ari Frequency domain theory for functional time series: Variance decomposition and an invariance principle By projecteuclid.org Published On :: Mon, 27 Apr 2020 04:02 EDT Piotr Kokoszka, Neda Mohammadi Jouzdani. Source: Bernoulli, Volume 26, Number 3, 2383--2399.Abstract: This paper is concerned with frequency domain theory for functional time series, which are temporally dependent sequences of functions in a Hilbert space. We consider a variance decomposition, which is more suitable for such a data structure than the variance decomposition based on the Karhunen–Loéve expansion. The decomposition we study uses eigenvalues of spectral density operators, which are functional analogs of the spectral density of a stationary scalar time series. We propose estimators of the variance components and derive convergence rates for their mean square error as well as their asymptotic normality. The latter is derived from a frequency domain invariance principle for the estimators of the spectral density operators. This principle is established for a broad class of linear time series models. It is a main contribution of the paper. Full Article
ari Bayesian linear regression for multivariate responses under group sparsity By projecteuclid.org Published On :: Mon, 27 Apr 2020 04:02 EDT Bo Ning, Seonghyun Jeong, Subhashis Ghosal. Source: Bernoulli, Volume 26, Number 3, 2353--2382.Abstract: We study frequentist properties of a Bayesian high-dimensional multivariate linear regression model with correlated responses. The predictors are separated into many groups and the group structure is pre-determined. Two features of the model are unique: (i) group sparsity is imposed on the predictors; (ii) the covariance matrix is unknown and its dimensions can also be high. We choose a product of independent spike-and-slab priors on the regression coefficients and a new prior on the covariance matrix based on its eigendecomposition. Each spike-and-slab prior is a mixture of a point mass at zero and a multivariate density involving the $ell_{2,1}$-norm. We first obtain the posterior contraction rate, the bounds on the effective dimension of the model with high posterior probabilities. We then show that the multivariate regression coefficients can be recovered under certain compatibility conditions. Finally, we quantify the uncertainty for the regression coefficients with frequentist validity through a Bernstein–von Mises type theorem. The result leads to selection consistency for the Bayesian method. We derive the posterior contraction rate using the general theory by constructing a suitable test from the first principle using moment bounds for certain likelihood ratios. This leads to posterior concentration around the truth with respect to the average Rényi divergence of order $1/2$. This technique of obtaining the required tests for posterior contraction rate could be useful in many other problems. Full Article
ari First-order covariance inequalities via Stein’s method By projecteuclid.org Published On :: Mon, 27 Apr 2020 04:02 EDT Marie Ernst, Gesine Reinert, Yvik Swan. Source: Bernoulli, Volume 26, Number 3, 2051--2081.Abstract: We propose probabilistic representations for inverse Stein operators (i.e., solutions to Stein equations) under general conditions; in particular, we deduce new simple expressions for the Stein kernel. These representations allow to deduce uniform and nonuniform Stein factors (i.e., bounds on solutions to Stein equations) and lead to new covariance identities expressing the covariance between arbitrary functionals of an arbitrary univariate target in terms of a weighted covariance of the derivatives of the functionals. Our weights are explicit, easily computable in most cases and expressed in terms of objects familiar within the context of Stein’s method. Applications of the Cauchy–Schwarz inequality to these weighted covariance identities lead to sharp upper and lower covariance bounds and, in particular, weighted Poincaré inequalities. Many examples are given and, in particular, classical variance bounds due to Klaassen, Brascamp and Lieb or Otto and Menz are corollaries. Connections with more recent literature are also detailed. Full Article
