sh

Insurrection à Washington - Assaut du Capitole: des membres de la milice Oath Keepers reconnus coupables de "sédition"

(Belga) Quatre membres de la milice d'extrême droite "Oath Keepers" ont été reconnus coupables lundi de sédition pour leur rôle dans l'assaut du Capitole, à l'issue du second procès organisé sur ce chef d'accusation extrêmement rare.

Depuis l'attaque du 6 janvier 2021, plus de 950 partisans de l'ex-président républicain Donald Trump ont été arrêtés et inculpés pour avoir semé le chaos dans le siège de la démocratie américaine. Parmi eux, seuls 14 militants de groupuscules d'extrême droite - neuf membres des "Oath Keepers" et cinq "Proud Boys" - ont été accusés de "sédition", un chef passible de 20 ans de prison qui implique d'avoir planifié l'usage de la force pour s'opposer au gouvernement. Faute de place suffisante dans le tribunal fédéral de Washington, la justice a organisé le procès des Oath Keepers, accusés de s'être entraînés et armés pour l'occasion, en deux temps. Un premier procès s'est conclu fin novembre par un verdict mitigé: le fondateur de cette milice, Stewart Rhodes, et un responsable local ont été déclarés coupables de sédition, mais leurs trois co-accusés ont été acquittés sur ce chef. Lundi, à l'issue du second procès, les jurés ont jugé coupables les quatre derniers Oath Keepers, des hommes âgés de 38 à 64 ans décrits comme de dangereux "traîtres" par l'accusation, mais comme des "fanfarons" par leurs avocats. Le procès des Proud Boys, dont leur leader Enrique Tarrio, s'est ouvert en décembre et était toujours en cours lundi, dans le même tribunal. (Belga)




sh

Research on Weibo marketing advertising push method based on social network data mining

The current advertising push methods have low accuracy and poor advertising conversion effects. Therefore, a Weibo marketing advertising push method based on social network data mining is studied. Firstly, establish a social network graph and use graph clustering algorithm to mine the association relationships of users in the network. Secondly, through sparsisation processing, the association between nodes in the social network graph is excavated. Then, evaluate the tightness between user preferences and other nodes in the social network, and use the TF-IDF algorithm to extract user interest features. Finally, an attention mechanism is introduced to improve the deep learning model, which matches user interests with advertising domain features and outputs push results. The experimental results show that the push accuracy of this method is higher than 95%, with a maximum advertising click through rate of 82.7% and a maximum advertising conversion rate of 60.7%.




sh

Research on multi-objective optimisation for shared bicycle dispatching

The problem of dispatching is key to management of shared bicycles. Considering the number of borrowing and returning events during the dispatching period, optimisation plans of shared bicycles dispatching are studied in this paper. Firstly, the dispatching model of shared bicycles is built, which regards the dispatching cost and lost demand as optimised objectives. Secondly, the solution algorithm is designed based on non-dominated Genetic Algorithm. Finally, a case is given to illustrate the application of the method. The research results show that the method proposed in the paper can get optimised dispatching plans, and the model considering borrowing and returning during dispatching period has better effects with a 39.3% decrease in lost demand.




sh

A robust feature points-based screen-shooting resilient watermarking scheme

Screen-shooting will lead to information leakage. Anti-screen-shooting watermark, which can track the leaking sources and protect the copyrights of images, plays an important role in image information security. Due to the randomness of shooting distance and angle, more robust watermark algorithms are needed to resist the mixed attack generated by screen-shooting. A robust digital watermarking algorithm that is resistant to screen-shooting is proposed in this paper. We use improved Harris-Laplace algorithm to detect the image feature points and embed the watermark into the feature domain. In this paper, all test images are selected on the dataset USC-SIPI and six related common algorithms are used for performance comparison. The experimental results show that within a certain range of shooting distance and angle, this algorithm presented can not only extract the watermark effectively but also ensure the most basic invisibility of watermark. Therefore, the algorithm has good robustness for anti-screen-shooting.




sh

Undertaking a bibliometric analysis to investigate the framework and dynamics of slow fashion in the context of sustainability

The current study has outlined slow fashion (SF) research trends and created a future research agenda for this field. It is a thorough analysis of the literature on slow fashion. Numerous bibliometric features of slow fashion have been discussed in the paper. This study comprises 182 research articles from the Scopus database. The database was utilised for bibliometric analysis. To identify certain trends in the area of slow fashion, a bibliometric study is done. For bibliometric analysis, the study employed R-software (the Biblioshiny package). Here, VOSviewer software is used to determine the co-occurrence of authors, countries, sources, etc. The study has outlined the gap that still exists in the field of slow fashion. Here, the research outcome strengthens the domain of slow fashion for sustainable consumption. The study findings will be useful for policymakers, industry professionals, and researchers.




sh

Does brand association, brand attachment, and brand identification mediate the relationship between consumers' willingness to pay premium prices and social media marketing efforts?

