se Testing goodness of fit for point processes via topological data analysis By projecteuclid.org Published On :: Mon, 24 Feb 2020 04:00 EST Christophe A. N. Biscio, Nicolas Chenavier, Christian Hirsch, Anne Marie Svane. Source: Electronic Journal of Statistics, Volume 14, Number 1, 1024--1074.Abstract: We introduce tests for the goodness of fit of point patterns via methods from topological data analysis. More precisely, the persistent Betti numbers give rise to a bivariate functional summary statistic for observed point patterns that is asymptotically Gaussian in large observation windows. We analyze the power of tests derived from this statistic on simulated point patterns and compare its performance with global envelope tests. Finally, we apply the tests to a point pattern from an application context in neuroscience. As the main methodological contribution, we derive sufficient conditions for a functional central limit theorem on bounded persistent Betti numbers of point processes with exponential decay of correlations. Full Article
se On the distribution, model selection properties and uniqueness of the Lasso estimator in low and high dimensions By projecteuclid.org Published On :: Mon, 17 Feb 2020 22:06 EST Karl Ewald, Ulrike Schneider. Source: Electronic Journal of Statistics, Volume 14, Number 1, 944--969.Abstract: We derive expressions for the finite-sample distribution of the Lasso estimator in the context of a linear regression model in low as well as in high dimensions by exploiting the structure of the optimization problem defining the estimator. In low dimensions, we assume full rank of the regressor matrix and present expressions for the cumulative distribution function as well as the densities of the absolutely continuous parts of the estimator. Our results are presented for the case of normally distributed errors, but do not hinge on this assumption and can easily be generalized. Additionally, we establish an explicit formula for the correspondence between the Lasso and the least-squares estimator. We derive analogous results for the distribution in less explicit form in high dimensions where we make no assumptions on the regressor matrix at all. In this setting, we also investigate the model selection properties of the Lasso and show that possibly only a subset of models might be selected by the estimator, completely independently of the observed response vector. Finally, we present a condition for uniqueness of the estimator that is necessary as well as sufficient. Full Article
se Modal clustering asymptotics with applications to bandwidth selection By projecteuclid.org Published On :: Fri, 07 Feb 2020 22:03 EST Alessandro Casa, José E. Chacón, Giovanna Menardi. Source: Electronic Journal of Statistics, Volume 14, Number 1, 835--856.Abstract: Density-based clustering relies on the idea of linking groups to some specific features of the probability distribution underlying the data. The reference to a true, yet unknown, population structure allows framing the clustering problem in a standard inferential setting, where the concept of ideal population clustering is defined as the partition induced by the true density function. The nonparametric formulation of this approach, known as modal clustering, draws a correspondence between the groups and the domains of attraction of the density modes. Operationally, a nonparametric density estimate is required and a proper selection of the amount of smoothing, governing the shape of the density and hence possibly the modal structure, is crucial to identify the final partition. In this work, we address the issue of density estimation for modal clustering from an asymptotic perspective. A natural and easy to interpret metric to measure the distance between density-based partitions is discussed, its asymptotic approximation explored, and employed to study the problem of bandwidth selection for nonparametric modal clustering. Full Article
se Estimation of a semiparametric transformation model: A novel approach based on least squares minimization By projecteuclid.org Published On :: Tue, 04 Feb 2020 22:03 EST Benjamin Colling, Ingrid Van Keilegom. Source: Electronic Journal of Statistics, Volume 14, Number 1, 769--800.Abstract: Consider the following semiparametric transformation model $Lambda_{ heta }(Y)=m(X)+varepsilon $, where $X$ is a $d$-dimensional covariate, $Y$ is a univariate response variable and $varepsilon $ is an error term with zero mean and independent of $X$. We assume that $m$ is an unknown regression function and that ${Lambda _{ heta }: heta inTheta }$ is a parametric family of strictly increasing functions. Our goal is to develop two new estimators of the transformation parameter $ heta $. The main idea of these two estimators is to minimize, with respect to $ heta $, the $L_{2}$-distance between the transformation $Lambda _{ heta }$ and one of its fully nonparametric estimators. We consider in particular the nonparametric estimator based on the least-absolute deviation loss constructed in Colling and Van Keilegom (2019). We establish the consistency and the asymptotic normality of the two proposed estimators of $ heta $. We also carry out a simulation study to illustrate and compare the performance of our new parametric estimators to that of the profile likelihood estimator constructed in Linton et al. (2008). Full Article
se Detection of sparse positive dependence By projecteuclid.org Published On :: Wed, 29 Jan 2020 22:01 EST Ery Arias-Castro, Rong Huang, Nicolas Verzelen. Source: Electronic Journal of Statistics, Volume 14, Number 1, 702--730.Abstract: In a bivariate setting, we consider the problem of detecting a sparse contamination or mixture component, where the effect manifests itself as a positive dependence between the variables, which are otherwise independent in the main component. We first look at this problem in the context of a normal mixture model. In essence, the situation reduces to a univariate setting where the effect is a decrease in variance. In particular, a higher criticism test based on the pairwise differences is shown to achieve the detection boundary defined by the (oracle) likelihood ratio test. We then turn to a Gaussian copula model where the marginal distributions are unknown. Standard invariance considerations lead us to consider rank tests. In fact, a higher criticism test based on the pairwise rank differences achieves the detection boundary in the normal mixture model, although not in the very sparse regime. We do not know of any rank test that has any power in that regime. Full Article
se Path-Based Spectral Clustering: Guarantees, Robustness to Outliers, and Fast Algorithms By Published On :: 2020 We consider the problem of clustering with the longest-leg path distance (LLPD) metric, which is informative for elongated and irregularly shaped clusters. We prove finite-sample guarantees on the performance of clustering with respect to this metric when random samples are drawn from multiple intrinsically low-dimensional clusters in high-dimensional space, in the presence of a large number of high-dimensional outliers. By combining these results with spectral clustering with respect to LLPD, we provide conditions under which the Laplacian eigengap statistic correctly determines the number of clusters for a large class of data sets, and prove guarantees on the labeling accuracy of the proposed algorithm. Our methods are quite general and provide performance guarantees for spectral clustering with any ultrametric. We also introduce an efficient, easy to implement approximation algorithm for the LLPD based on a multiscale analysis of adjacency graphs, which allows for the runtime of LLPD spectral clustering to be quasilinear in the number of data points. Full Article
