on Amber Solutions raises $3.3M Series A to fast track sales of its smart electrical products By www.postscapes.com Published On :: 2018-05-22T05:00:00-07:00 Amber Solutions, an IoT product company that sells smart outlets, switches and circuit breakers closed Series A Preferred Stock round of financing that equals $3.3M in gross proceeds. Amber will use the funds to support the commercial development of Amber's core technologies. One of Amber’s product is solid-state circuit interrupter (GFCI) that basically stops harmful levels of electricity from passing through a person. It operates as a safety device alerting the homeowner of electrocution incidents in real time. "We are pleased that our investors are embracing Amber's vision of bringing superior IoT intelligence and connectivity to a highly strategic area--the single gang box locations within the standard electrical infrastructure in homes and buildings," said Amber Solutions CEO Thar Casey. "Amber's smart outlets and switches strategically aggregate IoT sensors and functions within a structure's single gang box locations. This means a more discreet and yet wider array of IoT sensing and control in every room than is typical today,"Casey further added. Amber Solutions’ core markets are builders that prepare smart home/smart building ready infrastructure, certified electrical contractors or remodelers, and electrical manufacturers. Amber products Other latest funding news include Owlet’s $24M Series B, Axonize’s $6M Series A round and addition of Deutsche Telekom as its strategic investor, and $30M Series B raised by Palo Alto-based Armis. Full Article
on Smart baby monitor Nanit closes $14M Series B investment By www.postscapes.com Published On :: 2018-05-24T05:00:00-07:00 Smart baby monitor company Nanit raised a $14M Series B round led by Jerusalem Venture Partners (JVP). Other investors that participated include existing investors Upfront Ventures, RRE Ventures, Vulcan Capital and Vaal Investment Partners. The latest investment brings total equity funding of Nanit to $30M. Nanit Camera Nanit announced it will use the funding proceeds to expand its team of computer vision and machine learning engineers and grow its sales in Europe and Canada. Nanit’s baby monitor helps new parents oversee nursery conditions as it has built-in temperature and humidity sensors. The camera lets parents remotely monitor baby’s crib whereas sound and motion are detected via smart sensors. Nanit's mobile app The monitor’s insights can be accessed via an accompanying mobile app. Nanit charges $10 per month for its premium package. The key use cases of Nanit’s baby monitoring technology include sleep insights, behavioral analysis, expert guidance, and nightly video summaries. The company currently sells its smart monitors via its website. Full Article
on Microsoft buys conversational AI company Semantic Machines for an undisclosed sum By www.postscapes.com Published On :: 2018-05-24T05:00:00-07:00 Microsoft announced it has acquired Semantic Machines, a conversational AI startup providing chatbots and AI chat apps founded in 2014 having $20.9 million in funding from investors. The acquisition will help Microsoft catch up with Amazon Alexa, though the latter is more focused on enabling consumer applications of conversational AI. Microsoft will use Semantic Machine’s acquisition to establish a conversational AI center of excellence in Berkeley to help it innovate in natural language interfaces. Microsoft has been stepping up its products in conversational AI. It launched the digital assistant Cortana in 2015, as well as social chatbots like XiaoIce. The latest acquisition can help Microsoft beef up its ‘enterprise AI’ offerings. As the use of NLP (natural language processing) increases in IoT products and services, more startups are getting traction from investors and established players. In June last year, Josh.ai, avoice-controlled home automation software has raised $8M. Followed by it was SparkCognition that raised $32.5M Series B for its NLP-based threat intelligence platform. It appears Microsoft’s acquisition of Semantic Machines was motivated by the latter’s strong AI team. The team includes technology entrepreneur Daniel Roth who sold his previous startups Voice Signal Technologies and Shaser BioScience for $300M and $100M respectively. Other team members include Stanford AI Professor Percy Liang, developer of Google Assistant Core AI technology and former Apple chief speech scientist Larry Gillick. “Combining Semantic Machines' technology with Microsoft's own AI advances, we aim to deliver powerful, natural and more productive user experiences that will take conversational computing to a new level." David Ku, chief technology officer of Microsoft AI & Research. Full Article
on Siemens to acquire smart lighting control company Enlighted Inc. for an undisclosed sum By www.postscapes.com Published On :: 2018-05-26T05:00:00-07:00 Siemens Building Technologies division announced it will acquire Enlighted Inc., a smart IoT building technology provider. The transaction is expected to close in Q3’18. Enlighted Inc.’s core element is an advanced lighting control application. It is based on a patented, software-defined smart sensor that collects and monitors real-time occupancy, light levels, temperatures and energy usage. The sensor can gauge temperature, light level, motion, energy, and has Bluetooth connectivity. The Enlighted Micro Sensor The Enlighted system works by collecting temperature, light and motion data via its smart sensors. A gateway device carries the information to Energy Manager, a secure browser-based interface to create profiles and adjust settings of the entire Enlighted Advanced Lighting Control System. The Energy manager operates as an analytics device. The whole system consists of multi-function sensors, distributed computing, a network, and software applications run by Enlighted Inc. “With Siemens as a global partner, we will both accelerate innovation and market adoption of our smart building technologies on an international scale.”Joe Costello, Chairman, and CEO of Enlighted Inc Enlighted Inc.’s main target market is commercial real estate. Key use cases of its intelligent Lighting Control System are energy efficiency, controlling heating, ventilation and air conditioning, and building utilization reports. Use the Postscapes 'Connected Products Framework' to understand the smart home and buildings eco-system. Full Article
on 5 Reasons Why You Need To Read This CSR in India Report By Published On :: This new Corporate Social Responsibility (CSR) Practices in India Report 2020 is a must read Full Article
on Report on CSR in Indian Banks 2020 By www.banknetindia.com Published On :: Report on Corporate Social Responsibility (CSR) in Indian BFSI sector. Full Article
on Murderer Sentenced to 15 Years Imprisonment By allafrica.com Published On :: Tue, 12 Nov 2024 10:30:38 GMT [SAPS] - The Acting Provincial Commissioner of the SAPS in Mpumalanga Major General (Dr) Zeph Mkhwanazi has welcomed the 15 years imprisonment term handed down to Bongani Motha (24) by Middleburg Regional Court on Wednesday, 05 November 2024. Full Article Legal and Judicial Affairs South Africa Southern Africa
on Former Company Director to Appear in Court for Allegedly Defrauding a Pensioner By allafrica.com Published On :: Tue, 12 Nov 2024 10:30:43 GMT [SAPS] - A former company Director (57) is expected to appear in the Thabamoopo Magistrates Court in Lebowakgomo on 11 November 2024 for allegedly defrauding a pensioner an amount of R378 000.00 in the name of business. Full Article Legal and Judicial Affairs South Africa Southern Africa
on 11 Vehicle Testing Station Officials and Car Owners Arrested for Alleged Fraud By allafrica.com Published On :: Tue, 12 Nov 2024 10:30:51 GMT [SAPS] - Polokwane based Hawks Serious Commercial Crime Investigation in collaboration with National Traffic Anti-corruption Unit arrested 11 suspects between the ages of 27 and 57 for alleged fraud at various Provinces during operation "SISFIKILE". Full Article Economy Business and Finance Legal and Judicial Affairs South Africa Southern Africa Transport and Shipping
on Gqeberha Flying Squad Clamp Down On Criminals By allafrica.com Published On :: Tue, 12 Nov 2024 10:30:52 GMT [SAPS] - Gqeberha Flying Squad members clamped down on criminals involved in illegal abalone activities and robbery suspects in two unrelated incidents. Full Article Legal and Judicial Affairs South Africa Southern Africa
on Five Suspects Appearing in Kariega Magistrate's Court for Possession of Cycads By allafrica.com Published On :: Tue, 12 Nov 2024 10:30:54 GMT [SAPS] - Five suspects are appearing in the Kariega Magistrate's Court today, after they were arrested and found in possession of cycads with an estimated value of R1 Million on Friday 08 November 2024. Full Article Legal and Judicial Affairs South Africa Southern Africa
