help identify patients with MS with very low probability of recent radiologic disease activity during the preceding year. This result suggests that in future, sNfL assessment may substitute the need for annual brain MRI monitoring in considerable number (23.1%–36.4%) of visits in clinically stable patients.




ad

The identification and mitigation of geohazards using shallow airborne engineering geophysics and land-based geophysics for brown- and greenfield road investigations

South Africa is a mineral-rich country with a diverse geology and a long history of mining. The rich history of mining activities includes the extraction of coal from the Ecca Group Sediments of the Karoo Supergroup (250 Ma), gold and uranium from the Witwatersrand Supergroup (2900 Ma), as well as platinum, uranium, tin and lead from the layered Bushveld Igneous Complex (BIC) (2150 Ma). The extraction of gold, copper, tin, lead and rare earth minerals also took place in the Archean rocks of Swazium age (3500–3000 Ma). The historical mining records have either not been accurately recorded or have been lost over time. This has resulted in significant geohazard risk during infrastructure development, especially in and around historical mining towns, such as Johannesburg and Ermelo. These geohazard risks require careful appraisal and quantification prior to any infrastructure design or construction.

This case study aims to set out the development aspects of the Multi-Faceted Geophysical Modelling Systems approach, which was used by the South African National Roads Agency SOC Ltd (SANRAL) during an investigation of undermined ground for the historical coal-mining town of Ermelo in South Africa. The N11/N2 ring road was planned to go around Ermelo to ensure mobility between major routes, whilst still maintaining town access.

The systems approach used a combination of airborne geophysics (Versatile Time Domain Electromagnetic System (VTEMTM) and magnetics), generally used in mining exploration, land-based and borehole geophysics, borehole water testing, and ground-truthing. The approach was continuous and iterative, building on the data at hand and reducing unnecessary investigations while eliminating the possibility of anomalies being missed, as in the case of conventional discrete drilling. The investigation ensured that 100% of the route was comprehensively investigated with a high confidence in the geological and geophysical data, and concomitant mitigation of infrastructure risk.

The Multi-Faceted Geophysical Modelling Systems approach was successfully used to identify a previously unknown 1 x 1 m mining stope cavity at 90 m depth and a 3 x 5 m access tunnel at 24 m depth in a timely and cost-effective manner. Seven reverse-circulation percussion boreholes confirmed the structural integrity of these underground cavities, as well as the structural geology along the centreline. Based on the great success achieved in identifying shallow anomalies, this Multi-Faceted Geophysical Modelling Systems approach is now being considered for field trails on the dolomitic formations and the Wild Coast greenfields road project where there are large historical slumps and many fault lines.

Thematic collection: This article is part of the Ground-related risk to transportation infrastructure collection available at https://www.lyellcollection.org/cc/Ground-related-risk-to-transportation-infrastructure




ad

Stability analyses of large waste dumps via 3D numerical modelling considering cracks and earthquake loading: a case study of Zhujiabaobao waste dump

This paper uses a 3D model for stability assessment of Zhujiabaobao waste dump with ground cracks. The study data were gathered via reconnaissance, geomorphological analysis and laboratory experiment. A 3D finite extended element method model that can consider cracks was then used to calculate the factor of safety (FOS) of the waste dump via the strength reduction technique. The simulation shows the dump to have an FOS of 1.22 and both the position and depth of penetration of cracks in the waste dump have a crucial impact on the stability of the slope. Because the study area is located in a seismically active area, simulation and analysis of the dynamic response of the waste dump under different magnitudes of seismic waves (peak acceleration is 0.05, 0.15, 0.25 and 0.45g) were performed via an explicit dynamic model. The simulation shows that high steps in the slope are particularly responsive to earthquakes. The approach used here for analysing stability under static and dynamic loads is useful for hazard prevention and mitigation.




ad

Prediction of tunnelling impact on flow rates of adjacent extraction water wells

The decline or drying up of groundwater sources near a tunnel route is damaging to groundwater users. Therefore, forecasting the impact of a tunnel on nearby groundwater sources is a challenging task in tunnel design. In this study, numerical and analytical approaches were applied to the Qomroud water conveyance tunnel (located in Lorestan province, Iran) to assess the impact of tunnelling on the nearby extraction water wells. Using simulation of groundwater-level fluctuation owing to tunnelling, the drawdown at the well locations was determined. From the drawdowns and using Dupuit's equation, the depletion of well flow rates after tunnelling was estimated. To evaluate the results, observed well flow rates before and after tunnelling were compared with the predicted flow rates. The observed and estimated water well flows (before and after tunnelling) showed a regression factor of 0.64, pointing to satisfactory results




ad

Editorial Board [Masthead]




ad

Inhibition of transcription leads to rewiring of locus-specific chromatin proteomes [METHOD]

Transcription of a chromatin template involves the concerted interaction of many different proteins and protein complexes. Analyses of specific factors showed that these interactions change during stress and upon developmental switches. However, how the binding of multiple factors at any given locus is coordinated has been technically challenging to investigate. Here we used Epi-Decoder in yeast to systematically decode, at one transcribed locus, the chromatin binding changes of hundreds of proteins in parallel upon perturbation of transcription. By taking advantage of improved Epi-Decoder libraries, we observed broad rewiring of local chromatin proteomes following chemical inhibition of RNA polymerase. Rapid reduction of RNA polymerase II binding was accompanied by reduced binding of many other core transcription proteins and gain of chromatin remodelers. In quiescent cells, where strong transcriptional repression is induced by physiological signals, eviction of the core transcriptional machinery was accompanied by the appearance of quiescent cell–specific repressors and rewiring of the interactions of protein-folding factors and metabolic enzymes. These results show that Epi-Decoder provides a powerful strategy for capturing the temporal binding dynamics of multiple chromatin proteins under varying conditions and cell states. The systematic and comprehensive delineation of dynamic local chromatin proteomes will greatly aid in uncovering protein–protein relationships and protein functions at the chromatin template.




ad

Rapid evolution of piRNA-mediated silencing of an invading transposable element was driven by abundant de novo mutations [RESEARCH]