se DESlib: A Dynamic ensemble selection library in Python By Published On :: 2020 DESlib is an open-source python library providing the implementation of several dynamic selection techniques. The library is divided into three modules: (i) dcs, containing the implementation of dynamic classifier selection methods (DCS); (ii) des, containing the implementation of dynamic ensemble selection methods (DES); (iii) static, with the implementation of static ensemble techniques. The library is fully documented (documentation available online on Read the Docs), has a high test coverage (codecov.io) and is part of the scikit-learn-contrib supported projects. Documentation, code and examples can be found on its GitHub page: https://github.com/scikit-learn-contrib/DESlib. Full Article
se On Mahalanobis Distance in Functional Settings By Published On :: 2020 Mahalanobis distance is a classical tool in multivariate analysis. We suggest here an extension of this concept to the case of functional data. More precisely, the proposed definition concerns those statistical problems where the sample data are real functions defined on a compact interval of the real line. The obvious difficulty for such a functional extension is the non-invertibility of the covariance operator in infinite-dimensional cases. Unlike other recent proposals, our definition is suggested and motivated in terms of the Reproducing Kernel Hilbert Space (RKHS) associated with the stochastic process that generates the data. The proposed distance is a true metric; it depends on a unique real smoothing parameter which is fully motivated in RKHS terms. Moreover, it shares some properties of its finite dimensional counterpart: it is invariant under isometries, it can be consistently estimated from the data and its sampling distribution is known under Gaussian models. An empirical study for two statistical applications, outliers detection and binary classification, is included. The results are quite competitive when compared to other recent proposals in the literature. Full Article
se Online Sufficient Dimension Reduction Through Sliced Inverse Regression By Published On :: 2020 Sliced inverse regression is an effective paradigm that achieves the goal of dimension reduction through replacing high dimensional covariates with a small number of linear combinations. It does not impose parametric assumptions on the dependence structure. More importantly, such a reduction of dimension is sufficient in that it does not cause loss of information. In this paper, we adapt the stationary sliced inverse regression to cope with the rapidly changing environments. We propose to implement sliced inverse regression in an online fashion. This online learner consists of two steps. In the first step we construct an online estimate for the kernel matrix; in the second step we propose two online algorithms, one is motivated by the perturbation method and the other is originated from the gradient descent optimization, to perform online singular value decomposition. The theoretical properties of this online learner are established. We demonstrate the numerical performance of this online learner through simulations and real world applications. All numerical studies confirm that this online learner performs as well as the batch learner. Full Article
se Connecting Spectral Clustering to Maximum Margins and Level Sets By Published On :: 2020 We study the connections between spectral clustering and the problems of maximum margin clustering, and estimation of the components of level sets of a density function. Specifically, we obtain bounds on the eigenvectors of graph Laplacian matrices in terms of the between cluster separation, and within cluster connectivity. These bounds ensure that the spectral clustering solution converges to the maximum margin clustering solution as the scaling parameter is reduced towards zero. The sensitivity of maximum margin clustering solutions to outlying points is well known, but can be mitigated by first removing such outliers, and applying maximum margin clustering to the remaining points. If outliers are identified using an estimate of the underlying probability density, then the remaining points may be seen as an estimate of a level set of this density function. We show that such an approach can be used to consistently estimate the components of the level sets of a density function under very mild assumptions. Full Article
se High-Dimensional Interactions Detection with Sparse Principal Hessian Matrix By Published On :: 2020 In statistical learning framework with regressions, interactions are the contributions to the response variable from the products of the explanatory variables. In high-dimensional problems, detecting interactions is challenging due to combinatorial complexity and limited data information. We consider detecting interactions by exploring their connections with the principal Hessian matrix. Specifically, we propose a one-step synthetic approach for estimating the principal Hessian matrix by a penalized M-estimator. An alternating direction method of multipliers (ADMM) is proposed to efficiently solve the encountered regularized optimization problem. Based on the sparse estimator, we detect the interactions by identifying its nonzero components. Our method directly targets at the interactions, and it requires no structural assumption on the hierarchy of the interactions effects. We show that our estimator is theoretically valid, computationally efficient, and practically useful for detecting the interactions in a broad spectrum of scenarios. Full Article
se Distributed Feature Screening via Componentwise Debiasing By Published On :: 2020 Feature screening is a powerful tool in processing high-dimensional data. When the sample size N and the number of features p are both large, the implementation of classic screening methods can be numerically challenging. In this paper, we propose a distributed screening framework for big data setup. In the spirit of 'divide-and-conquer', the proposed framework expresses a correlation measure as a function of several component parameters, each of which can be distributively estimated using a natural U-statistic from data segments. With the component estimates aggregated, we obtain a final correlation estimate that can be readily used for screening features. This framework enables distributed storage and parallel computing and thus is computationally attractive. Due to the unbiased distributive estimation of the component parameters, the final aggregated estimate achieves a high accuracy that is insensitive to the number of data segments m. Under mild conditions, we show that the aggregated correlation estimator is as efficient as the centralized estimator in terms of the probability convergence bound and the mean squared error rate; the corresponding screening procedure enjoys sure screening property for a wide range of correlation measures. The promising performances of the new method are supported by extensive numerical examples. Full Article