This study investigates the effects of social media marketing efforts (SMME) on smartphone brand identification, attachment, association, and willingness to pay premium prices. A survey of 320 smartphone users who followed official social media handles managed by smartphone companies was conducted for this purpose. PLS-SEM was used to analyse the collected data. The findings demonstrated importance of SMME dimensions. According to the study's findings, the smartphone brand's SMMEs had significant impact on brand identification, brand association, and brand attachment. The results revealed that SMMEs had significant impact on willingness to pay the premium price. The findings also show that brand identification, attachment, and association mediated the relationship between SMMEs and willingness to pay a premium price. The findings of this study will be useful in developing social media marketing strategies for smartphones. This study demonstrates the use of social media marketing to promote mobile phones, particularly in emerging markets.




sh

Enhanced TCP BBR performance in wireless mesh networks (WMNs) and next-generation high-speed 5G networks

TCP BBR is one of the most powerful congestion control algorithms. In this article, we provide a comprehensive review of BBR analysis, expanding on existing knowledge across various fronts. Utilising ns3 simulations, we evaluate BBR's performance under diverse conditions, generating graphical representations. Our findings reveal flaws in the probe's RTT phase duration estimation and unequal bandwidth sharing between BBR and CUBIC protocols. Specifically, we demonstrated that the probe's RTT phase duration estimation algorithm is flawed and that BBR and CUBIC generally do not share bandwidth equally. Towards the end of the article, we propose a new improved version of TCP BBR which minimises these problems of inequity in bandwidth sharing and corrects the inaccuracies of the two key parameters RTprop and cwnd. Consequently, the BBR' protocol maintains very good fairness with the Cubic protocol, with an index that is almost equal to 0.98, and an equity index over 0.95.




sh

Design of intelligent financial sharing platform driven by consensus mechanism under mobile edge computing and accounting transformation

The intelligent financial sharing platform in the online realm is capable of collecting, storing, processing, analysing and sharing financial data through the integration of AI and big data processing technologies. However, as data volume grows exponentially, the cost of financial data storage and processing increases, and the asset accounting and financial profit data sharing analysis structure in financial sharing platforms is inadequate. To address the issue of data security sharing in the intelligent financial digital sharing platform, this paper proposes a data-sharing framework based on blockchain and edge computing. Building upon this framework, a non-separable task distribution algorithm based on data sharing is developed, which employs multiple nodes for cooperative data storage, reducing the pressure on the central server for data storage and solving the problem of non-separable task distribution. Multiple sets of comparative experiments confirm the proposed scheme has good feasibility in improving algorithm performance and reducing energy consumption and latency.




sh

An empirical study on construction emergency disaster management and risk assessment in shield tunnel construction project with big data analysis

Emergency disaster management presents substantial risks and obstacles to shield tunnel building projects, particularly in the event of water leakage accidents. Contemporary water leak detection is critical for guaranteeing safety by reducing the likelihood of disasters and the severity of any resulting damages. However, it can be difficult. Deep learning models can analyse images taken inside the tunnel to look for signs of water damage. This study introduces a unique strategy that employs deep learning techniques, generative adversarial networks (GAN) with long short-term memory (LSTM) for water leakage detection i shield tunnel construction (WLD-STC) to conduct classification and prediction tasks on the massive image dataset. The results demonstrate that for identifying and analysing water leakage episodes during shield tunnel construction, the WLD-STC strategy using LSTM-based GAN networks outperformed other methods, particularly on huge data.




sh

Design of an intelligent financial sharing platform driven by digital economy and its role in optimising accounting transformation production

With the expansion of business scope, the environment faced by enterprises has also changed, and competition is becoming increasingly fierce. Traditional financial systems are increasingly difficult to handle complex tasks and predict potential financial risks. In the context of the digital economy era, the booming financial sharing services have reduced labour costs and improved operational efficiency. This paper designs and implements an intelligent financial sharing platform, establishes a fund payment risk early warning model based on an improved support vector machine algorithm, and tests it on the Financial Distress Prediction dataset. The experimental results show that the effectiveness of using F2 score and AUC evaluation methods can reach 0.9484 and 0.9023, respectively. After using this system, the average financial processing time per order decreases by 43%, and the overall financial processing time decreases by 27%. Finally, this paper discusses the role of intelligent financial sharing platform in accounting transformation and optimisation of production.




sh

Fostering innovative work behaviour in Indian IT firms: the mediating influence of employee psychological capital in the context of transformational leadership