The regulation of transposable element (TE) activity by small RNAs is a ubiquitous feature of germlines. However, despite the obvious benefits to the host in terms of ensuring the production of viable gametes and maintaining the integrity of the genomes they carry, it remains controversial whether TE regulation evolves adaptively. We examined the emergence and evolutionary dynamics of repressor alleles after P-elements invaded the Drosophila melanogaster genome in the mid-twentieth century. In many animals including Drosophila, repressor alleles are produced by transpositional insertions into piRNA clusters, genomic regions encoding the Piwi-interacting RNAs (piRNAs) that regulate TEs. We discovered that ~94% of recently collected isofemale lines in the Drosophila melanogaster Genetic Reference Panel (DGRP) contain at least one P-element insertion in a piRNA cluster, indicating that repressor alleles are produced by de novo insertion at an exceptional rate. Furthermore, in our sample of approximately 200 genomes, we uncovered no fewer than 80 unique P-element insertion alleles in at least 15 different piRNA clusters. Finally, we observe no footprint of positive selection on P-element insertions in piRNA clusters, suggesting that the rapid evolution of piRNA-mediated repression in D. melanogaster was driven primarily by mutation. Our results reveal for the first time how the unique genetic architecture of piRNA production, in which numerous piRNA clusters can encode regulatory small RNAs upon transpositional insertion, facilitates the nonadaptive rapid evolution of repression.




ad

Correction: Targeting IDH1 as a Prosenescent Therapy in High-grade Serous Ovarian Cancer




ad

Endogenous PAD4 in Breast Cancer Cells Mediates Cancer Extracellular Chromatin Network Formation and Promotes Lung Metastasis

Peptidyl arginine deiminase 4 (PAD4/PADI4) is a posttranslational modification enzyme that converts protein arginine or mono-methylarginine to citrulline. The PAD4-mediated hypercitrullination reaction in neutrophils causes the release of nuclear chromatin to form a chromatin network termed neutrophil extracellular traps (NET). NETs were first described as antimicrobial fibers that bind and kill bacteria. However, it is not known whether PAD4 can mediate the release of chromatin DNA into the extracellular space of cancer cells. Here, we report that murine breast cancer 4T1 cells expressing high levels of PADI4 can release cancer extracellular chromatin networks (CECN) in vitro and in vivo. Deletion of Padi4 using CRISPR/Cas9 abolished CECN formation in 4T1 cells. Padi4 deletion from 4T1 cells also reduced the rate of tumor growth in an allograft model, and decreased lung metastasis by 4T1 breast cancers. DNase I treatment, which degrades extracellular DNA including CECNs, also reduced breast to lung metastasis of Padi4 wild-type 4T1 cells in allograft experiments in the Padi4-knockout mice. We further demonstrated that DNase I treatment in this mouse model did not alter circulating tumor cells but decreased metastasis through steps after intravasation. Taken together, our genetic studies show that PAD4 plays a cell autonomous role in cancer metastasis, thus revealing a novel strategy for preventing cancer metastasis by inhibiting cancer cell endogenous PAD4.

Implications:

This study shows that PADI4 can mediate the formation of CECNs in 4T1 cells, and that endogenous PADI4 plays an essential role in breast cancer lung metastasis.

Visual Overview:

http://mcr.aacrjournals.org/content/molcanres/18/5/735/F1.large.jpg.




ad

Nucleostemin Modulates Outcomes of Hepatocellular Carcinoma via a Tumor Adaptive Mechanism to Genomic Stress

Hepatocellular carcinomas (HCC) are adapted to survive extreme genomic stress conditions imposed by hyperactive DNA replication and genotoxic drug treatment. The underlying mechanisms remain unclear, but may involve intensified DNA damage response/repair programs. Here, we investigate a new role of nucleostemin (NS) in allowing HCC to survive its own malignancy, as NS was previously shown to promote liver regeneration via a damage repair mechanism. We first established that a higher NS transcript level correlates with high-HCC grades and poor prognostic signatures, and is an independent predictor of shorter overall and progression-free survival specifically for HCC and kidney cancer but not for others. Immunostaining confirmed that NS is most abundantly expressed in high-grade and metastatic HCCs. Genome-wide analyses revealed that NS is coenriched with MYC target and homologous recombination (HR) repair genes in human HCC samples and functionally intersects with those involved in replication stress response and HR repair in yeasts. In support, NS-high HCCs are more reliant on the replicative/oxidative stress response pathways, whereas NS-low HCCs depend more on the mTOR pathway. Perturbation studies showed NS function in protecting human HCC cells from replication- and drug-induced DNA damage. Notably, NS depletion in HCC cells increases the amounts of physical DNA damage and cytosolic double-stranded DNA, leading to a reactive increase of cytokines and PD-L1. This study shows that NS provides an essential mechanism for HCC to adapt to high genomic stress for oncogenic maintenance and propagation. NS deficiency sensitizes HCC cells to chemotherapy but also triggers tumor immune responses.

Implications:

HCC employs a novel, nucleostemin (NS)-mediated-mediated adaptive mechanism to survive high genomic stress conditions, a deficiency of which sensitizes HCC cells to chemotherapy but also triggers tumor immune responses.




ad

KPR-5714, a Novel Transient Receptor Potential Melastatin 8 Antagonist, Improves Overactive Bladder via Inhibition of Bladder Afferent Hyperactivity in Rats [Gastrointestinal, Hepatic, Pulmonary, and Renal]

Transient receptor potential (TRP) melastatin 8 (TRPM8) is a temperature-sensing ion channel mainly expressed in primary sensory neurons (A-fibers and C-fibers in the dorsal root ganglion). In this report, we characterized KPR-5714 (N-[(R)-3,3-difluoro-4-hydroxy-1-(2H-1,2,3-triazol-2-yl)butan-2-yl]-3-fluoro-2-[5-(4-fluorophenyl)-1H-pyrazol-3-yl]benzamide), a novel and selective TRPM8 antagonist, to assess its therapeutic potential against frequent urination in rat models with overactive bladder (OAB). In calcium influx assays with HEK293T cells transiently expressing various TRP channels, KPR-5714 showed a potent TRPM8 antagonistic effect and high selectivity against other TRP channels. Intravenously administered KPR-5714 inhibited the hyperactivity of mechanosensitive C-fibers of bladder afferents and dose-dependently increased the intercontraction interval shortened by intravesical instillation of acetic acid in anesthetized rats. Furthermore, we examined the effects of KPR-5714 on voiding behavior in conscious rats with cerebral infarction and in those exposed to cold in metabolic cage experiments. Cerebral infarction and cold exposure induced a significant decrease in the mean voided volume and increase in voiding frequency in rats. Orally administered KPR-5714 dose-dependently increased the mean voided volume and decreased voiding frequency without affecting total voided volume in these models. This study demonstrates that KPR-5714 improves OAB in three different models by inhibiting exaggerated activity of mechanosensitive bladder C-fibers and suggests that KPR-5714 may provide a new and useful approach to the treatment of OAB.