se Targeted Fused Ridge Estimation of Inverse Covariance Matrices from Multiple High-Dimensional Data Classes By Published On :: 2020 We consider the problem of jointly estimating multiple inverse covariance matrices from high-dimensional data consisting of distinct classes. An $ell_2$-penalized maximum likelihood approach is employed. The suggested approach is flexible and generic, incorporating several other $ell_2$-penalized estimators as special cases. In addition, the approach allows specification of target matrices through which prior knowledge may be incorporated and which can stabilize the estimation procedure in high-dimensional settings. The result is a targeted fused ridge estimator that is of use when the precision matrices of the constituent classes are believed to chiefly share the same structure while potentially differing in a number of locations of interest. It has many applications in (multi)factorial study designs. We focus on the graphical interpretation of precision matrices with the proposed estimator then serving as a basis for integrative or meta-analytic Gaussian graphical modeling. Situations are considered in which the classes are defined by data sets and subtypes of diseases. The performance of the proposed estimator in the graphical modeling setting is assessed through extensive simulation experiments. Its practical usability is illustrated by the differential network modeling of 12 large-scale gene expression data sets of diffuse large B-cell lymphoma subtypes. The estimator and its related procedures are incorporated into the R-package rags2ridges. Full Article
se On the consistency of graph-based Bayesian semi-supervised learning and the scalability of sampling algorithms By Published On :: 2020 This paper considers a Bayesian approach to graph-based semi-supervised learning. We show that if the graph parameters are suitably scaled, the graph-posteriors converge to a continuum limit as the size of the unlabeled data set grows. This consistency result has profound algorithmic implications: we prove that when consistency holds, carefully designed Markov chain Monte Carlo algorithms have a uniform spectral gap, independent of the number of unlabeled inputs. Numerical experiments illustrate and complement the theory. Full Article
se The Maximum Separation Subspace in Sufficient Dimension Reduction with Categorical Response By Published On :: 2020 Sufficient dimension reduction (SDR) is a very useful concept for exploratory analysis and data visualization in regression, especially when the number of covariates is large. Many SDR methods have been proposed for regression with a continuous response, where the central subspace (CS) is the target of estimation. Various conditions, such as the linearity condition and the constant covariance condition, are imposed so that these methods can estimate at least a portion of the CS. In this paper we study SDR for regression and discriminant analysis with categorical response. Motivated by the exploratory analysis and data visualization aspects of SDR, we propose a new geometric framework to reformulate the SDR problem in terms of manifold optimization and introduce a new concept called Maximum Separation Subspace (MASES). The MASES naturally preserves the “sufficiency” in SDR without imposing additional conditions on the predictor distribution, and directly inspires a semi-parametric estimator. Numerical studies show MASES exhibits superior performance as compared with competing SDR methods in specific settings. Full Article
se Provably robust estimation of modulo 1 samples of a smooth function with applications to phase unwrapping By Published On :: 2020 Consider an unknown smooth function $f: [0,1]^d ightarrow mathbb{R}$, and assume we are given $n$ noisy mod 1 samples of $f$, i.e., $y_i = (f(x_i) + eta_i) mod 1$, for $x_i in [0,1]^d$, where $eta_i$ denotes the noise. Given the samples $(x_i,y_i)_{i=1}^{n}$, our goal is to recover smooth, robust estimates of the clean samples $f(x_i) mod 1$. We formulate a natural approach for solving this problem, which works with angular embeddings of the noisy mod 1 samples over the unit circle, inspired by the angular synchronization framework. This amounts to solving a smoothness regularized least-squares problem -- a quadratically constrained quadratic program (QCQP) -- where the variables are constrained to lie on the unit circle. Our proposed approach is based on solving its relaxation, which is a trust-region sub-problem and hence solvable efficiently. We provide theoretical guarantees demonstrating its robustness to noise for adversarial, as well as random Gaussian and Bernoulli noise models. To the best of our knowledge, these are the first such theoretical results for this problem. We demonstrate the robustness and efficiency of our proposed approach via extensive numerical simulations on synthetic data, along with a simple least-squares based solution for the unwrapping stage, that recovers the original samples of $f$ (up to a global shift). It is shown to perform well at high levels of noise, when taking as input the denoised modulo $1$ samples. Finally, we also consider two other approaches for denoising the modulo 1 samples that leverage tools from Riemannian optimization on manifolds, including a Burer-Monteiro approach for a semidefinite programming relaxation of our formulation. For the two-dimensional version of the problem, which has applications in synthetic aperture radar interferometry (InSAR), we are able to solve instances of real-world data with a million sample points in under 10 seconds, on a personal laptop. Full Article
se Learning with Fenchel-Young losses By Published On :: 2020 Over the past decades, numerous loss functions have been been proposed for a variety of supervised learning tasks, including regression, classification, ranking, and more generally structured prediction. Understanding the core principles and theoretical properties underpinning these losses is key to choose the right loss for the right problem, as well as to create new losses which combine their strengths. In this paper, we introduce Fenchel-Young losses, a generic way to construct a convex loss function for a regularized prediction function. We provide an in-depth study of their properties in a very broad setting, covering all the aforementioned supervised learning tasks, and revealing new connections between sparsity, generalized entropies, and separation margins. We show that Fenchel-Young losses unify many well-known loss functions and allow to create useful new ones easily. Finally, we derive efficient predictive and training algorithms, making Fenchel-Young losses appealing both in theory and practice. Full Article
se Noise Accumulation in High Dimensional Classification and Total Signal Index By Published On :: 2020 Great attention has been paid to Big Data in recent years. Such data hold promise for scientific discoveries but also pose challenges to analyses. One potential challenge is noise accumulation. In this paper, we explore noise accumulation in high dimensional two-group classification. First, we revisit a previous assessment of noise accumulation with principal component analyses, which yields a different threshold for discriminative ability than originally identified. Then we extend our scope to its impact on classifiers developed with three common machine learning approaches---random forest, support vector machine, and boosted classification trees. We simulate four scenarios with differing amounts of signal strength to evaluate each method. After determining noise accumulation may affect the performance of these classifiers, we assess factors that impact it. We conduct simulations by varying sample size, signal strength, signal strength proportional to the number predictors, and signal magnitude with random forest classifiers. These simulations suggest that noise accumulation affects the discriminative ability of high-dimensional classifiers developed using common machine learning methods, which can be modified by sample size, signal strength, and signal magnitude. We developed the measure total signal index (TSI) to track the trends of total signal and noise accumulation. Full Article
