science and technology

TCS Gives 0% Salary Hike In 2020, Refuses To Fire Any Employee; 40,000 Freshers Will Be Hired

TCS, which is India’s biggest IT services firm has announced that none of their 4.5 lakh employees will be fired amidst the coronavirus outbreak. This is a huge relief for IT employees, all across India, since the policies and strategies embraced by TCS sets the stage for other companies as well. However, they have announced […]

The post TCS Gives 0% Salary Hike In 2020, Refuses To Fire Any Employee; 40,000 Freshers Will Be Hired first appeared on Trak.in . Trak.in Mobile Apps: Android | iOS.




science and technology

Wipro Can Fire Employees, Enforce Unpaid Leaves To Save Costs; Hiring Will Not Stop

India’s leading IT firm Wipro has said that firing employees can be considered in the coming days, in order to save costs. Employees can be asked to go on unpaid leaves as well. However, the silver lining is that, hiring won’t be stopped. Wipro: Business Hit Due To Coronavirus Wipro declared their 4th quarter earnings, […]

The post Wipro Can Fire Employees, Enforce Unpaid Leaves To Save Costs; Hiring Will Not Stop first appeared on Trak.in . Trak.in Mobile Apps: Android | iOS.




science and technology

Aarogya Setu Crosses 5 Crore Downloads In 13 Days; Becomes World’s Fastest Growing App

India’s coronavirus disease contact-tracing app Aarogya Setu became the world’s fastest growing mobile app on Tuesday night with 50 million users in 13 days. It is to be highlighted that 11 million of these downloads were registered in a single day after Prime Minister Narendra Modi urged people to download the application in his third televised […]

The post Aarogya Setu Crosses 5 Crore Downloads In 13 Days; Becomes World’s Fastest Growing App first appeared on Trak.in . Trak.in Mobile Apps: Android | iOS.




science and technology

Tata Nexon EV Becomes India’s #1 Electric Car; Beats Hyundai Kona, MG ZS In Total Sales

Electric vehicles are being preferred and promoted over the conventionally operated vehicles, and soon enough, they will be the future. A lot of the top automobile manufacturing companies have launched multiple electric versions of their already existing models, such as the Hyundai Kona Electric, Mahindra e-Verito, Mahindra e2o, MG ZS EV, Tata Tigor EV 2019, […]

The post Tata Nexon EV Becomes India’s #1 Electric Car; Beats Hyundai Kona, MG ZS In Total Sales first appeared on Trak.in . Trak.in Mobile Apps: Android | iOS.




science and technology

These 4 States Allow Online Sales Of All Goods After April 20th; But There Are Exceptions

The Ministry of Home Affairs (MHA) released a set of revised guidelines this week which included full fledged operation of the ecommerce companies from April 20. However the Centre has left it to the state governments to decide in which areas and to ensure compliance with rules of social distancing and sanitisation. Flipkart, Snapdeal and […]

The post These 4 States Allow Online Sales Of All Goods After April 20th; But There Are Exceptions first appeared on Trak.in . Trak.in Mobile Apps: Android | iOS.




science and technology

Mi Robot Vacuum Cleaner Launched In India: Price, Specs And All About Mi Vacuum Mop-P

Xiaomi unveiled Mi Robot Vacuum-Mop P robotic vacuum cleaner in India. A product under the vacuum cleaner series by Xiaomi, the Mi Robot Vacuum Cleaner comes with a two-in-one sweeping and mopping function with a Laser Detect System (LDS) for navigation. Mi Robot Vacuum-Mop P packs in 12 high-precision sensors with support for remote operations. […]

The post Mi Robot Vacuum Cleaner Launched In India: Price, Specs And All About Mi Vacuum Mop-P first appeared on Trak.in . Trak.in Mobile Apps: Android | iOS.



  • consumer
  • Mi Robot Vacuum Cleaner Launched In India: Price
  • Xiaomi
  • Xiaomi vacuum cleaner

science and technology

Woah! Reliance, Facebook Making A Super-App For Shopping, Gaming, Social Media, Tickets!

Reliance Industries and Facebook are exploring the possibility of creating a multipurpose app, said four people in the know of the matter. Read to know more… What is the Fuss About? As per reports on March 24, Facebook was eyeing a multibillion-dollar stake in Reliance Jio. The report said Facebook could pick up 10% in […]

The post Woah! Reliance, Facebook Making A Super-App For Shopping, Gaming, Social Media, Tickets! first appeared on Trak.in . Trak.in Mobile Apps: Android | iOS.




science and technology

Overcast and 33 F at Binghamton, Binghamton Regional Airport, NY


Winds are from the Northwest at 15.0 gusting to 24.2 MPH (13 gusting to 21 KT). The pressure is 1011.5 mb and the humidity is 52%. The wind chill is 23. Last Updated on May 9 2020, 11:53 am EDT.




science and technology

Light Snow and 29 F at Wellsville, Wellsville Municipal Airport, NY


Winds are from the West at 18.4 gusting to 26.5 MPH (16 gusting to 23 KT). The pressure is 1014.6 mb and the humidity is 69%. The wind chill is 17. Last Updated on May 9 2020, 11:56 am EDT.




science and technology

Intel to spin-off and sell Wind River Software to TPG

Wind River, an IoT and industrial operating system owned by Intel will be acquired by TPG, global alternative asset firm. Terms of the deal were not disclosed. Intel had bought Wind River Systems for $884 million in 2009

Wind River operates in several markets, including aerospace and defense, automotive, industrial, medical and networking technologies. Its core products in these markets are operating systems, software infrastructure platforms, device management, and simulation software. The IoT practice of Wind River provides consulting services for customers building IoT applications.

In a statement for Wind River, Nehal Raj, Partner and Head of Technology investing at TPG said “We see a tremendous market opportunity in industrial software driven by the convergence of the Internet of Things (IoT), intelligent devices and edge computing. As a market leader with a strong product portfolio, Wind River is well positioned to benefit from these trends. We are excited about the prospects for Wind River as an independent company, and plan to build on its strong foundation with investments in both organic and inorganic growth.”

Wind River’s main IoT product is Helix Device Cloud, a cloud-offering capable of managing deployed IoT devices and industrial equipment across a machine’s lifecycle. Helix can connect and manage devices remotely.

Helix platform’s key uses cases are gateway management, proactive maintenance, security updates, and device provisioning.




science and technology

Salesforce and other tech giants invest $24M in IFTTT to help it expand in enterprise IoT

IFTTT (If This Than That), a web-based software that automates and connects over 600 online services/software raised a $24M Series C led by Salesforce. Other investors include IBM and the Chamberlain Group and Fenox Venture Capital.

New apps and devices that made their way to IFTTT

The latest round brings IFTTT’s funding to $63M and it will use the funding proceeds to provide integration for enterprise and IoT services and hiring. In IFTTT’s platform, applets are code/script users need to deploy to integrate two or more services (such Google Drive’s integration with Twitter/Facebook).

“IFTTT is at the forefront of establishing a more connected ecosystem for devices and services. They see IFTTT as an important business, ecosystem, and partner in the industry,” said CEO Linden Tibbets.