SIGNIFICANCE STATEMENT

TRPM8 is involved in bladder sensory transduction and plays a role in the abnormal activation in hypersensitive bladder disorders. KPR-5714, as a novel and selective TRPM8 antagonist, may provide a useful treatment for the disorders related to the hyperactivity of bladder afferent nerves, particularly in overactive bladder.




ad

COMT-Catalyzed Palmitic Acid Methyl Ester Biosynthesis in Perivascular Adipose Tissue and its Potential Role Against Hypertension [Cardiovascular]

Decreased release of palmitic acid methyl ester (PAME), a vasodilator, from perivascular adipose tissue (PVAT) might contribute to hypertension pathogenesis. However, the PAME biosynthetic pathway remains unclear. In this study, we hypothesized that PAME is biosynthesized from palmitic acid (PA) via human catechol-O-methyltransferase (COMT) catalysis and that decreased PAME biosynthesis plays a role in hypertension pathogenesis. We compared PAME biosynthesis between age-matched normotensive Wistar Kyoto (WKY) rats and hypertensive spontaneously hypertensive rats (SHRs) and investigated the effects of losartan treatment on PAME biosynthesis. Computational molecular modeling indicated that PA binds well at the active site of COMT. Furthermore, in in vitro enzymatic assays in the presence of COMT and S-5'-adenosyl-L-methionine (AdoMet), the stable isotope [13C16]-PA was methylated to form [13C16]-PAME in incubation medium or the Krebs–Henseleit solution containing 3T3-L1 adipocytes or rat PVAT. The adipocytes and PVATs expressed membrane-bound (MB)-COMT and soluble (S)-COMT proteins. [13C16]-PA methylation to form [13C16]-PAME in 3T3-L1 adipocytes and rat PVAT was blocked by various COMT inhibitors, such as S-(5'-adenosyl)-L-homocysteine, adenosine-2',3'-dialdehyde, and tolcapone. MB- and S-COMT levels in PVATs of established SHRs were significantly lower than those in PVATs of age-matched normotensive WKY rats, with decreased [13C16]-PA methylation to form [13C16]-PAME. This decrease was reversed by losartan, an angiotensin II (Ang II) type 1 receptor antagonist. Therefore, PAME biosynthesis in rat PVAT is dependent on AdoMet, catalyzed by COMT, and decreased in SHRs, further supporting the role of PVAT/PAME in hypertension pathogenesis. Moreover, the antihypertensive effect of losartan might be due partly to its increased PAME biosynthesis.

SIGNIFICANCE STATEMENT

PAME is a key PVAT-derived relaxing factor. We for the first time demonstrate that PAME is synthesized through PA methylation via the S-5'-adenosyl-L-methionine–dependent COMT catalyzation pathway. Moreover, we confirmed PVAT dysfunction in the hypertensive state. COMT-dependent PAME biosynthesis is involved in Ang II receptor type 1–mediated blood pressure regulation, as evidenced by the reversal of decreased PAME biosynthesis in PVAT by losartan in hypertensive rats. This finding might help in developing novel therapeutic or preventive strategies against hypertension.




ad

Forget the stress: retrograde amnesia for the stress-induced impairment of extinction retrieval [BRIEF COMMUNICATIONS]

We investigated whether cycloheximide (CHX) would induce amnesia for the stress-induced impairment of extinction retrieval. First, a single restraint stress session was demonstrated to impair extinction retrieval, but not fear conditioning. A second experiment showed that when CHX was administered immediately after restraint, rats exhibited significant extinction retrieval at test (i.e., retrograde amnesia for the stress). In a third experiment, the stress session impaired various amounts of extinction durations, suggesting that the stress inhibited extinction retrieval rather than enhancing the original fear learning. These results suggest memories for acute stress are susceptible to disruption, which could have clinical implications.




ad

Regenerative responses following DNA damage - {beta}-catenin mediates head regrowth in the planarian Schmidtea mediterranea [RESEARCH ARTICLE]

Annelies Wouters, Jan-Pieter Ploem, Sabine A. S. Langie, Tom Artois, Aziz Aboobaker, and Karen Smeets

Pluripotent stem cells hold great potential for regenerative medicine. Increased replication and division, such is the case during regeneration, concomitantly increases the risk of adverse outcomes through the acquisition of mutations. Seeking for driving mechanisms of such outcomes, we challenged a pluripotent stem cell system during the tightly controlled regeneration process in the planarian Schmidtea mediterranea. Exposure to the genotoxic compound methyl methanesulfonate (MMS) revealed that despite a similar DNA-damaging effect along the anteroposterior axis of intact animals, responses differed between anterior and posterior fragments after amputation. Stem cell proliferation and differentiation proceeded successfully in the amputated heads, leading to regeneration of missing tissues. Stem cells in the amputated tails showed decreased proliferation and differentiation capacity. As a result, tails could not regenerate. Interference with the body-axis-associated component β-catenin-1 increased regenerative success in tail fragments by stimulating proliferation at an early time point. Our results suggest that differences in the Wnt signalling gradient along the body axis modulate stem cell responses to MMS.




ad

Tubulin-Binding 3,5-Bis(styryl)pyrazoles as Lead Compounds for the Treatment of Castration-Resistant Prostate Cancer [Articles]

The microtubule-binding taxanes, docetaxel and cabazitaxel, are administered intravenously for the treatment of castration-resistant prostate cancer (CRPC) as the oral administration of these drugs is largely hampered by their low and highly variable bioavailabilities. Using a simple, rapid, and environmentally friendly microwave-assisted protocol, we have synthesized a number of 3,5-bis(styryl)pyrazoles 2a-l, thus allowing for their screening for antiproliferative activity in the androgen-independent PC3 prostate cancer cell line. Surprisingly, two of these structurally simple 3,5-bis(styryl)pyrazoles (2a and 2l) had concentrations which gave 50% of the maximal inhibition of cell proliferation (GI50) in the low micromolar range in the PC3 cell line and were thus selected for extensive further biologic evaluation (apoptosis and cell cycle analysis, and effects on tubulin and microtubules). Our findings from these studies show that 3,5-bis[(1E)-2(2,6-dichlorophenyl)ethenyl]-1H-pyrazole 2l 1) caused significant effects on the cell cycle in PC3 cells, with the vast majority of treated cells in the G2/M phase (89%); 2) induces cell death in PC3 cells even after the removal of the compound; 3) binds to tubulin [dissociation constant (Kd) 0.4 ± 0.1 μM] and inhibits tubulin polymerization in vitro; 4) had no effect upon the polymerization of the bacterial cell division protein FtsZ (a homolog of tubulin); 5) is competitive with paclitaxel for binding to tubulin but not with vinblastine, crocin, or colchicine; and 6) leads to microtubule depolymerization in PC3 cells. Taken together, these results suggest that 3,5-bis(styryl)pyrazoles warrant further investigation as lead compounds for the treatment of CRPC.

