pe Pediatric injectable drugs : the teddy bear book By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9781585285402 (electronic bk.) Full Article
pe Pediatric critical care : current controversies By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9783319964997 (electronic bk.) Full Article
pe Pediatric allergy : a case-based collection with MCQs. By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9783030182823 (electronic bk.) Full Article
pe Pathogenesis of periodontal diseases : biological concepts for clinicians By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9783319537375 Full Article
pe Ocular therapeutics handbook : a clinical manual By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Author: Onofrey, Bruce E., author.Callnumber: OnlineISBN: 197510904X Full Article
pe Nutritional and health aspects of food in South Asian countries By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9780128200124 (electronic bk.) Full Article
pe Natural remedies for pest, disease and weed control By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 0128193050 Full Article
pe Nanoencapsulation of food ingredients by specialized equipment By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9780128156728 (electronic bk.) Full Article
pe Molecular aspects of plant beneficial microbes in agriculture By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9780128184707 (electronic bk.) Full Article
pe Microbial endophytes : prospects for sustainable agriculture By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 0128187255 Full Article
pe Mental Conditioning to Perform Common Operations in General Surgery Training By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9783319911649 978-3-319-91164-9 Full Article
pe Lovell and Winter's pediatric orthopaedics By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9781975108663 (hardcover) Full Article
pe Landscape modelling and decision support By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9783030374211 (electronic bk.) Full Article
pe Irwin and Rippe's intensive care medicine By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9781496306081 hardcover Full Article
pe Integrated pest and disease management in greenhouse crops By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9783030223045 electronic book Full Article
pe Hypertension in the dog and cat By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9783030330200 (electronic bk.) Full Article
pe Handbook of the mammals of Europe By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9783319650388 electronic book Full Article
pe Gapenski's understanding healthcare financial management By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Author: Pink, George H., author.Callnumber: OnlineISBN: 9781640551145 (electronic bk.) Full Article
pe Functional and preservative properties of phytochemicals By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9780128196861 (electronic bk.) Full Article
pe European whales, dolphins, and porpoises : marine mammal conservation in practice By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Author: Evans, Peter G. H., authorCallnumber: OnlineISBN: 9780128190548 electronic book Full Article
pe Enterprise information systems : 21st International Conference, ICEIS 2019, Heraklion, Crete, Greece, May 3-5, 2019, Revised Selected Papers By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Author: International Conference on Enterprise Information Systems (21st : 2019 : Ērakleion, Greece)Callnumber: OnlineISBN: 9783030407834 (electronic bk.) Full Article
pe Encyclopedia of social insects By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9783319903064 electronic book Full Article
pe Encyclopedia of signaling molecules By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9781461464389 (electronic bk.) Full Article
pe Encyclopedia of renewable and sustainable materials By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9780128131961 (print) Full Article
pe Encyclopedia of molecular pharmacology By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9783030215736 (electronic bk.) Full Article
pe Encyclopedia of cancer By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9783642278419 (electronic bk.) Full Article
pe Ecophysiology of pesticides : interface between pesticide chemistry and plant physiology By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Author: Parween, Talat, author.Callnumber: OnlineISBN: 9780128176146 Full Article
pe Cullin-RING ligases and protein neddylation : biology and therapeutics By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9789811510250 (electronic bk.) Full Article
pe Computer security : ESORICS 2019 International Workshops, IOSec, MSTEC, and FINSEC, Luxembourg City, Luxembourg, September 26-27, 2019, Revised Selected Papers By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Author: European Symposium on Research in Computer Security (24th : 2019 : Luxembourg, Luxembourg)Callnumber: OnlineISBN: 9783030420512 (electronic bk.) Full Article
pe Clinical approaches in endodontic regeneration : current and emerging therapeutic perspectives By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9783319968483 (electronic bk.) Full Article