This empirical study investigates the mediating role of two components of psychological capital (PsyCap), namely self-efficacy and optimism, in the context of the relationship between transformational leadership (TL), work engagement (WE), and innovative work behaviour (IWB). The study was conducted among IT professionals with a minimum of three years of experience employed in Chennai, India. Data collection was executed using a Google Form, and both measurement and structural models were examined using SPSS 25.0 and AMOS 23.0. The findings of this study reveal several significant relationships. Firstly, transformational leadership (TL) demonstrates a robust positive association with work engagement (WE). Furthermore, work engagement (WE) positively correlates substantially with innovative work behaviour (IWB). Notably, the study underscores that two crucial components of psychological capital, specifically self-efficacy and optimism, mediate the relationship between transformational leadership (TL) and work engagement (WE). These findings carry valuable implications for IT company managers. Recognising that transformational leadership positively influences both work engagement and employees' innovative work behaviour highlights the pivotal role of leaders in fostering a productive and innovative work environment within IT organisations.




sh

E-recruitment adoption among job-seekers: role of vividness and perceived internet stress in shaping their intentions

Drawn from technology acceptance model, this study establishes a theoretical framework for the analytical interpretation of factors affecting job-seekers intention to use e-recruitment websites. Using the data obtained from 379 respondents in India, ten hypotheses derived from the experimental model are evaluated using a structural equation modelling technique. Vividness, perceived usefulness (PU), and attitude have been shown to have a significant positive impact on the behavioural intentions (BIs) of job-seekers, although perceived ease of use (PEOU) did not. Furthermore, perceived internet stress (PIS) is observed to be a significant antecedent PEOU; and PEOU is of PU. Such findings broaden our knowledge of e-recruiting in various ways and offer qualitative insights into the potential impact of website functionality on the attractiveness of job-seekers.




sh

The relationship between 'creative slack' as an intangible asset and the innovative capabilities of the firm

The notion of creative slack purposefully refers to the notion of organisational slack proposed by Penrose (1959), who suggested that managers in organisations always have some stock of unused resources that inevitably accumulate when developing projects and are the primary factors determining the growth and innovation of the firm. In this contribution, we aim at adding a new dimension to the notion of organisational slack. Our view is that in many innovative organisations the slack of unused ideas is essentially a creative one, which is accumulated in diverse communities through multiple projects. This creative slack is a key intangible asset and a source of knowledge creation and innovation. To explain how organisations may benefit from exploiting the creative slack accumulated by communities, we rely on the analysis of two case studies, that of the Hydro-Québec Research Institute (IREQ), and of Ubisoft Montreal.




sh

Real World Project: Integrating the Classroom, External Business Partnerships and Professional Organizations




sh

Level of Student Effort Should Replace Contact Time in Course Design




sh

Establishing an Institutional Framework for an E-learning Implementation – Experiences from the University of Rijeka, Croatia




sh

Automatic Grading of Spreadsheet and Database Skills




sh

Using the Work System Method with Freshman Information Systems Students




sh

A Template-Based Short Course Concept on Android Application Development




sh

Cloud Computing: Short Term Impacts of 1:1 Computing in the Sixth Grade




sh

Implementing and Evaluating a Blended Learning Format in the Communication Internship Course

The use of blended learning is well suited for classes that involve a high level of experiential inquiry such as internship courses. These courses allow students to combine applied, face-to-face fieldwork activities with a reflective academic component delivered online. Therefore, the purpose of this article is to describe the pedagogical design and implementation of a pilot blended learning format internship course. After implementation, the pilot class was assessed. Results of the survey and focus group revealed high levels of student satisfaction in the areas of course structure, faculty-student interaction, and application of theory to the “real-world” experience undertaken by students during the internship. Lower levels of satisfaction with the course’s academic rigor and a sense of community were also reported. Notably, students with experience in blended learning expressed lower levels of overall satisfaction, but reported higher levels of satisfaction with the course’s rigor and sense of community. The paper concludes by offering implications for instructors seeking to implement blended learning approaches.




sh

Learning Circles: A Collaborative Technology-Mediated Peer-Teaching Workshop

This research study explores peer teaching and learning without a domain expert teacher, within the context of an activity where teams of second level students (~16 years old) are required to create a learning experience for their peers. The study looks at how participants would like to be taught and how they would teach their peers if given the opportunity and examines the support they require, their motivation levels, and if they actually learn curriculum content using this approach. An exploratory case study methodology was used, and the findings suggest that students want varied learning experiences that include many of the elements which would fall under the heading of 21st century learning, that with some support and encouragement they can create innovative learning experiences for their peers, and that they can learn curriculum content from the process.




sh

Effectiveness of Peer Assessment in a Professionalism Course Using an Online Workshop

An online Moodle Workshop was evaluated for peer assessment effectiveness. A quasi-experiment was designed using a Seminar in Professionalism course taught in face-to-face mode to undergraduate students across two campuses. The first goal was to determine if Moodle Workshop awarded a fair peer grader grade. The second objective was to estimate if students were consistent and reliable in performing their peer assessments. Statistical techniques were used to answer the research hypotheses. Although Workshop Moodle did not have a built-in measure for peer assessment validity, t-tests and reliability estimates were calculated to demonstrate that the grades were consistent with what faculty expected. Implications were asserted to improve teaching and recommendations were provided to enhance Moodle.




