se L-Logistic regression models: Prior sensitivity analysis, robustness to outliers and applications By projecteuclid.org Published On :: Mon, 10 Jun 2019 04:04 EDT Rosineide F. da Paz, Narayanaswamy Balakrishnan, Jorge Luis Bazán. Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 3, 455--479.Abstract: Tadikamalla and Johnson [ Biometrika 69 (1982) 461–465] developed the $L_{B}$ distribution to variables with bounded support by considering a transformation of the standard Logistic distribution. In this manuscript, a convenient parametrization of this distribution is proposed in order to develop regression models. This distribution, referred to here as L-Logistic distribution, provides great flexibility and includes the uniform distribution as a particular case. Several properties of this distribution are studied, and a Bayesian approach is adopted for the parameter estimation. Simulation studies, considering prior sensitivity analysis, recovery of parameters and comparison of algorithms, and robustness to outliers are all discussed showing that the results are insensitive to the choice of priors, efficiency of the algorithm MCMC adopted, and robustness of the model when compared with the beta distribution. Applications to estimate the vulnerability to poverty and to explain the anxiety are performed. The results to applications show that the L-Logistic regression models provide a better fit than the corresponding beta regression models. Full Article
se A rank-based Cramér–von-Mises-type test for two samples By projecteuclid.org Published On :: Mon, 10 Jun 2019 04:04 EDT Jamye Curry, Xin Dang, Hailin Sang. Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 3, 425--454.Abstract: We study a rank based univariate two-sample distribution-free test. The test statistic is the difference between the average of between-group rank distances and the average of within-group rank distances. This test statistic is closely related to the two-sample Cramér–von Mises criterion. They are different empirical versions of a same quantity for testing the equality of two population distributions. Although they may be different for finite samples, they share the same expected value, variance and asymptotic properties. The advantage of the new rank based test over the classical one is its ease to generalize to the multivariate case. Rather than using the empirical process approach, we provide a different easier proof, bringing in a different perspective and insight. In particular, we apply the Hájek projection and orthogonal decomposition technique in deriving the asymptotics of the proposed rank based statistic. A numerical study compares power performance of the rank formulation test with other commonly-used nonparametric tests and recommendations on those tests are provided. Lastly, we propose a multivariate extension of the test based on the spatial rank. Full Article
se Hierarchical modelling of power law processes for the analysis of repairable systems with different truncation times: An empirical Bayes approach By projecteuclid.org Published On :: Mon, 04 Mar 2019 04:00 EST Rodrigo Citton P. dos Reis, Enrico A. Colosimo, Gustavo L. Gilardoni. Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 2, 374--396.Abstract: In the data analysis from multiple repairable systems, it is usual to observe both different truncation times and heterogeneity among the systems. Among other reasons, the latter is caused by different manufacturing lines and maintenance teams of the systems. In this paper, a hierarchical model is proposed for the statistical analysis of multiple repairable systems under different truncation times. A reparameterization of the power law process is proposed in order to obtain a quasi-conjugate bayesian analysis. An empirical Bayes approach is used to estimate model hyperparameters. The uncertainty in the estimate of these quantities are corrected by using a parametric bootstrap approach. The results are illustrated in a real data set of failure times of power transformers from an electric company in Brazil. Full Article
se The coreset variational Bayes (CVB) algorithm for mixture analysis By projecteuclid.org Published On :: Mon, 04 Mar 2019 04:00 EST Qianying Liu, Clare A. McGrory, Peter W. J. Baxter. Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 2, 267--279.Abstract: The pressing need for improved methods for analysing and coping with big data has opened up a new area of research for statisticians. Image analysis is an area where there is typically a very large number of data points to be processed per image, and often multiple images are captured over time. These issues make it challenging to design methodology that is reliable and yet still efficient enough to be of practical use. One promising emerging approach for this problem is to reduce the amount of data that actually has to be processed by extracting what we call coresets from the full dataset; analysis is then based on the coreset rather than the whole dataset. Coresets are representative subsamples of data that are carefully selected via an adaptive sampling approach. We propose a new approach called coreset variational Bayes (CVB) for mixture modelling; this is an algorithm which can perform a variational Bayes analysis of a dataset based on just an extracted coreset of the data. We apply our algorithm to weed image analysis. Full Article
se A brief review of optimal scaling of the main MCMC approaches and optimal scaling of additive TMCMC under non-regular cases By projecteuclid.org Published On :: Mon, 04 Mar 2019 04:00 EST Kushal K. Dey, Sourabh Bhattacharya. Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 2, 222--266.Abstract: Transformation based Markov Chain Monte Carlo (TMCMC) was proposed by Dutta and Bhattacharya ( Statistical Methodology 16 (2014) 100–116) as an efficient alternative to the Metropolis–Hastings algorithm, especially in high dimensions. The main advantage of this algorithm is that it simultaneously updates all components of a high dimensional parameter using appropriate move types defined by deterministic transformation of a single random variable. This results in reduction in time complexity at each step of the chain and enhances the acceptance rate. In this paper, we first provide a brief review of the optimal scaling theory for various existing MCMC approaches, comparing and contrasting them with the corresponding TMCMC approaches.The optimal scaling of the simplest form of TMCMC, namely additive TMCMC , has been studied extensively for the Gaussian proposal density in Dey and Bhattacharya (2017a). Here, we discuss diffusion-based optimal scaling behavior of additive TMCMC for non-Gaussian proposal densities—in particular, uniform, Student’s $t$ and Cauchy proposals. Although we could not formally prove our diffusion result for the Cauchy proposal, simulation based results lead us to conjecture that at least the recipe for obtaining general optimal scaling and optimal acceptance rate holds for the Cauchy case as well. We also consider diffusion based optimal scaling of TMCMC when the target density is discontinuous. Such non-regular situations have been studied in the case of Random Walk Metropolis Hastings (RWMH) algorithm by Neal and Roberts ( Methodology and Computing in Applied Probability 13 (2011) 583–601) using expected squared jumping distance (ESJD), but the diffusion theory based scaling has not been considered. We compare our diffusion based optimally scaled TMCMC approach with the ESJD based optimally scaled RWM with simulation studies involving several target distributions and proposal distributions including the challenging Cauchy proposal case, showing that additive TMCMC outperforms RWMH in almost all cases considered. Full Article
se The equivalence of dynamic and static asset allocations under the uncertainty caused by Poisson processes By projecteuclid.org Published On :: Mon, 14 Jan 2019 04:01 EST Yong-Chao Zhang, Na Zhang. Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 1, 184--191.Abstract: We investigate the equivalence of dynamic and static asset allocations in the case where the price process of a risky asset is driven by a Poisson process. Under some mild conditions, we obtain a necessary and sufficient condition for the equivalence of dynamic and static asset allocations. In addition, we provide a simple sufficient condition for the equivalence. Full Article
se An estimation method for latent traits and population parameters in Nominal Response Model By projecteuclid.org Published On :: Thu, 05 Aug 2010 15:41 EDT Caio L. N. Azevedo, Dalton F. AndradeSource: Braz. J. Probab. Stat., Volume 24, Number 3, 415--433.Abstract: The nominal response model (NRM) was proposed by Bock [ Psychometrika 37 (1972) 29–51] in order to improve the latent trait (ability) estimation in multiple choice tests with nominal items. When the item parameters are known, expectation a posteriori or maximum a posteriori methods are commonly employed to estimate the latent traits, considering a standard symmetric normal distribution as the latent traits prior density. However, when this item set is presented to a new group of examinees, it is not only necessary to estimate their latent traits but also the population parameters of this group. This article has two main purposes: first, to develop a Monte Carlo Markov Chain algorithm to estimate both latent traits and population parameters concurrently. This algorithm comprises the Metropolis–Hastings within Gibbs sampling algorithm (MHWGS) proposed by Patz and Junker [ Journal of Educational and Behavioral Statistics 24 (1999b) 346–366]. Second, to compare, in the latent trait recovering, the performance of this method with three other methods: maximum likelihood, expectation a posteriori and maximum a posteriori. The comparisons were performed by varying the total number of items (NI), the number of categories and the values of the mean and the variance of the latent trait distribution. The results showed that MHWGS outperforms the other methods concerning the latent traits estimation as well as it recoveries properly the population parameters. Furthermore, we found that NI accounts for the highest percentage of the variability in the accuracy of latent trait estimation. Full Article
se Odysseus asleep : uncollected sequences, 1994-2019 By dal.novanet.ca Published On :: Fri, 1 May 2020 19:34:09 -0300 Author: Sanger, Peter, 1943- author.Callnumber: PS 8587 A372 O44 2019ISBN: 9781554472048 Full Article
se Novel bodies : disability and sexuality in eighteenth-century British literature By dal.novanet.ca Published On :: Fri, 1 May 2020 19:34:09 -0300 Author: Farr, Jason S., 1978- author.Callnumber: PR 858 P425 F37 2019ISBN: 9781684481088 hardcover alkaline paper Full Article