Investment in IFTTT reveals that Salesforce is consolidating its presence in enterprise IoT space. It also acquired Mulesoft, an integration platform that rivals Microsoft’s BizTalk.

IBM’s investment in IFTTT is also noteworthy as the former is pushing its IBM Watson IoT platform. The following statement also shows its keen interest in IFTTT.

“IBM and IFTTT are working together to realize the potential of today’s connected world. By bringing together IBM’s Watson IoT Platform and Watson Assistant Solutions with consumer- facing services, we can help clients to create powerful and open solutions for their users that work with everything in the Internet of Things,” said Bret Greenstein, VP, Watson Internet of Things, IBM.

Other recent investments in IoT companies include $30M Series B of Armis and Myriota's $15M for its IoT satellite-based connectivity platform.

For latest IoT funding and product news, please visit our IoT news section.




science and technology

Sensor-based baby sock Owlet banks $24M Series B

Owlet, a connected-baby care company raised a $24 million Series B investment from Trilogy Equity Partners, with participation from existing investors, including Eclipse Ventures, Broadway Angels, and Enfield Ventures, and the addition Pelion Venture Partners.

Owlet Android App

Owlet’s core product is a baby sock that contains a smart sensor. The sensor monitors pulse oximetry, a technology used in hospitals to measure an infant's heart rate and blood oxygen levels. The vital signs are communicated to parents’ smartphone via Bluetooth connection. The product retails for $299 and parents can also choose from monthly payment plans.

Other IoT-health startups using sensors to monitor vital signs include Aifloo, a company selling wrist-bands for elders and Air by Propeller, a smart health company that provides an API to predict local asthma conditions.

SM
Owlet Smart Sock 2

A complete product package of Owlet monitor includes three fabric socks, smart sock sensor, a base station (which rings an alarm if a baby’s vital signs are abnormal), and charging cords.

Before the company raised the latest round, it closed a $15 million Series B round in late 2016. The recent investment brought Owlet’s total equity funding to $46M. Owlet plans to use the growth capital to launch more baby care products.

“As a company of parents, it is important to us to bring innovative technology into a family’s everyday life. This new round of funding will enable us to expand our product line, looking at ways we can support the health and wellness of families at all stages, from pregnancy on, as well as increase the brand’s availability internationally and improve our accessibility and affordability,”said Kurt Workman, Owlet Co-Founder and CEO.





science and technology

Vesper closes $23M Series B for its sensor-based microphone: Amazon Alexa Fund among investors

Vesper, the maker of piezoelectric sensors used in microphone production and winner of CES Innovation Award 2018 raised a $23M Series B round. American Family Ventures led the investment with participation from Accomplice, Amazon Alexa Fund, Baidu, Bose Ventures, Hyperplane, Sands Capital, Shure, Synaptics, ZZ Capital and some undisclosed investors.

Vesper VM1000

Vesper’s innovative sensors can be used in consumer electronics like TV remote controls, smart speakers, smartphones, intelligent sensor nodes, and hearables. The company will use the funding proceeds to scale-up its functions like mass production of its microphones and support expanded research and development, hiring, and establishing international sales offices.

The main product of Vesper is VM1000, a low noise, high range,single-ended analog output piezoelectric MEMS microphone. It consists of a piezoelectric sensor and circuitry to buffer and amplify the output.

Vesper VM1010

The hot-selling product of Vesper is VM1010 with ZeroPower Listening which is the first MEMS microphone that enables voice activation to battery-powered consumer devices.

The unique selling point of Vesper’s products is they are built to operate in rugged environments that have dust and moisture.

"Vesper's ZeroPower Listening capabilities coupled with its ability to withstand water, dust, oil, and particulate contaminants enables users that have never before been possible," said Katelyn Johnson, principal of American Family Ventures. "We are excited about Vesper's quest to transform our connected world, including IoT devices."

Other recent funding news include $24 raised by sensor-based baby sock maker Owlet, IFTTT banks $24M from Salesforce to scale its IoT Enterprise offering, and Intel sells its Wind River Software to TPG.




science and technology

Amber Solutions raises $3.3M Series A to fast track sales of its smart electrical products

Amber Solutions, an IoT product company that sells smart outlets, switches and circuit breakers closed Series A Preferred Stock round of financing that equals $3.3M in gross proceeds. Amber will use the funds to support the commercial development of Amber's core technologies.

One of Amber’s product is solid-state circuit interrupter (GFCI) that basically stops harmful levels of electricity from passing through a person. It operates as a safety device alerting the homeowner of electrocution incidents in real time.

"We are pleased that our investors are embracing Amber's vision of bringing superior IoT intelligence and connectivity to a highly strategic area--the single gang box locations within the standard electrical infrastructure in homes and buildings," said Amber Solutions CEO Thar Casey.
"Amber's smart outlets and switches strategically aggregate IoT sensors and functions within a structure's single gang box locations. This means a more discreet and yet wider array of IoT sensing and control in every room than is typical today,"Casey further added.

Amber Solutions’ core markets are builders that prepare smart home/smart building ready infrastructure, certified electrical contractors or remodelers, and electrical manufacturers.

Amber products

Other latest funding news include Owlet’s $24M Series B, Axonize’s $6M Series A round and addition of Deutsche Telekom as its strategic investor, and $30M Series B raised by Palo Alto-based Armis.




science and technology

Smart baby monitor Nanit closes $14M Series B investment

Smart baby monitor company Nanit raised a $14M Series B round led by Jerusalem Venture Partners (JVP). Other investors that participated include existing investors Upfront Ventures, RRE Ventures, Vulcan Capital and Vaal Investment Partners. The latest investment brings total equity funding of Nanit to $30M.

Nanit Camera

Nanit announced it will use the funding proceeds to expand its team of computer vision and machine learning engineers and grow its sales in Europe and Canada.

Nanit’s baby monitor helps new parents oversee nursery conditions as it has built-in temperature and humidity sensors. The camera lets parents remotely monitor baby’s crib whereas sound and motion are detected via smart sensors.

Nanit's mobile app

The monitor’s insights can be accessed via an accompanying mobile app. Nanit charges $10 per month for its premium package.

The key use cases of Nanit’s baby monitoring technology include sleep insights, behavioral analysis, expert guidance, and nightly video summaries. The company currently sells its smart monitors via its website.




science and technology

Microsoft buys conversational AI company Semantic Machines for an undisclosed sum

Microsoft announced it has acquired Semantic Machines, a conversational AI startup providing chatbots and AI chat apps founded in 2014 having $20.9 million in funding from investors. The acquisition will help Microsoft catch up with Amazon Alexa, though the latter is more focused on enabling consumer applications of conversational AI.

Microsoft will use Semantic Machine’s acquisition to establish a conversational AI center of excellence in Berkeley to help it innovate in natural language interfaces.

Microsoft has been stepping up its products in conversational AI. It launched the digital assistant Cortana in 2015, as well as social chatbots like XiaoIce. The latest acquisition can help Microsoft beef up its ‘enterprise AI’ offerings.