SIGNIFICANCE STATEMENT

The taxanes are important components of prostate cancer chemotherapy regimens, but their oral administration is hampered by very low and highly variable oral bioavailabilities resulting from their poor absorption, poor solubility, high first-pass metabolism, and efficient efflux by P-glycoprotein. New chemical entities for the treatment of prostate cancer are thus required, and we report here the synthesis and investigation of the mechanism of action of some bis(styryl)pyrazoles, demonstrating their potential as lead compounds for the treatment of prostate cancer.




ad

Radiohybrid Ligands: A Novel Tracer Concept Exemplified by 18F- or 68Ga-Labeled rhPSMA Inhibitors

When we critically assess the reason for the current dominance of 68Ga-labeled peptides and peptide-like ligands in radiopharmacy and nuclear medicine, we have to conclude that the major advantage of such radiopharmaceuticals is the apparent lack of suitable 18F-labeling technologies with proven clinical relevance. To prepare and to subsequently perform a clinical proof-of-concept study on the general suitability of silicon-fluoride-acceptor (SiFA)–conjugated radiopharmaceuticals, we developed inhibitors of the prostate-specific membrane antigen (PSMA) that are labeled by isotopic exchange (IE). To compensate for the pronounced lipophilicity of the SiFA unit, we used metal chelates, conjugated in close proximity to SiFA. Six different radiohybrid PSMA ligands (rhPSMA ligands) were evaluated and compared with the commonly used 18F-PSMA inhibitors 18F-DCFPyL and 18F-PSMA-1007. Methods: All inhibitors were synthesized by solid-phase peptide synthesis. Human serum albumin binding was measured by affinity high-performance liquid chromatography, whereas the lipophilicity of each tracer was determined by the n-octanol/buffer method. In vitro studies (IC50, internalization) were performed on LNCaP cells. Biodistribution studies were conducted on LNCaP tumor–bearing male CB-17 SCID mice. Results: On the laboratory scale (starting activities, 0.2–9.0 GBq), labeling of 18F-rhPSMA-5 to -10 by IE was completed in < 20 min (radiochemical yields, 58% ± 9%; radiochemical purity, >97%) with molar activities of 12–60 GBq/μmol. All rhPSMAs showed low nanomolar affinity and high internalization by PSMA-expressing cells when compared with the reference radiopharmaceuticals, medium-to-low lipophilicity, and high human serum albumin binding. Biodistribution studies in LNCaP tumor–bearing mice revealed high tumor uptake, sufficiently fast clearance kinetics from blood, low hepatobiliary excretion, fast renal excretion, and very low uptake of 18F activity in bone. Conclusion: The novel 18F-rhPSMA radiopharmaceuticals developed under the radiohybrid concept show equal or better targeting characteristics than the established 18F-PSMA tracers 18F-DCFPyL and 18F-PSMA-1007. The unparalleled simplicity of production, the possibility to produce the identical 68Ga-labeled 19F-68Ga-rhPSMA tracers, and the possibility to extend this concept to true theranostic radiohybrid radiopharmaceuticals, such as F-Lu-rhPSMA, are unique features of these radiopharmaceuticals.




ad

Additional Local Therapy for Liver Metastases in Patients with Metastatic Castration-Resistant Prostate Cancer Receiving Systemic PSMA-Targeted Therapy

The aim of this study was to evaluate the efficacy of 177Lu-prostate-specific membrane antigen (PSMA)-617 (177Lu-PSMA) and selective internal radiation therapy (SIRT) for the treatment of liver metastases of castration-resistant prostate cancer. Methods: Safety and survival of patients with metastatic castration-resistant prostate cancer and liver metastases assigned to 177Lu-PSMA alone (n = 31) or in combination with SIRT (n = 5) were retrospectively analyzed. Additionally, a subgroup (n = 10) was analyzed using morphologic and molecular response criteria. Results: Median estimated survival was 5.7 mo for 177Lu-PSMA alone and 8.4 mo for combined sequential 177Lu-PSMA and SIRT. 177Lu-PSMA achieved discordant therapy responses with both regressive and progressive liver metastases in the same patient (best vs. worst responding metastases per patient: –35% vs. +63% diameter change; P < 0.05). SIRT was superior to 177Lu-PSMA for the treatment of liver metastases (0% vs. 56% progression). Conclusion: The combination of 177Lu-PSMA and SIRT is efficient and feasible for the treatment of advanced prostate cancer. 177Lu-PSMA alone seems to have limited response rates in the treatment of liver metastases.




ad

Quantitative and Qualitative Analyses of Biodistribution and PET Image Quality of a Novel Radiohybrid PSMA, 18F-rhPSMA-7, in Patients with Prostate Cancer