on Almost 12 600 Suspects Arrested and 345 Firearms Recovered During October Operations By allafrica.com Published On :: Tue, 12 Nov 2024 10:30:55 GMT [SAPS] One hundred and seventy one (171) murder suspects, 261 attempted murder suspects and 250 suspected rapists were among 12 593 suspects who were arrested during various operations by police in KwaZulu-Natal in the month of October. During such operations police also managed to recover 345 firearms and 2 998 rounds of ammunition of various calibre of firearms. Among the recovered firearms were 23 rifles and 17 homemade illegal guns. Full Article Arms and Military Affairs Conflict Peace and Security Legal and Judicial Affairs South Africa Southern Africa
on Operation Shanela Yielded Good Results in the Joe Gqabi District By allafrica.com Published On :: Tue, 12 Nov 2024 10:30:56 GMT [SAPS] SAPS members' continued efforts to prevent and detect crime yielded the following successes within the Joe Gqabi District as part of Operation Shanela during the week and start of the weekend . Full Article Legal and Judicial Affairs South Africa Southern Africa
on Turner Adams's Tattooed Body Told More Than One Story By allafrica.com Published On :: Tue, 12 Nov 2024 04:27:19 GMT [GroundUp] Former Lavender Hill gangster died on 29 October Full Article Arts Culture and Entertainment Legal and Judicial Affairs South Africa Southern Africa
on South Africa's Civil Service Should Be Restructured, but a Plan to Reward Early Retirement Won't Solve the Problem - Economist By allafrica.com Published On :: Mon, 11 Nov 2024 13:35:55 GMT [The Conversation Africa] South Africa's finance minister, Enoch Godongwana, announced in his October mid-term budget policy statement that cabinet had approved funding for an early retirement programme to reduce the public sector wage bill. R11 billion (about US$627 million) will be allocated over the next two years to pay for the exit costs of 30,000 civil servants while retaining critical skills and promoting the entry of younger talent. Full Article Africa Economy Business and Finance Governance South Africa Southern Africa
on Urgent Intervention Needed to Address Illicit Gun Violence and Resource Shortages in the Western Cape By allafrica.com Published On :: Tue, 12 Nov 2024 04:40:20 GMT [DA] Note to editors: Please find attached soundbite by Ian Cameron MP. Full Article Governance Legal and Judicial Affairs South Africa Southern Africa
on Food Borne Poisoning Claims 23 Lives By allafrica.com Published On :: Tue, 12 Nov 2024 05:01:06 GMT [SAnews.gov.za] Twenty-three people in Gauteng have died as a result of food borne-related poisoning after consuming food from spaza shops. Full Article Food and Agriculture Legal and Judicial Affairs South Africa Southern Africa
on COP29 Expected Finalise Financing Model for Developing Economies By allafrica.com Published On :: Tue, 12 Nov 2024 05:01:07 GMT [SAnews.gov.za] With the United Nations Framework Convention on Climate Change (COP29) taking place this week, South Africa expects the COP29 Presidency to enhance efforts to finalise the New Collective Quantified Goal on Finance (NCQG), which is a matter of great importance for developing economies. Full Article Economy Business and Finance Governance South Africa Southern Africa
on Joburg's Water Restrictions Set to Tighten Further As Crisis Deepens By allafrica.com Published On :: Tue, 12 Nov 2024 06:01:29 GMT [Daily Maverick] Office of the Chief Justice reveals Constitutional Court has been unable to sit because of unreliable water supply. This article is free to read.Sign up for free or sign in to continue reading.Unlike our competitors, we don't force you to pay to read the news but we do need your email address to make your experience better.Create your free account or sign in FAQ | Contact Us Nearly there! Create a password to finish signing up with us: You want to receive First Thing, our flagship daily newsletter. Opt Full Article Environment Governance South Africa Southern Africa Water and Sanitation
on Cosatu Is Deeply Concerned By Government's Withdrawal of the SABC Soc Ltd Bill From Parliament By allafrica.com Published On :: Tue, 12 Nov 2024 07:58:37 GMT [COSATU] The Congress of South African Trade Unions (COSATU) is deeply concerned by the Minister for Communications and Digital Technologies, Mr. S. Malatsi's sudden withdrawal of the South African Broadcasting Corporation (SABC) SOC Ltd Bill from Parliament where it was being engaged upon by the National Assembly's Portfolio Committee: Communications and Digital Technologies. Full Article Economy Business and Finance Governance Labour South Africa Southern Africa
on Russian, South African Companies Join Forces On Nuclear Energy in Africa By allafrica.com Published On :: Tue, 12 Nov 2024 12:05:54 GMT [Namibian] Russian company Rosatom and South African AllWeld Nuclear and Industrial are joining forces to promote the sustainable development of nuclear energy in Africa. Full Article Economy Business and Finance Energy Europe and Africa External Relations South Africa Southern Africa
on Debate Rages Over Spaza Shop Regulation - South African News Briefs - November 12, 2024 By allafrica.com Published On :: Tue, 12 Nov 2024 05:31:48 GMT [allAfrica] Full Article Economy Business and Finance Environment Governance Legal and Judicial Affairs South Africa Southern Africa Water and Sanitation
on Constitutional Court Shutdown Over Water Cuts Is an Embarrassing Low-Point for Collapsing Joburg Metro By allafrica.com Published On :: Wed, 13 Nov 2024 06:23:22 GMT [DA] It is a national embarrassment that the inability of the City of Johannesburg to supply water to its residents, business and public sector offices, has now led to the shutdown of operations at the Constitutional Court, on Constitution Hill in Braamfontein. Full Article Environment Governance South Africa Southern Africa Water and Sanitation
on Cadence Demonstrates Complete PCIe 7.0 Solution at PCI-SIG DevCon ‘24 By community.cadence.com Published On :: Tue, 11 Jun 2024 23:00:00 GMT PCI-SIG DevCon 2024 – 32nd Anniversary For more than a decade, Cadence has been well-known in the industry for its strong commitment and support for PCIe technology. We recognize the importance of ensuring a robust PCIe ecosystem and appreciate the leadership PCI-SIG provides. To honor the 32nd anniversary of the PCI-SIG Developer’s Conference, Cadence is announcing a complete PCIe 7.0 IP solution for HPC/AI markets. Why Are Standards Like PCIe So Important? From the simplest building blocks like GPIOs to the most advanced high-speed interfaces, IP subsystems are the lifeblood of the chipmaking ecosystem. A key enabler for IP has been the collaboration between industry and academia in the creation of standards and protocols for interfaces. PCI-SIG drives some of the key definitions and compliance specifications and ensures the interoperability of interface IP. HPC/AI markets continue to demand high throughput, low latency, and power efficiency. This is fueling technology advancements, ensuring the sustainability of PCIe technology for generations to come. As a close PCI-SIG member, we gain valuable early insights into the evolving specs and the latest compliance standards. PCIe 7.0 specifications and beyond will enable the market to scale, and we look forward to helping our customers build best-in-class cutting-edge SoCs using Cadence IP solutions. Figure 1. Evolution of PCIe Data Rates (source PCI-SIG) What’s New This Year at DevCon? At DevCon ’24, the PCIe 7.0 standard will take center stage, and Cadence is showing off a full suite of IP subsystem solutions for PCIe 7.0 this year. What Sets Cadence Apart? At Cadence, we believe in building a full subsystem for our testchips with eight lanes of PHY along with a full 8-lane controller. Adding a controller to our testchip significantly increases the efficiency and granularity in characterization and stress testing and enables us to demonstrate interoperability with real-world systems. We are also able to test the entire protocol stack as an 8-lane solution that encompasses many of the applications our customers use in practice. This approach significantly reduces the risks in our customers’ SoC designs. Figure 2: Piper - Cadence PHY IP for PCIe 7.0 Figure 3: Industry’s first IP subsystem for PCIe 7.0 Which Market Is This For? At a time when accelerated computing has gone mainstream, PCIe links are going to take on a role of higher importance in systems. Direct GPU-to-GPU communication is crucial for scaling out complex computational tasks across multiple graphics processing units (GPUs) or accelerators within servers or computing pods. There is a growing recognition within the industry of a need for scalable, open architecture in high-performance computing. As AI and data-intensive applications evolve, the demand for such technologies will likely increase, positioning PCIe 7.0 as a critical component in the next generation of interface IP. Here's a recent article describing a potential use case for PCIe 7.0. Figure 4: Example use case for PCIe 7.0 Why Are Optical Links Important? It takes multiple buildings of data centers to train AI/ML models today. These buildings are increasingly being distributed across geographies, requiring