ari Logarithmic Sobolev inequalities for finite spin systems and applications By projecteuclid.org Published On :: Mon, 27 Apr 2020 04:02 EDT Holger Sambale, Arthur Sinulis. Source: Bernoulli, Volume 26, Number 3, 1863--1890.Abstract: We derive sufficient conditions for a probability measure on a finite product space (a spin system ) to satisfy a (modified) logarithmic Sobolev inequality. We establish these conditions for various examples, such as the (vertex-weighted) exponential random graph model, the random coloring and the hard-core model with fugacity. This leads to two separate branches of applications. The first branch is given by mixing time estimates of the Glauber dynamics. The proofs do not rely on coupling arguments, but instead use functional inequalities. As a byproduct, this also yields exponential decay of the relative entropy along the Glauber semigroup. Secondly, we investigate the concentration of measure phenomenon (particularly of higher order) for these spin systems. We show the effect of better concentration properties by centering not around the mean, but around a stochastic term in the exponential random graph model. From there, one can deduce a central limit theorem for the number of triangles from the CLT of the edge count. In the Erdős–Rényi model the first-order approximation leads to a quantification and a proof of a central limit theorem for subgraph counts. Full Article
ari Robust regression via mutivariate regression depth By projecteuclid.org Published On :: Fri, 31 Jan 2020 04:06 EST Chao Gao. Source: Bernoulli, Volume 26, Number 2, 1139--1170.Abstract: This paper studies robust regression in the settings of Huber’s $epsilon$-contamination models. We consider estimators that are maximizers of multivariate regression depth functions. These estimators are shown to achieve minimax rates in the settings of $epsilon$-contamination models for various regression problems including nonparametric regression, sparse linear regression, reduced rank regression, etc. We also discuss a general notion of depth function for linear operators that has potential applications in robust functional linear regression. Full Article
ari Robust modifications of U-statistics and applications to covariance estimation problems By projecteuclid.org Published On :: Tue, 26 Nov 2019 04:00 EST Stanislav Minsker, Xiaohan Wei. Source: Bernoulli, Volume 26, Number 1, 694--727.Abstract: Let $Y$ be a $d$-dimensional random vector with unknown mean $mu $ and covariance matrix $Sigma $. This paper is motivated by the problem of designing an estimator of $Sigma $ that admits exponential deviation bounds in the operator norm under minimal assumptions on the underlying distribution, such as existence of only 4th moments of the coordinates of $Y$. To address this problem, we propose robust modifications of the operator-valued U-statistics, obtain non-asymptotic guarantees for their performance, and demonstrate the implications of these results to the covariance estimation problem under various structural assumptions. Full Article
ari Multivariate count autoregression By projecteuclid.org Published On :: Tue, 26 Nov 2019 04:00 EST Konstantinos Fokianos, Bård Støve, Dag Tjøstheim, Paul Doukhan. Source: Bernoulli, Volume 26, Number 1, 471--499.Abstract: We are studying linear and log-linear models for multivariate count time series data with Poisson marginals. For studying the properties of such processes we develop a novel conceptual framework which is based on copulas. Earlier contributions impose the copula on the joint distribution of the vector of counts by employing a continuous extension methodology. Instead we introduce a copula function on a vector of associated continuous random variables. This construction avoids conceptual difficulties related to the joint distribution of counts yet it keeps the properties of the Poisson process marginally. Furthermore, this construction can be employed for modeling multivariate count time series with other marginal count distributions. We employ Markov chain theory and the notion of weak dependence to study ergodicity and stationarity of the models we consider. Suitable estimating equations are suggested for estimating unknown model parameters. The large sample properties of the resulting estimators are studied in detail. The work concludes with some simulations and a real data example. Full Article
ari A new method for obtaining sharp compound Poisson approximation error estimates for sums of locally dependent random variables By projecteuclid.org Published On :: Thu, 05 Aug 2010 15:41 EDT Michael V. Boutsikas, Eutichia VaggelatouSource: Bernoulli, Volume 16, Number 2, 301--330.Abstract: Let X 1 , X 2 , …, X n be a sequence of independent or locally dependent random variables taking values in ℤ + . In this paper, we derive sharp bounds, via a new probabilistic method, for the total variation distance between the distribution of the sum ∑ i =1 n X i and an appropriate Poisson or compound Poisson distribution. These bounds include a factor which depends on the smoothness of the approximating Poisson or compound Poisson distribution. This “smoothness factor” is of order O( σ −2 ), according to a heuristic argument, where σ 2 denotes the variance of the approximating distribution. In this way, we offer sharp error estimates for a large range of values of the parameters. Finally, specific examples concerning appearances of rare runs in sequences of Bernoulli trials are presented by way of illustration. Full Article