se Flexible, boundary adapted, nonparametric methods for the estimation of univariate piecewise-smooth functions By projecteuclid.org Published On :: Tue, 04 Feb 2020 04:00 EST Umberto Amato, Anestis Antoniadis, Italia De Feis. Source: Statistics Surveys, Volume 14, 32--70.Abstract: We present and compare some nonparametric estimation methods (wavelet and/or spline-based) designed to recover a one-dimensional piecewise-smooth regression function in both a fixed equidistant or not equidistant design regression model and a random design model. Wavelet methods are known to be very competitive in terms of denoising and compression, due to the simultaneous localization property of a function in time and frequency. However, boundary assumptions, such as periodicity or symmetry, generate bias and artificial wiggles which degrade overall accuracy. Simple methods have been proposed in the literature for reducing the bias at the boundaries. We introduce new ones based on adaptive combinations of two estimators. The underlying idea is to combine a highly accurate method for non-regular functions, e.g., wavelets, with one well behaved at boundaries, e.g., Splines or Local Polynomial. We provide some asymptotic optimal results supporting our approach. All the methods can handle data with a random design. We also sketch some generalization to the multidimensional setting. To study the performance of the proposed approaches we have conducted an extensive set of simulations on synthetic data. An interesting regression analysis of two real data applications using these procedures unambiguously demonstrates their effectiveness. Full Article
se Estimating the size of a hidden finite set: Large-sample behavior of estimators By projecteuclid.org Published On :: Fri, 03 Jan 2020 22:02 EST Si Cheng, Daniel J. Eck, Forrest W. Crawford. Source: Statistics Surveys, Volume 14, 1--31.Abstract: A finite set is “hidden” if its elements are not directly enumerable or if its size cannot be ascertained via a deterministic query. In public health, epidemiology, demography, ecology and intelligence analysis, researchers have developed a wide variety of indirect statistical approaches, under different models for sampling and observation, for estimating the size of a hidden set. Some methods make use of random sampling with known or estimable sampling probabilities, and others make structural assumptions about relationships (e.g. ordering or network information) between the elements that comprise the hidden set. In this review, we describe models and methods for learning about the size of a hidden finite set, with special attention to asymptotic properties of estimators. We study the properties of these methods under two asymptotic regimes, “infill” in which the number of fixed-size samples increases, but the population size remains constant, and “outfill” in which the sample size and population size grow together. Statistical properties under these two regimes can be dramatically different. Full Article
se PLS for Big Data: A unified parallel algorithm for regularised group PLS By projecteuclid.org Published On :: Mon, 02 Sep 2019 04:00 EDT Pierre Lafaye de Micheaux, Benoît Liquet, Matthew Sutton. Source: Statistics Surveys, Volume 13, 119--149.Abstract: Partial Least Squares (PLS) methods have been heavily exploited to analyse the association between two blocks of data. These powerful approaches can be applied to data sets where the number of variables is greater than the number of observations and in the presence of high collinearity between variables. Different sparse versions of PLS have been developed to integrate multiple data sets while simultaneously selecting the contributing variables. Sparse modeling is a key factor in obtaining better estimators and identifying associations between multiple data sets. The cornerstone of the sparse PLS methods is the link between the singular value decomposition (SVD) of a matrix (constructed from deflated versions of the original data) and least squares minimization in linear regression. We review four popular PLS methods for two blocks of data. A unified algorithm is proposed to perform all four types of PLS including their regularised versions. We present various approaches to decrease the computation time and show how the whole procedure can be scalable to big data sets. The bigsgPLS R package implements our unified algorithm and is available at https://github.com/matt-sutton/bigsgPLS . Full Article
se Variable selection methods for model-based clustering By projecteuclid.org Published On :: Thu, 26 Apr 2018 04:00 EDT Michael Fop, Thomas Brendan Murphy. Source: Statistics Surveys, Volume 12, 18--65.Abstract: Model-based clustering is a popular approach for clustering multivariate data which has seen applications in numerous fields. Nowadays, high-dimensional data are more and more common and the model-based clustering approach has adapted to deal with the increasing dimensionality. In particular, the development of variable selection techniques has received a lot of attention and research effort in recent years. Even for small size problems, variable selection has been advocated to facilitate the interpretation of the clustering results. This review provides a summary of the methods developed for variable selection in model-based clustering. Existing R packages implementing the different methods are indicated and illustrated in application to two data analysis examples. Full Article
se A design-sensitive approach to fitting regression models with complex survey data By projecteuclid.org Published On :: Wed, 17 Jan 2018 04:00 EST Phillip S. Kott. Source: Statistics Surveys, Volume 12, 1--17.Abstract: Fitting complex survey data to regression equations is explored under a design-sensitive model-based framework. A robust version of the standard model assumes that the expected value of the difference between the dependent variable and its model-based prediction is zero no matter what the values of the explanatory variables. The extended model assumes only that the difference is uncorrelated with the covariates. Little is assumed about the error structure of this difference under either model other than independence across primary sampling units. The standard model often fails in practice, but the extended model very rarely does. Under this framework some of the methods developed in the conventional design-based, pseudo-maximum-likelihood framework, such as fitting weighted estimating equations and sandwich mean-squared-error estimation, are retained but their interpretations change. Few of the ideas here are new to the refereed literature. The goal instead is to collect those ideas and put them into a unified conceptual framework. Full Article
se A comparison of spatial predictors when datasets could be very large By projecteuclid.org Published On :: Tue, 19 Jul 2016 14:13 EDT Jonathan R. Bradley, Noel Cressie, Tao Shi. Source: Statistics Surveys, Volume 10, 100--131.Abstract: In this article, we review and compare a number of methods of spatial prediction, where each method is viewed as an algorithm that processes spatial data. To demonstrate the breadth of available choices, we consider both traditional and more-recently-introduced spatial predictors. Specifically, in our exposition we review: traditional stationary kriging, smoothing splines, negative-exponential distance-weighting, fixed rank kriging, modified predictive processes, a stochastic partial differential equation approach, and lattice kriging. This comparison is meant to provide a service to practitioners wishing to decide between spatial predictors. Hence, we provide technical material for the unfamiliar, which includes the definition and motivation for each (deterministic and stochastic) spatial predictor. We use a benchmark dataset of $mathrm{CO}_{2}$ data from NASA’s AIRS instrument to address computational efficiencies that include CPU time and memory usage. Furthermore, the predictive performance of each spatial predictor is assessed empirically using a hold-out subset of the AIRS data. Full Article
se Some models and methods for the analysis of observational data By projecteuclid.org Published On :: Tue, 15 Sep 2015 20:40 EDT José A. Ferreira. Source: Statistics Surveys, Volume 9, 106--208.Abstract: This article provides a concise and essentially self-contained exposition of some of the most important models and non-parametric methods for the analysis of observational data, and a substantial number of illustrations of their application. Although for the most part our presentation follows P. Rosenbaum’s book, “Observational Studies”, and naturally draws on related literature, it contains original elements and simplifies and generalizes some basic results. The illustrations, based on simulated data, show the methods at work in some detail, highlighting pitfalls and emphasizing certain subjective aspects of the statistical analyses. Full Article
se Semi-parametric estimation for conditional independence multivariate finite mixture models By projecteuclid.org Published On :: Fri, 06 Feb 2015 08:39 EST Didier Chauveau, David R. Hunter, Michael Levine. Source: Statistics Surveys, Volume 9, 1--31.Abstract: The conditional independence assumption for nonparametric multivariate finite mixture models, a weaker form of the well-known conditional independence assumption for random effects models for longitudinal data, is the subject of an increasing number of theoretical and algorithmic developments in the statistical literature. After presenting a survey of this literature, including an in-depth discussion of the all-important identifiability results, this article describes and extends an algorithm for estimation of the parameters in these models. The algorithm works for any number of components in three or more dimensions. It possesses a descent property and can be easily adapted to situations where the data are grouped in blocks of conditionally independent variables. We discuss how to adapt this algorithm to various location-scale models that link component densities, and we even adapt it to a particular class of univariate mixture problems in which the components are assumed symmetric. We give a bandwidth selection procedure for our algorithm. Finally, we demonstrate the effectiveness of our algorithm using a simulation study and two psychometric datasets. Full Article
se Adaptive clinical trial designs for phase I cancer studies By projecteuclid.org Published On :: Thu, 29 May 2014 09:11 EDT Oleksandr Sverdlov, Weng Kee Wong, Yevgen Ryeznik. Source: Statistics Surveys, Volume 8, 2--44.Abstract: Adaptive clinical trials are becoming increasingly popular research designs for clinical investigation. Adaptive designs are particularly useful in phase I cancer studies where clinical data are scant and the goals are to assess the drug dose-toxicity profile and to determine the maximum tolerated dose while minimizing the number of study patients treated at suboptimal dose levels. In the current work we give an overview of adaptive design methods for phase I cancer trials. We find that modern statistical literature is replete with novel adaptive designs that have clearly defined objectives and established statistical properties, and are shown to outperform conventional dose finding methods such as the 3+3 design, both in terms of statistical efficiency and in terms of minimizing the number of patients treated at highly toxic or nonefficacious doses. We discuss statistical, logistical, and regulatory aspects of these designs and present some links to non-commercial statistical software for implementing these methods in practice. Full Article
se Errata: A survey of Bayesian predictive methods for model assessment, selection and comparison By projecteuclid.org Published On :: Wed, 26 Feb 2014 09:10 EST Aki Vehtari, Janne Ojanen. Source: Statistics Surveys, Volume 8, , 1--1.Abstract: Errata for “A survey of Bayesian predictive methods for model assessment, selection and comparison” by A. Vehtari and J. Ojanen, Statistics Surveys , 6 (2012), 142–228. doi:10.1214/12-SS102. Full Article