optical fiber networks that are great at handling the increased bandwidth over long distances. However, these optical modules soon hit a power wall where all the budgeted power is used to drive the signal from point A to point B, and there is not enough power left to run the actual CPUs and GPUs. Such scenarios create a need for non-retimed, linear topologies. Linear Pluggable Optics (LPO) links can significantly reduce module power consumption and latency when compared to traditional Digital Signal Processing (DSP) based retimed optical solutions, which is critical for accelerating AI performance. Swapping from DSP-based solutions to LPO results in significant cost savings that help drive down expenditure due to lower power and cooling requirements, but this requires a robust high-performance ASIC to drive the optics rather than retimers/DSP. To showcase the robustness of Cadence IP, we have demonstrated that our subsystem testchip board for PCIe 7.0 can successfully transmit and receive 128GT/s signals through a non-retimed opto-electrical link configured in an external loopback mode with multiple orders of margin to spare. Figure 5: Example of ASIC driving linear optics Compliance Is Key For PCIe 6.0, the official compliance program has not started yet; this is typical for the SIG where the official compliance follows a few years after the spec is ratified to give enough time for the ecosystem to have initial products ready, and for test and equipment vendors to get their hardware/software up and running. At this time, PCIe Gen6 implementations can only be officially certified up to PCIe 5.0 level (the highest official compliance test suite that the SIG supports). We have taken our PCIe 6.0 IP subsystem solution to the SIG for multiple process nodes, and they are all listed as compliant. You can run this query on the pcisig.com website under the Developers->Integrators list by making the following selections: Due to space limitations, not all combinations could be tested at the May workshop (e.g., N3 root port) – this will be tested in the next workshop. Also, the SIG just held an “FYI” compliance event this week to bring together the ecosystem for confidential testing (no results were reported, and data cannot be shared outside without violating the PCI-SIG NDA). We participated in the event with multiple systems and can report that our systems have done quite well. The test ecosystem is not mature yet, and a few more FYI workshops will be conducted before the official compliance for 6.0 is launched. We have collaborated with all the key test vendors for electrical and protocol testing throughout the year. As early as the middle of last year, we were able to provide test cards to all these vendors to demo PCIe 6.0 capabilities in their booths at various events. Many of them recorded these videos, and they can be found online. Cadence Subsystem IP for PCIe 6.0: Protocol and Electrical Testing Cadence Subsystem IP for CXL Protocol Test Demo Cadence Subsystem IP for CXL2.0/3.0 Protocol Test Demo Cadence Subsystem IP for PCIe 6.0: Protocol Stack Demo More at the PCI-SIG Developers Conference Check us out at the PCI-SIG Developer’s conference on June 12 and 13 to see the following demonstrations: Robust performance of Cadence IP for PCIe 7.0 transmitting and receiving 128GT/s signals over non-retimed optics Capabilities of Cadence IP for PCIe 7.0 measured using oscilloscope instrumentation detailing its stable electrical performance and margin The reliability of Cadence IP for PCIe 6.0 interface using Test Equipment to characterize the PHY receiver quality A PCI-SIG-compliant Cadence IP subsystem for PCIe 6.0 optimized for both power and performance As a leader in PCI Express, Anish Mathew of Cadence will share his valuable insights on an important topic: “Impact of UIO ECN on PCIe Controller Design and Performance,” highlighting the strides made by the Cadence design team in achieving this implementation. Figure 6: Cadence UIO Implementation Summary Summary Cadence showcased PCIe 7.0-ready IP at PCI-SIG Developers Conference 2023 and continues to lead in PCIe IP development, offering complete solutions in advanced nodes for PCIe 7.0 that will be generally available early next year. With a full suite of solutions encompassing PHYs, Controllers, Software, and Verification IP, Cadence is proud to be a member of the PCI-SIG community and is heavily invested in PCIe. Cadence was the first IP provider to bring complete subsystem solutions for PCIe 3.0, 4.0, 5.0, and 6.0 with industry-leading PPA and we are proud to continue this trend with our latest IP subsystem solution for PCIe 7.0, which sets new benchmarks for power, performance, area, and time to market. Full Article Design IP IP PHY PCIe 7.0 PCIe semiconductor IP SerDes PCI Express PCI-SIG
on How Cadence Is Expanding Innovation for 3D-IC Design By community.cadence.com Published On :: Wed, 12 Jun 2024 06:39:00 GMT The market is trending towards integrating and stacking multiple chiplets into a single package to meet the growing demands of speed, connectivity, and intelligence. However, designing and signing off chiplets and packages individually is time-...(read more) Full Article
on Navigating Chiplet-Based Automotive Electronics Design with Advanced Tools and Flows By community.cadence.com Published On :: Tue, 25 Jun 2024 12:00:00 GMT In the rapidly evolving landscape of automotive electronics, traditional monolithic design approaches are giving way to something more flexible and powerful—chiplets. These modular microchips, which are themselves parts of a whole silicon system, offer unparalleled potential for improving system performance, reducing manufacturing costs, and accelerating time-to-market in the automotive sector. However, the transition to working with chiplets in automotive electronics is not without its challenges. Designers must now grapple with a new set of considerations, such as die-to-die interconnect standards, complex processes, and the integration of diverse IPs. Advanced toolsets and standardized design approaches are required to meet these challenges head-on and elevate the potential of chiplets in automotive innovation. In the following discourse, we will explore in detail the significance of chiplets in the context of automotive electronics, the obstacles designers face when working with this paradigm, and how Cadence comprehensive suite of IPs, tools, and flows is pioneering solutions to streamline the chiplet design process. Unveiling Chiplets in Automotive Electronics For automotive electronics, chiplets offer a methodology to modularize complex functionalities, integrate different chiplets into a package, and significantly enhance scalability and manufacturability. By breaking down semiconductor designs into a collection of chiplets, each fulfilling specific functions, automotive manufacturers can mix and match chiplets to rapidly prototype new designs, update existing ones, and specialize for the myriad of use cases found in vehicles today. The increasing significance of chiplets in automotive electronics comes as a response to several industry-impacting phenomena. The most obvious among these is the physical restriction of Moore's Law, as large die sizes lead to poor yields and escalating production costs. Chiplets with localized process specialization can offer superior functionality at a more digestible cost, maintaining a growth trajectory where monolithic designs cannot. Furthermore, chiplets support the assembly of disparate technologies onto a single subsystem, providing a comprehensive yet adaptive solution to the diverse demands present in modern vehicles, such as central computing units, advanced driver-assistance systems (ADAS), infotainment units, and in-vehicle networks. This chiplet-based approach to functional integration in automotive electronics necessitates intricate design, optimization, and validation strategies across multiple domains. The Complexity Within Chiplets Yet, with the promise of chiplets comes a series of intricate design challenges. Chiplets necessitate working across multiple substrates and technologies, rendering the once-familiar 2-dimensional design space into the complex reality of multi-layered, sometimes even three-dimensional domains. The intricacies embedded within this design modality mandate devoting considerable attention to partitioning trade-offs, signal integrity across multiple substrates, thermal behavior of stacked dies, and the emergence of new assembly design kits to complement process design kits (PDKs). To effectively address these complexities, designers must wield sophisticated tools that facilitate co-design, co-analysis, and the creation of a robust virtual platform for architectural exploration. Standardizations like the Universal Chip Interconnect Express (UCIe) have been influential, providing a die-to-die interconnect foundation for chiplets that is both standardized and automotive-ready. The availability of UCIe PHY and controller IP from Cadence and other leading developers further eases the integration of chiplets