pe Chickpea : crop wild relatives for enhancing genetic gains By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9780128183007 (electronic bk.) Full Article
pe Carotenoids : properties, processing and applications By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9780128173145 (electronic bk.) Full Article
pe Brassica improvement : molecular, genetics and genomic perspectives By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9783030346942 (electronic bk.) Full Article
pe Biscuit, cookie and cracker process and recipes By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Author: Sykes, Glyn, authorCallnumber: OnlineISBN: 9780128206133 (electronic bk.) Full Article
pe Atlas of sexually transmitted diseases : clinical aspects and differential diagnosis By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9783319574707 (electronic bk.) Full Article
pe Apical periodontitis in root-filled teeth : endodontic retreatment and alternative approaches By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9783319572505 (electronic bk.) Full Article
pe 100 cases in clinical pharmacology, therapeutics and prescribing By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Author: Layne, Kerry, author.Callnumber: OnlineISBN: 9780429624537 electronic book Full Article
pe New York State YMCAs are “Open For Good” By www.prweb.com Published On :: With New York is on PAUSE, the Alliance of New York State YMCAs will showcase how YMCAs are staying “Open For Good” to meet the needs of their community during the COVID-19 crisis on Giving Tuesday...(PRWeb May 02, 2020)Read the full story at https://www.prweb.com/releases/new_york_state_ymcas_are_open_for_good/prweb17088694.htm Full Article
pe Penalized generalized empirical likelihood with a diverging number of general estimating equations for censored data By projecteuclid.org Published On :: Mon, 17 Feb 2020 04:02 EST Niansheng Tang, Xiaodong Yan, Xingqiu Zhao. Source: The Annals of Statistics, Volume 48, Number 1, 607--627.Abstract: This article considers simultaneous variable selection and parameter estimation as well as hypothesis testing in censored survival models where a parametric likelihood is not available. For the problem, we utilize certain growing dimensional general estimating equations and propose a penalized generalized empirical likelihood, where the general estimating equations are constructed based on the semiparametric efficiency bound of estimation with given moment conditions. The proposed penalized generalized empirical likelihood estimators enjoy the oracle properties, and the estimator of any fixed dimensional vector of nonzero parameters achieves the semiparametric efficiency bound asymptotically. Furthermore, we show that the penalized generalized empirical likelihood ratio test statistic has an asymptotic central chi-square distribution. The conditions of local and restricted global optimality of weighted penalized generalized empirical likelihood estimators are also discussed. We present a two-layer iterative algorithm for efficient implementation, and investigate its convergence property. The performance of the proposed methods is demonstrated by extensive simulation studies, and a real data example is provided for illustration. Full Article
pe Markov equivalence of marginalized local independence graphs By projecteuclid.org Published On :: Mon, 17 Feb 2020 04:02 EST Søren Wengel Mogensen, Niels Richard Hansen. Source: The Annals of Statistics, Volume 48, Number 1, 539--559.Abstract: Symmetric independence relations are often studied using graphical representations. Ancestral graphs or acyclic directed mixed graphs with $m$-separation provide classes of symmetric graphical independence models that are closed under marginalization. Asymmetric independence relations appear naturally for multivariate stochastic processes, for instance, in terms of local independence. However, no class of graphs representing such asymmetric independence relations, which is also closed under marginalization, has been developed. We develop the theory of directed mixed graphs with $mu $-separation and show that this provides a graphical independence model class which is closed under marginalization and which generalizes previously considered graphical representations of local independence. Several graphs may encode the same set of independence relations and this means that in many cases only an equivalence class of graphs can be identified from observational data. For statistical applications, it is therefore pivotal to characterize graphs that induce the same independence relations. Our main result is that for directed mixed graphs with $mu $-separation each equivalence class contains a maximal element which can be constructed from the independence relations alone. Moreover, we introduce the directed mixed equivalence graph as the maximal graph with dashed and solid edges. This graph encodes all information about the edges that is identifiable from the independence relations, and furthermore it can be computed efficiently from the maximal graph. Full Article