sh

An Investigation of the Use of the ‘Flipped Classroom’ Pedagogy in Secondary English Language Classrooms

Aim/Purpose : To examine the use of a flipped classroom in the English Language subject in secondary classrooms in Hong Kong. Background: The research questions addressed were: (1) What are teachers’ perceptions towards the flipped classroom pedagogy? (2) How can teachers transfer their flipped classroom experiences to teaching other classes/subjects? (3) What are students’ perceptions towards the flipped classroom pedagogy? (4) How can students transfer their flipped classroom experiences to studying other subjects? (5) Will students have significant gain in the knowledge of the lesson topic trialled in this study? Methodology: A total of 57 students from two Secondary 2 classes in a Band 3 secondary school together with two teachers teaching these two classes were involved in this study. Both quantitative and quantitative data analyses were conducted. Contribution: Regarding whether the flipped classroom pedagogy can help students gain significantly in their knowledge of a lesson topic, only one class of students gained statistically significantly in the subject knowledge but not for another class. Findings: Students in general were positive about the flipped classroom. On the other hand, although the teachers considered that the flipped classroom pedagogy was creative, they thought it may only be useful for teaching English grammar. Recommendations for Practitioners: Teachers thought that flipping a classroom may only be useful for more motivated students, and the extra workload of finding or making suitable pre-lesson online videos is the main concern for teachers. Recommendations for Researchers: Both quantitative and qualitative analyses should be conducted to investigate the effectiveness of a flipped classroom on students’ language learning. Impact on Society : Teachers and students can transfer their flipped classroom experiences in English Language to teaching and studying other subjects. Future Research: More classes should be involved and a longer period of time should be spent on trial teaching in which a flipped classroom can be implemented in different lesson topics, not only teaching grammar. Teachers also need to determine if students can use the target language item in a task.




sh

Promising Instructional Practices for English Language Learners

Aim/Purpose: The purpose of this exploratory case study was to understand how teachers, working with English Language Learners (ELLs), expanded their knowledge and instructional practices as they implemented a one-to-one iPad® program. Background: English Language Learners experience linguistic, cultural, and cognitive shifts that can be challenging, and at times lead to isolation for ELLs. While technology can be engaging, devices alone do not shift instructional practices, nor lead to student learning. Technology must be leveraged through shifts to pedagogical practice and linked thoughtfully to content goals. Methodology: This research was conducted through a qualitative case study of educators at an international school. Contribution: This study describes promising pedagogical practices for leveraging 1:1 mobile devices for ELLs. Findings: iPads can be a support for ELL students. One-to-one iPads allowed teachers to experiment with new pedagogical approaches, but this development varies greatly between teachers. During the 1:1 implementation there were challenges reported. Recommendations for Practitioners: In order to mitigate some of these challenges, and build on the success of this study, the researcher suggests developing a common vision for technology integration, using collaborative models of ELL teaching, and investing in professional development. Recommendation for Researchers: Researchers should continue to document and observe the learning outcomes of ELL students in 1:1 environments, including an experimental study. Impact on Society: ELLs can benefit from 1:1 technology, and new pedagogical practices. For teachers to implement these new practices conversations on philosophy, engagement with families, and consistent professional development. Future Research: Future research can continue to expand the population of ELL students in 1:1 mobile learning environments; and the most powerful pedagogical practices.




sh

Knowledge Management Applied to Learning English as a Second Language Through Asynchronous Online Instructional Videos

Aim/Purpose: The purpose of this research is to determine whether ESL teaching videos as a form of asynchronous online knowledge sharing can act as an aid to ESL learners internalizing knowledge in language acquisition. In this context, internalizing knowledge carries the meaning of being able to remember language, and purposefully and accurately use it context, including appropriacy of language, and aspects of correct pronunciation, intonation, stress patterns and connected speech, these being the elements of teaching and practice that are very often lacking in asynchronous, online, instructional video. Background: Knowledge Management is the field of study, and the practice, of discovering, capturing, sharing, and applying knowledge, typically with a view to translating individuals’ knowledge into organizational knowledge. In the field of education, it is the sharing of instructors’ knowledge for students to be able to learn and usefully apply that knowledge. In recent pandemic times, however, the mode of instruction has, of necessity, transitioned from face-to-face learning to an online environment, transforming the face of education as we know it. While this mode of instruction and knowledge sharing has many advantages for the online learner, in both synchronous and asynchronous learning environments, it presents certain challenges for language learners due to the absence of interaction and corrective feedback that needs to take place for learners of English as a Second Language (ESL) to master language acquisition. Unlike other subjects where the learner has recourse to online resources to reinforce learning through referencing external information, such as facts, figures, or theories, to be successful in learning a second language, the ESL learner needs to be able to learn to process thought and speech in that language; essentially, they need to learn to think in another language, which takes time and practice. Methodology: The research employs a systematic literature review (SLR) to determine the scope and extent to which the subject is covered by existing research in this field, and the findings thereof. Contribution: Whilst inconclusive in relation to internalizing language through online, asynchronous instructional video, through its exploratory nature, the research contributes towards the body of knowledge in online learning through the drawing together of various studies in the field of learning through asynchronous video through improving video and instructional quality. Findings: The findings of the systematic literature review revealed that there is negligible research in this area, and while information exists on blended and flipped modes of online learning, and ways to improve the quality and delivery of instructional video generally, no prior research on the exclusive use of asynchronous videos as an aid to internalizing English as a second language were found. Recommendations for Practitioners: From this research, it is apparent that there is considerably more that practitioners can do to improve the quality of instructional videos that can help students engage with the learning, from which students stand a much better chance of internalizing the learning. Recommendation for Researchers: For researchers, the absence of existing research is an exciting opportunity to further explore this field. Impact on Society: Online learning is now globally endemic, but it poses specific challenges in the field of second language learning, so the development of instructional videos that can facilitate this represents a clear benefit to all ESL learners in society as a whole. Future Research: Clearly the absence of existing research into whether online asynchronous instructional videos can act as an aid to internalizing the acquisition of English as a second language would indicate that this very specific field is one that merits future research. Indeed, it is one that the author intends to exploit through primary data collection from the production of a series of asynchronous, online, instructional videos.