in automotive designs. The Role of Foundries and Packaging in Chiplets Foundries have also pivoted their services to become a vital part of the chiplet process, providing specialized design kits that cater to the unique requirements of chiplets. In tandem, packaging has morphed from being a mere logistical afterthought to a value-added aspect of chiplets. Organizations now look to packaging to deliver enhanced performance, reduced power consumption, and the integrity required by the diverse range of technologies encompassed in a single chip or package. This shift requires advanced multiscale design and analysis strategies that resonate across a spectrum of design domains. Tooling Up for Chiplets with Cadence Cadence exemplifies the rise of comprehensive tooling and workflows to facilitate chiplet-based automotive electronics design. Their integrations address the challenges that chiplet-based SoCs present, ensuring a seamless design process from the initial concept to production. The Cadence suite of tools is tailored to work across design domains, ensuring coherence and efficiency at every step of the chiplet integration process. For instance, Cadence Virtuoso RF subflows have become critical in navigating radio frequency (RF) challenges within the chiplets, while tools such as the Integrity 3D-IC Platform and the Allegro Advanced Multi-Die Package Design Solution have surfaced to enable comprehensive multi-die package designs. The Integrity Signal Planner extends its capabilities into the chiplet ecosystem, providing a centralized platform where system-wide signal integrity can be proactively managed. Sigrity and Celsius, on the other hand, offer universally applicable solutions that take on the challenges of chiplets in signal integrity and thermal considerations, irrespective of the design domain. Each of these integrated analysis solutions underscores the intricate symphony between technology, design, and packaging essential in unlocking the potential of chiplets for automotive electronics. Cadence portfolio includes solutions for system analysis, optimization, and signoff to complement these domain-specific tools, ensuring that the challenges of chiplet designs don't halt progress toward innovative automotive electronics. Cadence enables designers to engage in power- and thermal-aware design practices through their toolset, a necessity as automotive systems become increasingly sophisticated and power-efficient. A Standardized Approach to Success with Chiplets Cadence’s support for UCIe underscores the criticality of standardized approaches for heterogeneous integration by conforming to UCIe standards, which numerous industry stakeholders back. By co-chairing the UCIe Automotive working group, Cadence ensures that automotive designs have a universal and standardized Die-to-Die (D2D) high-speed interface through which chiplets can intercommunicate, unleashing the true potential of modular design. Furthermore, Cadence champions the utilization of virtual platforms by providing transaction-level models (TLMs) for their UCIe D2D IP to simulate the interaction between chiplets at a higher level of abstraction. Moreover, individual chiplets can be simulated within a chiplet-based SoC context leveraging virtual platforms. Utilizing UVM or SCE-MI methodologies, TLMs, and virtual platforms serve as first lines of defense in identifying and addressing issues early in the design process before physical silicon even enters the picture. Navigating With the Right Tools The road to chiplet-driven automotive electronics is one paved with complexity, but with a commitment to standards, it is a path that promises significant rewards. By leveraging Cadence UCIe Design and Verification IP, tools, and methodologies, automotive designers are empowered to chart a course toward chiplets and help to establish a chiplet ecosystem. With challenges ranging from die-to-die interconnect to standardization, heterogeneous integration, and advanced packaging, the need for a seamless integrated flow and highly automated design approaches has never been more apparent. Companies like Cadence are tackling these challenges, providing the key technology for automotive designers seeking to utilize chiplets for the next-generation E/E architecture of vehicular technology. In summary, chiplets have the potential to revolutionize the automotive electronics industry, breathing new life into the way vehicles are designed, manufactured, and operated. By understanding the significance of chiplets and addressing the challenges they present, automotive electronics is poised for a paradigm shift—one that combines the art of human ingenuity with the power of modular and scalable microchips to shape a future that is not only efficient but truly intelligent. Learn more about how Cadence can help to enable automakers and OEMs with various aspects of automotive design. Full Article Automotive electronics chiplets tools and flows
on How Cadence Is Revolutionizing Automotive Sensor Fusion By community.cadence.com Published On :: Tue, 06 Aug 2024 07:53:00 GMT The automotive industry is currently on the cusp of a radical evolution, steering towards a future where cars are not just vehicles but sophisticated, software-defined vehicles (SDV). This shift is marked by an increased reliance on automation and a significant increase in the use of sensors to improve safety and reliability. However, the increasing number of sensors has led to higher compute demands and poses challenges in managing a wide variety of data. The traditional method of using separate processors to manage each sensor's data is becoming obsolete. The current trends necessitate a unified processing system that can deal with multimodal sensor data, utilizing traditional Digital Signal Processing (DSP) and AI-driven algorithms. This approach allows for more efficient and reliable sensor fusion, significantly enhancing vehicle perception. Developers often face difficulties adhering to stringent power, performance, area, and cost (PPAC) and timing constraints while designing automotive SoCs. Cadence, with its groundbreaking products and AI-powered processors, is enabling designers and automotive manufacturers to meet the future sensor fusion demands within the automotive sector. At the recent CadenceLive Silicon Valley 2024, Amol Borkar, product marketing director at Cadence, showcased the company's dedication and forward-thinking solutions in a captivating presentation titled "Addressing Tomorrow’s Sensor Fusion Needs in Automotive Computing with Cadence." This blog aims to encapsulate the pivotal takeaways from the presentation. If you missed the chance to watch this presentation live, please click here to watch it. Significant Trends in the Automotive Market – Industry Landscape We are witnessing a revolution in automotive technology. Innovations like occupant and driver monitoring systems (OMS, DMS), 4D radar imaging, LiDAR technology, and 360-degree view are pushing the boundaries of what's possible, leading us into an era of remarkable autonomy levels—ranging from no feet or hands required to eventually no eyes needed on the road. Sensor Fusion and Increasing Processing Demands—Sensor fusion effectively integrates data from different sensors to help vehicles understand their surroundings better. Its main benefit is in overcoming the limitations of individual sensors. For example, cameras provide detailed visual information but struggle in low-light or lousy weather. On the other hand, radar is excellent at detecting objects in these conditions but lacks the detail that cameras provide. By combining the data from multiple sensors, automotive computing can take advantage of their strengths while compensating for their weaknesses, resulting in a more reliable and robust system overall. One thing to note is that the increased number of sensors produces various data types, leading to more pre-processing. On-Device Processing—As the industry moves towards autonomy, there is an increasing need for on-device data processing instead of cloud computing to enable vehicles to make informed decisions. Embracing on-device processing is a significant advancement for facilitating real-time decisions and avoiding round-trip latency. AI Adoption—AI has become integral to automotive applications, driving safety, efficiency, and user experience advancements. AI models offer superior performance and adaptability, making future-proofing a crucial consideration for automotive manufacturers. AI significantly enhances sensor fusion algorithms, offering scalability and adaptability beyond traditional rule-based approaches. Neural networks enable various fusion techniques, such as early fusion, late fusion, and mid-fusion, to optimize the integration and processing of sensor data. Future Sensor Fusion Needs Automotive architectures are continually evolving. With current trends and AI integration into radar and sensor fusion applications, SoCs should be modular, flexible, and programmable to meet market demands. Heterogeneous Architecture- Today's vehicles are loaded with