pe Spectral and matrix factorization methods for consistent community detection in multi-layer networks By projecteuclid.org Published On :: Mon, 17 Feb 2020 04:02 EST Subhadeep Paul, Yuguo Chen. Source: The Annals of Statistics, Volume 48, Number 1, 230--250.Abstract: We consider the problem of estimating a consensus community structure by combining information from multiple layers of a multi-layer network using methods based on the spectral clustering or a low-rank matrix factorization. As a general theme, these “intermediate fusion” methods involve obtaining a low column rank matrix by optimizing an objective function and then using the columns of the matrix for clustering. However, the theoretical properties of these methods remain largely unexplored. In the absence of statistical guarantees on the objective functions, it is difficult to determine if the algorithms optimizing the objectives will return good community structures. We investigate the consistency properties of the global optimizer of some of these objective functions under the multi-layer stochastic blockmodel. For this purpose, we derive several new asymptotic results showing consistency of the intermediate fusion techniques along with the spectral clustering of mean adjacency matrix under a high dimensional setup, where the number of nodes, the number of layers and the number of communities of the multi-layer graph grow. Our numerical study shows that the intermediate fusion techniques outperform late fusion methods, namely spectral clustering on aggregate spectral kernel and module allegiance matrix in sparse networks, while they outperform the spectral clustering of mean adjacency matrix in multi-layer networks that contain layers with both homophilic and heterophilic communities. Full Article
pe Envelope-based sparse partial least squares By projecteuclid.org Published On :: Mon, 17 Feb 2020 04:02 EST Guangyu Zhu, Zhihua Su. Source: The Annals of Statistics, Volume 48, Number 1, 161--182.Abstract: Sparse partial least squares (SPLS) is widely used in applied sciences as a method that performs dimension reduction and variable selection simultaneously in linear regression. Several implementations of SPLS have been derived, among which the SPLS proposed in Chun and Keleş ( J. R. Stat. Soc. Ser. B. Stat. Methodol. 72 (2010) 3–25) is very popular and highly cited. However, for all of these implementations, the theoretical properties of SPLS are largely unknown. In this paper, we propose a new version of SPLS, called the envelope-based SPLS, using a connection between envelope models and partial least squares (PLS). We establish the consistency, oracle property and asymptotic normality of the envelope-based SPLS estimator. The large-sample scenario and high-dimensional scenario are both considered. We also develop the envelope-based SPLS estimators under the context of generalized linear models, and discuss its theoretical properties including consistency, oracle property and asymptotic distribution. Numerical experiments and examples show that the envelope-based SPLS estimator has better variable selection and prediction performance over the SPLS estimator ( J. R. Stat. Soc. Ser. B. Stat. Methodol. 72 (2010) 3–25). Full Article
pe Rerandomization in $2^{K}$ factorial experiments By projecteuclid.org Published On :: Mon, 17 Feb 2020 04:02 EST Xinran Li, Peng Ding, Donald B. Rubin. Source: The Annals of Statistics, Volume 48, Number 1, 43--63.Abstract: With many pretreatment covariates and treatment factors, the classical factorial experiment often fails to balance covariates across multiple factorial effects simultaneously. Therefore, it is intuitive to restrict the randomization of the treatment factors to satisfy certain covariate balance criteria, possibly conforming to the tiers of factorial effects and covariates based on their relative importances. This is rerandomization in factorial experiments. We study the asymptotic properties of this experimental design under the randomization inference framework without imposing any distributional or modeling assumptions of the covariates and outcomes. We derive the joint asymptotic sampling distribution of the usual estimators of the factorial effects, and show that it is symmetric, unimodal and more “concentrated” at the true factorial effects under rerandomization than under the classical factorial experiment. We quantify this advantage of rerandomization using the notions of “central convex unimodality” and “peakedness” of the joint asymptotic sampling distribution. We also construct conservative large-sample confidence sets for the factorial effects. Full Article
pe Sorted concave penalized regression By projecteuclid.org Published On :: Wed, 30 Oct 2019 22:03 EDT Long Feng, Cun-Hui Zhang. Source: The Annals of Statistics, Volume 47, Number 6, 3069--3098.Abstract: The Lasso is biased. Concave penalized least squares estimation (PLSE) takes advantage of signal strength to reduce this bias, leading to sharper error bounds in prediction, coefficient estimation and variable selection. For prediction and estimation, the bias of the Lasso can be also reduced by taking a smaller penalty level than what selection consistency requires, but such smaller penalty level depends on the sparsity of the true coefficient vector. The sorted $ell_{1}$ penalized estimation (Slope) was proposed for adaptation to such smaller penalty levels. However, the advantages of concave PLSE and Slope do not subsume