se A survey of Bayesian predictive methods for model assessment, selection and comparison By projecteuclid.org Published On :: Thu, 27 Dec 2012 12:22 EST Aki Vehtari, Janne OjanenSource: Statist. Surv., Volume 6, 142--228.Abstract: To date, several methods exist in the statistical literature for model assessment, which purport themselves specifically as Bayesian predictive methods. The decision theoretic assumptions on which these methods are based are not always clearly stated in the original articles, however. The aim of this survey is to provide a unified review of Bayesian predictive model assessment and selection methods, and of methods closely related to them. We review the various assumptions that are made in this context and discuss the connections between different approaches, with an emphasis on how each method approximates the expected utility of using a Bayesian model for the purpose of predicting future data. Full Article
se Prediction in several conventional contexts By projecteuclid.org Published On :: Tue, 08 May 2012 08:50 EDT Bertrand Clarke, Jennifer ClarkeSource: Statist. Surv., Volume 6, 1--73.Abstract: We review predictive techniques from several traditional branches of statistics. Starting with prediction based on the normal model and on the empirical distribution function, we proceed to techniques for various forms of regression and classification. Then, we turn to time series, longitudinal data, and survival analysis. Our focus throughout is on the mechanics of prediction more than on the properties of predictors. Full Article
se Curse of dimensionality and related issues in nonparametric functional regression By projecteuclid.org Published On :: Thu, 14 Apr 2011 08:17 EDT Gery GeenensSource: Statist. Surv., Volume 5, 30--43.Abstract: Recently, some nonparametric regression ideas have been extended to the case of functional regression. Within that framework, the main concern arises from the infinite dimensional nature of the explanatory objects. Specifically, in the classical multivariate regression context, it is well-known that any nonparametric method is affected by the so-called “curse of dimensionality”, caused by the sparsity of data in high-dimensional spaces, resulting in a decrease in fastest achievable rates of convergence of regression function estimators toward their target curve as the dimension of the regressor vector increases. Therefore, it is not surprising to find dramatically bad theoretical properties for the nonparametric functional regression estimators, leading many authors to condemn the methodology. Nevertheless, a closer look at the meaning of the functional data under study and on the conclusions that the statistician would like to draw from it allows to consider the problem from another point-of-view, and to justify the use of slightly modified estimators. In most cases, it can be entirely legitimate to measure the proximity between two elements of the infinite dimensional functional space via a semi-metric, which could prevent those estimators suffering from what we will call the “curse of infinite dimensionality”. References:[1] Ait-Saïdi, A., Ferraty, F., Kassa, K. and Vieu, P. (2008). Cross-validated estimations in the single-functional index model, Statistics, 42, 475–494.[2] Aneiros-Perez, G. and Vieu, P. (2008). Nonparametric time series prediction: A semi-functional partial linear modeling, J. Multivariate Anal., 99, 834–857.[3] Baillo, A. and Grané, A. (2009). Local linear regression for functional predictor and scalar response, J. Multivariate Anal., 100, 102–111.[4] Burba, F., Ferraty, F. and Vieu, P. (2009). k-Nearest Neighbour method in functional nonparametric regression, J. Nonparam. Stat., 21, 453–469.[5] Cardot, H., Ferraty, F. and Sarda, P. (1999). Functional linear model, Stat. Probabil. Lett., 45, 11–22.[6] Crambes, C., Kneip, A. and Sarda, P. (2009). Smoothing splines estimators for functional linear regression, Ann. Statist., 37, 35–72.[7] Delsol, L. (2009). Advances on asymptotic normality in nonparametric functional time series analysis, Statistics, 43, 13–33.[8] Fan, J. and Gijbels, I. (1996). Local Polynomial Modelling and Its Applications, Chapman and Hall, London.[9] Fan, J. and Zhang, J.-T. (2000). Two-step estimation of functional linear models with application to longitudinal data, J. Roy. Stat. Soc. B, 62, 303–322.[10] Ferraty, F. and Vieu, P. (2006). Nonparametric Functional Data Analysis, Springer-Verlag, New York.[11] Ferraty, F., Laksaci, A. and Vieu, P. (2006). Estimating Some Characteristics of the Conditional Distribution in Nonparametric Functional Models, Statist. Inf. Stoch. Proc., 9, 47–76.[12] Ferraty, F., Mas, A. and Vieu, P. (2007). Nonparametric regression on functional data: inference and practical aspects, Aust. NZ. J. Stat., 49, 267–286.[13] Ferraty, F., Van Keilegom, I. and Vieu, P. (2010). On the validity of the bootstrap in nonparametric functional regression, Scand. J. Stat., 37, 286–306.[14] Ferraty, F., Laksaci, A., Tadj, A. and Vieu, P. (2010). Rate of uniform consistency for nonparametric estimates with functional variables, J. Stat. Plan. Inf., 140, 335–352.[15] Ferraty, F. and Romain, Y. (2011). Oxford handbook on functional data analysis (Eds), Oxford University Press.[16] Gasser, T., Hall, P. and Presnell, B. (1998). Nonparametric estimation of the mode of a distribution of random curves, J. Roy. Stat. Soc. B, 60, 681–691.[17] Geenens, G. (2011). A nonparametric functional method for signature recognition, Manuscript.[18] Härdle, W., Müller, M., Sperlich, S. and Werwatz, A. (2004). Nonparametric and semiparametric models, Springer-Verlag, Berlin.[19] James, G.M. (2002). Generalized linear models with functional predictors, J. Roy. Stat. Soc. B, 64, 411–432.[20] Masry, E. (2005). Nonparametric regression estimation for dependent functional data: asymptotic normality, Stochastic Process. Appl., 115, 155–177.[21] Nadaraya, E.A. (1964). On estimating regression, Theory Probab. Applic., 9, 141–142.[22] Quintela-Del-Rio, A. (2008). Hazard function given a functional variable: nonparametric estimation under strong mixing conditions, J. Nonparam. Stat., 20, 413–430.[23] Rachdi, M. and Vieu, P. (2007). Nonparametric regression for functional data: automatic smoothing parameter selection, J. Stat. Plan. Inf., 137, 2784–2801.[24] Ramsay, J. and Silverman, B.W. (1997). Functional Data Analysis, Springer-Verlag, New York.[25] Ramsay, J. and Silverman, B.W. (2002). Applied functional data analysis; methods and case study, Springer-Verlag, New York.[26] Ramsay, J. and Silverman, B.W. (2005). Functional Data Analysis, 2nd Edition, Springer-Verlag, New York.[27] Stone, C.J. (1982). Optimal global rates of convergence for nonparametric regression, Ann. Stat., 10, 1040–1053.[28] Watson, G.S. (1964). Smooth regression analysis, Sankhya A, 26, 359–372.[29] Yeung, D.T., Chang, H., Xiong, Y., George, S., Kashi, R., Matsumoto, T. and Rigoll, G. (2004). SVC2004: First International Signature Verification Competition, Proceedings of the International Conference on Biometric Authentication (ICBA), Hong Kong, July 2004. Full Article
se Data confidentiality: A review of methods for statistical disclosure limitation and methods for assessing privacy By projecteuclid.org Published On :: Fri, 04 Feb 2011 09:16 EST Gregory J. Matthews, Ofer HarelSource: Statist. Surv., Volume 5, 1--29.Abstract: There is an ever increasing demand from researchers for access to useful microdata files. However, there are also growing concerns regarding the privacy of the individuals contained in the microdata. Ideally, microdata could be released in such a way that a balance between usefulness of the data and privacy is struck. This paper presents a review of proposed methods of statistical disclosure control and techniques for assessing the privacy of such methods under different definitions of disclosure. References:Abowd, J., Woodcock, S., 2001. Disclosure limitation in longitudinal linked data. Confidentiality, Disclosure, and Data Access: Theory and Practical Applications for Statistical Agencies, 215–277.Adam, N.R., Worthmann, J.C., 1989. Security-control methods for statistical databases: a comparative study. ACM Comput. Surv. 21 (4), 515–556.Armstrong, M., Rushton, G., Zimmerman, D.L., 1999. Geographically masking health data to preserve confidentiality. Statistics in Medicine 18 (5), 497–525.Bethlehem, J.G., Keller, W., Pannekoek, J., 1990. Disclosure control of microdata. Jorunal of the American Statistical Association 85, 38–45.Blum, A., Dwork, C., McSherry, F., Nissam, K., 2005. Practical privacy: The sulq framework. In: Proceedings of the 24th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems. pp. 128–138.Bowden, R.J., Sim, A.B., 1992. The privacy bootstrap. Journal of Business and Economic Statistics 10 (3), 337–345.Carlson, M., Salabasis, M., 2002. A data-swapping technique for generating synthetic samples; a method for disclosure control. Res. Official Statist. (5), 35–64.Cox, L.H., 1980. Suppression methodology and statistical disclosure control. Journal of the American Statistical Association 75, 377–385.Cox, L.H., 1984. Disclosure control methods for frequency count data. Tech. rep., U.S. Bureau of the Census.Cox, L.H., 1987. A constructive procedure for unbiased controlled rounding. Journal of the American Statistical Association 82, 520–524.Cox, L.H., 1994. Matrix masking methods for disclosure limitation in microdata. Survey Methodology 6, 165–169.Cox, L.H., Fagan, J.T., Greenberg, B., Hemmig, R., 1987. Disclosure avoidance techniques for tabular data. Tech. rep., U.S. Bureau of the Census.Dalenius, T., 1977. Towards a methodology for statistical disclosure control. Statistik Tidskrift 15, 429–444.Dalenius, T., 1986. Finding a needle in a haystack - or identifying anonymous census record. Journal of Official Statistics 2 (3), 329–336.Dalenius, T., Denning, D., 1982. A hybrid scheme for release of statistics. Statistisk Tidskrift.Dalenius, T., Reiss, S.P., 1982. Data-swapping: A technique for disclosure control. Journal of Statistical Planning and Inference 6, 73–85.De Waal, A., Hundepool, A., Willenborg, L., 1995. Argus: Software for statistical disclosure control of microdata. U.S. Census Bureau.DeGroot, M.H., 1962. Uncertainty, information, and sequential experiments. Annals of Mathematical Statistics 33, 404–419.DeGroot, M.H., 1970. Optimal Statistical Decisions. Mansell, London.Dinur, I., Nissam, K., 2003. Revealing information while preserving privacy. In: Proceedings of the 22nd ACM SIGMOD-SIGACT-SIGART Symposium on Principlesof Database Systems. pp. 202–210.Domingo-Ferrer, J., Torra, V., 2001a. A Quantitative Comparison of Disclosure Control Methods for Microdata. In: Doyle, P., Lane, J., Theeuwes, J., Zayatz, L. (Eds.), Confidentiality, Disclosure and Data Access - Theory and Practical Applications for Statistical Agencies. North-Holland, Amsterdam, Ch. 6, pp. 113–135.Domingo-Ferrer, J., Torra, V., 2001b. Disclosure control methods and information loss for microdata. In: Doyle, P., Lane, J., Theeuwes, J., Zayatz, L. (Eds.), Confidentiality, Disclosure and Data Access - Theory and Practical Applications for Statistical Agencies. North-Holland, Amsterdam, Ch. 5, pp. 93–112.Duncan, G., Lambert, D., 1986. Disclosure-limited data dissemination. Journal of the American Statistical Association 81, 10–28.Duncan, G., Lambert, D., 1989. The risk of disclosure for microdata. Journal of Business & Economic Statistics 7, 207–217. Duncan, G., Pearson, R., 1991. Enhancing access to microdata while protecting confidentiality: prospects for the future (with discussion). Statistical Science 6, 219–232.Dwork, C., 2006. Differential privacy. In: ICALP. Springer, pp. 1–12.Dwork, C., 2008. An ad omnia approach to defining and achieving private data analysis. In: Lecture Notes in Computer Science. Springer, p. 10.Dwork, C., Lei, J., 2009. Differential privacy and robust statistics. In: Proceedings of the 41th Annual ACM Symposium on Theory of Computing (STOC). pp. 371–380.Dwork, C., Mcsherry, F., Nissim, K., Smith, A., 2006. Calibrating noise to sensitivity in private data analysis. In: Proceedings of the 3rd Theory of Cryptography Conference. Springer, pp. 265–284.Dwork, C., Nissam, K., 2004. Privacy-preserving datamining on vertically partitioned databases. In: Advances in Cryptology: Proceedings of Crypto. pp. 528–544.Elliot, M., 2000. DIS: a new approach to the measurement of statistical disclosure risk. International Journal of Risk Assessment and Management 2, 39–48.Federal Committee on Statistical Methodology (FCSM), 2005. Statistical policy working group 22 - report on statistical disclosure limitation methodology. U.S. Census Bureau.Fellegi, I.P., 1972. On the question of statistical confidentiality. Journal of the American Statistical Association 67 (337), 7–18.Fienberg, S.E., McIntyre, J., 2004. Data swapping: Variations on a theme by Dalenius and Reiss. In: Domingo-Ferrer, J., Torra, V. (Eds.), Privacy in Statistical Databases. Vol. 3050 of Lecture Notes in Computer Science. Springer Berlin/Heidelberg, pp. 519, http://dx.doi.org/10.1007/ 978-3-540-25955-8_2Fuller, W., 1993. Masking procedurse for microdata disclosure limitation. Journal of Official Statistics 9, 383–406.General Assembly of the United Nations, 1948. Universal declaration of human rights.Gouweleeuw, J., P. Kooiman, L.W., de Wolf, P.