Radiohybrid PSMA (rhPSMA) ligands, a new class of theranostic prostate-specific membrane antigen (PSMA)–targeting agents, feature fast 18F synthesis and utility for labeling with radiometals. Here, we assessed the biodistribution and image quality of 18F-rhPSMA-7 to determine the best imaging time point for patients with prostate cancer. Methods: In total, 202 prostate cancer patients who underwent a clinically indicated 18F-rhPSMA-7 PET/CT were retrospectively analyzed, and 12 groups based on the administered activity and uptake time of PET scanning were created: 3 administered activities (low, 222–296 MBq; moderate, 297–370 MBq; and high, 371–444 MBq) and 4 uptake time points (short, 50–70 min; intermediate, 71–90 min; long, 91–110 min; and extra long, ≥111 min). For quantitative analyses, SUVmean and organ- or tumor-to-background ratio were determined for background, healthy organs, and 3 representative tumor lesions. Qualitative analyses assessed overall image quality, nonspecific blood-pool activity, and background uptake in bone or marrow using 3- or 4-point scales. Results: In quantitative analyses, SUVmean showed a significant decrease in the blood pool and lungs and an increase in the kidneys, bladder, and bones as the uptake time increased. SUVmean showed a trend to increase in the blood pool and bones as the administered activity increased. However, no significant differences were found in 377 tumor lesions with respect to the administered activity or uptake time. In qualitative analyses, the overall image quality was stable along with the uptake time, but the proportion rated to have good image quality decreased as the administered activity increased. All other qualitative image parameters showed no significant differences for the administered activities, but they showed significant trends with increasing uptake time: less nonspecific blood activity, more frequent background uptake in the bone marrow, and increased negative impact on clinical decision making. Conclusion: The biodistribution of 18F-rhPSMA-7 was similar to that of established PSMA ligands, and tumor uptake of 18F-rhPSMA-7 was stable across the administered activities and uptake times. An early imaging time point (50–70 min) is recommended for 18F-rhPSMA-7 PET/CT to achieve the highest overall image quality.




ad

18F-rhPSMA-7 PET for the Detection of Biochemical Recurrence of Prostate Cancer After Radical Prostatectomy

18F-labeled prostate-specific membrane antigen (PSMA) PET tracers are increasingly used in preference to 68Ga-PSMA-11 for restaging biochemical recurrence (BCR) of prostate cancer. They are associated with longer half-lives, larger-scale production, and lower positron range than their 68Ga-labeled counterparts. Here, we describe the efficacy of an 18F-labeled radiohybrid PSMA, rhPSMA-7, a novel theranostic PSMA-targeting agent for imaging BCR of prostate cancer. Methods: Datasets from 261 consecutive patients with noncastrate BCR after radical prostatectomy who underwent 18F-rhPSMA-7 PET/CT at our institution between June 2017 and March 2018 were reviewed retrospectively. All lesions suspected of being recurrent prostate cancer were recorded. The detection rate for sites of presumed recurrence was correlated with patients’ prostate-specific antigen (PSA) level, primary Gleason score, and prior therapy (androgen deprivation therapy and external-beam radiation therapy). Results: The 261 patients had a median PSA level of 0.96 ng/mL (range, 0.01–400 ng/mL). The median injected activity of 18F-rhPSMA-7 was 336 MBq, with a median uptake time of 76 min. In total, 211 patients (81%) showed pathologic findings on 18F-rhPSMA-7 PET/CT. The detection rates were 71% (42/59), 86% (44/51), 86% (42/49), and 95% (76/80) at PSA levels of 0.2 to <0.5 ng/mL, 0.5 to <1 ng/mL, 1 to <2 ng/mL, and ≥2 ng/mL, respectively. In 32% patients (7/22) with a PSA of less than 0.2 ng/mL, suggestive lesions were present. 18F-rhPSMA-7 PET/CT revealed local recurrence in 43% of patients (113). Lymph node metastases were present in the pelvis in 42% of patients (110), in the retroperitoneum in 17% (45), and in a supradiaphragmatic location in 8.0% (21). Bone and visceral metastases were detected in 21% (54) and 3.8% (10), respectively. Detection efficacy was not influenced by prior external-beam radiation therapy (79.1% vs. 82.1%, P = 0.55), androgen deprivation therapy within the 6 mo preceding imaging (80.6% vs. 80.9%, P = 0.54), or primary Gleason score (77.9% for ≤7 vs. 82.6% for ≥8, P = 0.38). Conclusion: 18F-rhPSMA-7 PET/CT offers high detection rates in early BCR after radical prostatectomy, especially among patients with low PSA values.




ad

Response Prediction of 177Lu-PSMA-617 Radioligand Therapy Using Prostate-Specific Antigen, Chromogranin A, and Lactate Dehydrogenase

Neuroendocrinelike transdifferentiation of prostate cancer adenocarcinomas correlates with serum levels of chromogranin A (CgA) and drives treatment resistance. The aim of this work was to evaluate whether CgA can serve as a response predictor for 177Lu-prostate-specific membrane antigen 617 (PSMA) radioligand therapy (RLT) in comparison with the established tumor markers. Methods: One hundred consecutive patients with metastasized castration-resistant prostate cancer scheduled for PSMA RLT were evaluated for prostate-specific antigen (PSA), lactate dehydrogenase (LDH), and CgA at baseline and in follow-up of PSMA RLT. Tumor uptake of PSMA ligand, a known predictive marker for response, was assessed as a control variable. Results: From the 100 evaluated patients, 35 had partial remission, 16 stable disease, 15 mixed response, and 36 progression of disease. Tumor uptake above salivary gland uptake translated into partial remission, with an odds ratio (OR) of 60.265 (95% confidence interval [CI], 5.038–720.922). Elevated LDH implied a reduced chance for partial remission, with an OR of 0.094 (95% CI, 0.017–0.518), but increased the frequency of progressive disease (OR, 2.717; 95% CI, 1.391–5.304). All patients who achieved partial remission had a normal baseline LDH. Factor-2 elevation of CgA increased the risk for progression, with an OR of 3.089 (95% CI, 1.302–7.332). Baseline PSA had no prognostic value for response prediction. Conclusion: In our cohort, baseline PSA had no prognostic value for response prediction. LDH was the marker with the strongest prognostic value, and elevated LDH increased the risk for progression of disease under PSMA RLT. Elevated CgA demonstrated a moderate impact as a negative prognostic marker in general but was explicitly related to the presence of liver metastases. Well in line with the literature, sufficient tumor uptake is a prerequisite to achieve tumor response.




ad

Patients Resistant Against PSMA-Targeting {alpha}-Radiation Therapy Often Harbor Mutations in DNA Damage-Repair-Associated Genes