each other. We propose sorted concave penalized estimation to combine the advantages of concave and sorted penalizations. We prove that sorted concave penalties adaptively choose the smaller penalty level and at the same time benefits from signal strength, especially when a significant proportion of signals are stronger than the corresponding adaptively selected penalty levels. A local convex approximation for sorted concave penalties, which extends the local linear and quadratic approximations for separable concave penalties, is developed to facilitate the computation of sorted concave PLSE and proven to possess desired prediction and estimation error bounds. Our analysis of prediction and estimation errors requires the restricted eigenvalue condition on the design, not beyond, and provides selection consistency under a required minimum signal strength condition in addition. Thus, our results also sharpens existing results on concave PLSE by removing the upper sparse eigenvalue component of the sparse Riesz condition. Full Article
pe Testing for independence of large dimensional vectors By projecteuclid.org Published On :: Fri, 02 Aug 2019 22:04 EDT Taras Bodnar, Holger Dette, Nestor Parolya. Source: The Annals of Statistics, Volume 47, Number 5, 2977--3008.Abstract: In this paper, new tests for the independence of two high-dimensional vectors are investigated. We consider the case where the dimension of the vectors increases with the sample size and propose multivariate analysis of variance-type statistics for the hypothesis of a block diagonal covariance matrix. The asymptotic properties of the new test statistics are investigated under the null hypothesis and the alternative hypothesis using random matrix theory. For this purpose, we study the weak convergence of linear spectral statistics of central and (conditionally) noncentral Fisher matrices. In particular, a central limit theorem for linear spectral statistics of large dimensional (conditionally) noncentral Fisher matrices is derived which is then used to analyse the power of the tests under the alternative. The theoretical results are illustrated by means of a simulation study where we also compare the new tests with several alternative, in particular with the commonly used corrected likelihood ratio test. It is demonstrated that the latter test does not keep its nominal level, if the dimension of one sub-vector is relatively small compared to the dimension of the other sub-vector. On the other hand, the tests proposed in this paper provide a reasonable approximation of the nominal level in such situations. Moreover, we observe that one of the proposed tests is most powerful under a variety of correlation scenarios. Full Article
pe Distance multivariance: New dependence measures for random vectors By projecteuclid.org Published On :: Fri, 02 Aug 2019 22:04 EDT Björn Böttcher, Martin Keller-Ressel, René L. Schilling. Source: The Annals of Statistics, Volume 47, Number 5, 2757--2789.Abstract: We introduce two new measures for the dependence of $nge2$ random variables: distance multivariance and total distance multivariance . Both measures are based on the weighted $L^{2}$-distance of quantities related to the characteristic functions of the underlying random variables. These extend distance covariance (introduced by Székely, Rizzo and Bakirov) from pairs of random variables to $n$-tuplets of random variables. We show that total distance multivariance can be used to detect the independence of $n$ random variables and has a simple finite-sample representation in terms of distance matrices of the sample points, where distance is measured by a continuous negative definite function. Under some mild moment conditions, this leads to a test for independence of multiple random vectors which is consistent against all alternatives. Full Article
pe An operator theoretic approach to nonparametric mixture models By projecteuclid.org Published On :: Fri, 02 Aug 2019 22:04 EDT Robert A. Vandermeulen, Clayton D. Scott. Source: The Annals of Statistics, Volume 47, Number 5, 2704--2733.Abstract: When estimating finite mixture models, it is common to make assumptions on the mixture components, such as parametric assumptions. In this work, we make no distributional assumptions on the mixture components and instead assume that observations from the mixture model are grouped, such that observations in the same group are known to be drawn from the same mixture component. We precisely characterize the number of observations $n$ per group needed for the mixture model to be identifiable, as a function of the number $m$ of mixture components. In addition to our assumption-free analysis, we also study the settings where the mixture components are either linearly independent or jointly irreducible. Furthermore, our analysis considers two kinds of identifiability, where the mixture model is the simplest one explaining the data, and where it is the only one. As an application of these results, we precisely characterize identifiability of multinomial mixture models. Our analysis relies on an operator-theoretic framework that associates mixture models in the grouped-sample setting with certain infinite-dimensional tensors. Based on this framework, we introduce a general spectral algorithm for recovering the mixture components. Full Article