-P., 1998. Post randomisation for statistical disclosure control: Theory and implementation. Journal of Official Statistics 14 (4), 463–478.Greenberg, B., 1987. Rank swapping for masking ordinal microdata. Tech. rep., U.S. Bureau of the Census (unpublished manuscript), Suitland, Maryland, USA.Greenberg, B.G., Abul-Ela, A.-L.A., Simmons, W.R., Horvitz, D.G., 1969. The unrelated question randomized response model: Theoretical framework. Journal of the American Statistical Association 64 (326), 520–539.Harel, O., Zhou, X.-H., 2007. Multiple imputation: Review and theory, implementation and software. Statistics in Medicine 26, 3057–3077. Hundepool, A., Domingo-ferrer, J., Franconi, L., Giessing, S., Lenz, R., Longhurst, J., Nordholt, E.S., Seri, G., paul De Wolf, P., 2006. A CENtre of EXcellence for Statistical Disclosure Control Handbook on Statistical Disclosure Control Version 1.01.Hundepool, A., Wetering, A. v.d., Ramaswamy, R., Wolf, P.d., Giessing, S., Fischetti, M., Salazar, J., Castro, J., Lowthian, P., Feb. 2005. τ-argus 3.1 user manual. Statistics Netherlands, Voorburg NL.Hundepool, A., Willenborg, L., 1996. μ- and τ-argus: Software for statistical disclosure control. Third International Seminar on Statistical Confidentiality, Bled.Karr, A., Kohnen, C.N., Oganian, A., Reiter, J.P., Sanil, A.P., 2006. A framework for evaluating the utility of data altered to protect confidentiality. American Statistician 60 (3), 224–232.Kaufman, S., Seastrom, M., Roey, S., 2005. Do disclosure controls to protect confidentiality degrade the quality of the data? In: American Statistical Association, Proceedings of the Section on Survey Research.Kennickell, A.B., 1997. Multiple imputation and disclosure protection: the case of the 1995 survey of consumer finances. Record Linkage Techniques, 248–267.Kim, J., 1986. Limiting disclosure in microdata based on random noise and transformation. Bureau of the Census.Krumm, J., 2007. Inference attacks on location tracks. Proceedings of Fifth International Conference on Pervasive Computingy, 127–143.Li, N., Li, T., Venkatasubramanian, S., 2007. t-closeness: Privacy beyond k-anonymity and l-diversity. In: Data Engineering, 2007. ICDE 2007. IEEE 23rd International Conference on. pp. 106–115.Liew, C.K., Choi, U.J., Liew, C.J., 1985. A data distortion by probability distribution. ACM Trans. Database Syst. 10 (3), 395–411.Little, R.J.A., 1993. Statistical analysis of masked data. Journal of Official Statistics 9, 407–426.Little, R.J.A., Rubin, D.B., 1987. Statistical Analysis with Missing Data. John Wiley & Sons.Liu, F., Little, R.J.A., 2002. Selective multiple mputation of keys for statistical disclosure control in microdata. In: Proceedings Joint Statistical Meet. pp. 2133–2138.Machanavajjhala, A., Kifer, D., Abowd, J., Gehrke, J., Vilhuber, L., April 2008. Privacy: Theory meets practice on the map. In: International Conference on Data Engineering. Cornell University Comuputer Science Department, Cornell, USA, p. 10.Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M., 2007. L-diversity: Privacy beyond k-anonymity. ACM Trans. Knowl. Discov. Data 1 (1), 3.Manning, A.M., Haglin, D.J., Keane, J.A., 2008. A recursive search algorithm for statistical disclosure assessment. Data Min. Knowl. Discov. 16 (2), 165–196. Marsh, C., Skinner, C., Arber, S., Penhale, B., Openshaw, S., Hobcraft, J., Lievesley, D., Walford, N., 1991. The case for samples of anonymized records from the 1991 census. Journal of the Royal Statistical Society 154 (2), 305–340.Matthews, G.J., Harel, O., Aseltine, R.H., 2010a. Assessing database privacy using the area under the receiver-operator characteristic curve. Health Services and Outcomes Research Methodology 10 (1), 1–15.Matthews, G.J., Harel, O., Aseltine, R.H., 2010b. Examining the robustness of fully synthetic data techniques for data with binary variables. Journal of Statistical Computation and Simulation 80 (6), 609–624.Moore, Jr., R., 1996. Controlled data-swapping techniques for masking public use microdata. Census Tech Report.Mugge, R., 1983. Issues in protecting confidentiality in national health statistics. Proceedings of the Section on Survey Research Methods.Nissim, K., Raskhodnikova, S., Smith, A., 2007. Smooth sensitivity and sampling in private data analysis. In: STOC ’07: Proceedings of the thirty-ninth annual ACM symposium on Theory of computing. pp. 75–84.Paass, G., 1988. Disclosure risk and disclosure avoidance for microdata. Journal of Business and Economic Statistics 6 (4), 487–500.Palley, M., Simonoff, J., 1987. The use of regression methodology for the compromise of confidential information in statistical databases. ACM Trans. Database Systems 12 (4), 593–608.Raghunathan, T.E., Reiter, J.P., Rubin, D.B., 2003. Multiple imputation for statistical disclosure limitation. Journal of Official Statistics 19 (1), 1–16.Rajasekaran, S., Harel, O., Zuba, M., Matthews, G.J., Aseltine, Jr., R., 2009. Responsible data releases. In: Proceedings 9th Industrial Conference on Data Mining (ICDM). Springer LNCS, pp. 388–400.Reiss, S.P., 1984. Practical data-swapping: The first steps. CM Transactions on Database Systems 9, 20–37.Reiter, J.P., 2002. Satisfying disclosure restriction with synthetic data sets. Journal of Official Statistics 18 (4), 531–543.Reiter, J.P., 2003. Inference for partially synthetic, public use microdata sets. Survey Methodology 29 (2), 181–188.Reiter, J.P., 2004a. New approaches to data dissemination: A glimpse into the future (?). Chance 17 (3), 11–15.Reiter, J.P., 2004b. Simultaneous use of multiple imputation for missing data and disclosure limitation. Survey Methodology 30 (2), 235–242.Reiter, J.P., 2005a. Estimating risks of identification disclosure in microdata. Journal of the American Statistical Association 100, 1103–1112.Reiter, J.P., 2005b. Releasing multiply imputed, synthetic public use microdata: An illustration and empirical study. Journal of the Royal Statistical Society, Series A: Statistics in Society 168 (1), 185–205.Reiter, J.P., 2005c. Using CART to generate partially synthetic public use microdata. Journal of Official Statistics 21 (3), 441–462. Rubin, D.B., 1987. Multiple Imputation for Nonresponse in Surveys. John Wiley & Sons.Rubin, D.B., 1993. Comment on “Statistical disclosure limitation”. Journal of Official Statistics 9, 461–468.Rubner, Y., Tomasi, C., Guibas, L.J., 1998. A metric for distributions with applications to image databases. Computer Vision, IEEE International Conference on 0, 59.Sarathy, R., Muralidhar, K., 2002a. The security of confidential numerical data in databases. Information Systems Research 13 (4), 389–403.Sarathy, R., Muralidhar, K., 2002b. The security of confidential numerical data in databases. Info. Sys. Research 13 (4), 389–403.Schafer, J.L., Graham, J.W., 2002. Missing data: Our view of state of the art. Psychological Methods 7 (2), 147–177.Singh, A., Yu, F., Dunteman, G., 2003. MASSC: A new data mask for limiting statistical information loss and disclosure. In: Proceedings of the Joint UNECE/EUROSTAT Work Session on Statistical Data Confidentiality. pp. 373–394.Skinner, C., 2009. Statistical disclosure control for survey data. In: Pfeffermann, D and Rao, C.R. eds. Handbook of Statistics Vol. 29A: Sample Surveys: Design, Methods and Applications. pp. 381–396.Skinner, C., Marsh, C., Openshaw, S., Wymer, C., 1994. Disclosure control for census microdata. Journal of Official Statistics 10, 31–51.Skinner, C., Shlomo, N., 2008. Assessing identification risk in survey microdata using log-linear models. Journal of the American Statistical Association 103, 989–1001.Skinner, C.J., Elliot, M.J., 2002. A measure of disclosure risk for microdata. Journal of the Royal Statistical Society. Series B (Statistical Methodology) 64 (4), 855–867.Smith, A., 2008. Efficient, dfferentially private point estimators. arXiv:0809.4794v1 [cs.CR].Spruill, N.L., 1982. Measures of confidentiality. Statistics of Income and Related Administrative Record Research, 131–136.Spruill, N.L., 1983. The confidentiality and analytic usefulness of masked business microdata. In: Proceedings of the Section on Survey Reserach Microdata. American Statistical Association, pp. 602–607.Sweeney, L., 1996. Replacing personally-identifying information in medical records, the scrub system. In: American Medical Informatics Association. Hanley and Belfus, Inc., pp. 333–337.Sweeney, L., 1997. Guaranteeing anonymity when sharing medical data, the datafly system. Journal of the American Medical Informatics Association 4, 51–55.Sweeney, L., 2002a. Achieving k-anonymity privacy protection using generalization and suppression. International Journal of Uncertainty, Fuzziness and Knowledge Based Systems 10 (5), 571–588. Sweeney, L., 2002b. k-anonymity: A model for protecting privacy. International Journal of Uncertainty, Fuzziness and Knowledge Based Systems 10 (5), 557–570.Tendick, P., 1991. Optimal noise addition for preserving confidentiality in multivariate data. Journal of Statistical Planning and Inference 27 (2), 341–353.United Nations Economic Comission for Europe (UNECE), 2007. Manging statistical cinfidentiality and microdata access: Principles and guidlinesof good practice.Warner, S.L., 1965. Randomized response: A survey technique for eliminating evasive answer bias. Journal of the American Statistical Association 60 (309), 63–69.Wasserman, L., Zhou, S., 2010. A statistical framework for differential privacy. Journal of the American Statistical Association 105 (489), 375–389.Willenborg, L., de Waal, T., 2001. Elements of Statistical Disclosure Control. Springer-Verlag.Woodward, B., 1995. The computer-based patient record and confidentiality. The New England Journal of Medicine, 1419–1422. Full Article