se Learning Linear Non-Gaussian Causal Models in the Presence of Latent Variables By Published On :: 2020 We consider the problem of learning causal models from observational data generated by linear non-Gaussian acyclic causal models with latent variables. Without considering the effect of latent variables, the inferred causal relationships among the observed variables are often wrong. Under faithfulness assumption, we propose a method to check whether there exists a causal path between any two observed variables. From this information, we can obtain the causal order among the observed variables. The next question is whether the causal effects can be uniquely identified as well. We show that causal effects among observed variables cannot be identified uniquely under mere assumptions of faithfulness and non-Gaussianity of exogenous noises. However, we are able to propose an efficient method that identifies the set of all possible causal effects that are compatible with the observational data. We present additional structural conditions on the causal graph under which causal effects among observed variables can be determined uniquely. Furthermore, we provide necessary and sufficient graphical conditions for unique identification of the number of variables in the system. Experiments on synthetic data and real-world data show the effectiveness of our proposed algorithm for learning causal models. Full Article
se Switching Regression Models and Causal Inference in the Presence of Discrete Latent Variables By Published On :: 2020 Given a response $Y$ and a vector $X = (X^1, dots, X^d)$ of $d$ predictors, we investigate the problem of inferring direct causes of $Y$ among the vector $X$. Models for $Y$ that use all of its causal covariates as predictors enjoy the property of being invariant across different environments or interventional settings. Given data from such environments, this property has been exploited for causal discovery. Here, we extend this inference principle to situations in which some (discrete-valued) direct causes of $ Y $ are unobserved. Such cases naturally give rise to switching regression models. We provide sufficient conditions for the existence, consistency and asymptotic normality of the MLE in linear switching regression models with Gaussian noise, and construct a test for the equality of such models. These results allow us to prove that the proposed causal discovery method obtains asymptotic false discovery control under mild conditions. We provide an algorithm, make available code, and test our method on simulated data. It is robust against model violations and outperforms state-of-the-art approaches. We further apply our method to a real data set, where we show that it does not only output causal predictors, but also a process-based clustering of data points, which could be of additional interest to practitioners. Full Article
se Branch and Bound for Piecewise Linear Neural Network Verification By Published On :: 2020 The success of Deep Learning and its potential use in many safety-critical applicationshas motivated research on formal verification of Neural Network (NN) models. In thiscontext, verification involves proving or disproving that an NN model satisfies certaininput-output properties. Despite the reputation of learned NN models as black boxes,and the theoretical hardness of proving useful properties about them, researchers havebeen successful in verifying some classes of models by exploiting their piecewise linearstructure and taking insights from formal methods such as Satisifiability Modulo Theory.However, these methods are still far from scaling to realistic neural networks. To facilitateprogress on this crucial area, we exploit the Mixed Integer Linear Programming (MIP) formulation of verification to propose a family of algorithms based on Branch-and-Bound (BaB). We show that our family contains previous verification methods as special cases.With the help of the BaB framework, we make three key contributions. Firstly, we identifynew methods that combine the strengths of multiple existing approaches, accomplishingsignificant performance improvements over previous state of the art. Secondly, we introducean effective branching strategy on ReLU non-linearities. This branching strategy allows usto efficiently and successfully deal with high input dimensional problems with convolutionalnetwork architecture, on which previous methods fail frequently. Finally, we proposecomprehensive test data sets and benchmarks which includes a collection of previouslyreleased testcases. We use the data sets to conduct a thorough experimental comparison ofexisting and new algorithms and to provide an inclusive analysis of the factors impactingthe hardness of verification problems. Full Article
se pyts: A Python Package for Time Series Classification By Published On :: 2020 pyts is an open-source Python package for time series classification. This versatile toolbox provides implementations of many algorithms published in the literature, preprocessing functionalities, and data set loading utilities. pyts relies on the standard scientific Python packages numpy, scipy, scikit-learn, joblib, and numba, and is distributed under the BSD-3-Clause license. Documentation contains installation instructions, a detailed user guide, a full API description, and concrete self-contained examples. Full Article
se Ensemble Learning for Relational Data By Published On :: 2020 We present a theoretical analysis framework for relational ensemble models. We show that ensembles of collective classifiers can improve predictions for graph data by reducing errors due to variance in both learning and inference. In addition, we propose a relational ensemble framework that combines a relational ensemble learning approach with a relational ensemble inference approach for collective classification. The proposed ensemble techniques are applicable for both single and multiple graph settings. Experiments on both synthetic and real-world data demonstrate the effectiveness of the proposed framework. Finally, our experimental results support the theoretical analysis and confirm that ensemble algorithms that explicitly focus on both learning and inference processes and aim at reducing errors associated with both, are the best performers. Full Article
se Sparse and low-rank multivariate Hawkes processes By Published On :: 2020 We consider the problem of unveiling the implicit network structure of node interactions (such as user interactions in a social network), based only on high-frequency timestamps. Our inference is based on the minimization of the least-squares loss associated with a multivariate Hawkes model, penalized by $ell_1$ and trace norm of the interaction tensor. We provide a first theoretical analysis for this problem, that includes sparsity and low-rank inducing penalizations. This result involves a new data-driven concentration inequality for matrix martingales in continuous time with observable variance, which is a result of independent interest and a broad range of possible applications since it extends to matrix martingales former results restricted to the scalar case. A consequence of our analysis is the construction of sharply tuned $ell_1$ and trace-norm penalizations, that leads to a data-driven scaling of the variability of information available for each users. Numerical experiments illustrate the significant improvements achieved by the use of such data-driven penalizations. Full Article