sh

Investigating Factors Contributing to Student Disengagement and Ownership in Learning: A Case Study of Undergraduate Engineering Students

Aim/Purpose: Despite playing a critical role in shaping the future, 70% of undergraduate engineers report low levels of motivation. Student disengagement and a lack of ownership of their learning are significant challenges in higher education, specifically engineering students in the computer science department. This study investigates the various causes of these problems among first-year undergraduate engineers. Background: Student disengagement has become a significant problem, especially in higher education, leading to reduced academic performance, lower graduation rates, and less satisfaction with learning. The study intends to develop approaches that encourage a more interesting and learner-motivated educational environment. Methodology: This research uses a mixed methods approach by combining quantitative data from a survey-based questionnaire with qualitative insights from focus groups to explore intrinsic and extrinsic motivators, instructional practices, and student perceptions of relevance and application of course content. The aim of this method is to make an all-inclusive exploration into undergraduate engineering students’ perspectives on factors contributing to this disengagement and the need for more ownership. Contribution: Inculcating passion for engineering among learners seems demanding, with numerous educational programs struggling with issues such as a lack of interest by students and no personal investment in learning. Understanding the causes is of paramount importance. The study gives suggestions to help teachers or institutions create a more engaged and ownership-based learning environment for engineering students. Findings: The findings revealed a tangled web influencing monotonous teaching styles, limited opportunities and applications, and a perceived gap between theoretical knowledge and real-world engineering problems. It emphasized the need to implement more active learning strategies that could increase autonomy and a stronger sense of purpose in their learning journey. It also highlights the potential use of technology in promoting student engagement and ownership. Further research is needed to explore optimal implementation strategies for online simulations, interactive learning platforms, and gamification elements in the engineering curriculum. Recommendations for Practitioners: It highlights the complex interplay of intrinsic and extrinsic motivation factors and the need to re-look at instructional practice and emphasize faculty training to develop a more student-centered approach. It also stresses the need to look into the relevance and application of the course content. Recommendation for Researchers: More work needs to be done with a larger, more diverse sample population across multiple institutions and varied sociocultural and economic backgrounds. Impact on Society: Enhancing learners’ educational experience can result in creating a passionate and competent team of engineers who can face future obstacles fearlessly and reduce the production of half-baked graduates unprepared for the profession’s challenges. Future Research: Conduct long-term studies to assess the impact of active learning and technology use on student outcomes and career readiness. Investigate scaling up successful strategies across diverse engineering programs. See if promising practices work well everywhere.




sh

Unveiling green advances: sustainable innovations shaping hotels

This paper explores innovative ideas and strategies for promoting environmental sustainability within the hotel industry, with the goal of streamlining these concepts for practical application in the industry and facilitating future academic research. The research methodology encompassed extensive online desk research, yielding a collection of 87 articles that were subject to thorough analysis. Additionally, personal consultations were conducted with industry experts to align their insights with the identified innovative ideas. To facilitate comprehension, appropriate terminology was assigned to these concepts. Subsequently, a post-discussion phase was conducted, engaging in one-on-one sessions with five industry experts to distil these insights into four distinct directions. This paper holds potential value for both industry stakeholders and academics, serving as a structured compendium of ideas and innovations crucial for advancing sustainability in the hotel sector. Moreover, it provides a solid foundation for further academic research.




sh

Navigating e-customer relationship management through emerging information and communication technologies: moderation of trust and financial risk