ari English given names : popularity, spelling variants, diminutives and abbreviations / by Carol Baxter. By www.catalog.slsa.sa.gov.au Published On :: Names, Personal -- England. Full Article
ari High on the hill : the people of St Philip & St James Church, Old Noarlunga / City of Onkaparinga. By www.catalog.slsa.sa.gov.au Published On :: St. Philip and St. James Church (Noarlunga, S.A.) Full Article
ari High on the hill : the people of St Philip & St James Church, Old Noarlunga%cCity of Onkaparinga. By www.catalog.slsa.sa.gov.au Published On :: St. Philip and St. James Church (Noarlunga, S.A.) Full Article
ari Welsh given names : popularity, spelling variants, diminutives and abbreviations / by Carol Baxter. By www.catalog.slsa.sa.gov.au Published On :: Names, Personal -- Welsh. Full Article
ari Scottish given names : popularity, spelling variants, diminutives and abbreviations / by Carol Baxter. By www.catalog.slsa.sa.gov.au Published On :: Names, Personal -- Scottish. Full Article
ari From Wends we came : the story of Johann and Maria Huppatz & their descendants / compiled by Frank Huppatz and Rone McDonnell. By www.catalog.slsa.sa.gov.au Published On :: Huppatz (Family). Full Article
ari Box 3: Children's book illustrations by various artists, Peg Maltby and Dorothy Wall, , ca. 1932-1975 By feedproxy.google.com Published On :: 8/05/2015 2:13:13 PM Full Article
ari Box 4: Children's book illustrations by various artists, Dorothy Wall, ca. 1932 By feedproxy.google.com Published On :: 8/05/2015 2:26:30 PM Full Article
ari Box 6: Children's book illustrations by various artists, Dorothy Wall and Noela Young, ca. 1932-1964 By feedproxy.google.com Published On :: 8/05/2015 2:37:07 PM Full Article
ari Smart research for HSC students: Citing your work and avoiding plagiarism By feedproxy.google.com Published On :: Mon, 04 May 2020 01:33:47 +0000 This session brings together the key resources for HSC subjects, including those that are useful for studying Advanced and Extension courses. Full Article
ari Bayesian Quantile Regression with Mixed Discrete and Nonignorable Missing Covariates By projecteuclid.org Published On :: Thu, 19 Mar 2020 22:02 EDT Zhi-Qiang Wang, Nian-Sheng Tang. Source: Bayesian Analysis, Volume 15, Number 2, 579--604.Abstract: Bayesian inference on quantile regression (QR) model with mixed discrete and non-ignorable missing covariates is conducted by reformulating QR model as a hierarchical structure model. A probit regression model is adopted to specify missing covariate mechanism. A hybrid algorithm combining the Gibbs sampler and the Metropolis-Hastings algorithm is developed to simultaneously produce Bayesian estimates of unknown parameters and latent variables as well as their corresponding standard errors. Bayesian variable selection method is proposed to recognize significant covariates. A Bayesian local influence procedure is presented to assess the effect of minor perturbations to the data, priors and sampling distributions on posterior quantities of interest. Several simulation studies and an example are presented to illustrate the proposed methodologies. Full Article
ari Bayesian Sparse Multivariate Regression with Asymmetric Nonlocal Priors for Microbiome Data Analysis By projecteuclid.org Published On :: Thu, 19 Mar 2020 22:02 EDT Kurtis Shuler, Marilou Sison-Mangus, Juhee Lee. Source: Bayesian Analysis, Volume 15, Number 2, 559--578.Abstract: We propose a Bayesian sparse multivariate regression method to model the relationship between microbe abundance and environmental factors for microbiome data. We model abundance counts of operational taxonomic units (OTUs) with a negative binomial distribution and relate covariates to the counts through regression. Extending conventional nonlocal priors, we construct asymmetric nonlocal priors for regression coefficients to efficiently identify relevant covariates and their effect directions. We build a hierarchical model to facilitate pooling of information across OTUs that produces parsimonious results with improved accuracy. We present simulation studies that compare variable selection performance under the proposed model to those under Bayesian sparse regression models with asymmetric and symmetric local priors and two frequentist models. The simulations show the proposed model identifies important covariates and yields coefficient estimates with favorable accuracy compared with the alternatives. The proposed model is applied to analyze an ocean microbiome dataset collected over time to study the association of harmful algal bloom conditions with microbial communities. Full Article