As the use of NLP (natural language processing) increases in IoT products and services, more startups are getting traction from investors and established players. In June last year, Josh.ai, avoice-controlled home automation software has raised $8M.

Followed by it was SparkCognition that raised $32.5M Series B for its NLP-based threat intelligence platform.

It appears Microsoft’s acquisition of Semantic Machines was motivated by the latter’s strong AI team. The team includes technology entrepreneur Daniel Roth who sold his previous startups Voice Signal Technologies and Shaser BioScience for $300M and $100M respectively. Other team members include Stanford AI Professor Percy Liang, developer of Google Assistant Core AI technology and former Apple chief speech scientist Larry Gillick.

“Combining Semantic Machines' technology with Microsoft's own AI advances, we aim to deliver powerful, natural and more productive user experiences that will take conversational computing to a new level." David Ku, chief technology officer of Microsoft AI & Research.






science and technology

Arduino adds two boards to its MKR family of products for new use cases

Arduino’s MKR family of products got two new wireless connectivity boards added to its range of products. These include MKR WiFi 1010 and MKR NB 1500, both aimed at streamlining IoT product/service development.

Arduino MKR WiFi 1010

Arduino’s blog notes that “the Arduino MKR WiFi 1010 is the new version of the MKR1000 with ESP32 module on board made by U-BLOX.”

MKR WiFi 1010: For prototyping of WI-FI based IoT applications

The core difference of MKR WiFi 1010 compared to MKR WiFi 1000 is that the former can be put to use in production-grade IoT apps and it has ESP32-based module manufactured by u-blox. The former enables to add 2.4GHz WiFi and Bluetooth capability to the application. Additionally, it comes with a programmable dual-processor system (an ARM processor and a dual-core Espressif IC).

MKR NB 1500: For on-field monitoring systems and remote-controlled LTE-enabled modules

The Arduino MKR NB 1500 is based on new low-power NB-IoT (narrowband IoT) standard. This makes it appropriate for IoT apps running over cellular/LTE networks.

Arduino MKR NB 1500

Key use cases of this board are remote monitoring systems and remote-controlled LTE-enabled modules. It supports AT&T, T-Mobile USA, Telstra, Verizon over the Cat M1/NB1 deployed bands 2, 3, 4, 5, 8, 12, 13, 20 and 28.

Arduino also pitches this board to be used in IoT apps which used to rely on alternative IoT networks such as LoRa and Sigfox. It promises to save power compared to GSM or 3G cellular-based connections.

“The new boards bring new communication options to satisfy the needs of the most demanding use cases, giving users one of the widest range of options on the market of certified products.” Arduino co-founder and CTO Massimo Banzi






science and technology

Siemens to acquire smart lighting control company Enlighted Inc. for an undisclosed sum

Siemens Building Technologies division announced it will acquire Enlighted Inc., a smart IoT building technology provider. The transaction is expected to close in Q3’18.

Enlighted Inc.’s core element is an advanced lighting control application. It is based on a patented, software-defined smart sensor that collects and monitors real-time occupancy, light levels, temperatures and energy usage.

The sensor can gauge temperature, light level, motion, energy, and has Bluetooth connectivity.

The Enlighted Micro Sensor

The Enlighted system works by collecting temperature, light and motion data via its smart sensors. A gateway device carries the information to Energy Manager, a secure browser-based interface to create profiles and adjust settings of the entire Enlighted Advanced Lighting Control System. The Energy manager operates as an analytics device.

The whole system consists of multi-function sensors, distributed computing, a network, and software applications run by Enlighted Inc.

“With Siemens as a global partner, we will both accelerate innovation and market adoption of our smart building technologies on an international scale.”Joe Costello, Chairman, and CEO of Enlighted Inc

Enlighted Inc.’s main target market is commercial real estate. Key use cases of its intelligent Lighting Control System are energy efficiency, controlling heating, ventilation and air conditioning, and building utilization reports.

Use the Postscapes 'Connected Products Framework' to understand the smart home and buildings eco-system.




science and technology

Smart lock company LockState closes $5.8M Series A to fast track sales & partnerships

Smart Lock Company LockState raised $5.8M Series A in new investment to fund its aggressive sales and marketing and partner development plan. The company previously raised $740K seed round and $1M in a round led by angel investors. The lead investor in latest round was Iron Gate Capital. Other investors include Kozo Keikaku Engineering Inc, Nelnet and Service Provider Capital.

Access Control Dashboard and WiFi Smart Locks

The company’s Wi-Fi-enabled RemoteLock is used by 1000s of Airbnb and other vacation rental hosts. It helps hosts remotely provide access to guests. Locking/unlocking codes can be generated via a host’s computer or smartphone.

RemoteLock’s prices start at $299 which is its algorithmic ResortLock. The most pricey lock by LockState is its ‘RemoteLock 7i Black WiFi Commercial Smart Lock’ which costs $479.

Another core product of LockState is its cloud-based remote access platform for internet-enabled locks. It implies users can remotely manage their (internet-enabled) locks via LockState’s cloud platform.

Unlike smartphones and watches, customers don’t look forward to upgrading their smart locks or buying one when new models are launched. Thus, smart lock companies offset this disadvantage by partnering with property management and short-term rental companies to get new customers.

LockState has partnered with vacation rental brands like Airbnb, HomeAway, and other listing partners to automate guest access.

“We are expanding our footprint and moving into a new warehouse office that is more than twice the size of our current office. We’re also staffing up our sales and marketing teams. We’ve accomplished a lot without investing heavily in marketing so we’ll support that area to keep our momentum going. We intend to expand into new business-to-business and enterprise verticals where we’re seeing the market grow. We are also dedicating budget toward development.” Nolan Mondrow, CEO of LockState in a statement released to news site Venture Beat

Igloohome a Singapore-based smart lock company also raised an investment of $4M in April this year.




science and technology

Fair and 44 F at New York City, Central Park, NY


Winds are from the West at 12.7 gusting to 25.3 MPH (11 gusting to 22 KT). The pressure is 1011.0 mb and the humidity is 34%. The wind chill is 38. Last Updated on May 9 2020, 11:51 am EDT.




science and technology

Mostly Cloudy and 36 F at Massena, Massena International-Richards Field, NY


Winds are from the West at 11.5 gusting to 19.6 MPH (10 gusting to 17 KT). The pressure is 1008.2 mb and the humidity is 52%. The wind chill is 28. Last Updated on May 9 2020, 11:53 am EDT.




science and technology

Light Snow and 31 F at Jamestown, Chautauqua County/Jamestown Airport, NY


Winds are from the West at 15.0 gusting to 25.3 MPH (13 gusting to 22 KT). The pressure is 1017.0 mb and the humidity is 76%. The wind chill is 20. Last Updated on May 9 2020, 11:56 am EDT.




science and technology

A Few Clouds and 37 F at Plattsburgh International Airport , NY


Winds are from the West at 11.5 gusting to 19.6 MPH (10 gusting to 17 KT). The pressure is 1005.5 mb and the humidity is 50%. The wind chill is 29. Last Updated on May 9 2020, 11:53 am EDT.