various sensors, each with a unique processing requirement. Running the application on the most suitable processor is essential to achieve the best PPA. To meet such requirements, modern automotive solutions require a heterogeneous compute approach, integrating domain-specific digital signal processors (DSPs), neural processing units (NPUs), central processing unit (CPU) clusters, graphics processing unit (GPU) clusters, and hardware accelerator blocks. A balanced heterogeneous architecture gives the best PPA solution. Flexibility and Programmability- The industry has come a long way from using computer vision algorithms such as HOG (Histogram Oriented Gradient) to detect people and objects, HAR classifier to detect faces, etc., to CNN and LSTM-based AI to Transformer models and graphical neural networks (GNN). AI has evolved tremendously over the last ten years and continues to evolve. To keep up with the evolving rate of AI, SoC design must be flexible and programmable for updates if needed in the future. Addressing the Sensor Fusion Needs with Cadence Cadence offers a complete suite of hardware and software products to address the increasing compute requirements in automotive. The comprehensive portfolio of Tensilica products built on the robust 32-bit RISC architecture caters to various automotive CPU and AI needs. What makes them particularly appealing is their scalability, flexibility, and configurability, offering many options to meet diverse needs. The Xtensa family of products offers high-quality, power-efficient CPUs. Tensilica family also includes AI processors like Neo NPUs for the best power, performance, and area (PPA) for AI inference on devices or more extensive applications. Cadence also offers domain-specific products for DSPs such as HIFI DSPs, specialized DSPs and accelerators for radar and vision-based processing, and a general-purpose family of products for floating point applications. The ConnX family offers a wide range of DSPs, from compact and low-power to high-performance, optimized for radar, lidar, and communications applications in ADAS, autonomous driving, V2X, 5G/LTE/4G, wireless communications, drones, and robotics. Tensilica's ISO26262 certification ensures compliance with automotive safety standards, making it a trusted partner for advanced automotive solutions. The Cadence NeuroWeave Software Development Kit (SDK) provides customers with a uniform, scalable, and configurable ML interface and tooling that significantly improves time to market and better prepares them for a continuously evolving AI market. Cadence Tensilica offers an entire ecosystem of software frameworks and compilers for all programming styles. Tensilica's comprehensive software stack supports programming for DSPs, NPUs, and accelerators using C++, OpenCL, Halide, and various neural network approaches. Middleware libraries facilitate applications such as SLAM, radar processing, and Eigen libraries, providing robust support for automotive software development. Conclusion Cadence’s Tensilica products offer a development toolchain and various IPs tailored for the automotive industry, covering audio, vision, radar, unified DSPs, and NPUs. With ISO certification and a robust partner ecosystem, Tensilica solutions are designed to meet the future needs of automotive computing, ensuring safety, efficiency, and innovation. Learn More Cadence Automotive Solutions Cadence Automotive IP Sensor Fusion and ADAS in TSMC Automotive Processes Revolution on the Road: How Cadence is Driving the Future of Automotive Design! Taming Design Complexity in Chiplet-Based Automotive Electronics UCIe and Automotive Electronics: Pioneering the Chiplet Revolution Full Article Automotive Sensor Processing sensor fusion Automotive SoC automotive IP NPU AI
on GDDR7: The Ideal Memory Solution in AI Inference By community.cadence.com Published On :: Tue, 20 Aug 2024 20:53:00 GMT The generative AI market is experiencing rapid growth, driven by the increasing parameter size of Large Language Models (LLMs). This growth is pushing the boundaries of performance requirements for training hardware within data centers. For an in-depth look at this, consider the insights provided in "HBM3E: All About Bandwidth". Once trained, these models are deployed across a diverse range of applications. They are transforming sectors such as finance, meteorology, image and voice recognition, healthcare, augmented reality, high-speed trading, and industrial, to name just a few. The critical process that utilizes these trained models is called AI inference. Inference is the capability of processing real-time data through a trained model to swiftly and effectively generate predictions that yield actionable outcomes. While the AI market has primarily focused on the requirements of training infrastructure, there is an anticipated shift towards prioritizing inference as these models are deployed. The computational power and memory bandwidth required for inference are significantly lower than those needed for training. Inference engines typically need between 300-700GB/s of memory bandwidth, compared to 1-3TB/s for training. Additionally, the cost of inference needs to be lower, as these systems will be widely deployed not only in data centers but also at the network's edge (e.g., 5G) and in end-user equipment like security cameras, cell phones, and automobiles. When designing an AI inference engine, there are several memory options to consider, including DDR, LPDDR, GDDR, and HBM. The choice depends on the specific application, bandwidth, and cost requirements. DDR and LPDDR offer good memory density, HBM provides the highest bandwidth but requires 2.5D packaging, and GDDR offers high bandwidth using standard packaging and PCB technology. The GDDR7 standard, announced by JEDEC in March of this year, features a data rate of up to 192GB/s per device, a chip density of 32Gb, and the latest data integrity features. The high data rate is achieved by using PAM3 (Pulse Amplitude Modulation) with 3 levels (+1, 0, -1) to transmit 3 bits over 2 cycles, whereas the current GDDR6 generation uses NRZ (non-return-to-zero) to transmit 2 bits over 2 cycles. GDDR7 offers many advantages for AI Inference having the best balance of bandwidth and cost. For example, an AI Inference system requiring 500GB/s memory bandwidth will need only 4 GDDR7 DRAM running at 32Gbp/s (32 data bits x 32Gbp/s per pin = 1024Gb/s per DRAM). The same system would use 13 LPDDR5X PHYs running at 9.6Gbp/s, which is currently the highest data rate available (32 data bits x 9.6Gb/s = 307Gb/s per DRAM). Cadence stands at the forefront of AI inference hardware support, being the first IP company to roll out GDDR7 PHYs capable of impressive speeds up to 36Gb/s across various process nodes. This milestone builds on Cadence's established leadership in GDDR6 PHY IP, which has been available since 2019. The company caters to a diverse client base spanning AI inference, graphics, automotive, and networking equipment. While GDDR7 continues to utilize standard PCB board technology, the increased signal speeds seen in GDDR6 (20Gbp/s) and now GDDR7 (36Gb/s) calls for careful attention with the physical design to ensure optimized system performance. In addition to providing the PHY, Cadence also offers comprehensive PCB and package reference design, which are essential in helping customers achieve optimal signal and power integrity (SI/PI) for their systems. Cadence is dedicated to ensuring customer success beyond just providing hardware. They provide expert support in SI/PI, collaborating closely with customers throughout the design process. This approach ensures that customers can benefit from Cadence's expertise in navigating the complexities of high-speed design and achieving optimal performance in their AI inference systems. As the AI market continues to advance, Cadence remains at the forefront by offering a comprehensive memory IP portfolio tailored for every segment of this dynamic market. From DDR5 and HBM3E, which cater to the intensive demands of training in servers and high-performance computing (HPC), to LPDDR5X designed for low-end inference at the network edge and in consumer devices, Cadence's offerings cover a wide range of applications. Looking to the future, Cadence is dedicated to innovating at the forefront of memory system performance, ensuring that the evolving needs of AI training and inference are met with the highest standards of excellence. Whether it's pushing the boundaries with GDDR7 or exploring new technologies, Cadence is dedicated to driving the AI revolution forward, one breakthrough at a time. Learn more about Cadence GDDR7 PHY Learn more about Cadence Simulation VIP for GDDR7. Full Article featured gddr6 inference HBM training AI GDDR7