se Identifying the consequences of dynamic treatment strategies: A decision-theoretic overview By projecteuclid.org Published On :: Fri, 12 Nov 2010 11:39 EST A. Philip Dawid, Vanessa DidelezSource: Statist. Surv., Volume 4, 184--231.Abstract: We consider the problem of learning about and comparing the consequences of dynamic treatment strategies on the basis of observational data. We formulate this within a probabilistic decision-theoretic framework. Our approach is compared with related work by Robins and others: in particular, we show how Robins’s ‘ G -computation’ algorithm arises naturally from this decision-theoretic perspective. Careful attention is paid to the mathematical and substantive conditions required to justify the use of this formula. These conditions revolve around a property we term stability , which relates the probabilistic behaviours of observational and interventional regimes. We show how an assumption of ‘sequential randomization’ (or ‘no unmeasured confounders’), or an alternative assumption of ‘sequential irrelevance’, can be used to infer stability. Probabilistic influence diagrams are used to simplify manipulations, and their power and limitations are discussed. We compare our approach with alternative formulations based on causal DAGs or potential response models. We aim to show that formulating the problem of assessing dynamic treatment strategies as a problem of decision analysis brings clarity, simplicity and generality. References:Arjas, E. and Parner, J. (2004). Causal reasoning from longitudinal data. Scandinavian Journal of Statistics 31 171–187.Arjas, E. and Saarela, O. (2010). Optimal dynamic regimes: Presenting a case for predictive inference. The International Journal of Biostatistics 6. http://tinyurl.com/33dfssfCowell, R. G., Dawid, A. P., Lauritzen, S. L. and Spiegelhalter, D. J. (1999). Probabilistic Networks and Expert Systems. Springer, New York.Dawid, A. P. (1979). Conditional independence in statistical theory (with Discussion). Journal of the Royal Statistical Society, Series B 41 1–31.Dawid, A. P. (1992). Applications of a general propagation algorithm for probabilistic expert systems. Statistics and Computing 2 25–36.Dawid, A. P. (1998). Conditional independence. In Encyclopedia of Statistical Science ({U}pdate Volume 2) ( S. Kotz, C. B. Read and D. L. Banks, eds.) 146–155. Wiley-Interscience, New York.Dawid, A. P. (2000). Causal inference without counterfactuals (with Discussion). Journal of the American Statistical Association 95 407–448.Dawid, A. P. (2001). Separoids: A mathematical framework for conditional independence and irrelevance. Annals of Mathematics and Artificial Intelligence 32 335–372.Dawid, A. P. (2002). Influence diagrams for causal modelling and inference. International Statistical Review 70 161–189. Corrigenda, ibid ., 437.Dawid, A. P. (2003). Causal inference using influence diagrams: The problem of partial compliance (with Discussion). In Highly Structured Stochastic Systems ( P. J. Green, N. L. Hjort and S. Richardson, eds.) 45–81. Oxford University Press.Dawid, A. P. (2010). Beware of the DAG! In Proceedings of the NIPS 2008 Workshop on Causality. Journal of Machine Learning Research Workshop and Conference Proceedings ( D. Janzing, I. Guyon and B. Schölkopf, eds.) 6 59–86. http://tinyurl.com/33va7tmDawid, A. P. and Didelez, V. (2008). Identifying optimal sequential decisions. In Proceedings of the Twenty-Fourth Annual Conference on Uncertainty in Artificial Intelligence (UAI-08) ( D. McAllester and A. Nicholson, eds.). 113-120. AUAI Press, Corvallis, Oregon. http://tinyurl.com/3899qppDechter, R. (2003). Constraint Processing. Morgan Kaufmann Publishers.Didelez, V., Dawid, A. P. and Geneletti, S. G. (2006). Direct and indirect effects of sequential treatments. In Proceedings of the Twenty-Second Annual Conference on Uncertainty in Artificial Intelligence (UAI-06) ( R. Dechter and T. Richardson, eds.). 138-146. AUAI Press, Arlington, Virginia. http://tinyurl.com/32w3f4eDidelez, V., Kreiner, S. and Keiding, N. (2010). Graphical models for inference under outcome dependent sampling. Statistical Science (to appear).Didelez, V. and Sheehan, N. S. (2007). Mendelian randomisation: Why epidemiology needs a formal language for causality. In Causality and Probability in the Sciences, ( F. Russo and J. Williamson, eds.). Texts in Philosophy Series 5 263–292. College Publications, London.Eichler, M. and Didelez, V. (2010). Granger-causality and the effect of interventions in time series. Lifetime Data Analysis 16 3–32.Ferguson, T. S. (1967). Mathematical Statistics: A Decision Theoretic Approach. Academic Press, New York, London.Geneletti, S. G. (2007). Identifying direct and indirect effects in a non–counterfactual framework. Journal of the Royal Statistical Society: Series B 69 199–215.Geneletti, S. G. and Dawid, A. P. (2010). Defining and identifying the effect of treatment on the treated. In Causality in the Sciences ( P. M. Illari, F. Russo and J. Williamson, eds.) Oxford University Press (to appear).Gill, R. D. and Robins, J. M. (2001). Causal inference for complex longitudinal data: The continuous case. Annals of Statistics 29 1785–1811.Guo, H. and Dawid, A. P. (2010). Sufficient covariates and linear propensity analysis. In Proceedings of the Thirteenth International Workshop on Artificial Intelligence and Statistics, (AISTATS) 2010, Chia Laguna, Sardinia, Italy, May 13-15, 2010. Journal of Machine Learning Research Workshop and Conference Proceedings ( Y. W. Teh and D. M. Titterington, eds.) 9 281–288. http://tinyurl.com/33lmuj7Henderson, R., Ansel, P. and Alshibani, D. (2010). Regret-regression for optimal dynamic treatment regimes. Biometrics (to appear). doi:10.1111/j.1541-0420.2009.01368.xHernán, M. A. and Taubman, S. L. (2008). Does obesity shorten life? The importance of well defined interventions to answer causal questions. International Journal of Obesity 32 S8–S14.Holland, P. W. (1986). Statistics and causal inference (with Discussion). Journal of the American Statistical Association 81 945–970.Huang, Y. and Valtorta, M. (2006). Identifiability in causal Bayesian networks: A sound and complete algorithm. In AAAI’06: Proceedings of the 21st National Conference on Artificial Intelligence 1149–1154. AAAI Press.Kang, J. D. Y. and Schafer, J. L. (2007). Demystifying double robustness: A comparison of alternative strategies for estimating a population mean from incomplete data. Statistical Science 22 523–539.Lauritzen, S. L., Dawid, A. P., Larsen, B. N. and Leimer, H. G. (1990). Independence properties of directed Markov fields. Networks 20 491–505.Lok, J., Gill, R., van der Vaart, A. and Robins, J. (2004). Estimating the causal effect of a time-varying treatment on time-to-event using structural nested failure time models. Statistica Neerlandica 58 271–295.Moodie, E. M., Richardson, T. S. and Stephens, D. A. (2007). Demystifying optimal dynamic treatment regimes. Biometrics 63 447–455.Murphy, S. A. (2003). Optimal dynamic treatment regimes (with Discussion). Journal of the Royal Statistical Society, Series B 65 331-366.Oliver, R. M. and Smith, J. Q., eds. (1990). Influence Diagrams, Belief Nets and Decision Analysis. John Wiley and Sons, Chichester, United Kingdom.Pearl, J. (1995). Causal diagrams for empirical research (with Discussion). Biometrika 82 669-710.Pearl, J. (2009). Causality: Models, Reasoning and Inference, Second ed. Cambridge University Press, Cambridge.Pearl, J. and Paz, A. (1987). Graphoids: A graph-based logic for reasoning about relevance relations. In Advances in Artificial Intelligence ( D. Hogg and L. Steels, eds.) II 357–363. North-Holland, Amsterdam.Pearl, J. and Robins, J. (1995). Probabilistic evaluation of sequential plans from causal models with hidden variables. In Proceedings of the 11th Conference on Uncertainty in Artificial Intelligence ( P. Besnard and S. Hanks, eds.) 444–453. Morgan Kaufmann Publishers, San Francisco.Raiffa, H. (1968). Decision Analysis. Addison-Wesley, Reading, Massachusetts.Robins, J. M. (1986). A new approach to causal inference in mortality studies with sustained exposure periods—Application to control of the healthy worker survivor effect. Mathematical Modelling 7 1393–1512.Robins, J. M. (1987). Addendum to “A new approach to causal inference in mortality studies with sustained exposure periods—Application to control of the healthy worker survivor effect”. Computers & Mathematics with Applications 14 923–945.Robins, J. M. (1989). The analysis of randomized and nonrandomized AIDS treatment trials using a new approach to causal inference in longitudinal studies. In Health Service Research Methodology: A Focus on AIDS ( L. Sechrest, H. Freeman and A. Mulley, eds.) 113–159. NCSHR, U.S. Public Health Service.Robins, J. M. (1992). Estimation of the time-dependent accelerated failure time model in the presence of confounding factors. Biometrika 79 321–324.Robins, J. M. (1997). Causal inference from complex longitudinal data. In Latent Variable Modeling and Applications to Causality, ( M. Berkane, ed.). Lecture Notes in Statistics 120 69–117. Springer-Verlag, New York.Robins, J. M. (1998). Structural nested failure time models. In Survival Analysis, ( P. K. Andersen and N. Keiding, eds.). Encyclopedia of Biostatistics 6 4372–4389. John Wiley and Sons, Chichester, UK.Robins, J. M. (2000). Robust estimation in sequentially ignorable missing data and causal inference models. In Proceedings of the American Statistical Association Section on Bayesian Statistical Science 1999 6–10.Robins, J. M. (2004). Optimal structural nested models for optimal sequential decisions. In Proceedings of the Second Seattle Symposium on Biostatistics ( D. Y. Lin and P. Heagerty, eds.) 189–326. Springer, New York.Robins, J. M., Greenland, S. and Hu, F. C. (1999). Estimation of the causal effect of a time-varying exposure on the marginal mean of a repeated binary outcome. Journal of the American Statistical Association 94 687–700.Robins, J. M., Hernán, M. A. and Brumback, B. (2000). Marginal structural models and causal inference in epidemiology. Epidemiology 11 550–560.Robins, J. M. and Wasserman, L. A. (1997). Estimation of effects of sequential treatments by reparameterizing directed acyclic graphs. In Proceedings of the 13th Annual Conference on Uncertainty in Artificial Intelligence ( D. Geiger and P. Shenoy, eds.) 409-420. Morgan Kaufmann Publishers, San Francisco. http://tinyurl.com/33ghsasRosthøj, S., Fullwood, C., Henderson, R. and Stewart, S. (2006). Estimation of optimal dynamic anticoagulation regimes from observational data: A regret-based approach. Statistics in Medicine 25 4197–4215.Shpitser, I. and Pearl, J. (2006a). Identification of conditional interventional distributions. In Proceedings of the 22nd Annual Conference on Uncertainty in Artificial Intelligence (UAI-06) ( R. Dechter and T. Richardson, eds.). 437–444. AUAI Press, Corvallis, Oregon. http://tinyurl.com/2um8w47Shpitser, I. and Pearl, J. (2006b). Identification of joint interventional distributions in recursive semi-Markovian causal models. In Proceedings of the Twenty-First National Conference on Artificial Intelligence 1219–1226. AAAI Press, Menlo Park, California.Spirtes, P., Glymour, C. and Scheines, R. (2000). Causation, Prediction and Search, Second ed. Springer-Verlag, New York.Sterne, J. A. C., May, M., Costagliola, D., de Wolf, F., Phillips, A. N., Harris, R., Funk, M. J., Geskus, R. B., Gill, J., Dabis, F., Miro, J. M., Justice, A. C., Ledergerber, B., Fatkenheuer, G., Hogg, R. S., D’Arminio-Monforte, A., Saag, M., Smith, C., Staszewski, S., Egger, M., Cole, S. R. and When To Start Consortium (2009). Timing of initiation of antiretroviral therapy in AIDS-Free HIV-1-infected patients: A collaborative analysis of 18 HIV cohort studies. Lancet 373 1352–1363.Taubman, S. L., Robins, J. M., Mittleman, M. A. and Hernán, M. A. (2009). Intervening on risk factors for coronary heart disease: An application of the parametric g-formula. International Journal of Epidemiology 38 1599–1611.Tian, J. (2008). Identifying dynamic sequential plans. In Proceedings of the Twenty-Fourth Annual Conference on Uncertainty in Artificial Intelligence (UAI-08) ( D. McAllester and A. Nicholson, eds.). 554–561. AUAI Press, Corvallis, Oregon. http://tinyurl.com/36ufx2hVerma, T. and Pearl, J. (1990). Causal networks: Semantics and expressiveness. In Uncertainty in Artificial Intelligence 4 ( R. D. Shachter, T. S. Levitt, L. N. Kanal and J. F. Lemmer, eds.) 69–76. North-Holland, Amsterdam. Full Article