science and technology

Overcast and 32 F at Cortland County-Chase Field, NY


Winds are from the West at 12.7 gusting to 20.7 MPH (11 gusting to 18 KT). The humidity is 75%. The wind chill is 22. Last Updated on May 9 2020, 11:55 am EDT.




science and technology

A Few Clouds and 39 F at Glens Falls, Floyd Bennett Memorial Airport, NY


Winds are from the West at 12.7 gusting to 36.8 MPH (11 gusting to 32 KT). The pressure is 1006.9 mb and the humidity is 34%. The wind chill is 31. Last Updated on May 9 2020, 11:53 am EDT.




science and technology

Mostly Cloudy and 39 F at Dunkirk, Chautauqua County / Dunkirk Airport, NY


Winds are from the West at 18.4 gusting to 29.9 MPH (16 gusting to 26 KT). The pressure is 1016.4 mb and the humidity is 50%. The wind chill is 30. Last Updated on May 9 2020, 11:53 am EDT.




science and technology

Breezy and 35 F at Fulton, Oswego County Airport, NY


Winds are from the West at 23.0 gusting to 34.5 MPH (20 gusting to 30 KT). The pressure is 1012.4 mb and the humidity is 54%. The wind chill is 23. Last Updated on May 9 2020, 11:54 am EDT.




science and technology

Overcast and 38 F at Dansville, Dansville Municipal Airport, NY


Winds are from the Northwest at 17.3 gusting to 31.1 MPH (15 gusting to 27 KT). The pressure is 1014.7 mb and the humidity is 55%. The wind chill is 29. Last Updated on May 9 2020, 11:54 am EDT.




science and technology

Light Snow and 34 F at Ithaca, Ithaca Tompkins Regional Airport, NY


Winds are from the Northwest at 16.1 gusting to 21.9 MPH (14 gusting to 19 KT). The pressure is 1012.7 mb and the humidity is 59%. The wind chill is 24. Last Updated on May 9 2020, 11:56 am EDT.




science and technology

Partly Cloudy and Breezy and 44 F at Islip, Long Island Mac Arthur Airport, NY


Winds are from the West at 24.2 gusting to 33.4 MPH (21 gusting to 29 KT). The pressure is 1009.8 mb and the humidity is 35%. The wind chill is 35. Last Updated on May 9 2020, 11:56 am EDT.




science and technology

Overcast and 38 F at Elmira, Elmira / Corning Regional Airport, NY


Winds are from the Northwest at 11.5 gusting to 25.3 MPH (10 gusting to 22 KT). The pressure is 1013.0 mb and the humidity is 52%. The wind chill is 31. Last Updated on May 9 2020, 11:53 am EDT.




science and technology

Light Snow and 31 F at Fort Drum / Wheeler-Sack U. S. Army Airfield, NY


Winds are from the West at 15.0 gusting to 20.7 MPH (13 gusting to 18 KT). The pressure is 1010.3 mb and the humidity is 65%. The wind chill is 20. Last Updated on May 9 2020, 11:56 am EDT.




science and technology

Overcast and 30 F at CATTARAUGUS COUNTY-OLEAN, NY


Winds are from the West at 13.8 gusting to 21.9 MPH (12 gusting to 19 KT). The humidity is 64%. The wind chill is 19. Last Updated on May 9 2020, 11:55 am EDT.




science and technology

A Few Clouds and 45 F at Farmingdale - Republic Airport, NY


Winds are from the Northwest at 13.8 gusting to 36.8 MPH (12 gusting to 32 KT). The pressure is 1010.5 mb and the humidity is 33%. The wind chill is 39. Last Updated on May 9 2020, 11:53 am EDT.




science and technology

Overcast and Windy and 37 F at Griffiss Air Force Base / Rome, NY


Winds are from the West at 27.6 gusting to 35.7 MPH (24 gusting to 31 KT). The pressure is 1010.6 mb and the humidity is 50%. The wind chill is 25. Last Updated on May 9 2020, 11:53 am EDT.




science and technology

Mostly Cloudy and 43 F at East Hampton, East Hampton Airport, NY


Winds are from the West at 16.1 gusting to 28.8 MPH (14 gusting to 25 KT). The humidity is 42%. The wind chill is 35. Last Updated on May 9 2020, 11:55 am EDT.




science and technology

SemiEngineering Article: Why IP Quality Is So Difficult to Determine

Differentiating good IP from mediocre or bad IP is getting more difficult, in part because it depends upon how and where it is used and in part, because even the best IP may work better in one system than another—even in chips developed by the same vendor.  

So, how do you measure IP quality and why it is so complicated?

The answer depends on who is asking. Most of the time, the definition of IP quality depends on your vantage point.  If you are an R&D manager, IP quality means something. If you are a global supply manager, IP quality means something else. If you are an SoC start-up, your measure of quality is quite different from that of an established fabless company. If you are designing IP in-house, then your considerations are very different than being a commercial IP vendor. If you are designing an automotive SoC, then we are in a totally different category. How about as an IP vendor? How do you articulate IP quality metrics to your customers?

This varies greatly by the type of IP, as well. When it comes to interface (hard) IP and controllers, if you are an R&D manager, your goal is to design IP that meets the IP specifications and PPA (power, performance, and area) targets. You need to validate your design via silicon test chips. This applies to all hard PHYs, which must be mapped to a particular foundry process. For controllers that are in RTL form—we called these soft IP—you have to synthesize them into a particular target library in a particular foundry process in order to realize them in a physical form suitable for SoC integration. Of course, your design will need to go through a series of design validation steps via simulation, design verification and passing the necessary DRC checks, etc. In addition, you want to see the test silicon in various process corners to ensure the IP is robust and will perform well under normal process variations in the production wafers.

For someone in IP procurement, the measure of quality will be based on the maturity of the IP. This involves the number of designs that have been taped out using this IP and the history of bug reports and subsequent fixes. You will be looking for quality of the documentation and the technical deliverables. You will also benchmark the supplier’s standard operating procedures for bug reporting and technical support, as well as meeting delivery performance in prior programs. This is in addition to the technical teams doing their technical diligence.

An in-house team that is likely to design IP for a particular SoC project will be using an established design flow and will have legacy knowledge of last generation’s IP. They may be required to design the IP with some reusability in mind for future programs. However, such reusability requirements will not need to be as stringent and as broad as those of commercial IP vendors because there are likely to be established metrics and procedures in place to follow as part of the design team’s standard operating procedures. Many times, new development based on a prior design that has been proven in use will be started, given this stable starting point. All of these criteria help the team achieve a quality outcome more easily.

Then, if designing for an automotive SoC, additional heavy lifting is required.  Aside from ensuring that the IP meets the specifications of the protocol standards and passes the compliance testing, you also must pay attention to meeting functional safety requirements. This means adherence to ISO 26262 requirements and subsequently achieving ASIL certification. Oftentimes, even for IP, you must perform some AEC-Q100-related tests that are relevant to IP, such as ESD, LU, and HTOL.