Prostate-specific membrane antigen (PSMA)–targeting α-radiation therapy (TAT) is an emerging treatment modality for metastatic castration-resistant prostate cancer. There is a subgroup of patients with poor response despite sufficient expression of PSMA in their tumors. The aim of this work was to characterize PSMA-TAT–nonresponding lesions by targeted next-generation sequencing. Methods: Of 60 patients treated with 225Ac-PSMA-617, we identified 10 patients who presented with a poor response despite sufficient tumor uptake in PSMA PET/CT. We were able to perform CT-guided biopsies with histologic validation of the nonresponding lesions in 7 of these nonresponding patients. Specimens were analyzed by targeted next-generation sequencing interrogating 37 DNA damage-repair–associated genes. Results: In the 7 tumor samples analyzed, we found a total of 15 whole-gene deletions, deleterious or presumably deleterious mutations affecting TP53 (n = 3), CHEK2 (n = 2), ATM (n = 2), and BRCA1, BRCA2, PALB2, MSH2, MSH6, NBN, FANCB, and PMS1 (n = 1 each). The average number of deleterious or presumably deleterious mutations was 2.2 (range, 0–6) per patient. In addition, several variants of unknown significance in ATM, BRCA1, MSH2, SLX4, ERCC, and various FANC genes were detected. Conclusion: Patients with resistance to PSMA-TAT despite PSMA positivity frequently harbor mutations in DNA damage-repair and checkpoint genes. Although the causal role of these alterations in the patient outcome remains to be determined, our findings encourage future studies combining PSMA-TAT and DNA damage-repair–targeting agents such as poly(ADP-ribose)-polymerase inhibitors.




ad

Assessing Radiographic Response to 223Ra with an Automated Bone Scan Index in Metastatic Castration-Resistant Prostate Cancer Patients

For effective clinical management of patients being treated with 223Ra, there is a need for radiographic response biomarkers to minimize disease progression and to stratify patients for subsequent treatment options. The objective of this study was to evaluate an automated bone scan index (aBSI) as a quantitative assessment of bone scans for radiographic response in patients with metastatic castration-resistant prostate cancer (mCRPC). Methods: In a multicenter retrospective study, bone scans from patients with mCRPC treated with monthly injections of 223Ra were collected from 7 hospitals in Sweden. Patients with available bone scans before treatment with 223Ra and at treatment discontinuation were eligible for the study. The aBSI was generated at baseline and at treatment discontinuation. The Spearman rank correlation was used to correlate aBSI with the baseline covariates: alkaline phosphatase (ALP) and prostate-specific antigen (PSA). The Cox proportional-hazards model and Kaplan–Meier curve were used to evaluate the association of covariates at baseline and their change at treatment discontinuation with overall survival (OS). The concordance index (C-index) was used to evaluate the discriminating strength of covariates in predicting OS. Results: Bone scan images at baseline were available from 156 patients, and 67 patients had both a baseline and a treatment discontinuation bone scan (median, 5 doses; interquartile range, 3–6 doses). Baseline aBSI (median, 4.5; interquartile range, 2.4–6.5) was moderately correlated with ALP (r = 0.60, P < 0.0001) and with PSA (r = 0.38, P = 0.003). Among baseline covariates, aBSI (P = 0.01) and ALP (P = 0.001) were significantly associated with OS, whereas PSA values were not (P = 0.059). After treatment discontinuation, 36% (24/67), 80% (54/67), and 13% (9/67) of patients demonstrated a decline in aBSI, ALP, and PSA, respectively. As a continuous variable, the relative change in aBSI after treatment, compared with baseline, was significantly associated with OS (P < 0.0001), with a C-index of 0.67. Median OS in patients with both aBSI and ALP decline (median, 134 wk) was significantly longer than in patients with ALP decline only (median, 77 wk; P = 0.029). Conclusion: Both aBSI at baseline and its change at treatment discontinuation were significant parameters associated with OS. The study warrants prospective validation of aBSI as a quantitative imaging response biomarker to predict OS in patients with mCRPC treated with 223Ra.




ad

Assessing Cerebrospinal Fluid Flow Dynamics in Pediatric Patients with Central Nervous System Tumors Treated with Intraventricular Radioimmunotherapy

The incidence of abnormal cerebrospinal fluid (CSF) flow dynamics in children with central nervous system (CNS) tumors before intraventricular therapy has not been described. Methods: We performed a single-institution, retrospective review of patients with primary or metastatic CNS tumors treated between 2003 and 2018 (15 y). Patients underwent 111In-diethylenetriaminepentaacetic acid injection into the CSF intraventricular space followed by nuclear medicine imaging at 90 min, 4 h, 24 h, and 48 h (if required). CSF flow was classified as normal, delayed, asymmetric, or obstructed. Results: In total, 278 CSF flow studies were performed on 224 patients, 202 of whom (90%) were less than 18 y old. Of these, 116 patients (52%) had metastatic CNS neuroblastoma, 57 (25%) had medulloblastoma, and 51 (23%) had other histologic types of CNS tumors. Of the 278 studies, 237 (85%) were normal, 9 (3%) required neurosurgical intervention, 25 (9%) were delayed, and 7 (3%) were asymmetric. Conclusion: Abnormal CSF flow and the necessity for neurosurgical intervention must be considered when attempting to ensure appropriate intraventricular therapy in the pediatric population.




ad

Back-Table Fluorescence-Guided Imaging for Circumferential Resection Margin Evaluation Using Bevacizumab-800CW in Patients with Locally Advanced Rectal Cancer

Negative circumferential resection margins (CRM) are the cornerstone for the curative treatment of locally advanced rectal cancer (LARC). However, in up to 18.6% of patients, tumor-positive resection margins are detected on histopathology. In this proof-of-concept study, we investigated the feasibility of optical molecular imaging as a tool for evaluating the CRM directly after surgical resection to improve tumor-negative CRM rates. Methods: LARC patients treated with neoadjuvant chemoradiotherapy received an intravenous bolus injection of 4.5 mg of bevacizumab-800CW, a fluorescent tracer targeting vascular endothelial growth factor A, 2–3 d before surgery (ClinicalTrials.gov identifier: NCT01972373). First, for evaluation of the CRM status, back-table fluorescence-guided imaging (FGI) of the fresh surgical resection specimens (n = 8) was performed. These results were correlated with histopathology results. Second, for determination of the sensitivity and specificity of bevacizumab-800CW for tumor detection, a mean fluorescence intensity cutoff value was determined from the formalin-fixed tissue slices (n = 42; 17 patients). Local bevacizumab-800CW accumulation was evaluated by fluorescence microscopy. Results: Back-table FGI correctly identified a tumor-positive CRM by high fluorescence intensities in 1 of 2 patients (50%) with a tumor-positive CRM. For the other patient, low fluorescence intensities were shown, although (sub)millimeter tumor deposits were present less than 1 mm from the CRM. FGI correctly identified 5 of 6 tumor-negative CRM (83%). The 1 patient with false-positive findings had a marginal negative CRM of only 1.4 mm. Receiver operating characteristic curve analysis of the fluorescence intensities of formalin-fixed tissue slices yielded an optimal mean fluorescence intensity cutoff value for tumor detection of 5,775 (sensitivity of 96.19% and specificity of 80.39%). Bevacizumab-800CW enabled a clear differentiation between tumor and normal tissue up to a microscopic level, with a tumor-to-background ratio of 4.7 ± 2.5 (mean ± SD). Conclusion: In this proof-of-concept study, we showed the potential of back-table FGI for evaluating the CRM status in LARC patients. Optimization of this technique with adaptation of standard operating procedures could change perioperative decision making with regard to extending resections or applying intraoperative radiation therapy in the case of positive CRM.