se High-Dimensional Inference for Cluster-Based Graphical Models By Published On :: 2020 Motivated by modern applications in which one constructs graphical models based on a very large number of features, this paper introduces a new class of cluster-based graphical models, in which variable clustering is applied as an initial step for reducing the dimension of the feature space. We employ model assisted clustering, in which the clusters contain features that are similar to the same unobserved latent variable. Two different cluster-based Gaussian graphical models are considered: the latent variable graph, corresponding to the graphical model associated with the unobserved latent variables, and the cluster-average graph, corresponding to the vector of features averaged over clusters. Our study reveals that likelihood based inference for the latent graph, not analyzed previously, is analytically intractable. Our main contribution is the development and analysis of alternative estimation and inference strategies, for the precision matrix of an unobservable latent vector Z. We replace the likelihood of the data by an appropriate class of empirical risk functions, that can be specialized to the latent graphical model and to the simpler, but under-analyzed, cluster-average graphical model. The estimators thus derived can be used for inference on the graph structure, for instance on edge strength or pattern recovery. Inference is based on the asymptotic limits of the entry-wise estimates of the precision matrices associated with the conditional independence graphs under consideration. While taking the uncertainty induced by the clustering step into account, we establish Berry-Esseen central limit theorems for the proposed estimators. It is noteworthy that, although the clusters are estimated adaptively from the data, the central limit theorems regarding the entries of the estimated graphs are proved under the same conditions one would use if the clusters were known in advance. As an illustration of the usage of these newly developed inferential tools, we show that they can be reliably used for recovery of the sparsity pattern of the graphs we study, under FDR control, which is verified via simulation studies and an fMRI data analysis. These experimental results confirm the theoretically established difference between the two graph structures. Furthermore, the data analysis suggests that the latent variable graph, corresponding to the unobserved cluster centers, can help provide more insight into the understanding of the brain connectivity networks relative to the simpler, average-based, graph. Full Article
se Self-paced Multi-view Co-training By Published On :: 2020 Co-training is a well-known semi-supervised learning approach which trains classifiers on two or more different views and exchanges pseudo labels of unlabeled instances in an iterative way. During the co-training process, pseudo labels of unlabeled instances are very likely to be false especially in the initial training, while the standard co-training algorithm adopts a 'draw without replacement' strategy and does not remove these wrongly labeled instances from training stages. Besides, most of the traditional co-training approaches are implemented for two-view cases, and their extensions in multi-view scenarios are not intuitive. These issues not only degenerate their performance as well as available application range but also hamper their fundamental theory. Moreover, there is no optimization model to explain the objective a co-training process manages to optimize. To address these issues, in this study we design a unified self-paced multi-view co-training (SPamCo) framework which draws unlabeled instances with replacement. Two specified co-regularization terms are formulated to develop different strategies for selecting pseudo-labeled instances during training. Both forms share the same optimization strategy which is consistent with the iteration process in co-training and can be naturally extended to multi-view scenarios. A distributed optimization strategy is also introduced to train the classifier of each view in parallel to further improve the efficiency of the algorithm. Furthermore, the SPamCo algorithm is proved to be PAC learnable, supporting its theoretical soundness. Experiments conducted on synthetic, text categorization, person re-identification, image recognition and object detection data sets substantiate the superiority of the proposed method. Full Article
se Exact Guarantees on the Absence of Spurious Local Minima for Non-negative Rank-1 Robust Principal Component Analysis By Published On :: 2020 This work is concerned with the non-negative rank-1 robust principal component analysis (RPCA), where the goal is to recover the dominant non-negative principal components of a data matrix precisely, where a number of measurements could be grossly corrupted with sparse and arbitrary large noise. Most of the known techniques for solving the RPCA rely on convex relaxation methods by lifting the problem to a higher dimension, which significantly increase the number of variables. As an alternative, the well-known Burer-Monteiro approach can be used to cast the RPCA as a non-convex and non-smooth $ell_1$ optimization problem with a significantly smaller number of variables. In this work, we show that the low-dimensional formulation of the symmetric and asymmetric positive rank-1 RPCA based on the Burer-Monteiro approach has benign landscape, i.e., 1) it does not have any spurious local solution, 2) has a unique global solution, and 3) its unique global solution coincides with the true components. An implication of this result is that simple local search algorithms are guaranteed to achieve a zero global optimality gap when directly applied to the low-dimensional formulation. Furthermore, we provide strong deterministic and probabilistic guarantees for the exact recovery of the true principal components. In particular, it is shown that a constant fraction of the measurements could be grossly corrupted and yet they would not create any spurious local solution. Full Article
se Community-Based Group Graphical Lasso By Published On :: 2020 A new strategy for probabilistic graphical modeling is developed that draws parallels to community detection analysis. The method jointly estimates an undirected graph and homogeneous communities of nodes. The structure of the communities is taken into account when estimating the graph and at the same time, the structure of the graph is accounted for when estimating communities of nodes. The procedure uses a joint group graphical lasso approach with community detection-based grouping, such that some groups of edges co-occur in the estimated graph. The grouping structure is unknown and is estimated based on community detection algorithms. Theoretical derivations regarding graph convergence and sparsistency, as well as accuracy of community recovery are included, while the method's empirical performance is illustrated in an fMRI context, as well as with simulated examples. Full Article
se Representation Learning for Dynamic Graphs: A Survey By Published On :: 2020 Graphs arise naturally in many real-world applications including social networks, recommender systems, ontologies, biology, and computational finance. Traditionally, machine learning models for graphs have been mostly designed for static graphs. However, many applications involve evolving graphs. This introduces important challenges for learning and inference since nodes, attributes, and edges change over time. In this survey, we review the recent advances in representation learning for dynamic graphs, including dynamic knowledge graphs. We describe existing models from an encoder-decoder perspective, categorize these encoders and decoders based on the techniques they employ, and analyze the approaches in each category. We also review several prominent applications and widely used datasets and highlight directions for future research. Full Article