se Primal and dual model representations in kernel-based learning By projecteuclid.org Published On :: Wed, 25 Aug 2010 10:28 EDT Johan A.K. Suykens, Carlos Alzate, Kristiaan PelckmansSource: Statist. Surv., Volume 4, 148--183.Abstract: This paper discusses the role of primal and (Lagrange) dual model representations in problems of supervised and unsupervised learning. The specification of the estimation problem is conceived at the primal level as a constrained optimization problem. The constraints relate to the model which is expressed in terms of the feature map. From the conditions for optimality one jointly finds the optimal model representation and the model estimate. At the dual level the model is expressed in terms of a positive definite kernel function, which is characteristic for a support vector machine methodology. It is discussed how least squares support vector machines are playing a central role as core models across problems of regression, classification, principal component analysis, spectral clustering, canonical correlation analysis, dimensionality reduction and data visualization. Full Article
se Discrete variations of the fractional Brownian motion in the presence of outliers and an additive noise By projecteuclid.org Published On :: Thu, 05 Aug 2010 15:41 EDT Sophie Achard, Jean-François CoeurjollySource: Statist. Surv., Volume 4, 117--147.Abstract: This paper gives an overview of the problem of estimating the Hurst parameter of a fractional Brownian motion when the data are observed with outliers and/or with an additive noise by using methods based on discrete variations. We show that the classical estimation procedure based on the log-linearity of the variogram of dilated series is made more robust to outliers and/or an additive noise by considering sample quantiles and trimmed means of the squared series or differences of empirical variances. These different procedures are compared and discussed through a large simulation study and are implemented in the R package dvfBm. Full Article
se Finite mixture models and model-based clustering By projecteuclid.org Published On :: Thu, 05 Aug 2010 15:41 EDT Volodymyr Melnykov, Ranjan MaitraSource: Statist. Surv., Volume 4, 80--116.Abstract: Finite mixture models have a long history in statistics, having been used to model population heterogeneity, generalize distributional assumptions, and lately, for providing a convenient yet formal framework for clustering and classification. This paper provides a detailed review into mixture models and model-based clustering. Recent trends as well as open problems in the area are also discussed. Full Article
se A survey of cross-validation procedures for model selection By projecteuclid.org Published On :: Thu, 05 Aug 2010 15:41 EDT Sylvain Arlot, Alain CelisseSource: Statist. Surv., Volume 4, 40--79.Abstract: Used to estimate the risk of an estimator or to perform model selection, cross-validation is a widespread strategy because of its simplicity and its (apparent) universality. Many results exist on model selection performances of cross-validation procedures. This survey intends to relate these results to the most recent advances of model selection theory, with a particular emphasis on distinguishing empirical statements from rigorous theoretical results. As a conclusion, guidelines are provided for choosing the best cross-validation procedure according to the particular features of the problem in hand. Full Article
se Start your Chinese Family Search at the State Library of... By feedproxy.google.com Published On :: Thu, 18 Jun 2015 13:43:48 +0000 Start your Chinese Family Search at the State Library of NSW One in ten Sydneysiders claims Chinese ancestry Full Article
se Unsupervised Pre-trained Models from Healthy ADLs Improve Parkinson's Disease Classification of Gait Patterns. (arXiv:2005.02589v2 [cs.LG] UPDATED) By arxiv.org Published On :: Application and use of deep learning algorithms for different healthcare applications is gaining interest at a steady pace. However, use of such algorithms can prove to be challenging as they require large amounts of training data that capture different possible variations. This makes it difficult to use them in a clinical setting since in most health applications researchers often have to work with limited data. Less data can cause the deep learning model to over-fit. In this paper, we ask how can we use data from a different environment, different use-case, with widely differing data distributions. We exemplify this use case by using single-sensor accelerometer data from healthy subjects performing activities of daily living - ADLs (source dataset), to extract features relevant to multi-sensor accelerometer gait data (target dataset) for Parkinson's disease classification. We train the pre-trained model using the source dataset and use it as a feature extractor. We show that the features extracted for the target dataset can be used to train an effective classification model. Our pre-trained source model consists of a convolutional autoencoder, and the target classification model is a simple multi-layer perceptron model. We explore two different pre-trained source models, trained using different activity groups, and analyze the influence the choice of pre-trained model has over the task of Parkinson's disease classification. Full Article
se Statistical errors in Monte Carlo-based inference for random elements. (arXiv:2005.02532v2 [math.ST] UPDATED) By arxiv.org Published On :: Monte Carlo simulation is useful to compute or estimate expected functionals of random elements if those random samples are possible to be generated from the true distribution. However, when the distribution has some unknown parameters, the samples must be generated from an estimated distribution with the parameters replaced by some estimators, which causes a statistical error in Monte Carlo estimation. This paper considers such a statistical error and investigates the asymptotic distributions of Monte Carlo-based estimators when the random elements are not only the real valued, but also functional valued random variables. We also investigate expected functionals for semimartingales in details. The consideration indicates that the Monte Carlo estimation can get worse when a semimartingale has a jump part with unremovable unknown parameters. Full Article
se Data-Space Inversion Using a Recurrent Autoencoder for Time-Series Parameterization. (arXiv:2005.00061v2 [stat.ML] UPDATED) By arxiv.org Published On :: Data-space inversion (DSI) and related procedures represent a family of methods applicable for data assimilation in subsurface flow settings. These methods differ from model-based techniques in that they provide only posterior predictions for quantities (time series) of interest, not posterior models with calibrated parameters. DSI methods require a large number of flow simulations to first be performed on prior geological realizations. Given observed data, posterior predictions can then be generated directly. DSI operates in a Bayesian setting and provides posterior samples of the data vector. In this work we develop and evaluate a new approach for data parameterization in DSI. Parameterization reduces the number of variables to determine in the inversion, and it maintains the physical character of the data variables. The new parameterization uses a recurrent autoencoder (RAE) for dimension reduction, and a long-short-term memory (LSTM) network to represent flow-rate time series. The RAE-based parameterization is combined with an ensemble smoother with multiple data assimilation (ESMDA) for posterior generation. Results are presented for two- and three-phase flow in a 2D channelized system and a 3D multi-Gaussian model. The RAE procedure, along with existing DSI treatments, are assessed through comparison to reference rejection sampling (RS) results. The new DSI methodology is shown to consistently outperform existing approaches, in terms of statistical agreement with RS results. The method is also shown to accurately capture derived quantities, which are computed from variables considered directly in DSI. This requires correlation and covariance between variables to be properly captured, and accuracy in these relationships is demonstrated. The RAE-based parameterization developed here is clearly useful in DSI, and it may also find application in other subsurface flow problems. Full Article
se A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced Cardiac Magnetic Resonance Imaging. (arXiv:2004.12314v3 [cs.CV] UPDATED) By arxiv.org Published On :: Segmentation of cardiac images, particularly late gadolinium-enhanced magnetic resonance imaging (LGE-MRI) widely used for visualizing diseased cardiac structures, is a crucial first step for clinical diagnosis and treatment. However, direct segmentation of LGE-MRIs is challenging due to its attenuated contrast. Since most clinical studies have relied on manual and labor-intensive approaches, automatic methods are of high interest, particularly optimized machine learning approaches. To address this, we organized the "2018 Left Atrium Segmentation Challenge" using 154 3D LGE-MRIs, currently the world's largest cardiac LGE-MRI dataset, and associated labels of the left atrium segmented by three medical experts, ultimately attracting the participation of 27 international teams. In this paper, extensive analysis of the submitted algorithms using technical and biological metrics was performed by undergoing subgroup analysis and conducting hyper-parameter analysis, offering an overall picture of the major design choices of convolutional neural networks (CNNs) and practical considerations for achieving state-of-the-art left atrium segmentation. Results show the top method achieved a dice score of 93.2% and a mean surface to a surface distance of 0.7 mm, significantly outperforming prior state-of-the-art. Particularly, our analysis demonstrated that double, sequentially used CNNs, in which a first CNN is used for automatic region-of-interest localization and a subsequent CNN is used for refined regional segmentation, achieved far superior results than traditional methods and pipelines containing single CNNs. This large-scale benchmarking study makes a significant step towards much-improved segmentation methods for cardiac LGE-MRIs, and will serve as an important benchmark for evaluating and comparing the future works in the field. Full Article