To read more, please visit: https://semiengineering.com/why-ip-quality-is-so-difficult-to-determine/




science and technology

AMBA Adaptive Traffic Profiles: Addressing The Challenge

Modern systems-on-a-chip (SoCs) continue to increase in complexity, adding more components and calculation power to accommodate new performance-hungry applications such as machine learning and autonomous driving.  With increased number of SoC components, such as CPUs, GPUs, accelerators and I/O devices, comes increased demand to correctly model interoperability of various components. Traditional simulation of complex systems requires accurate models of all components comprising the system and normally results in very long simulation times. A better way is to create a set of typical traffic profiles which describe behavior of system’s masters and slaves. Such profiles should be abstract to be applied to various protocols and interfaces and be portable to be applied throughout different SoC design and verification cycles.

To address the challenges outlined above, Arm has recently announced availability of the AMBA® Adaptive Traffic Profiles (AMBA ATP) specification which lays foundation of a new synthetic traffic framework. The AMBA ATP specification includes detailed information of various transaction types and timing characteristics of those transactions. The traffic profiles defined in the specification are abstract in nature and thus could be used to generate stimuli for various standard AMBA protocols and in various environments such as RTL-based simulation, FPGA prototyping and final SoC verification. The traffic profiles outlined in the specification include a set of parameters to define timing relationships between transactions as well as timing relationships within individual transactions. Even though the traffic profile represents the behavior of a single agent it could be applied either in a concurrent manner (e.g. write and read traffic profiles running in parallel) or in a sequential manner (e.g. when one traffic completes before the next one start). Moreover, when simulating a reasonably complex system, it is possible to coordinate traffic profiles generated by multiple components. While providing abstract definition of traffic profiles, the AMBA ATP specification focuses on the use of traffic profiles with an AMBA AXI interface, outlining signaling, timing relationships between different transaction phases and between different transactions. The same application principles could be used to map the abstract traffic profiles to other AMBA protocols such as AMBA5 CHI protocol.  

To facilitate adoption of the AMBA Adaptive Traffic Profiles, Cadence has recently announced availability of SystemVerilog UVM ATP Sequence Layer which automatically implements mapping of an abstract ATP traffic to AMBA protocol specific traffic, generated by Cadence AMBA Verification IP. The ATP layer is implemented as a SystemVerilog UVM virtual sequence with the sequence item including all ATP transaction parameters as defined in the specification.

Using the provided sequence infrastructure, users can write tests to define and coordinate traffic profiles for various components in the system. The ATP Layer automatically converts the abstract traffic profile into AMBA protocol-specific traffic, e.g., AMBA5 CHI protocol traffic.

 A sample code below, shows an example of a read profile translated by Cadence ACE Verification IP in ACE protocol traffic.

   `uvm_do_with(ace_atp_vseq,                                            

                       {ace_atp_vseq.agentId == agent_id;                                // ATP agent id

                        ace_atp_vseq.atpDirection == ATP_READ;                    // direction of bursts issued by virtual sequence

                        ace_atp_vseq.startAddress == start_address;                // start of address range being accessed

                        ace_atp_vseq.endAddress == end_address;                  // end of address range being accessed

                        ace_atp_vseq.atpDomain == atp_domain;                      // domain to use for transactions

                        ace_atp_vseq.addressPattern == ATP_SEQUENTIAL;  // address pattern

                        ace_atp_vseq.transactionSize == 64;                             // number of bytes in each burst

                        ace_atp_vseq.dataSize == 4;                                          // number of bytes in each transfer

                        ace_atp_vseq.rate == 150.0/(50.0);                                // requestedBandwidth / clkFrequency

                        ace_atp_vseq.start == ATP_EMPTY;                              // start condition of the ATP FIFO

                        ace_atp_vseq.full == 128;                                               // full level of the ATP FIFO

                        ace_atp_vseq.numOfTransactions == 500;                    // number of bursts issued by this sequence

                        ace_atp_vseq.ARTV == 2;                                              // sub-transaction delay

                        ace_atp_vseq.RBR == 3;                                                // sub-transaction delay

                       });

In addition to the ATP Layer for Cadence Simulation-Based AMBA Verification IP, Cadence supports the ATP functionality in Acceleration-Based AMBA Verification IP. For detailed information about ATP support in Cadence Simulation-Based and Acceleration-Based Verification IP, visit ip.cadence.com.




science and technology

How to Verify Performance of Complex Interconnect-Based Designs?

With more and more SoCs employing sophisticated interconnect IP to link multiple processor cores, caches, memories, and dozens of other IP functions, the designs are enabling a new generation of low-power servers and high-performance mobile devices. The complexity of the interconnects and their advanced configurability contributes to already formidable design and verification challenges which lead to the following questions:

While your interconnect subsystem might have a correct functionality, are you starving your IP functions of the bandwidth they need? Are requests from latency-critical initiators processed on time? How can you ensure that all applications will receive the desired bandwidth in steady-state and corner use-cases?

To answer these questions, Cadence recommends the Performance Verification Methodology to ensure that the system performance meets requirements at the different levels:

  1. Performance characterization: The first level of verification aims to verify the path-to-path traffic measuring the performance envelope. It targets integration bugs like clock frequency, buffer sizes, and bridge configuration. It requires to analyze the latency and bandwidth of design’s critical paths.
  2. Steady state workloads: The second level of verification aims to verify the master-by-master defined loads using traffic profiles. It identifies the impact on bandwidth when running multi-master traffic with various Quality-of-Service (QoS) settings. It analyzes the DDR sub-system’s efficiency, measures bandwidth and checks whether masters’ QoS requirements are met.
  3. Application specific use cases: The last level of verification simulates the use-cases and reaches the application performance corner cases. It analyzes the master-requested bandwidth as well as the DDR sub-system’s efficiency and bandwidth.

Cadence has developed a set of tools to assist customers in performance validation of their SoCs. Cadence Interconnect Workbench simplifies the setup and measurement of performance and verification testbenches and makes debugging of complex system behaviors a snap. The solution works with Cadence Verification IPs and executes on the Cadence Xcelium® Enterprise Simulator or Cadence Palladium® Accellerator/Emulator, with coverage results collected and analyzed in the Cadence vManager  Metric-Driven Signoff Platform.

To verify the performance of the Steady State Workloads, Arm has just released a new AMBA Adaptive Traffic Profile (ATP) specification which describes AMBA abstract traffic attributes and defines the behavior of the different traffic profiles in the system.

With the availability of Cadence Interconnect Workbench and AMBA VIP support of ATP, early adopters of the AMBA ATP specification can begin working immediately, ensuring compliance with the standard, and achieving the fastest path to SoC performance verification closure.

For more information on the AMBA Adaptive Traffic Profile, you can visit Dimitry's blog on AMBA Adaptive Traffic Profiles: Addressing The Challenge

More information on Cadence Interconnect Workbench solution is available at Cadence Interconnect Solution webpage.

Thierry




science and technology

Is the Role of Test Chips Changing at Advanced Foundry Nodes?