This study examines the relationships between ICTs (e.g., chatbots, virtual assistants, social media platforms, e-mail marketing, mobile marketing, data analytics, interactive voice response, big data analytics, push notifications, cloud computing, and augmented reality) and e-customer relationship management (e-CRM) from the banking industry of China. Similarly, this study unfolds the moderation interference of trust and risk between the association of ICTs and e-CRM, respectively. The study provided a positive nexus between ICTs and e-CRM. On the other side, a significant moderation of trust, as well as financial risk was observed between the correlation of ICTs and customer relationship management. This study endows with insights into ICTs which are critical for achieving e-CRM by streamlining interactions and enhancing their experience. Similarly, trust and financial risk were observed as potential forces that sway the association between ICTs and e-CRM.




sh

Entrepreneurship vs. mentorship: an analysis of leadership modes on sustainable development with moderation of innovation management

This study explores the connection between mentorship and sustainable development (SD) within three major perspectives of sustainable development, such as social, environmental, and economic perspectives from China. Second, the study revealed the relationship between entrepreneurship and SD. Third, a moderation influence of innovation management (IM) was observed among the proposed nexuses of mentorship, entrepreneurship, and SD. To this end, a total of 535 questionnaires were eventually utilised with the support of SmartPLS and the structure equation modelling (SEM) approach. A positive connection was confirmed between mentorship and SD. The outcome uncovered a positive correlation between entrepreneurship and SD. In addition, a moderation of IM was found between mentorship, entrepreneurship, and SD. The study enlists several interesting lines about mentorship, entrepreneurship, and IM that might help to improve SD in terms of social, environmental, and economic perspectives. Besides, the study provides various implications for management and states the weaknesses along with the future directions for worldly researchers.




sh

Unsupervised VAD method based on short-time energy and spectral centroid in Arabic speech case

Voice Activity Detection (VAD) distinguishes speech segments from noise or silence areas. An efficient and noise-robust VAD system can be widely used for emerging speech technologies such as wireless communication and speech recognition. In this paper, we propose two versions of an unsupervised Arabic VAD method based on the combination of the Short-Time Energy (STE) and the Spectral Centroid (SC) features for formulating a typical threshold to detect speech areas. The first version compares only the STE feature to the threshold (STE-VAD). In contrast, the second compares the SC vector and the threshold (SC-VAD). The two versions of our VAD method were tested on 770 sentences of the Arabphone corpus, which were recorded in clean and noisy environments and evaluated under different values of Signal-to-Noise-Ratio. The experiments demonstrated the robustness of the STE-VAD in terms of accuracy and Mean Square Error.




sh

A data classification method for innovation and entrepreneurship in applied universities based on nearest neighbour criterion

Aiming to improve the accuracy, recall, and F1 value of data classification, this paper proposes an applied university innovation and entrepreneurship data classification method based on the nearest neighbour criterion. Firstly, the decision tree algorithm is used to mine innovation and entrepreneurship data from applied universities. Then, dynamic weight is introduced to improve the similarity calculation method based on edit distance, and the improved method is used to realise data de-duplication to avoid data over fitting. Finally, the nearest neighbour criterion method is used to classify applied university innovation and entrepreneurship data, and cosine similarity is used to calculate the similarity between the samples to be classified and each sample in the training data, achieving data classification. The experimental results demonstrate that the proposed method achieves a maximum accuracy of 96.5% and an average F1 score of 0.91. These findings indicate a high level of accuracy, recall, and F1 value for data classification using the proposed method.




sh

Study on personalised recommendation method of English online learning resources based on improved collaborative filtering algorithm

In order to improve recommendation coverage, a personalised recommendation method for English online learning resources based on improved collaborative filtering algorithm is studied to enhance the comprehensiveness of personalised recommendation for learning resources. Use matrix decomposition to decompose the user English online learning resource rating matrix. Cluster low dimensional English online learning resources by improving the K-means clustering algorithm. Based on the clustering results, calculate the backfill value of English online learning resources and backfill the information matrix of low dimensional English online learning resources. Using an improved collaborative filtering algorithm to calculate the predicted score of learning resources, personalised recommendation of English online learning resources for users based on the predicted score. Experimental results have shown that this method can effectively backfill English online learning resources, and the resource backfilling effect is excellent, and it has a high recommendation coverage rate.




sh

An English MOOC similar resource clustering method based on grey correlation

Due to the problems of low clustering accuracy and efficiency in traditional similar resource clustering methods, this paper studies an English MOOC similar resource clustering method based on grey correlation. Principal component analysis was used to extract similar resource features of English MOOC, and feature selection methods was used to pre-process similar resource features of English MOOC. On this basis, based on the grey correlation method, the pre-processed English MOOC similar resource features are standardised, and the correlation degree between different English MOOC similar resource features is calculated. The English MOOC similar resource correlation matrix is constructed to achieve English MOOC similar resource clustering. The experimental results show that the contour coefficient of the proposed method is closer to one, and the clustering accuracy of similar resources in English MOOC is as high as 94.2%, with a clustering time of only 22.3 ms.