se Estimation of a Low-rank Topic-Based Model for Information Cascades By Published On :: 2020 We consider the problem of estimating the latent structure of a social network based on the observed information diffusion events, or cascades, where the observations for a given cascade consist of only the timestamps of infection for infected nodes but not the source of the infection. Most of the existing work on this problem has focused on estimating a diffusion matrix without any structural assumptions on it. In this paper, we propose a novel model based on the intuition that an information is more likely to propagate among two nodes if they are interested in similar topics which are also prominent in the information content. In particular, our model endows each node with an influence vector (which measures how authoritative the node is on each topic) and a receptivity vector (which measures how susceptible the node is for each topic). We show how this node-topic structure can be estimated from the observed cascades, and prove the consistency of the estimator. Experiments on synthetic and real data demonstrate the improved performance and better interpretability of our model compared to existing state-of-the-art methods. Full Article
se (1 + epsilon)-class Classification: an Anomaly Detection Method for Highly Imbalanced or Incomplete Data Sets By Published On :: 2020 Anomaly detection is not an easy problem since distribution of anomalous samples is unknown a priori. We explore a novel method that gives a trade-off possibility between one-class and two-class approaches, and leads to a better performance on anomaly detection problems with small or non-representative anomalous samples. The method is evaluated using several data sets and compared to a set of conventional one-class and two-class approaches. Full Article
se Scalable Approximate MCMC Algorithms for the Horseshoe Prior By Published On :: 2020 The horseshoe prior is frequently employed in Bayesian analysis of high-dimensional models, and has been shown to achieve minimax optimal risk properties when the truth is sparse. While optimization-based algorithms for the extremely popular Lasso and elastic net procedures can scale to dimension in the hundreds of thousands, algorithms for the horseshoe that use Markov chain Monte Carlo (MCMC) for computation are limited to problems an order of magnitude smaller. This is due to high computational cost per step and growth of the variance of time-averaging estimators as a function of dimension. We propose two new MCMC algorithms for computation in these models that have significantly improved performance compared to existing alternatives. One of the algorithms also approximates an expensive matrix product to give orders of magnitude speedup in high-dimensional applications. We prove guarantees for the accuracy of the approximate algorithm, and show that gradually decreasing the approximation error as the chain extends results in an exact algorithm. The scalability of the algorithm is illustrated in simulations with problem size as large as $N=5,000$ observations and $p=50,000$ predictors, and an application to a genome-wide association study with $N=2,267$ and $p=98,385$. The empirical results also show that the new algorithm yields estimates with lower mean squared error, intervals with better coverage, and elucidates features of the posterior that were often missed by previous algorithms in high dimensions, including bimodality of posterior marginals indicating uncertainty about which covariates belong in the model. Full Article
se Identifiability of Additive Noise Models Using Conditional Variances By Published On :: 2020 This paper considers a new identifiability condition for additive noise models (ANMs) in which each variable is determined by an arbitrary Borel measurable function of its parents plus an independent error. It has been shown that ANMs are fully recoverable under some identifiability conditions, such as when all error variances are equal. However, this identifiable condition could be restrictive, and hence, this paper focuses on a relaxed identifiability condition that involves not only error variances, but also the influence of parents. This new class of identifiable ANMs does not put any constraints on the form of dependencies, or distributions of errors, and allows different error variances. It further provides a statistically consistent and computationally feasible structure learning algorithm for the identifiable ANMs based on the new identifiability condition. The proposed algorithm assumes that all relevant variables are observed, while it does not assume faithfulness or a sparse graph. Demonstrated through extensive simulated and real multivariate data is that the proposed algorithm successfully recovers directed acyclic graphs. Full Article
se Multi-Player Bandits: The Adversarial Case By Published On :: 2020 We consider a setting where multiple players sequentially choose among a common set of actions (arms). Motivated by an application to cognitive radio networks, we assume that players incur a loss upon colliding, and that communication between players is not possible. Existing approaches assume that the system is stationary. Yet this assumption is often violated in practice, e.g., due to signal strength fluctuations. In this work, we design the first multi-player Bandit algorithm that provably works in arbitrarily changing environments, where the losses of the arms may even be chosen by an adversary. This resolves an open problem posed by Rosenski et al. (2016). Full Article
se Researching the Pacific: The Pacific Manuscripts Bureau By feedproxy.google.com Published On :: Mon, 27 Apr 2020 05:25:40 +0000 The State Library holds a superb collection of original documents, illustrations, photographs and books about the Pacifi Full Article
se Have your say on the Highway 404 Employment Corridor Secondary Plan By www.eastgwillimbury.ca Published On :: Mon, 27 Apr 2020 22:16:01 GMT Full Article
se A Bayesian sparse finite mixture model for clustering data from a heterogeneous population By projecteuclid.org Published On :: Mon, 04 May 2020 04:00 EDT Erlandson F. Saraiva, Adriano K. Suzuki, Luís A. Milan. Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 2, 323--344.Abstract: In this paper, we introduce a Bayesian approach for clustering data using a sparse finite mixture model (SFMM). The SFMM is a finite mixture model with a large number of components $k$ previously fixed where many components can be empty. In this model, the number of components $k$ can be interpreted as the maximum number of distinct mixture components. Then, we explore the use of a prior distribution for the weights of the mixture model that take into account the possibility that the number of clusters $k_{mathbf{c}}$ (e.g., nonempty components) can be random and smaller than the number of components $k$ of the finite mixture model. In order to determine clusters we develop a MCMC algorithm denominated Split-Merge allocation sampler. In this algorithm, the split-merge strategy is data-driven and was inserted within the algorithm in order to increase the mixing of the Markov chain in relation to the number of clusters. The performance of the method is verified using simulated datasets and three real datasets. The first real data set is the benchmark galaxy data, while second and third are the publicly available data set on Enzyme and Acidity, respectively. Full Article