se On a phase transition in general order spline regression. (arXiv:2004.10922v2 [math.ST] UPDATED) By arxiv.org Published On :: In the Gaussian sequence model $Y= heta_0 + varepsilon$ in $mathbb{R}^n$, we study the fundamental limit of approximating the signal $ heta_0$ by a class $Theta(d,d_0,k)$ of (generalized) splines with free knots. Here $d$ is the degree of the spline, $d_0$ is the order of differentiability at each inner knot, and $k$ is the maximal number of pieces. We show that, given any integer $dgeq 0$ and $d_0in{-1,0,ldots,d-1}$, the minimax rate of estimation over $Theta(d,d_0,k)$ exhibits the following phase transition: egin{equation*} egin{aligned} inf_{widetilde{ heta}}sup_{ hetainTheta(d,d_0, k)}mathbb{E}_ heta|widetilde{ heta} - heta|^2 asymp_d egin{cases} kloglog(16n/k), & 2leq kleq k_0,\ klog(en/k), & k geq k_0+1. end{cases} end{aligned} end{equation*} The transition boundary $k_0$, which takes the form $lfloor{(d+1)/(d-d_0) floor} + 1$, demonstrates the critical role of the regularity parameter $d_0$ in the separation between a faster $log log(16n)$ and a slower $log(en)$ rate. We further show that, once encouraging an additional '$d$-monotonicity' shape constraint (including monotonicity for $d = 0$ and convexity for $d=1$), the above phase transition is eliminated and the faster $kloglog(16n/k)$ rate can be achieved for all $k$. These results provide theoretical support for developing $ell_0$-penalized (shape-constrained) spline regression procedures as useful alternatives to $ell_1$- and $ell_2$-penalized ones. Full Article
se A Critical Overview of Privacy-Preserving Approaches for Collaborative Forecasting. (arXiv:2004.09612v3 [cs.LG] UPDATED) By arxiv.org Published On :: Cooperation between different data owners may lead to an improvement in forecast quality - for instance by benefiting from spatial-temporal dependencies in geographically distributed time series. Due to business competitive factors and personal data protection questions, said data owners might be unwilling to share their data, which increases the interest in collaborative privacy-preserving forecasting. This paper analyses the state-of-the-art and unveils several shortcomings of existing methods in guaranteeing data privacy when employing Vector Autoregressive (VAR) models. The paper also provides mathematical proofs and numerical analysis to evaluate existing privacy-preserving methods, dividing them into three groups: data transformation, secure multi-party computations, and decomposition methods. The analysis shows that state-of-the-art techniques have limitations in preserving data privacy, such as a trade-off between privacy and forecasting accuracy, while the original data in iterative model fitting processes, in which intermediate results are shared, can be inferred after some iterations. Full Article
se Strong Converse for Testing Against Independence over a Noisy channel. (arXiv:2004.00775v2 [cs.IT] UPDATED) By arxiv.org Published On :: A distributed binary hypothesis testing (HT) problem over a noisy (discrete and memoryless) channel studied previously by the authors is investigated from the perspective of the strong converse property. It was shown by Ahlswede and Csisz'{a}r that a strong converse holds in the above setting when the channel is rate-limited and noiseless. Motivated by this observation, we show that the strong converse continues to hold in the noisy channel setting for a special case of HT known as testing against independence (TAI), under the assumption that the channel transition matrix has non-zero elements. The proof utilizes the blowing up lemma and the recent change of measure technique of Tyagi and Watanabe as the key tools. Full Article
se Cyclic Boosting -- an explainable supervised machine learning algorithm. (arXiv:2002.03425v2 [cs.LG] UPDATED) By arxiv.org Published On :: Supervised machine learning algorithms have seen spectacular advances and surpassed human level performance in a wide range of specific applications. However, using complex ensemble or deep learning algorithms typically results in black box models, where the path leading to individual predictions cannot be followed in detail. In order to address this issue, we propose the novel "Cyclic Boosting" machine learning algorithm, which allows to efficiently perform accurate regression and classification tasks while at the same time allowing a detailed understanding of how each individual prediction was made. Full Article
se On the impact of selected modern deep-learning techniques to the performance and celerity of classification models in an experimental high-energy physics use case. (arXiv:2002.01427v3 [physics.data-an] UPDATED) By arxiv.org Published On :: Beginning from a basic neural-network architecture, we test the potential benefits offered by a range of advanced techniques for machine learning, in particular deep learning, in the context of a typical classification problem encountered in the domain of high-energy physics, using a well-studied dataset: the 2014 Higgs ML Kaggle dataset. The advantages are evaluated in terms of both performance metrics and the time required to train and apply the resulting models. Techniques examined include domain-specific data-augmentation, learning rate and momentum scheduling, (advanced) ensembling in both model-space and weight-space, and alternative architectures and connection methods. Following the investigation, we arrive at a model which achieves equal performance to the winning solution of the original Kaggle challenge, whilst being significantly quicker to train and apply, and being suitable for use with both GPU and CPU hardware setups. These reductions in timing and hardware requirements potentially allow the use of more powerful algorithms in HEP analyses, where models must be retrained frequently, sometimes at short notice, by small groups of researchers with limited hardware resources. Additionally, a new wrapper library for PyTorch called LUMINis presented, which incorporates all of the techniques studied. Full Article
se Margin-Based Generalization Lower Bounds for Boosted Classifiers. (arXiv:1909.12518v4 [cs.LG] UPDATED) By arxiv.org Published On :: Boosting is one of the most successful ideas in machine learning. The most well-accepted explanations for the low generalization error of boosting algorithms such as AdaBoost stem from margin theory. The study of margins in the context of boosting algorithms was initiated by Schapire, Freund, Bartlett and Lee (1998) and has inspired numerous boosting algorithms and generalization bounds. To date, the strongest known generalization (upper bound) is the $k$th margin bound of Gao and Zhou (2013). Despite the numerous generalization upper bounds that have been proved over the last two decades, nothing is known about the tightness of these bounds. In this paper, we give the first margin-based lower bounds on the generalization error of boosted classifiers. Our lower bounds nearly match the $k$th margin bound and thus almost settle the generalization performance of boosted classifiers in terms of margins. Full Article
se Additive Bayesian variable selection under censoring and misspecification. (arXiv:1907.13563v3 [stat.ME] UPDATED) By arxiv.org Published On :: We study the interplay of two important issues on Bayesian model selection (BMS): censoring and model misspecification. We consider additive accelerated failure time (AAFT), Cox proportional hazards and probit models, and a more general concave log-likelihood structure. A fundamental question is what solution can one hope BMS to provide, when (inevitably) models are misspecified. We show that asymptotically BMS keeps any covariate with predictive power for either the outcome or censoring times, and discards other covariates. Misspecification refers to assuming the wrong model or functional effect on the response, including using a finite basis for a truly non-parametric effect, or omitting truly relevant covariates. We argue for using simple models that are computationally practical yet attain good power to detect potentially complex effects, despite misspecification. Misspecification and censoring both have an asymptotically negligible effect on (suitably-defined) false positives, but their impact on power is exponential. We portray these issues via simple descriptions of early/late censoring and the drop in predictive accuracy due to misspecification. From a methods point of view, we consider local priors and a novel structure that combines local and non-local priors to enforce sparsity. We develop algorithms to capitalize on the AAFT tractability, approximations to AAFT and probit likelihoods giving significant computational gains, a simple augmented Gibbs sampler to hierarchically explore linear and non-linear effects, and an implementation in the R package mombf. We illustrate the proposed methods and others based on likelihood penalties via extensive simulations under misspecification and censoring. We present two applications concerning the effect of gene expression on colon and breast cancer. Full Article
se Convergence rates for optimised adaptive importance samplers. (arXiv:1903.12044v4 [stat.CO] UPDATED) By arxiv.org Published On :: Adaptive importance samplers are adaptive Monte Carlo algorithms to estimate expectations with respect to some target distribution which extit{adapt} themselves to obtain better estimators over a sequence of iterations. Although it is straightforward to show that they have the same $mathcal{O}(1/sqrt{N})$ convergence rate as standard importance samplers, where $N$ is the number of Monte Carlo samples, the behaviour of adaptive importance samplers over the number of iterations has been left relatively unexplored. In this work, we investigate an adaptation strategy based on convex optimisation which leads to a class of adaptive importance samplers termed extit{optimised adaptive importance samplers} (OAIS). These samplers rely on the iterative minimisation of the $chi^2$-divergence between an exponential-family proposal and the target. The analysed algorithms are closely related to the class of adaptive importance samplers which minimise the variance of the weight function. We first prove non-asymptotic error bounds for the mean squared errors (MSEs) of these algorithms, which explicitly depend on the number of iterations and the number of samples together. The non-asymptotic bounds derived in this paper imply that when the target belongs to the exponential family, the $L_2$ errors of the optimised samplers converge to the optimal rate of $mathcal{O}(1/sqrt{N})$ and the rate of convergence in the number of iterations are explicitly provided. When the target does not belong to the exponential family, the rate of convergence is the same but the asymptotic $L_2$ error increases by a factor $sqrt{ ho^star} > 1$, where $ ho^star - 1$ is the minimum $chi^2$-divergence between the target and an exponential-family proposal. Full Article
se An n-dimensional Rosenbrock Distribution for MCMC Testing. (arXiv:1903.09556v4 [stat.CO] UPDATED) By arxiv.org Published On :: The Rosenbrock function is an ubiquitous benchmark problem for numerical optimisation, and variants have been proposed to test the performance of Markov Chain Monte Carlo algorithms. In this work we discuss the two-dimensional Rosenbrock density, its current $n$-dimensional extensions, and their advantages and limitations. We then propose a new extension to arbitrary dimensions called the Hybrid Rosenbrock distribution, which is composed of conditional normal kernels arranged in such a way that preserves the key features of the original kernel. Moreover, due to its structure, the Hybrid Rosenbrock distribution is analytically tractable and possesses several desirable properties, which make it an excellent test model for computational algorithms. Full Article