sh

Learning behaviour recognition method of English online course based on multimodal data fusion

The conventional methods for identifying English online course learning behaviours have the problems of low recognition accuracy and high time cost. Therefore, a multimodal data fusion-based method for identifying English online course learning behaviours is proposed. Firstly, the analytic hierarchy process is used for decision fusion of multimodal data of learning behaviour. Secondly, based on the fusion results of multimodal data, weight coefficients are set to minimise losses and extract learning behaviour features. Finally, based on the extracted learning behaviour characteristics, the optimal classification function is constructed to classify the learning behaviour of English online courses. Based on the transfer information of learning behaviour status, the identification of online course learning behaviour is completed. The experimental results show that the recognition accuracy of the proposed method is above 90%, and its recognition accuracy is and can shorten the recognition time of learning behaviour, with high practical application reliability.




sh

A personalised recommendation method for English teaching resources on MOOC platform based on data mining

In order to enhance the accuracy of teaching resource recommendation results and optimise user experience, a personalised recommendation method for English teaching resources on the MOOC platform based on data mining is proposed. First, the learner's evaluation of resources and resource attributes are abstracted into the same space, and resource tags are established using the Knowledge graph. Then, interest preference constraints are introduced to mine sequential patterns of user historical learning behaviour in the MOOC platform. Finally, a graph neural network is used to construct a recommendation model, which adjusts users' short-term and short-term interest parameters to achieve dynamic personalised teaching recommendation resources. The experimental results show that the accuracy and recall of the resource recommendation results of the research method are always higher than 0.9, the normalised sorting gain is always higher than 0.5.




sh

Integrating MOOC online and offline English teaching resources based on convolutional neural network

In order to shorten the integration and sharing time of English teaching resources, a MOOC English online and offline mixed teaching resource integration model based on convolutional neural networks is proposed. The intelligent integration model of MOOC English online and offline hybrid teaching resources based on convolutional neural network is constructed. The intelligent integration unit of teaching resources uses the Arduino device recognition program based on convolutional neural network to complete the classification of hybrid teaching resources. Based on the classification results, an English online and offline mixed teaching resource library for Arduino device MOOC is constructed, to achieve intelligent integration of teaching resources. The experimental results show that when the regularisation coefficient is 0.00002, the convolutional neural network model has the best training effect and the fastest convergence speed. And the resource integration time of the method in this article should not exceed 2 s at most.




sh

Emotional intelligence and managerial leadership in the fast moving consumer durable goods industry in India's perspective

Dynamic nature of the FMCG sector perpetually provides a tricky challenge for organisational leaders to nurture their employees. High demand for products, less shelf life and tough competitors always challenge the leaders to uphold their products in the market. Due to technology and e-commerce, many new competitors have joined the market, vying with the industry's veterans. Due to their unique business models that match client needs, these firms are expected to boost FMCG industry income in the future. Managers' leadership styles depend primarily on emotional intelligence. This quantitative study examines how emotional intelligence influences West Bengal FMCG senior managers' leadership styles. 500 FMCG managers were selected. PLS-SEM is used to study. Emotionally competent leaders choose transactional and transformational leadership styles depending on the occasion. Managers' transactional leadership style is strongly influenced by their sympathetic awareness, as shown by a path coefficient of 0.755. Transformational leadership style has a path coefficient of 0.693, indicating that managers' empathy affects their organisational management. Thus, sympathetic awareness and emotion regulation predict good management leadership.




sh

An evaluation of English distance information teaching quality based on decision tree classification algorithm

In order to overcome the problems of low evaluation accuracy and long evaluation time in traditional teaching quality evaluation methods, a method of English distance information teaching quality evaluation based on decision tree classification algorithm is proposed. Firstly, construct teaching quality evaluation indicators under different roles. Secondly, the information gain theory in decision tree classification algorithm is used to divide the attributes of teaching resources. Finally, the rough set theory is used to calculate the index weight and establish the risk evaluation index factor set. The result of teaching quality evaluation is obtained through fuzzy comprehensive evaluation method. The experimental results show that the accuracy rate of the teaching quality evaluation of this method can reach 99.2%, the recall rate of the English information teaching quality evaluation is 99%, and the time used for the English distance information teaching quality evaluation of this method is only 8.9 seconds.




sh

Research on evaluation method of e-commerce platform customer relationship based on decision tree algorithm

In order to overcome the problems of poor evaluation accuracy and long evaluation time in traditional customer relationship evaluation methods, this study proposes a new customer relationship evaluation method for e-commerce platform based on decision tree algorithm. Firstly, analyse the connotation and characteristics of customer relationship; secondly, the importance of customer relationship in e-commerce platform is determined by using decision tree algorithm by selecting and dividing attributes according to the information gain results. Finally, the decision tree algorithm is used to design the classifier, the weighted sampling method is used to obtain the training samples of the base classifier, and the multi-period excess income method is used to construct the customer relationship evaluation function to achieve customer relationship evaluation. The experimental results show that the accuracy of the customer relationship evaluation results of this method is 99.8%, and the evaluation time is only 51 minutes.