Test chips are becoming more widespread and more complex at advanced process nodes as design teams utilize early silicon to diagnose problems prior to production. But this approach also is spurring questions about whether this approach is viable at 7nm and 5nm, due to the rising cost of prototyping advanced technology, such as mask tooling and wafer costs.

Semiconductor designers have long been making test chips to validate test structures, memory bit cells, larger memory blocks, and precision analog circuits like current mirrors, PLLs, temperature sensors, and high-speed I/Os. This has been done at 90nm, 65nm, 40nm, 32nm, 28nm, etc., so having test chips at 16nm, 7nm, or finer geometries should not be a surprise. Still, as costs rise, there is debate about whether those chips are over-used given advancements in tooling, or whether they should be utilized even more, with more advanced diagnostics built into them.

Modern EDA tools are very good. You can simulate and validate almost anything with certain degree of accuracy and correctness. The key to having good and accurate tools and accurate results (for simulation) is the quality of the foundry data provided. The key to having good designs (layouts) is that the DRC deck must be of high quality and accurate and must catch all the things you are not supposed to do in the layout. Most of the challenges in advanced node is in the FEOL where semiconductor physics and lithography play outsize roles. Issues that were not an issue at more mature nodes can manifest themselves as big problems at 7nm or 5nm. Process variation across the wafer and variation across a large die also present problems that were of no consequence in more mature nodes.

The real questions to be asked are as follows:

What is the role of test chips in SoC designs?

  1. Do all hard IP require test chips for validation?
  2. Are test chips more important at advanced nodes compared to more mature nodes?
  3. Is the importance of test chip validation relative to the type of IP protocols?
  4. What are the risks if I do not validate in silicon?

In complex SoC designs, there are many high-performance protocols such as LPDDR4/4x PHY, PCIe4 PHY, USB3.0 PHY, 56G/112G SerDes, etc. Each one of these IP are very complex in and by itself. If there is any chance of failure that is not detected prior to SoC (tapeout) integration, the cost of retrofit is huge. This is why the common practice is to validate each one of these complex IP in silicon before committing to use such IP in chip integration. The test chips are used to validate that the IP are properly designed and meet the functional specifications of the protocols. They are also used to validate if sufficient margins are designed into the IP to mitigate variances due to process tolerances. All high-performance hard IP go through this test chip/silicon validation process. Oftentimes, marginality is detected at this stage. In advanced nodes, it is also important to have the test chips built under different process corners. This is intended to simulate process variations in production wafers so as to maximize yields. Advanced protocols such as 112G, GDDR6, HBM2, and PCIe4 are incredibly complex and sensitive to process variations. It is almost impossible to design these circuits and try to guarantee their performance without going through the test chip route.

Besides validating performance of the IP protocols, test silicon is also used to validate robustness of ESD structures, sensitivity to latch up, and performance degradation over wide temperature ranges. All these items are more critical in advanced nodes than more mature modes. Test chips are vehicles to guarantee design integrity in bite-size chunks. It is better to deal with any potential issues in smaller blocks than to try to fix them in the final integrated SoC.

Test chips will continue to play a vital role in helping IP and SoC teams lower the risk of their designs, and assuring optimal quality and performance in the foreseeable future. They are not going away!

To read more, please visit https://semiengineering.com/test-chips-play-larger-role-at-advanced-nodes/




science and technology

Dimensions to Verifying a USB4 Design

Verification of a USB4 router design is not just about USB4 but also about the inclusion of the three other major protocols namely, USB3, DisplayPort (DP), and PCI Express (PCIe). These protocols can be simultaneously tunneled through a USB4 router. Put in simple terms, such tunneling involves the conversion of the respective native USB3, DP, or PCIe protocol traffic into the USB4 transport layer packets, which are tunneled through a USB4 fabric, and converted back into the respective original native protocol traffic.

It may sound simple but is perhaps not.

There are several aspects in a router that come into picture to carry out this task of conversion of native protocol traffic, route it to the intended destination, and then convert it back to the original form. Some of those are the USB3, DP and PCIe protocol adapters, transport mechanism using routing, flow control, paths, path set-up and teardown, control and configuration, configuration spaces.

That is not all. There are core USB4 specific logical layer intricacies as well, which carry out the tasks of ensuring that all the USB4 ports and links are working as desired to provide up to 40Gbps speed and that the USB4 traffic flows through out the fabric in the intended way. These bring on the table features like High Speed link, ordered sets, lane initialization, lane adapter state machine, low power, lane bonding, RS-FEC, side band channel, sleep and wake, error checking.

All of these put together give rise to a very large verification space against which a USB4 router design should be verified. If we were to break down this space it can be broadly put in the following major dimensions,

  • Protocol Adapter Layer
    • USB3 tunneling
    • DP tunneling
    • PCIe tunneling
  • Host Interface Adapter Layer
  • Transport Layer
    • Flow control
    • Routing
    • Paths
  • Configuration layer and control packet protocol
  • Configuration spaces
  • Logical Layer

The independent verification of these dimensions is not all that would qualify the design as verified. They have to be verified in various combinations of each other too. Overall, all the parts of a USB4 router system need to be working together coherently.

For example, the following diagram depicts the various layers that a USB4 router may comprise of,

A USB4 router or a domain of routers does not work on its own. There is a Connection Manager per domain, which is a software-based entity managing a domain. A router provides the various capabilities for a Connection Manager to carry out its responsibilities of managing a domain.

It would not be an exaggeration to say that the spectrum of verification of a USB4 router ranges from the very minute details of logical layer to the system-level like multiple dependencies as the whole USB4 system is brought up layer by layer, step-by-step.

Cadence has a mature Verification IP solution that can help in the verification of USB4 designs. Cadence has taken an active part in the working group that defined the USB4 specification and has created a comprehensive Verification IP that is being used by multiple members in the last two years.

If you plan to have a USB4 compatible design, you can reduce the risk of adopting a new technology by using our proven and mature USB4 Verification IP. Please contact your Cadence local account team for more details and to get connected.




science and technology

PCIe 3.0 Still Shines While PCIe Keeps Evolving

PCIe has been widely adopted in the electronics industry since its first debut in 2003 (PCIe 1.0 standard release) for wide breach of applications, from Data Center Server, Networking, to Mobile, AI/ML, Automotive, IoT, and many others…. It’s a versatile, high-performance, robust, mature interconnect standard with full “backward compatibility” (e.g., a PCIe 3.0 device can still function well in a PCIe 4.0 system) which enables a solid and strong PCIe eco-system in the industry.  While the market, so as the users,  are enjoying the systems, e.g., desktop/laptop, powered (or to be more specific: “bridged”) by PCIe 3.0 since 2010, the industry is pushing hard for the PCIe 4.0 eco-system enablement. Earlier this year, AMD announced it X570 chipset would support the PCIe 4.0 interface and Phison also introduced the world’s first PCIe 4.0 SSD.

On the standard evolution front, the official PCIe 5.0 came out in May 2019, doubling the data rate to 32GT/s from 16GT/s in PCIe 4.0. The PCIe 6.0 standard will be released in 2021 based on the announcement made by PCI-SIG in June’19 with the goal to further double the data rate to 64GT/s with incorporating the PAM4 coding.