se Semiparametric Optimal Estimation With Nonignorable Nonresponse Data. (arXiv:1612.09207v3 [stat.ME] UPDATED) By arxiv.org Published On :: When the response mechanism is believed to be not missing at random (NMAR), a valid analysis requires stronger assumptions on the response mechanism than standard statistical methods would otherwise require. Semiparametric estimators have been developed under the model assumptions on the response mechanism. In this paper, a new statistical test is proposed to guarantee model identifiability without using any instrumental variable. Furthermore, we develop optimal semiparametric estimation for parameters such as the population mean. Specifically, we propose two semiparametric optimal estimators that do not require any model assumptions other than the response mechanism. Asymptotic properties of the proposed estimators are discussed. An extensive simulation study is presented to compare with some existing methods. We present an application of our method using Korean Labor and Income Panel Survey data. Full Article
se Alternating Maximization: Unifying Framework for 8 Sparse PCA Formulations and Efficient Parallel Codes. (arXiv:1212.4137v2 [stat.ML] UPDATED) By arxiv.org Published On :: Given a multivariate data set, sparse principal component analysis (SPCA) aims to extract several linear combinations of the variables that together explain the variance in the data as much as possible, while controlling the number of nonzero loadings in these combinations. In this paper we consider 8 different optimization formulations for computing a single sparse loading vector; these are obtained by combining the following factors: we employ two norms for measuring variance (L2, L1) and two sparsity-inducing norms (L0, L1), which are used in two different ways (constraint, penalty). Three of our formulations, notably the one with L0 constraint and L1 variance, have not been considered in the literature. We give a unifying reformulation which we propose to solve via a natural alternating maximization (AM) method. We show the the AM method is nontrivially equivalent to GPower (Journ'{e}e et al; JMLR 11:517--553, 2010) for all our formulations. Besides this, we provide 24 efficient parallel SPCA implementations: 3 codes (multi-core, GPU and cluster) for each of the 8 problems. Parallelism in the methods is aimed at i) speeding up computations (our GPU code can be 100 times faster than an efficient serial code written in C++), ii) obtaining solutions explaining more variance and iii) dealing with big data problems (our cluster code is able to solve a 357 GB problem in about a minute). Full Article
se Nonstationary Bayesian modeling for a large data set of derived surface temperature return values. (arXiv:2005.03658v1 [stat.ME]) By arxiv.org Published On :: Heat waves resulting from prolonged extreme temperatures pose a significant risk to human health globally. Given the limitations of observations of extreme temperature, climate models are often used to characterize extreme temperature globally, from which one can derive quantities like return values to summarize the magnitude of a low probability event for an arbitrary geographic location. However, while these derived quantities are useful on their own, it is also often important to apply a spatial statistical model to such data in order to, e.g., understand how the spatial dependence properties of the return values vary over space and emulate the climate model for generating additional spatial fields with corresponding statistical properties. For these objectives, when modeling global data it is critical to use a nonstationary covariance function. Furthermore, given that the output of modern global climate models can be on the order of $mathcal{O}(10^4)$, it is important to utilize approximate Gaussian process methods to enable inference. In this paper, we demonstrate the application of methodology introduced in Risser and Turek (2020) to conduct a nonstationary and fully Bayesian analysis of a large data set of 20-year return values derived from an ensemble of global climate model runs with over 50,000 spatial locations. This analysis uses the freely available BayesNSGP software package for R. Full Article
se Deep Learning on Point Clouds for False Positive Reduction at Nodule Detection in Chest CT Scans. (arXiv:2005.03654v1 [eess.IV]) By arxiv.org Published On :: The paper focuses on a novel approach for false-positive reduction (FPR) of nodule candidates in Computer-aided detection (CADe) system after suspicious lesions proposing stage. Unlike common decisions in medical image analysis, the proposed approach considers input data not as 2d or 3d image, but as a point cloud and uses deep learning models for point clouds. We found out that models for point clouds require less memory and are faster on both training and inference than traditional CNN 3D, achieves better performance and does not impose restrictions on the size of the input image, thereby the size of the nodule candidate. We propose an algorithm for transforming 3d CT scan data to point cloud. In some cases, the volume of the nodule candidate can be much smaller than the surrounding context, for example, in the case of subpleural localization of the nodule. Therefore, we developed an algorithm for sampling points from a point cloud constructed from a 3D image of the candidate region. The algorithm guarantees to capture both context and candidate information as part of the point cloud of the nodule candidate. An experiment with creating a dataset from an open LIDC-IDRI database for a feature of the FPR task was accurately designed, set up and described in detail. The data augmentation technique was applied to avoid overfitting and as an upsampling method. Experiments are conducted with PointNet, PointNet++ and DGCNN. We show that the proposed approach outperforms baseline CNN 3D models and demonstrates 85.98 FROC versus 77.26 FROC for baseline models. Full Article
se Plan2Vec: Unsupervised Representation Learning by Latent Plans. (arXiv:2005.03648v1 [cs.LG]) By arxiv.org Published On :: In this paper we introduce plan2vec, an unsupervised representation learning approach that is inspired by reinforcement learning. Plan2vec constructs a weighted graph on an image dataset using near-neighbor distances, and then extrapolates this local metric to a global embedding by distilling path-integral over planned path. When applied to control, plan2vec offers a way to learn goal-conditioned value estimates that are accurate over long horizons that is both compute and sample efficient. We demonstrate the effectiveness of plan2vec on one simulated and two challenging real-world image datasets. Experimental results show that plan2vec successfully amortizes the planning cost, enabling reactive planning that is linear in memory and computation complexity rather than exhaustive over the entire state space. Full Article
se Local Cascade Ensemble for Multivariate Data Classification. (arXiv:2005.03645v1 [cs.LG]) By arxiv.org Published On :: We present LCE, a Local Cascade Ensemble for traditional (tabular) multivariate data classification, and its extension LCEM for Multivariate Time Series (MTS) classification. LCE is a new hybrid ensemble method that combines an explicit boosting-bagging approach to handle the usual bias-variance tradeoff faced by machine learning models and an implicit divide-and-conquer approach to individualize classifier errors on different parts of the training data. Our evaluation firstly shows that the hybrid ensemble method LCE outperforms the state-of-the-art classifiers on the UCI datasets and that LCEM outperforms the state-of-the-art MTS classifiers on the UEA datasets. Furthermore, LCEM provides explainability by design and manifests robust performance when faced with challenges arising from continuous data collection (different MTS length, missing data and noise). Full Article
se Phase Transitions of the Maximum Likelihood Estimates in the Tensor Curie-Weiss Model. (arXiv:2005.03631v1 [math.ST]) By arxiv.org Published On :: The $p$-tensor Curie-Weiss model is a two-parameter discrete exponential family for modeling dependent binary data, where the sufficient statistic has a linear term and a term with degree $p geq 2$. This is a special case of the tensor Ising model and the natural generalization of the matrix Curie-Weiss model, which provides a convenient mathematical abstraction for capturing, not just pairwise, but higher-order dependencies. In this paper we provide a complete description of the limiting properties of the maximum likelihood (ML) estimates of the natural parameters, given a single sample from the $p$-tensor Curie-Weiss model, for $p geq 3$, complementing the well-known results in the matrix ($p=2$) case (Comets and Gidas (1991)). Our results unearth various new phase transitions and surprising limit theorems, such as the existence of a 'critical' curve in the parameter space, where the limiting distribution of the ML estimates is a mixture with both continuous and discrete components. The number of mixture components is either two or three, depending on, among other things, the sign of one of the parameters and the parity of $p$. Another interesting revelation is the existence of certain 'special' points in the parameter space where the ML estimates exhibit a superefficiency phenomenon, converging to a non-Gaussian limiting distribution at rate $N^{frac{3}{4}}$. We discuss how these results can be used to construct confidence intervals for the model parameters and, as a byproduct of our analysis, obtain limit theorems for the sample mean, which provide key insights into the statistical properties of the model. Full Article
se A simulation study of disaggregation regression for spatial disease mapping. (arXiv:2005.03604v1 [stat.AP]) By arxiv.org Published On :: Disaggregation regression has become an important tool in spatial disease mapping for making fine-scale predictions of disease risk from aggregated response data. By including high resolution covariate information and modelling the data generating process on a fine scale, it is hoped that these models can accurately learn the relationships between covariates and response at a fine spatial scale. However, validating these high resolution predictions can be a challenge, as often there is no data observed at this spatial scale. In this study, disaggregation regression was performed on simulated data in various settings and the resulting fine-scale predictions are compared to the simulated ground truth. Performance was investigated with varying numbers of data points, sizes of aggregated areas and levels of model misspecification. The effectiveness of cross validation on the aggregate level as a measure of fine-scale predictive performance was also investigated. Predictive performance improved as the number of observations increased and as the size of the aggregated areas decreased. When the model was well-specified, fine-scale predictions were accurate even with small numbers of observations and large aggregated areas. Under model misspecification predictive performance was significantly worse for large aggregated areas but remained high when response data was aggregated over smaller regions. Cross-validation correlation on the aggregate level was a moderately good predictor of fine-scale predictive performance. While the simulations are unlikely to capture the nuances of real-life response data, this study gives insight into the effectiveness of disaggregation regression in different contexts. Full Article