ad

The Standard of Care: From Nuclear Radiology to Nuclear Medicine




ad

SNMMI Leadership Update: SNMMI Strong: Advancing the Profession through Advocacy, Collaboration, and Awareness




ad

Monitoring Radioisotope Production and Transport




ad

Drosophila estrogen-related receptor directs a transcriptional switch that supports adult glycolysis and lipogenesis [Research Papers]

Metabolism and development must be closely coupled to meet the changing physiological needs of each stage in the life cycle. The molecular mechanisms that link these pathways, however, remain poorly understood. Here we show that the Drosophila estrogen-related receptor (dERR) directs a transcriptional switch in mid-pupae that promotes glucose oxidation and lipogenesis in young adults. dERR mutant adults are viable but display reduced locomotor activity, susceptibility to starvation, elevated glucose, and an almost complete lack of stored triglycerides. Molecular profiling by RNA-seq, ChIP-seq, and metabolomics revealed that glycolytic and pentose phosphate pathway genes are induced by dERR, and their reduced expression in mutants is accompanied by elevated glycolytic intermediates, reduced TCA cycle intermediates, and reduced levels of long chain fatty acids. Unexpectedly, we found that the central pathways of energy metabolism, including glycolysis, the tricarboxylic acid cycle, and electron transport chain, are coordinately induced at the transcriptional level in mid-pupae and maintained into adulthood, and this response is partially dependent on dERR, leading to the metabolic defects observed in mutants. Our data support the model that dERR contributes to a transcriptional switch during pupal development that establishes the metabolic state of the adult fly.




ad

Development and Implementation of the Readiness Assessment of Emerging Adults With Type 1 Diabetes Diagnosed in Youth (READDY) Tool




ad

Prevalence and incidence of, and risk factors for chronic cough in the adult population: the Rotterdam Study

Chronic cough is a common complaint in the general population but there are no precise data on the incidence of, and prospectively examined risk factors for chronic cough in a population-based setting. Therefore, we investigated the period prevalence, incidence and risk factors for chronic cough in adult subjects.

In a prospective population-based cohort study among subjects aged ≥45 years, data on chronic cough were collected on two separate occasions using a standardised questionnaire. Chronic cough was defined as daily coughing for at least 3 months duration during the preceding 2 years. Potential risk factors were gathered by interview, physical examination and several investigations.

Of the 9824 participants in this study, 1073 (10.9%) subjects had chronic cough at baseline. The prevalence of chronic cough increased with age and peaked in the eighth decade. In subjects aged <70 years, chronic cough was more common in women. During an average follow-up of 6 years, 439 incident cases of chronic cough occurred with an overall incidence rate of 11.6 per 1000 person-years (95% CI 10.6–12.8). In current smokers, the incidence of chronic cough was higher in men. In the multivariable analysis, current smoking, gastro-oesophageal reflux disease (GORD), asthma and COPD were identified as risk factors for chronic cough.

Chronic cough is common among adults and highly prevalent in the older population. Current smoking, GORD, asthma and COPD are independent risk factors for chronic cough. Individuals at risk of developing chronic cough may benefit from smoking cessation and control of the underlying disease.




ad

Low adherence to inhaled corticosteroids/long-acting {beta}2-agonists and biologic treatment in severe asthmatics

Eligibility criteria for a biologic treatment for severe asthma include poor disease control despite a full medication plan according to Global Initiative for Asthma steps 4–5 [1]. Adherence to inhaled therapy should be verified as part of that prescription requirement [2]. In fact, it has been demonstrated that poor adherence is a major cause of uncontrolled asthma, regardless of its severity [3]. Furthermore, biologics do not exert a disease-modifying effect [4]; in contrast to allergen immunotherapy, which is able to permanently modulate the way the immune system reacts to allergens beyond the immunotherapy treatment course [5], biologic therapy withdrawal usually leads to asthma relapse [4]. Thus, a low adherence rate to inhaled treatment in patients undergoing biologic therapy raises some issues related to sustainability.




ad

Advances in the use of isotopes in geochemical exploration: instrumentation and applications in understanding geochemical processes

Among the emerging techniques to detect the real footprint of buried ore deposits is isotope tracing. Novel and automated preparation systems such as continuous flow isotope ratio mass spectrometry, off-axis integrated cavity output spectroscopy for isotopic compositions of selected molecules, multi-collector inductively coupled-plasma mass spectrometry (ICP-MS), triple quadrupole ICP-MS, laser ablation ICP-MS, and a multitude of inline preparation systems have facilitated the use of isotopes as tracers in mineral exploration, as costs for isotope analyses have decreased and the time required for the analyses has improved. In addition, the isotope systems being used have expanded beyond the traditional light stable and Pb isotopes to include a multitude of elements that behave differently during processes that promote the mobilization of elements during both primary and secondary dispersion. Isotopes are also being used to understand barren areas that lack a critical process to form an ore deposit and to reveal precise redox mechanisms. The goal is to be able to use isotopes to reflect a definitive process that occurs in association with the deposit and not in barren systems, and then to relate these to something that is easier to measure, namely elemental concentrations. As new generations of exploration and environmental scientists are becoming more comfortable with the application of isotopes to effectively trace processes involved in geoscience, and new technologies for rapid and inexpensive analyses of isotopes are continually being developed, novel applications of isotope tracing are becoming more mainstream.