ari A Loss-Based Prior for Variable Selection in Linear Regression Methods By projecteuclid.org Published On :: Thu, 19 Mar 2020 22:02 EDT Cristiano Villa, Jeong Eun Lee. Source: Bayesian Analysis, Volume 15, Number 2, 533--558.Abstract: In this work we propose a novel model prior for variable selection in linear regression. The idea is to determine the prior mass by considering the worth of each of the regression models, given the number of possible covariates under consideration. The worth of a model consists of the information loss and the loss due to model complexity. While the information loss is determined objectively, the loss expression due to model complexity is flexible and, the penalty on model size can be even customized to include some prior knowledge. Some versions of the loss-based prior are proposed and compared empirically. Through simulation studies and real data analyses, we compare the proposed prior to the Scott and Berger prior, for noninformative scenarios, and with the Beta-Binomial prior, for informative scenarios. Full Article
ari Joint Modeling of Longitudinal Relational Data and Exogenous Variables By projecteuclid.org Published On :: Thu, 19 Mar 2020 22:02 EDT Rajarshi Guhaniyogi, Abel Rodriguez. Source: Bayesian Analysis, Volume 15, Number 2, 477--503.Abstract: This article proposes a framework based on shared, time varying stochastic latent factor models for modeling relational data in which network and node-attributes co-evolve over time. Our proposed framework is flexible enough to handle both categorical and continuous attributes, allows us to estimate the dimension of the latent social space, and automatically yields Bayesian hypothesis tests for the association between network structure and nodal attributes. Additionally, the model is easy to compute and readily yields inference and prediction for missing link between nodes. We employ our model framework to study co-evolution of international relations between 22 countries and the country specific indicators over a period of 11 years. Full Article
ari Additive Multivariate Gaussian Processes for Joint Species Distribution Modeling with Heterogeneous Data By projecteuclid.org Published On :: Thu, 19 Mar 2020 22:02 EDT Jarno Vanhatalo, Marcelo Hartmann, Lari Veneranta. Source: Bayesian Analysis, Volume 15, Number 2, 415--447.Abstract: Species distribution models (SDM) are a key tool in ecology, conservation and management of natural resources. Two key components of the state-of-the-art SDMs are the description for species distribution response along environmental covariates and the spatial random effect that captures deviations from the distribution patterns explained by environmental covariates. Joint species distribution models (JSDMs) additionally include interspecific correlations which have been shown to improve their descriptive and predictive performance compared to single species models. However, current JSDMs are restricted to hierarchical generalized linear modeling framework. Their limitation is that parametric models have trouble in explaining changes in abundance due, for example, highly non-linear physical tolerance limits which is particularly important when predicting species distribution in new areas or under scenarios of environmental change. On the other hand, semi-parametric response functions have been shown to improve the predictive performance of SDMs in these tasks in single species models. Here, we propose JSDMs where the responses to environmental covariates are modeled with additive multivariate Gaussian processes coded as linear models of coregionalization. These allow inference for wide range of functional forms and interspecific correlations between the responses. We propose also an efficient approach for inference with Laplace approximation and parameterization of the interspecific covariance matrices on the Euclidean space. We demonstrate the benefits of our model with two small scale examples and one real world case study. We use cross-validation to compare the proposed model to analogous semi-parametric single species models and parametric single and joint species models in interpolation and extrapolation tasks. The proposed model outperforms the alternative models in all cases. We also show that the proposed model can be seen as an extension of the current state-of-the-art JSDMs to semi-parametric models. Full Article