pe Doubly penalized estimation in additive regression with high-dimensional data By projecteuclid.org Published On :: Fri, 02 Aug 2019 22:04 EDT Zhiqiang Tan, Cun-Hui Zhang. Source: The Annals of Statistics, Volume 47, Number 5, 2567--2600.Abstract: Additive regression provides an extension of linear regression by modeling the signal of a response as a sum of functions of covariates of relatively low complexity. We study penalized estimation in high-dimensional nonparametric additive regression where functional semi-norms are used to induce smoothness of component functions and the empirical $L_{2}$ norm is used to induce sparsity. The functional semi-norms can be of Sobolev or bounded variation types and are allowed to be different amongst individual component functions. We establish oracle inequalities for the predictive performance of such methods under three simple technical conditions: a sub-Gaussian condition on the noise, a compatibility condition on the design and the functional classes under consideration and an entropy condition on the functional classes. For random designs, the sample compatibility condition can be replaced by its population version under an additional condition to ensure suitable convergence of empirical norms. In homogeneous settings where the complexities of the component functions are of the same order, our results provide a spectrum of minimax convergence rates, from the so-called slow rate without requiring the compatibility condition to the fast rate under the hard sparsity or certain $L_{q}$ sparsity to allow many small components in the true regression function. These results significantly broaden and sharpen existing ones in the literature. Full Article
pe Semi-supervised inference: General theory and estimation of means By projecteuclid.org Published On :: Fri, 02 Aug 2019 22:04 EDT Anru Zhang, Lawrence D. Brown, T. Tony Cai. Source: The Annals of Statistics, Volume 47, Number 5, 2538--2566.Abstract: We propose a general semi-supervised inference framework focused on the estimation of the population mean. As usual in semi-supervised settings, there exists an unlabeled sample of covariate vectors and a labeled sample consisting of covariate vectors along with real-valued responses (“labels”). Otherwise, the formulation is “assumption-lean” in that no major conditions are imposed on the statistical or functional form of the data. We consider both the ideal semi-supervised setting where infinitely many unlabeled samples are available, as well as the ordinary semi-supervised setting in which only a finite number of unlabeled samples is available. Estimators are proposed along with corresponding confidence intervals for the population mean. Theoretical analysis on both the asymptotic distribution and $ell_{2}$-risk for the proposed procedures are given. Surprisingly, the proposed estimators, based on a simple form of the least squares method, outperform the ordinary sample mean. The simple, transparent form of the estimator lends confidence to the perception that its asymptotic improvement over the ordinary sample mean also nearly holds even for moderate size samples. The method is further extended to a nonparametric setting, in which the oracle rate can be achieved asymptotically. The proposed estimators are further illustrated by simulation studies and a real data example involving estimation of the homeless population. Full Article
pe Property testing in high-dimensional Ising models By projecteuclid.org Published On :: Fri, 02 Aug 2019 22:04 EDT Matey Neykov, Han Liu. Source: The Annals of Statistics, Volume 47, Number 5, 2472--2503.Abstract: This paper explores the information-theoretic limitations of graph property testing in zero-field Ising models. Instead of learning the entire graph structure, sometimes testing a basic graph property such as connectivity, cycle presence or maximum clique size is a more relevant and attainable objective. Since property testing is more fundamental than graph recovery, any necessary conditions for property testing imply corresponding conditions for graph recovery, while custom property tests can be statistically and/or computationally more efficient than graph recovery based algorithms. Understanding the statistical complexity of property testing requires the distinction of ferromagnetic (i.e., positive interactions only) and general Ising models. Using combinatorial constructs such as graph packing and strong monotonicity, we characterize how target properties affect the corresponding minimax upper and lower bounds within the realm of ferromagnets. On the other hand, by studying the detection of an antiferromagnetic (i.e., negative interactions only) Curie–Weiss model buried in Rademacher noise, we show that property testing is strictly more challenging over general Ising models. In terms of methodological development, we propose two types of correlation based tests: computationally efficient screening for ferromagnets, and score type tests for general models, including a fast cycle presence test. Our correlation screening tests match the information-theoretic bounds for property testing in ferromagnets in certain regimes. Full Article