sh

A data mining method based on label mapping for long-term and short-term browsing behaviour of network users

In order to improve the speedup and recognition accuracy of the recognition process, this paper designs a data mining method based on label mapping for long-term and short-term browsing behaviour of network users. First, after removing the noise information in the behaviour sequence, calculate the similarity of behaviour characteristics. Then, multi-source behaviour data is mapped to the same dimension, and a behaviour label mapping layer and a behaviour data mining layer are established. Finally, the similarity of the tag matrix is calculated based on the similarity calculation results, and the mining results are output using SVM binary classification process. Experimental results show that the acceleration ratio of this method exceeds 0.9; area under curve receiver operating characteristic curve (AUC-ROC) value increases rapidly in a short time, and the maximum value can reach 0.95, indicating that the mining precision of this method is high.




sh

Demand forecast for bike sharing rentals

For decades, data analytics has been instrumental in helping companies enhance their performance and achieve growth. By leveraging data analytics and visualisation, businesses have reaped numerous benefits, including the ability to identify emerging trends, analyse relationships and patterns within data, conduct in-depth analysis, and gain valuable insights from these patterns. Given the current demands of the industry, it is crucial to thoroughly explore these concepts to capitalise on the advantages they offer. This research specifically focuses on examining a dataset from Capital Bikes in Washington DC, providing a comprehensive understanding of data analytics and visualisation.




sh

A study on value chain of mushroom for value addition: challenges, opportunities and prospects of cultivation of mushroom

This research was carried out with an objective of studying the existing mushroom value chain, identifying demand-supply gap, carrying out SWOT analysis to explore challenges, proposing action plan and presenting finally standard operating procedure for enhancing value chain effectiveness. Data was collected from 71 actors identified in the oyster mushroom value chain in Tumakuru Taluk, Karnataka State, India and analysed. Analysis showed that there were five different models of value chain, and the shortest value chain was the most profitable one. Based on the respondents' perceptions, mushroom cultivation offers many opportunities such as creating employment, improving economic condition and diet. Meanwhile they face challenges like, pest attack, hike in input materials' prices, lack of technical guidance during farming, finance support, inefficient marketing system. There is a need to address demand-supply gap, invest more in facilities and related research, integrate all the actors in value chain to enhance productivity.




sh

FISHNet: encouraging data sharing and reuse in the freshwater science community

This paper describes the FISHNet project, which developed a repository environment for the curation and sharing of data relating to freshwater science, a discipline whose research community is distributed thinly across a variety of institutions, and usually works in relative isolation as individual researchers or within small groups. As in other “small sciences”, these datasets tend to be small and “hand-crafted”, created to address particular research questions rather than with a view to reuse, so they are rarely curated effectively, and the potential for sharing and reusing them is limited. The paper addresses a variety of issues and concerns raised by freshwater researchers as regards data sharing, describes our approach to developing a repository environment that addresses these concerns, and identifies the potential impact within the research community of the system.




sh

Sheer Curation of Experiments: Data, Process, Provenance

This paper describes an environment for the “sheer curation” of the experimental data of a group of researchers in the fields of biophysics and structural biology. The approach involves embedding data capture and interpretation within researchers' working practices, so that it is automatic and invisible to the researcher. The environment does not capture just the individual datasets generated by an experiment, but the entire workflow that represent the “story” of the experiment, including intermediate files and provenance metadata, so as to support the verification and reproduction of published results. As the curation environment is decoupled from the researchers’ processing environment, the provenance is inferred from a variety of domain-specific contextual information, using software that implements the knowledge and expertise of the researchers. We also present an approach to publishing the data files and their provenance according to linked data principles by using OAI-ORE (Open Archives Initiative Object Reuse and Exchange) and OPMV.




sh

The role of shopping apps and their impact on the online purchasing behaviour patterns of working women in Bangalore

The study aims to analyse the impact of shopping applications on the shopping behaviour of the working women community in Bangalore, a city known as the IT hub. The research uses a quantitative analysis with SPSS version 23 software and a structured questionnaire survey technique to gather data from the working women community. The study uses descriptive statistics, ANOVA, regression, and Pearson correlation analysis to evaluate the perception of working women regarding the significance of online shopping applications. The results show that digital shopping applications are more prevalent among the working women community in Bangalore. The study also evaluates the socio-economic and psychological factors that influence their purchasing behaviour. The findings suggest that online marketers should enhance their strategies to improve their business on digital platforms. The research provides valuable insights into the shopping habits of the working women community in Bangalore.




sh

Share, Collaborate, Create Virtual Conferences




sh

Promoting Fusion in the Business-IT Relationship




sh

Information Quality: The Relationship to Recruitment in Pre-Tertiary IT Education




sh

Customer Service Factors Influencing Internet Shopping in New Zealand