PCIe Protocol Evolution

Having said that, is the latest generation of PCIe always desired?  

My answer would be positive. Just like car maker/enthusiast has kept pursuing faster car in the history, there is no doubt that these speed enhancements/upgrades in the electronic world certainly provide a tremendous benefit for especially those applications craving the most throughput, such as Data center, HPC, Networking, Cloud and AI applications.   

But, does every application have to opt for the fastest speed (bandwidth)? My view would be leaning toward “Not really”. Just like we don’t need a 3-second sport car (meaning 0-60mph acceleration < 3s) for daily commute though it would certainly spice some driving fun on the road, but it may not be "the best fit" for most of commuters.

There are applications still well satisfied with PCIe 3.0 (or even older PCIe 2.0) for its best performance and cost balance.  Those applications include, but not limit to, IoT/consumer, Edge AI, SSD (non-enterprise),…etc. They typically need to make trade-off in between the cost, power consumption (especially battery powered), flexibility on changing product features, and time-to-market (TTM). To address such type of market needs, Cadence also offers an PPA (Performance, Power, Area) optimized PCIe 3.0 solution in addition to its high-performance PCIe 4.0 product line.

Cadence PCIe 3.0 PHY Solution (with Multi-Protocol Multi-Link feature)

With leveraging the multi-protocol SerDes implementation, the same Cadence PHY IP support multi-protocol and multi-link operation. Such a multi-protocol enabled PHY gives the SoC developers the optimum flexibility to integrate multiple commonly used interface protocols (e.g., PCIe 3.0 + USB 3.0) with using only a single PHY design.  This would largely save the product development time (faster TTM), reduce the risk of using multiple different PHY instances (for different protocol needs), and with the configurability to enable different product features/protocols.

Some people might say PCIe 3.0 era has gone. I was not quite yet being convinced as I still see its potential to shine a lot of market use cases. What do you think?

More Information

For more information on Cadence's PCIe IP offerings, see our PCI Express page.

For more information on PCIe in general, and on the various PCI standards, see the PCI-SIG website.

Related Posts




science and technology

Did You “Stress Test” Yet? Essential Step to Ensure a Quality PCIe 4.0 Product

The PCI-SIG finalized the PCIe 4.0 specification with doubling the data to 16GT/s from 8GT/s in PCIe 3.0 in 2017. Products implementing this technology have begun to hit the market in 2019. Earlier this year, AMD announced it X570 chipset would support the PCIe 4.0 interface and Phison also introduced the world’s first PCIe 4.0 SSD.  With the increasing companies are working on PCIe 4.0 related product development, Cadence, as the key and leading PCIe IP solution vendor in the market, has strived for continuous enhancement of its PCIe 4.0 to be the best in the class IP solution. From our initial PCIe 4.0 solution in 4 years ago (revealed in 2015), we have made many advancements and improvements adding features such as Multi-link with any lane assignment, U.2/U.3 connector, and Automotive support. The variety of applications that PCIe4 finds a home in require extensive robustness and reliability testing over and above the compliance tests mandated by the standard body, i.e., PCI-SIG.

PCIe 4.0 TX Eye-Diagram, Loop-back Test (Long-reach) and RX JTOL Margin Test

Cadence IP team has also implemented additional "stress tests" in conjunction to its already comprehensive IP characterization plan, covering electrical, functional, ESD, Latch-up, HTOL, and yield sorting. Take the Receiver Jitter Tolerance Test (JTOL) for instance. JTOL is a key index to test the quality of the receiver of a system. This test use data generator/analyzer to send data to a SerDes receiver which is then looped back through the transmitter back to the instrument. The data received is compared to the data generated and the errors are counted. The data generator introduce jitter into the transmit data pattern to see how well the receiver functions under non-ideal conditions. While PCI-SIG compliance can be obtained on a single lane implementation, real world scenarios require wider implementations under atypical operating conditions. Cadence’s PCIe 4.0 IP was tested against to additional stressed conditions, such as different combination of multi-lanes operations, “temperature drift” conditions, e.g., bring up the chip at room temperature and check the JTOL at high temperature. 

PCIe 4.0 Sub-system Stress Test Setup

Besides complying with electrical parameters and protocol requirements, real world systems have idiosyncrasies of their own. Cadence IP team also built a versatile “System test” setup in house to perform a system level stress test of its PCIe 4.0 sub-system. The Cadence PCIe 4.0 sub-system is connected to a large number of server and desktop motherboards. This set up is tested with 1000s of cycles of repeated stress under varying operating conditions. Stress tests include speed change from 2.5G all the way to 16G and down, link enable/disable, cold boot, warm boot, entering and exiting low power states, and BER test sweeping presets across different channels. Performing this level of stress test verifies that our IP will operate to spec robustly and reliably when presented with the occasional corner cases in the real world.

More Information

For the demonstration of Cadence PCIe4 PHY Receiver Test and Sub-system Stress Test, see the video:

For more information on Cadence's PCIe IP offerings, see our PCI Express page.

For more information on PCIe in general, and on the various PCI standards, see the PCI-SIG website.

Related Posts




science and technology

PCI-SIG DevCon 2019 APAC Tour: All Around Latest Spec Updates and Solution Offering

PCI-SIG DevCon 2019 APAC tour has come to Tokyo and Taipei this year. The focus is predominantly around the latest updates for PCIe Gen 5 which its version 1.0 specification was just released this year in May.  A series of presentations provided by PCI-SIG on the day 1 with comprehensive information covering all aspects of Gen 5 specification, including protocol, logical, electrical, compliance updates. On the day 2 (only in Taipei), several member companies shared their view on Testing, PCB analysis and Signal integrity. The exhibit is also another spotlight of this event where the member companies showcased their latest PCIe solutions.

Presentation Track (Taipei), Exhibit (Tokyo), Exhibit (Taipei) 

Cadence, as the market leading PCIe IP vendor, participated APAC tour this year with bringing in its latest PCIe IP solution offering (Gen 5/4) to the region as well as showcasing two live demo setups in the exhibit floor. One setup is the PCIe software development kit (SDK) while the other is the Interop/compliance/debug platform. Both come with the Cadence PCIe Gen 4 hardware setup and its corresponding software kit.

The SDK can be used for Device Driver Development, Firmware Development, and for pre-silicon emulation as well. It supports Xtensa and ARM processor with Linux OS and it also equip with Ethernet interface which can be used for remote debugging. It also supports PCIe stress tests for Speed change, link enable/disable, entry/exist for lower power states, …etc. 

Cadence PCIe 4.0 Software Development Kit

The “System Interop/Compliance/Debug platform” was set up to test with multiple endpoint and System platforms. This system come with integrated Cadence software for basic system debug without the need for analyzer to perform the analysis, such as LTSSM History, TS1/TS2 transmitted/received with time stamp, Link training phases, Capturing Packet errors details, Capturing PHY TX/RX internal state machine details, ...etc.