on Locking When Emulating Xtensa LX Multi-Core on a Xilinx FPGA By community.cadence.com Published On :: Mon, 30 Sep 2024 16:00:00 GMT Today's high-performance computing systems often require the designer to instantiate multiple CPU or DSP cores in their subsystem. However, the performance gained by using multiple CPUs comes with additional programming complexity, especially when accessing shared memory data structures and hardware peripherals. CPU cores need to access shared data in an atomic fashion in a multi-core environment. Locking is the most basic requirement for data sharing. A core takes the lock, accesses the shared data structure, and releases the lock. While one core has the lock, other cores are disallowed from accessing the same data structure. Typically, locking is implemented using an atomic read-modify-write bus transaction on a variable allocated in an uncached memory. This blog shares the AXI4 locking mechanism when implementing an Xtensa LX-based multi-core system on a Xilinx FPGA platform. It uses a dual-core design mapped to a KC705 platform as an example. Exclusive Access to Accomplish Locking The Xtensa AXI4 manager provides atomic access using the AXI4 atomic access mechanism. While Xtensa's AXI manager interface generates an exclusive transaction, the subordinate's interface is also expected to support exclusive access, i.e., AXI monitoring. Xilinx BRAM controller's AXI subordinate interface does not support exclusive access, i.e., AXI monitoring: AXI Feature Adoption in Xilinx FPGAs. Leveraging Xtensa AXI4 Subordinate Exclusive Access The Xtensa LX AXI subordinate interface supports exclusive access. One approach is to utilize this support and allocate locks in one of the core's local data memories. Ensure that the number of external exclusive managers is configured, typically to the number of cores (Figure 1). Figure 1 Note that the Xtensa NX AXI subordinate interface does not support exclusive access. For an Xtensa NX design, shared memory with AXI monitoring is required. In Figure 2, the AXI_crossbar#2 (block in green) routes core#0's manager AXI access (blue connection) to both core's local memories. Core#1's manager AXI (yellow connection) can also access both core's local memories. Locks can be allocated in either core's local data memory. In-Bound Access on Subordinate Interface On inbound access, the Xtensa AXI subordinate interface expects a local memory address, i.e., an external entity needs to present the same address as the core would use to access local memory in its 4GB address space. AXI address remap IP (block in pink) translates the AXI system address to each core's local address. For example, assuming locks are allocated in core#0's local memory, core#1 generates an AXI exclusive to access a lock allocated in core#0's local memory (yellow connection). AXI_crossbar#2 forwards transaction to M03_AXI port (green connection). AXI_address_remap#1 translates the AXI system address to the local memory address before presenting it to core#0's AXI subordinate interface (pink connection). It is possible to configure cores with disjoint local data memory addresses and avoid the need for an address remap IP block. But then it will be a heterogeneous multi-core design with a multi-image build. An address remap IP is required to keep things simple, i.e., a homogeneous multi-core with a single image build. A single image uses a single memory map. Therefore, both cores must have the same view of a lock, i.e., the lock's AXI bus address must be the same for both. Figure 2 AXI ID Width Note Xtensa AXI manager interface ID width=4 bits. Xtensa's AXI subordinate interface ID width=12 bits. So, you must configure AXI crossbar#2 and AXI address remap AXI ID width higher than 4. AXI IDs on a manager port are not globally defined; thus, an AXI crossbar with multiple manager ports will internally prefix the manager port index to the ID and provide this concatenated ID to the subordinate device. On return of the transaction to its manager port of origin, this ID prefix will be used to locate the manager port, and the prefix will be truncated. Therefore, the subordinate port ID is wider in bits than the manager port ID. Figure 3 shows the Xilinx crossbar IP AXI ID width configuration. Figure 3 Software Tools Support Cadence tools provide a way to place locks at a specific location. For more details, please refer to Cadence's Linker Support Packages (LSP) Reference Manual for Xtensa SDK. .xtos.lock(green) resides in core#0's local memory and holds user-defined and C library locks. The lock segment memory attribute is defined as shared inner (cyan) so that L32EX and S32EX instructions generate an exclusive transaction on an AXI bus. See Figure 4. The stack and per-core Xtos and C library contexts are allocated in local data memory (yellow). …………..LSP memory map………….BEGIN dram00x40000000: dataRam : dram0 : 0x8000 : writable ; dram0_0 : C : 0x40000400 - 0x40007fff : STACK : .dram0.rodata .clib.percpu.data .rtos.percpu.data .dram0.data .clib.percpu.bss .rtos.percpu.bss .dram0.bss;END dram0…………………BEGIN sysViewDataRam00xA0100000: system : sysViewDataRam0 : 0x8000 : writable, uncached, shared_inner; lockRam_0 : C : 0xA0100000 - 0xA01003ff : .xtos.lock;END sysViewDataRam0………….. Figure 4 Please visit the Cadence support site for more information on emulating Xtensa cores on FPGAs. Full Article AXI Tensilica Xtensa FPGA
on Advancing Die-to-Die Connectivity: The Next-Generation UCIe IP Subsystem By community.cadence.com Published On :: Tue, 08 Oct 2024 06:34:00 GMT Cadence tapes out 32G UCIe interface IP for high speed, highly efficient chiplet designs and demonstrate high data rate performance in TSMC's 3nm technology(read more) Full Article ucie IP die-to-die
on Driving Innovation: Cadence's Cutting-Edge IP on TSMC's N3 Node By community.cadence.com Published On :: Mon, 14 Oct 2024 16:00:00 GMT Staying ahead of the curve is essential to meeting customer needs. Cadence has consistently demonstrated its commitment to innovation, and its latest IP portfolio available on TSMC's 3nm (N3) process is no exception. Today, rapid advancements in AI/ML, hyperscale computing (HPC), and the automotive industry are driving significant changes in technology. Let's explore the impressive array of IP that Cadence offers on this advanced node. Memory Solutions: High-Speed and Power-Efficient Cadence's DDR5 12.8G MRDIMM IP supports the highest speed grade Gen2 MRDIMMs and features a fully hardened PHY optimized to the customer's floorplan. The LPDDR5X IP is silicon-proven at 9.6Gbps and is ideal for power-sensitive applications, offering a fully integrated memory subsystem. GDDR7: Leading the Way in Graphics Memory Cadence has achieved a significant milestone with the world's first silicon-proven GDDR7 IP, supporting data rates up to 32Gbps. This IP offers the best price/performance ratio for AI interfaces, making it a game-changer in the graphics memory domain. PCIe and CXL Solutions: Robust and Reliable Cadence's PCIe 3.0 IP is a mature and production-proven solution available across a wide range of process nodes from 28nm to 3nm. It offers a versatile multi-link architecture for optimum SoC configurability and flexible use cases. The PCIe 6.0 and CXL 3.x solutions are silicon-proven, power-optimized, and highly robust, with jitter-tolerant capabilities. These IP are the only subsystem proven with eight lanes of controller and PHY in silicon, ensuring interoperability with leading test vendors and OEMs. UCIe PHY: Setting New Standards The UCIe PHY IP from Cadence are set to be generally available after successful silicon characterization in both standard and advanced package options on the TSMC N3 (3nm) process. These IP demonstrate significantly better power, performance, and area (PPA) metrics than the specifications, with a bit error rate (BER) better than 1E-27 compared to the spec of 1E-15. The power consumption is also notably lower than the spec limit, ensuring a simpler integration with a best-in-class power profile. 112G PHY IP: Pushing the Boundaries of Performance Cadence's 112G PHY IP are designed to meet the demands of high-speed data transmission. The 112G-ULR PHY IP, characterized in the 3nm process, showcases exceptional performance with support for insertion loss over 45dB at data rates ranging from 1.25Gbps to 112.5Gbps. This IP is optimized for both power and area, making it a versatile choice for various applications. The 112G-VSR/MR PHY IP also stands out with its excellent power and performance metrics, making it ideal for short-reach applications and optical interconnects. Additionally, the 112G PAM4 PHY solutions cater to hyperscale, AI, HPC, and optics applications, featuring a mature DSP-based SerDes architecture with advanced techniques such as reflection cancellation. Cadence's IP portfolio on TSMC N3 shows innovation and expertise to solve today's design challenges. From high-speed PHY IP to robust PCIe and CXL solutions and advanced memory IP, Cadence continues to lead the way in semiconductor IP development. These solutions not only meet but exceed industry standards, ensuring that customers can confidently achieve their design goals. Stay tuned for more updates on Cadence's groundbreaking advancements in semiconductor technology. Learn more about Cadence IP and other silicon solutions. Full Article ucie Memory LPDDR ip cores PCIe DDR GDDR7