ari Learning Semiparametric Regression with Missing Covariates Using Gaussian Process Models By projecteuclid.org Published On :: Mon, 13 Jan 2020 04:00 EST Abhishek Bishoyi, Xiaojing Wang, Dipak K. Dey. Source: Bayesian Analysis, Volume 15, Number 1, 215--239.Abstract: Missing data often appear as a practical problem while applying classical models in the statistical analysis. In this paper, we consider a semiparametric regression model in the presence of missing covariates for nonparametric components under a Bayesian framework. As it is known that Gaussian processes are a popular tool in nonparametric regression because of their flexibility and the fact that much of the ensuing computation is parametric Gaussian computation. However, in the absence of covariates, the most frequently used covariance functions of a Gaussian process will not be well defined. We propose an imputation method to solve this issue and perform our analysis using Bayesian inference, where we specify the objective priors on the parameters of Gaussian process models. Several simulations are conducted to illustrate effectiveness of our proposed method and further, our method is exemplified via two real datasets, one through Langmuir equation, commonly used in pharmacokinetic models, and another through Auto-mpg data taken from the StatLib library. Full Article
ari Bayesian Design of Experiments for Intractable Likelihood Models Using Coupled Auxiliary Models and Multivariate Emulation By projecteuclid.org Published On :: Mon, 13 Jan 2020 04:00 EST Antony Overstall, James McGree. Source: Bayesian Analysis, Volume 15, Number 1, 103--131.Abstract: A Bayesian design is given by maximising an expected utility over a design space. The utility is chosen to represent the aim of the experiment and its expectation is taken with respect to all unknowns: responses, parameters and/or models. Although straightforward in principle, there are several challenges to finding Bayesian designs in practice. Firstly, the utility and expected utility are rarely available in closed form and require approximation. Secondly, the design space can be of high-dimensionality. In the case of intractable likelihood models, these problems are compounded by the fact that the likelihood function, whose evaluation is required to approximate the expected utility, is not available in closed form. A strategy is proposed to find Bayesian designs for intractable likelihood models. It relies on the development of an automatic, auxiliary modelling approach, using multivariate Gaussian process emulators, to approximate the likelihood function. This is then combined with a copula-based approach to approximate the marginal likelihood (a quantity commonly required to evaluate many utility functions). These approximations are demonstrated on examples of stochastic process models involving experimental aims of both parameter estimation and model comparison. Full Article
ari The Bayesian Update: Variational Formulations and Gradient Flows By projecteuclid.org Published On :: Mon, 13 Jan 2020 04:00 EST Nicolas Garcia Trillos, Daniel Sanz-Alonso. Source: Bayesian Analysis, Volume 15, Number 1, 29--56.Abstract: The Bayesian update can be viewed as a variational problem by characterizing the posterior as the minimizer of a functional. The variational viewpoint is far from new and is at the heart of popular methods for posterior approximation. However, some of its consequences seem largely unexplored. We focus on the following one: defining the posterior as the minimizer of a functional gives a natural path towards the posterior by moving in the direction of steepest descent of the functional. This idea is made precise through the theory of gradient flows, allowing to bring new tools to the study of Bayesian models and algorithms. Since the posterior may be characterized as the minimizer of different functionals, several variational formulations may be considered. We study three of them and their three associated gradient flows. We show that, in all cases, the rate of convergence of the flows to the posterior can be bounded by the geodesic convexity of the functional to be minimized. Each gradient flow naturally suggests a nonlinear diffusion with the posterior as invariant distribution. These diffusions may be discretized to build proposals for Markov chain Monte Carlo (MCMC) algorithms. By construction, the diffusions are guaranteed to satisfy a certain optimality condition, and rates of convergence are given by the convexity of the functionals. We use this observation to propose a criterion for the choice of metric in Riemannian MCMC methods. Full Article