se Bayesian modeling and prior sensitivity analysis for zero–one augmented beta regression models with an application to psychometric data By projecteuclid.org Published On :: Mon, 04 May 2020 04:00 EDT Danilo Covaes Nogarotto, Caio Lucidius Naberezny Azevedo, Jorge Luis Bazán. Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 2, 304--322.Abstract: The interest on the analysis of the zero–one augmented beta regression (ZOABR) model has been increasing over the last few years. In this work, we developed a Bayesian inference for the ZOABR model, providing some contributions, namely: we explored the use of Jeffreys-rule and independence Jeffreys prior for some of the parameters, performing a sensitivity study of prior choice, comparing the Bayesian estimates with the maximum likelihood ones and measuring the accuracy of the estimates under several scenarios of interest. The results indicate, in a general way, that: the Bayesian approach, under the Jeffreys-rule prior, was as accurate as the ML one. Also, different from other approaches, we use the predictive distribution of the response to implement Bayesian residuals. To further illustrate the advantages of our approach, we conduct an analysis of a real psychometric data set including a Bayesian residual analysis, where it is shown that misleading inference can be obtained when the data is transformed. That is, when the zeros and ones are transformed to suitable values and the usual beta regression model is considered, instead of the ZOABR model. Finally, future developments are discussed. Full Article
se Adaptive two-treatment three-period crossover design for normal responses By projecteuclid.org Published On :: Mon, 04 May 2020 04:00 EDT Uttam Bandyopadhyay, Shirsendu Mukherjee, Atanu Biswas. Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 2, 291--303.Abstract: In adaptive crossover design, our goal is to allocate more patients to a promising treatment sequence. The present work contains a very simple three period crossover design for two competing treatments where the allocation in period 3 is done on the basis of the data obtained from the first two periods. Assuming normality of response variables we use a reliability functional for the choice between two treatments. We calculate the allocation proportions and their standard errors corresponding to the possible treatment combinations. We also derive some asymptotic results and provide solutions on related inferential problems. Moreover, the proposed procedure is compared with a possible competitor. Finally, we use a data set to illustrate the applicability of the proposed design. Full Article
se Symmetrical and asymmetrical mixture autoregressive processes By projecteuclid.org Published On :: Mon, 04 May 2020 04:00 EDT Mohsen Maleki, Arezo Hajrajabi, Reinaldo B. Arellano-Valle. Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 2, 273--290.Abstract: In this paper, we study the finite mixtures of autoregressive processes assuming that the distribution of innovations (errors) belongs to the class of scale mixture of skew-normal (SMSN) distributions. The SMSN distributions allow a simultaneous modeling of the existence of outliers, heavy tails and asymmetries in the distribution of innovations. Therefore, a statistical methodology based on the SMSN family allows us to use a robust modeling on some non-linear time series with great flexibility, to accommodate skewness, heavy tails and heterogeneity simultaneously. The existence of convenient hierarchical representations of the SMSN distributions facilitates also the implementation of an ECME-type of algorithm to perform the likelihood inference in the considered model. Simulation studies and the application to a real data set are finally presented to illustrate the usefulness of the proposed model. Full Article
se A note on the “L-logistic regression models: Prior sensitivity analysis, robustness to outliers and applications” By projecteuclid.org Published On :: Mon, 03 Feb 2020 04:00 EST Saralees Nadarajah, Yuancheng Si. Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 1, 183--187.Abstract: Da Paz, Balakrishnan and Bazan [Braz. J. Probab. Stat. 33 (2019), 455–479] introduced the L-logistic distribution, studied its properties including estimation issues and illustrated a data application. This note derives a closed form expression for moment properties of the distribution. Some computational issues are discussed. Full Article
se On estimating the location parameter of the selected exponential population under the LINEX loss function By projecteuclid.org Published On :: Mon, 03 Feb 2020 04:00 EST Mohd Arshad, Omer Abdalghani. Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 1, 167--182.Abstract: Suppose that $pi_{1},pi_{2},ldots ,pi_{k}$ be $k(geq2)$ independent exponential populations having unknown location parameters $mu_{1},mu_{2},ldots,mu_{k}$ and known scale parameters $sigma_{1},ldots,sigma_{k}$. Let $mu_{[k]}=max {mu_{1},ldots,mu_{k}}$. For selecting the population associated with $mu_{[k]}$, a class of selection rules (proposed by Arshad and Misra [ Statistical Papers 57 (2016) 605–621]) is considered. We consider the problem of estimating the location parameter $mu_{S}$ of the selected population under the criterion of the LINEX loss function. We consider three natural estimators $delta_{N,1},delta_{N,2}$ and $delta_{N,3}$ of $mu_{S}$, based on the maximum likelihood estimators, uniformly minimum variance unbiased estimator (UMVUE) and minimum risk equivariant estimator (MREE) of $mu_{i}$’s, respectively. The uniformly minimum risk unbiased estimator (UMRUE) and the generalized Bayes estimator of $mu_{S}$ are derived. Under the LINEX loss function, a general result for improving a location-equivariant estimator of $mu_{S}$ is derived. Using this result, estimator better than the natural estimator $delta_{N,1}$ is obtained. We also shown that the estimator $delta_{N,1}$ is dominated by the natural estimator $delta_{N,3}$. Finally, we perform a simulation study to evaluate and compare risk functions among various competing estimators of $mu_{S}$. Full Article
se A primer on the characterization of the exchangeable Marshall–Olkin copula via monotone sequences By projecteuclid.org Published On :: Mon, 03 Feb 2020 04:00 EST Natalia Shenkman. Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 1, 127--135.Abstract: While derivations of the characterization of the $d$-variate exchangeable Marshall–Olkin copula via $d$-monotone sequences relying on basic knowledge in probability theory exist in the literature, they contain a myriad of unnecessary relatively complicated computations. We revisit this issue and provide proofs where all undesired artefacts are removed, thereby exposing the simplicity of the characterization. In particular, we give an insightful analytical derivation of the monotonicity conditions based on the monotonicity properties of the survival probabilities. Full Article
se On the Nielsen distribution By projecteuclid.org Published On :: Mon, 03 Feb 2020 04:00 EST Fredy Castellares, Artur J. Lemonte, Marcos A. C. Santos. Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 1, 90--111.Abstract: We introduce a two-parameter discrete distribution that may have a zero vertex and can be useful for modeling overdispersion. The discrete Nielsen distribution generalizes the Fisher logarithmic (i.e., logarithmic series) and Stirling type I distributions in the sense that both can be considered displacements of the Nielsen distribution. We provide a comprehensive account of the structural properties of the new discrete distribution. We also show that the Nielsen distribution is infinitely divisible. We discuss maximum likelihood estimation of the model parameters and provide a simple method to find them numerically. The usefulness of the proposed distribution is illustrated by means of three real data sets to prove its versatility in practical applications. Full Article