on How to see placement reasons of cells? How to highlight timing start/end points? By community.cadence.com Published On :: Tue, 23 Apr 2024 13:37:57 GMT I am working with innovus on a huge design. I found some cells are placed far away from both timing start points and timing end points. I suspect some other timing paths may be near-critical that results in this sub-optimal cell placement; or innovus has to place the cell far away due to congestion of placement or routing. Is there a way to see why innovus places/moves the cell during place_opt_design or ccopt_design? Also, is there a way to highlight all timing start points or timing end points that go through a cell? There may be thousands of timing paths through this cell. I tried using report_timing and timing debugger but it is very painful to click the highlight box and highlight the timing paths one by one. Thank you for your help! Full Article
on what is "cell with Zero maximum clock transition time" ? By community.cadence.com Published On :: Thu, 25 Apr 2024 09:01:00 GMT anyone know what is "cell with Zero maximum clock transition time" ? not zero transition, not maximum transtion, it is zero maximum clock transition time. it means X0 cell? (drive-strength) can you explain? thanks :-) Full Article
on Off grid violations on M2 layer By community.cadence.com Published On :: Sat, 27 Jul 2024 04:43:31 GMT Hi all, I have off grid violations on M2 layer. I have tried ecoRoute -fix_drc and deleting violations and rerouting. But the tool is still placing these routes off grid. The on grid option in nanoroute is turned on. Since there is a fat metal closer to these routes, the tool is honouring the drc and not placing the metals on track. How do I ignore drc while routing? Also if there is any other way I can fix it, please let me know Full Article
on cut_spacing violation By community.cadence.com Published On :: Mon, 29 Jul 2024 15:44:57 GMT I am getting the cut_spacing violation in the power plan, my design has two power rails, and the via is not formed for two rails, only one rail getting via, I used edit power via and modified the cut_space violation. how to solve this problem. Full Article
on digital implementation on android and ios By community.cadence.com Published On :: Tue, 20 Aug 2024 11:38:49 GMT With digital implementation rapidly advancing, how do you think iOS and Android platforms will continue to evolve in industries like healthcare or education? The integration of mobile technology is already revolutionizing these fields, and it would be interesting to discuss where this could lead and what new opportunities might emerge. Full Article
on How to import different input combination to the same circuit to get max, min, and average delay, power dissipation and area By community.cadence.com Published On :: Wed, 16 Oct 2024 02:47:12 GMT Hi everyone. I'm very a new cadence user. I'm not good at using it and quite lost in finding a way to get the results. With the topic, I would like to ask you for some suggestions to improve my cadence skills. I have some digital decision logic. Some are combinational logic, some are sequential logic that I would like to import or generate random input combination to the inputs of my decision logic to get the maximum, minimum, and average delay power dissipation and area when feeding the different input combination. My logic has 8-bit, 16-bit, and 32-bit input. The imported data tends to be decimal numbers. I would like to ask you: - which tool(s) are the most appropriate to import and feed the different combination to my decision logic? - which tool is the most appropriate to synthesis with different number of input? - I have used Genus Synthesis Solution so far. However with my skill right now I can only let Genus synthesize my Verilog code one setup at a time. I'm not sure if I there is anyway I can feed a lot of input at a time and get those results (min, max, average of delay, power dissipation and area) - which language or scripts I should pick up to use and achieve these results? -where can I find information to solve my problem? which information shall I look for? Thank you so much for your time!! Best Regards Full Article
on How to define the pin locations for 2-dimensional input? By community.cadence.com Published On :: Wed, 23 Oct 2024 18:19:05 GMT I have a 2-dimensional input in my design - input [2:0] data_in [15:0]. After synthesis with genus, I got a netlist where the inputs are like data[15], data[14],...,data[0]. And furthermore it has definitions like input [2:0] data[15], .... So how can I define the pin locations of each of the bits for this input? Can I define data[15]'s inner bits like data[15][0]? Is it possible to define this with def files? Full Article
on Always on buffering By community.cadence.com Published On :: Thu, 31 Oct 2024 17:22:01 GMT Hello All,How do we control the Always on buffering for a power domain called B in Power domain A.here B-power domain nets going through A , hence tool is inserting Always on buffers.How do we avoid this specific power domain ? Thanks,Bshaik Full Article
on IC 23.1 installation configuration failure on RHEL 9 By community.cadence.com Published On :: Fri, 11 Oct 2024 13:34:00 GMT I am trying to install IC231 on RHEL 8 using installscape, however configuring keeps failing. I tried to run the configuration file manually as suggested in one of the previous posts and it gives me following errors: sh batch_configure.sh /home/rs/cadence/installs/IC231/install/tmp/slconfig.sh: line 165: xterm: command not foundcat: ncvhdl23.03-d103lnx86_101124125631.stat: No such file or directoryrm: cannot remove 'ncvhdl23.03-d103lnx86_101124125631.stat': No such file or directory/home/rs/cadence/installs/IC231/install/tmp/slconfig.sh: line 165: xterm: command not foundcat: ncvhdl64b23.03-d103lnx86_101124125631.stat: No such file or directoryrm: cannot remove 'ncvhdl64b23.03-d103lnx86_101124125631.stat': No such file or directory/home/rs/cadence/installs/IC231/install/tmp/slconfig.sh: line 165: xterm: command not foundcat: oaRedist22.61-p003lnx86_101124125631.stat: No such file or directoryrm: cannot remove 'oaRedist22.61-p003lnx86_101124125631.stat': No such file or directory/home/rs/cadence/installs/IC231/install/tmp/slconfig.sh: line 165: xterm: command not foundcat: amsEnv64b23.10-p043lnx86_101124125631.stat: No such file or directoryrm: cannot remove 'amsEnv64b23.10-p043lnx86_101124125631.stat': No such file or directory/home/rs/cadence/installs/IC231/install/tmp/slconfig.sh: line 165: xterm: command not foundcat: ihdl64b23.10-p043lnx86_101124125631.stat: No such file or directoryrm: cannot remove 'ihdl64b23.10-p043lnx86_101124125631.stat': No such file or directoryI am not very well versed with Linux at the moment but trying. Could any one suggest something or point to what is missing? Full Article
on Pcell Inherited Connection By community.cadence.com Published On :: Mon, 14 Oct 2024 09:55:34 GMT Hi! I am attempting to create a very simple test pcell that contains a single Nmos 4 terminal device (Gate, Source, Drain, Backgate). However, unlike other devices I have used in the past, the backgate terminal of the device I wish to include within the pcell is an inherited connection, and the other 3 are physical terminals. Note that for the pcell master, I do not want any inherited connections, just physical pins. Hence I need to drive this inherited connection with a pin within my pcell. I started implementing the symbol and schematic first, ensuring I could obtain the correct connectivity, extract netlist, etc. I thought I had it hooked up correctly, but alas I am failing to export the CDL. Let me explain my current approach. Schematic: Create the 4 physical pins using a combination of dbCreateInst (for the pin isnt), dbMakeNet, dbCreateTerm and dbCreatePin. Create the device instance using dbCreateInstByMasterName and setting the desired cdf parameters + callbacks. For the physical terminals of the device, I'm using dbCreateConnByName to make the connection to the appropriate net that was created above. For the inherited connection, I am creating a netSet property like so: dbCreateProp(newinst deviceTermName "netSet" netName) Symbol: Create the 4 physical pins using a combination of dbCreateRect, dbMakeNet, dbCreateTerm, dbCreatePin. And then create whatever symbol design I wish using the likes of dbCreateRect, dbCreateLine, etc. Everything works fine when using a device without an inherited connection, so I'm guessing I'm missing something along this line... Also, if I copy the contents of the pcell schematic to a regular schematic view, do a check and save, the view extracts just fine. So I wonder if the check and save it fixing the connectivity that I may not have. Thanks for any possibly engagement or suggestions 🙂 Keelan Full Article