Cadence PCIe System Interop/Compliance/Debug Platform

 

The year 2019 is certainly a "fruitful year" for the PCIe as more Gen 4 products are now available in the market, Gen 5 v1.0 specification got officially ratified, and PCI-SIG's revealing of Gen 6 specification development. We were glad to be part of this APAC tour with the chance to further introduce Cadence’s complete and comprehensive PCIe IP solution.

See you all next year in APAC again!

More Information

For more information on Cadence's PCIe IP offerings, see our PCI Express page.

For more information on PCIe in general, and on the various PCI standards, see the PCI-SIG website.

Related Posts




science and technology

USB3, PCIe, DisplayPort Protocol Traffic Finding its Way Through USB4 Routers

USB4 can simultaneously tunnel USB3, PCIe and DisplayPort native protocol traffic through a hierarchy of USB4 routers. The key to tunneling of these protocols is routing table programmed at each ingress adapter. An entry of a routing table maps an incoming HopID, called Input/Ingress HopID to a corresponding pair of Output/Egress Adapter and Egress/Output HopID.

The responsibility of programming routing tables lies with the Connection Manager. Connection Manager, having the complete view of the hierarchy of the routers, programs the routing tables at all relevant adapter ports. Accordingly, the USB3, PCIe and DisplayPort protocol tunneled packets are routed, and reach their respective intended destinations.

The diagrammatic representation below is an example of tunneling of USB3 protocol traffic from USB4 Host Router to USB4 Peripheral Device Router through a USB4 Hub Router. The path from USB3 Host to USB3 Device is depicted by routing tables indicated at A -> B -> C -> D, and the one from USB3 Device to USB3 Host by routing tables indicated at E -> F -> G -> H . Note that the Input HopID from and Output HopID to all three protocol adapters for USB3, PCIe and DisplayPort Aux traffic, are fixed as 8, and for DisplayPort Main Link traffic are fixed as 9.

Once the native protocol traffic come into the transport layer of a USB4 router, the transport layer of it does not know to which native protocol a tunneled packet belongs to. The only way a transport layer tunneled packet is routed through the hierarchy of the routers is using the HopID values and the information programmed in the routing tables.

The figure below shows an example of tunneling of all the three USB3, PCIe and DisplayPort protocol traffic together. The transport layer tunneled packets of each of these native protocols are transported simultaneously through the routers hierarchy.

 Cadence has a mature Verification IP solution for the verification of USB3, PCIe and DisplayPort tunneling. This solution also employs the industry proven VIPs of each of these native protocols for native USB3, PCIe and DisplayPort traffic.




science and technology

Verification of the Lane Adapter FSM of a USB4 Router Design Is Not Simple

Verifying lane adapter state machine in a router design is quite an involved task and needs verification from several aspects including that for its link training functionality.

The diagram below shows two lane adapters connected to each other and each going through the link training process. Each training sub-state transition is contingent on conditions for both transmission and reception of relevant ordered sets needed for a transition. Until conditions for both are satisfied an adapter cannot transition to the next training sub-state.

As deduced from the lane adapter state machine section of USB4 specification, the reception condition for the next training sub-state transition is less strict than that of the transmission condition. For ex., for LOCK1 to LOCK2 transition, the reception condition requires only two SLOS symbols in a row being detected, while the transmission condition requires at least four complete SLOS1 ordered sets to be sent.

From the above conditions in the specification, it is a possibility that a lane adapter A may detect the two SLOS or TS ordered sets, being sent by the lane adapter B on the other end, in the very beginning as soon as it starts transmitting its own SLOS or TS ordered sets. On the other hand, it is also a possibility that these SLOS or TS ordered sets are not yet detected by lane adapter A even when it has met the condition of sending minimum number of SLOS or TS ordered sets.

In such a case, lane adapter A, even though it has satisfied the transmission condition cannot transition to the next sub-state because the reception condition is not yet met. Hence lane adapter A must first wait for the required number of ordered sets to be detected by it before it can go to the next sub-state. But this wait cannot be endless as there are timeouts defined in the specification, after which the training process may be re-attempted.

This interlocked way of operation also ensures that state machine of a lane adapter does not go out of sync with that of the other lane adapter. Such type of scenarios can occur whenever lane adapter state machine transitions to the training state from other states.

Cadence has a mature Verification IP solution for the verification of various aspects of the logical layer of a USB4 router design, with verification capabilities provided to do a comprehensive verification of it.




science and technology

Varying a digital IIR filter's poles&zeros over time

Is there a better approach to varying the coefficients of a digital IIR over time to adjust the values of its poles and zeros than just recalculating the whole thing every time it changes? For example, lots of synth programs can apply an LFO to the cutoff frequency of a low/high pass filter. I can do some polynomial multiplication to get the coefficients for an IIR filter given its poles and zeros, but am wondering if there is a better way to adjust them over time than simply doing all the calculations over again for new poles/zeros. Particularly, I'm curious if there is a method that will more or less work for an arbitrary number of poles and zeros. You could use a filter implementation (state space) that directly uses the pole/zero values instead of a polynomial walmartone. That might be computationally more expensive, though (as you are taking a trip through the domain of complex numbers even though your inputs and output are real), and possibly numerically iffy.As far as I am aware, modifying filter behavior while introducing as few artefacts as possible is still an area of research. You might get away with just adjusting the filter coefficients if you do it slowly, but this does not mean this is the best method.In an audio application, I assume they do not switch filter coefficients abruptly, but instead do a cross-fade between the (settled) first filter and the (mostly or completely settled) target filter to avoid audible artefacts.




science and technology

Special Route not connecting to Power Rings

Hi,

I'm a newbie and I'm working on a mixed-signal chip in Innovus. I've got a few analog LEF files that I've imported into my floorplan as macros.

My chip has got two power domains - VCC and VBAT.

One of the macro in the VBAT domain uses VBAT and GND as power rails myloweslife.com.

On doing Special-Route, I've got a lot of minute power rails for the standard cells, as expected.

But, the VBAT power rails are not getting extended till the outer power rings. Only the GND rails are correctly getting extended till the outer power rings.

A screen shot is attached for reference.

Thanks for any help




science and technology

Stylus flowtool

Hi,

  I wanted to open a discussion on the stylus flowtool.  My purpose is to see if there are users out there who are having success with the tool.  To have some discussions around issues that I am running into and to get a user point of view on the problems I am trying to solve.

  Let's start the conversation with : Is there anyone out there trying to use flowtool?  Do you have a centralized flow, or each user has their own?

Thanks, and I look forward to the conversations...

--Craig Crump




science and technology

About using Liberate to create .lib for a cell with two separate outputs.

Hello, my name is Hsukang. I want to use Liberate to create a .lib file for the following circuit. This is a scan FF with two separate outputs.   The question is that no matter how I described its function, the synthesis tool said its a manformed scan FF.  Has anyone ever encountered anything like this?How should I describe the function correctly?I found that almost standard flip-flop cells are with only one output Q or have Qn at the same time. Does Liberate support scan flip-flop cells with two separate outputs ?

Thanks.