se Effects of gene–environment and gene–gene interactions in case-control studies: A novel Bayesian semiparametric approach By projecteuclid.org Published On :: Mon, 03 Feb 2020 04:00 EST Durba Bhattacharya, Sourabh Bhattacharya. Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 1, 71--89.Abstract: Present day bio-medical research is pointing towards the fact that cognizance of gene–environment interactions along with genetic interactions may help prevent or detain the onset of many complex diseases like cardiovascular disease, cancer, type2 diabetes, autism or asthma by adjustments to lifestyle. In this regard, we propose a Bayesian semiparametric model to detect not only the roles of genes and their interactions, but also the possible influence of environmental variables on the genes in case-control studies. Our model also accounts for the unknown number of genetic sub-populations via finite mixtures composed of Dirichlet processes. An effective parallel computing methodology, developed by us harnesses the power of parallel processing technology to increase the efficiencies of our conditionally independent Gibbs sampling and Transformation based MCMC (TMCMC) methods. Applications of our model and methods to simulation studies with biologically realistic genotype datasets and a real, case-control based genotype dataset on early onset of myocardial infarction (MI) have yielded quite interesting results beside providing some insights into the differential effect of gender on MI. Full Article
se Robust Bayesian model selection for heavy-tailed linear regression using finite mixtures By projecteuclid.org Published On :: Mon, 03 Feb 2020 04:00 EST Flávio B. Gonçalves, Marcos O. Prates, Victor Hugo Lachos. Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 1, 51--70.Abstract: In this paper, we present a novel methodology to perform Bayesian model selection in linear models with heavy-tailed distributions. We consider a finite mixture of distributions to model a latent variable where each component of the mixture corresponds to one possible model within the symmetrical class of normal independent distributions. Naturally, the Gaussian model is one of the possibilities. This allows for a simultaneous analysis based on the posterior probability of each model. Inference is performed via Markov chain Monte Carlo—a Gibbs sampler with Metropolis–Hastings steps for a class of parameters. Simulated examples highlight the advantages of this approach compared to a segregated analysis based on arbitrarily chosen model selection criteria. Examples with real data are presented and an extension to censored linear regression is introduced and discussed. Full Article
se Bootstrap-based testing inference in beta regressions By projecteuclid.org Published On :: Mon, 03 Feb 2020 04:00 EST Fábio P. Lima, Francisco Cribari-Neto. Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 1, 18--34.Abstract: We address the issue of performing testing inference in small samples in the class of beta regression models. We consider the likelihood ratio test and its standard bootstrap version. We also consider two alternative resampling-based tests. One of them uses the bootstrap test statistic replicates to numerically estimate a Bartlett correction factor that can be applied to the likelihood ratio test statistic. By doing so, we avoid estimation of quantities located in the tail of the likelihood ratio test statistic null distribution. The second alternative resampling-based test uses a fast double bootstrap scheme in which a single second level bootstrapping resample is performed for each first level bootstrap replication. It delivers accurate testing inferences at a computational cost that is considerably smaller than that of a standard double bootstrapping scheme. The Monte Carlo results we provide show that the standard likelihood ratio test tends to be quite liberal in small samples. They also show that the bootstrap tests deliver accurate testing inferences even when the sample size is quite small. An empirical application is also presented and discussed. Full Article
se Bayesian inference on power Lindley distribution based on different loss functions By projecteuclid.org Published On :: Mon, 26 Aug 2019 04:00 EDT Abbas Pak, M. E. Ghitany, Mohammad Reza Mahmoudi. Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 4, 894--914.Abstract: This paper focuses on Bayesian estimation of the parameters and reliability function of the power Lindley distribution by using various symmetric and asymmetric loss functions. Assuming suitable priors on the parameters, Bayes estimates are derived by using squared error, linear exponential (linex) and general entropy loss functions. Since, under these loss functions, Bayes estimates of the parameters do not have closed forms we use lindley’s approximation technique to calculate the Bayes estimates. Moreover, we obtain the Bayes estimates of the parameters using a Markov Chain Monte Carlo (MCMC) method. Simulation studies are conducted in order to evaluate the performances of the proposed estimators under the considered loss functions. Finally, analysis of a real data set is presented for illustrative purposes. Full Article
se Time series of count data: A review, empirical comparisons and data analysis By projecteuclid.org Published On :: Mon, 26 Aug 2019 04:00 EDT Glaura C. Franco, Helio S. Migon, Marcos O. Prates. Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 4, 756--781.Abstract: Observation and parameter driven models are commonly used in the literature to analyse time series of counts. In this paper, we study the characteristics of a variety of models and point out the main differences and similarities among these procedures, concerning parameter estimation, model fitting and forecasting. Alternatively to the literature, all inference was performed under the Bayesian paradigm. The models are fitted with a latent AR($p$) process in the mean, which accounts for autocorrelation in the data. An extensive simulation study shows that the estimates for the covariate parameters are remarkably similar across the different models. However, estimates for autoregressive coefficients and forecasts of future values depend heavily on the underlying process which generates the data. A real data set of bankruptcy in the United States is also analysed. Full Article
se Spatiotemporal point processes: regression, model specifications and future directions By projecteuclid.org Published On :: Mon, 26 Aug 2019 04:00 EDT Dani Gamerman. Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 4, 686--705.Abstract: Point processes are one of the most commonly encountered observation processes in Spatial Statistics. Model-based inference for them depends on the likelihood function. In the most standard setting of Poisson processes, the likelihood depends on the intensity function, and can not be computed analytically. A number of approximating techniques have been proposed to handle this difficulty. In this paper, we review recent work on exact solutions that solve this problem without resorting to approximations. The presentation concentrates more heavily on discrete time but also considers continuous time. The solutions are based on model specifications that impose smoothness constraints on the intensity function. We also review approaches to include a regression component and different ways to accommodate it while accounting for additional heterogeneity. Applications are provided to illustrate the results. Finally, we discuss possible extensions to account for discontinuities and/or jumps in the intensity function. Full Article