on BER and EVM calculation By community.cadence.com Published On :: Sat, 19 Oct 2024 06:09:09 GMT Hi, I hope you are doing well. I have designed and simulated a PA system in Cadence using high-level blocks, which include both ideal components and some defined with Verilog-A. My goal is to calculate the Bit Error Rate (BER) and Error Vector Magnitude (EVM) in the system. I am using an LTE source from RFLib, and everything functions correctly in the transient simulation. To calculate these parameters, I intended to use envelope simulation. However, when I attempt to run the envelope simulation, I encounter convergence errors, which prevent it from working as expected. Given this issue, I believe I need to work with transient data instead. Could you please advise on how to approach this in Cadence without exporting the data to MATLAB? Thank you for your assistance. Full Article
on load via options into cadence session By community.cadence.com Published On :: Tue, 22 Oct 2024 14:57:59 GMT What is the variable to define via selection/type for viasI want to be able to load via cut type in the via option when I use the leHiCreateVia() functionI want to select/load to the Via Option menu on which via I want to useCadence version IC23.1.64b.ISR7.27 Paul Full Article
on How to create draw region button like the one used in the Area and Density calculator By community.cadence.com Published On :: Mon, 28 Oct 2024 23:47:16 GMT Hello, I would like to create a button for my form that prompts the user to click on a cellview and draw a rectangle bounding box, exactly like the one used in the Area and Density Calculator. Can someone please help me with this? Thanks! Beto Full Article
on Error ASSEMBLER-1600 when running script with two different MC simulations By community.cadence.com Published On :: Tue, 29 Oct 2024 08:59:49 GMT Hello Community, I have encountered an issue that is a mystery to me and hope somebody could give me a clue about what is happening in Cadence and maybe even a solution? I am running a test scripted in a SKILL file that sequentially opens two different projects with MC analyses and in between I get an error message box and also multiple logs in CIW with exactly the same text. Both projects run a simulation with a call like this: historyName = maeRunSimulation(?session sessionName ?waitUntilDone t) After this the script closes the current project, opens the next project and executes the same line with maeRunSimulation() for the second project. Then immediately this error message happens, and also is logged repeatedly in the CIW window The message box looks like this: The logs I get in CIW: nilhiCancelProgressBox(_axlNetlistCreateProgressBar)nilhiCancelProgressBox(_axlUILoadForm)nilwhen(dwindow('axlDataViewessWindow1) hiMapWindow(dwindow('axlDataViewessWindow1)))twhen(dwindow('axlRunSummaryessWindow1) hiMapWindow(dwindow('axlRunSummaryessWindow1)))tERROR (ASSEMBLER-1600): Cannot find an active session named fnxSession0.You can only modify an ADE Assembler session that is active.Perhaps the session name was misspelled or has not yet been created. Verify the session name matches an existing ADE Assembler session. 1> ERROR (ASSEMBLER-1600): Cannot find an active session named fnxSession0.You can only modify an ADE Assembler session that is active.Perhaps the session name was misspelled or has not yet been created. Verify the session name matches an existing ADE Assembler session. *WARNING* hiDisplayAppDBox: modal dbox 'adexlMessageDialog' is already displayed!ERROR (ASSEMBLER-1600): Cannot find an active session named fnxSession0.You can only modify an ADE Assembler session that is active.Perhaps the session name was misspelled or has not yet been created. Verify the session name matches an existing ADE Assembler session. *WARNING* hiDisplayAppDBox: modal dbox 'adexlMessageDialog' is already displayed!ERROR (ASSEMBLER-1600): Cannot find an active session named fnxSession0.You can only modify an ADE Assembler session that is active.Perhaps the session name was misspelled or has not yet been created. Verify the session name matches an existing ADE Assembler session. Full Article
on DRC warning when use abConvertPolygonToPath.ils code By community.cadence.com Published On :: Mon, 04 Nov 2024 21:34:25 GMT Hi All, I'm using a code (abConvertPolygonToPath.ils) that I found in other posts to convert a rect object to a path object inside a pcell code, but when I try to run a DRC, the layout export fails due to a warning message, here is the log message *WARNING* (DB-270001): Pcell evaluation for 18A_asaavedr/lay_mesh_BM0_BM4_3p6_3p6/layout has the following error(s): *WARNING* (DB-270002): ("eval" 0 t nil ("*Error* eval: undefined function" abConvertPolygonToPath)) ERROR (XOASIS-231): Pcell evaluation failed for '18A_asaavedr/lay_mesh_BM0_BM4_3p6_3p6/layout' because the Pcell SKILL code contains either a syntax error or an unsupported XOasis function. Check the standard output or the Virtuoso log file for more information. Cadence recommends correcting the Pcell SKILL code to resolve the issue. However, to ignore these errors and continue the translation, you may use the 'ignorePcellEvalFail' option. INFO (XOASIS-282): Translation Failed. '1' error(s) and '3' warning(s) found. And when compile the code I get the following message: *WARNING* defgeneric function already defined - abConvertPolygonToPath I will aprreciate any help in how to waive this error, or fix it. Thank you Full Article
on Destructive form of "cons" - efficiently prepending an item to a procedure's argument which is a list By community.cadence.com Published On :: Tue, 12 Nov 2024 18:20:40 GMT Hello, I was looking to destructively and efficiently modify a list that was passed in as an argument to a procedure, by prepending an item to the list. I noticed that cons lets you do this efficiently, but the operation is non-destructive. Hence this wouldn't work if you are trying to modify a function's list parameter in place. Here is an example of trying to add "0" to the front of a list: procedure( attempt_to_prepend_list(l elem) l = cons(elem l) ) a = list(1 2 3) ==> (1 2 3)attempt_to_prepend_list(a 0)==> (0 1 2 3)a==> (1 2 3) As we can see, the original list is not prepended. Here is a function though which achieves the desired result while being efficient. Namely, the following function does not create any new lists and only uses fast methods like cons, rplacd, and rplaca procedure( prepend_list(l elem) ; cons(car(l) cdr(l)) results in a new list with the car(l) duplicated ; we then replace the cdr of l so that we are now pointing to this new list rplacd(l cons(car(l) cdr(l))) ; we replace the previously duplicated car(l) with the element we want rplaca(l elem) ) a = list(1 2 3) ==> (1 2 3)prepend_list(a 0)==> (0 1 2 3)a==> (0 1 2 3) This works for me, but I find it surprising there is no built-in function to do this. Am I perhaps overlooking something in the documentation? I know that tconc is an efficient and destructive way to append items to the end of a list, but there isn't an equivalent for the front of the list? Full Article
on μWaveRiders: New Python Library Provides a Higher-Level API in the Cadence AWR Design Environment By community.cadence.com Published On :: Mon, 18 Jul 2022 21:12:00 GMT A new Python library has been written to facilitate an interface between Python and AWR software using a command structure that adheres more closely to Python coding conventions. This library is labeled "pyawr-utils" and it is installed using the standard Python pip command. Comprehensive documentation for installing and using pyawr-utils is available.(read more) Full Article RF Simulation Circuit simulation AWR Design Environment Python API pyawr utilities awr RF design VBA microwave office Visual System Simulator (VSS) scripting
on μWaveRiders: Setting Up a Successful AWR Design Environment Design - UI and Simulation By community.cadence.com Published On :: Thu, 25 Aug 2022 02:26:00 GMT When starting a new design, it's important to take the time to consider design recommendations that prevent problems that can arise later in the design cycle. This two-part compilation of guidelines for starting a new design is the result of years of Cadence AWR Design Environment platform Support experience with designs. Pre-design decisions for user interface, simulation, layout, and library configuration lay the groundwork for a successful and efficient AWR design. This blog covers the user interface (UI) and simulation considerations designers should note prior to starting a design.(read more) Full Article Circuit simulation multi-processor AWR Design Environment test bench EM simulation UI RF design X-model microwave office Visual System Simulator (VSS) EM-based model
on μWaveRiders: Thermal Analysis for RF Power Applications By community.cadence.com Published On :: Thu, 22 Sep 2022 08:27:00 GMT Thermal analysis with the Cadence Celsius Thermal Solver integrated within the AWR Microwave Office circuit simulator gives designers an understanding of device operating temperatures related to power dissipation. That temperature information can be introduced into an electrothermal model to predict the impact on RF performance.(read more) Full Article CFD RF Simulation featured Circuit simulation AWR Design Environment awr Cadence Celsius Thermal Analysis microwave office electrothermal models thermal solver