Thematic collection: This article is part of the Exploration 17 collection available at: https://www.lyellcollection.org/cc/exploration-17




ad

Recent advances in the application of mineral chemistry to exploration for porphyry copper-gold-molybdenum deposits: detecting the geochemical fingerprints and footprints of hypogene mineralization and alteration

In the past decade, significant research efforts have been devoted to mineral chemistry studies to assist porphyry exploration. These activities can be divided into two major fields of research: (1) porphyry indicator minerals (PIMs), which are used to identify the presence of, or potential for, porphyry-style mineralization based on the chemistry of magmatic minerals such as zircon, plagioclase and apatite, or resistate hydrothermal minerals such as magnetite; and (2) porphyry vectoring and fertility tools (PVFTs), which use the chemical compositions of hydrothermal minerals such as epidote, chlorite and alunite to predict the likely direction and distance to mineralized centres, and the potential metal endowment of a mineral district. This new generation of exploration tools has been enabled by advances in and increased access to laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), short-wave length infrared (SWIR), visible near-infrared (VNIR) and hyperspectral technologies. PIMs and PVFTs show considerable promise for exploration and are starting to be applied to the diversity of environments that host porphyry and epithermal deposits globally. Industry has consistently supported development of these tools, and in the case of PVFTs encouraged by several successful blind tests where deposit centres have successfully been predicted from distal propylitic settings. Industry adoption is steadily increasing but is restrained by a lack of the necessary analytical equipment and expertise in commercial laboratories, and also by the ongoing reliance on well-established geochemical exploration techniques (e.g. sediment, soil and rock chip sampling) that have aided the discovery of near-surface resources over many decades, but are now proving less effective in the search for deeply buried mineral resources and for those concealed under cover.

Thematic collection: This article is part of the Exploration 17 collection available at: https://www.lyellcollection.org/cc/exploration-17




ad

Advances in ICP-MS technology and the application of multi-element geochemistry to exploration

There have been several advances in inductively coupled plasma-mass spectrometer (ICP-MS) analytical technologies in the last decade. Collision/reaction cell ICP-MS and triple quadrupole ICP-MS techniques can produce lower detection limits for select elements that experience interferences with a standard quadrupole (e.g. Se and As). Triple quadrupole ICP-MS, in particular, can eliminate virtually all polyatomic or isobaric interferences for highly accurate measurements of some element isotopes systematics that are of great interest in mineral exploration, namely Pb/Pb. Laser ablation ICP-MS has become more popular as an effective analytical tool to measure mineral grain trace elements, which could assist in vectoring to mineralization or exploration drill targets. The ablation of a spot on a Li-borate fused glass disk paired with XRF analysis has also gained popularity as an alternative to total whole rock characterization packages that employ several separate digestions and analytical methods. While there have been several advancements in ICP-MS technologies in exploration geochemistry, they have not been widely accepted or implemented. This slow adaptation could be due to the extended recession in the mining industry between 2012 and 2017. It is also possible that standard ICP-MS data (i.e. no collision/reaction cell) is still fit for purpose. This stands in stark contrast to implementation of ICP-MS in the previous decade (1997–2007), which was transformational for the industry.

Consideration of all elements from large multi-element ICP-MS analytical suites for mineral exploration can be an extremely powerful tool in the exploration toolkit. The discovery of the White Gold District, Yukon, is a prime example of how the utilization of soil geochemical data, when plotted spatially, can vector to gold mineralization. The presence of Au + As + Sb soil anomalies were key to delineating mineralization, especially when accompanied by publicly available geological, geographical and geophysical data. Additionally, elements and element ratios not typically considered in Au exploration, including Ni and U, were utilized to determine the lithological and structural controls on mineralization. The availability of multi-element ICP-MS data was also useful in the discovery of the Cascadero Copper Taron Caesium deposit. Ore-grade Cs was discovered only because Cs was included in the multi-element ICP-MS exploration geochemistry suite. Before the availability of ICP-MS, it is unlikely that this deposit would have been discovered.

Thematic collection: This article is part of the Exploration 17 collection available at: https://www.lyellcollection.org/cc/exploration-17




ad

Advances in exploration geochemistry, 2007 to 2017 and beyond

Mineral exploration under relatively young, exotic cover still presents a major challenge to discovery. Advances and future developments can be categorized in four key areas, (1) understanding metal mobility and mechanisms, (2) rapid geochemical analyses, (3) data access, integration and interoperability and (4) innovation in laboratory-based methods.

Application of ‘regolith-style' surface mapping in covered terrains outside of conventional lateritic terrains is achieving success in terms of reducing background noise and improving geochemical contrasts. However, process models for anomaly generation are still uncertain and require further research. The interaction between the surface environment, microbes, hydrocarbons and chemistry is receiving greater attention. While significant progress has been achieved in understanding the role of vegetation, interaction with the water table and cycling of metals in the near surface environment in Australia, other regions of the world, for example, the till-covered terrains in the northern hemisphere and arid colluvium-covered areas of South America, have seen less progress. In addition to vegetation, the influence of bacteria, fungi and invertebrates is not as well studied with respect to metal mobilization in cover. Field portable XRF has become a standard field technique, though more often used in a camp setting. Apart from a tweaking of analytical quality, instruments have probably reached their peak of analytical development with add-ons, such as cameras, beam-limiters, wireless transmission and GPS as the main differences between instrument suppliers. Their future rests in automated application in unconventional configurations, for example, core scanning and better integration of analytical data with other information such as spectral analyses. Pattern drilling that persists in industry, however, has benefited from innovative application of field-portable tools along with rock and mineral chemistry to provide near real-time results and assist in a shift toward more flexible and targeted drilling in greenfields settings.

Innovation in the laboratory continues to progress. More selective geochemical analysis, imaging of fine particle size fractions and resistate mineral phases and isotope analysis are faster and more accessible than ever before. The application of genomics (and data analysis) as mineral exploration tools is on the horizon. A continuing problem in geoscience, the supply to industry of suitably trained geochemists, persists although some needs, particularly at junior level, will be met by recent initiatives at various universities at graduate level. Unfortunately, the current economic climate has had a significant impact on R&D and retention of geochemistry skills by the industry. Whilst the future is positive, significant investment is required to develop the next generation of geochemical exploration tools and concepts.

Thematic collection: This article is part of the Exploration 17 collection available at: https://www.lyellcollection.org/cc/exploration-17




ad

Medical Cannabinoid Products in Children and Adolescents