ari Implicit Copulas from Bayesian Regularized Regression Smoothers By projecteuclid.org Published On :: Thu, 19 Dec 2019 22:10 EST Nadja Klein, Michael Stanley Smith. Source: Bayesian Analysis, Volume 14, Number 4, 1143--1171.Abstract: We show how to extract the implicit copula of a response vector from a Bayesian regularized regression smoother with Gaussian disturbances. The copula can be used to compare smoothers that employ different shrinkage priors and function bases. We illustrate with three popular choices of shrinkage priors—a pairwise prior, the horseshoe prior and a g prior augmented with a point mass as employed for Bayesian variable selection—and both univariate and multivariate function bases. The implicit copulas are high-dimensional, have flexible dependence structures that are far from that of a Gaussian copula, and are unavailable in closed form. However, we show how they can be evaluated by first constructing a Gaussian copula conditional on the regularization parameters, and then integrating over these. Combined with non-parametric margins the regularized smoothers can be used to model the distribution of non-Gaussian univariate responses conditional on the covariates. Efficient Markov chain Monte Carlo schemes for evaluating the copula are given for this case. Using both simulated and real data, we show how such copula smoothing models can improve the quality of resulting function estimates and predictive distributions. Full Article
ari Variance Prior Forms for High-Dimensional Bayesian Variable Selection By projecteuclid.org Published On :: Thu, 19 Dec 2019 22:10 EST Gemma E. Moran, Veronika Ročková, Edward I. George. Source: Bayesian Analysis, Volume 14, Number 4, 1091--1119.Abstract: Consider the problem of high dimensional variable selection for the Gaussian linear model when the unknown error variance is also of interest. In this paper, we show that the use of conjugate shrinkage priors for Bayesian variable selection can have detrimental consequences for such variance estimation. Such priors are often motivated by the invariance argument of Jeffreys (1961). Revisiting this work, however, we highlight a caveat that Jeffreys himself noticed; namely that biased estimators can result from inducing dependence between parameters a priori . In a similar way, we show that conjugate priors for linear regression, which induce prior dependence, can lead to such underestimation in the Bayesian high-dimensional regression setting. Following Jeffreys, we recommend as a remedy to treat regression coefficients and the error variance as independent a priori . Using such an independence prior framework, we extend the Spike-and-Slab Lasso of Ročková and George (2018) to the unknown variance case. This extended procedure outperforms both the fixed variance approach and alternative penalized likelihood methods on simulated data. On the protein activity dataset of Clyde and Parmigiani (1998), the Spike-and-Slab Lasso with unknown variance achieves lower cross-validation error than alternative penalized likelihood methods, demonstrating the gains in predictive accuracy afforded by simultaneous error variance estimation. The unknown variance implementation of the Spike-and-Slab Lasso is provided in the publicly available R package SSLASSO (Ročková and Moran, 2017). Full Article
ari Jointly Robust Prior for Gaussian Stochastic Process in Emulation, Calibration and Variable Selection By projecteuclid.org Published On :: Tue, 11 Jun 2019 04:00 EDT Mengyang Gu. Source: Bayesian Analysis, Volume 14, Number 3, 877--905.Abstract: Gaussian stochastic process (GaSP) has been widely used in two fundamental problems in uncertainty quantification, namely the emulation and calibration of mathematical models. Some objective priors, such as the reference prior, are studied in the context of emulating (approximating) computationally expensive mathematical models. In this work, we introduce a new class of priors, called the jointly robust prior, for both the emulation and calibration. This prior is designed to maintain various advantages from the reference prior. In emulation, the jointly robust prior has an appropriate tail decay rate as the reference prior, and is computationally simpler than the reference prior in parameter estimation. Moreover, the marginal posterior mode estimation with the jointly robust prior can separate the influential and inert inputs in mathematical models, while the reference prior does not have this property. We establish the posterior propriety for a large class of priors in calibration, including the reference prior and jointly robust prior in general scenarios, but the jointly robust prior is preferred because the calibrated mathematical model typically predicts the reality well. The jointly robust prior is used as the default prior in two new R packages, called “RobustGaSP” and “RobustCalibration”, available on CRAN for emulation and calibration, respectively. Full Article
ari Semiparametric Multivariate and Multiple Change-Point Modeling By projecteuclid.org Published On :: Tue, 11 Jun 2019 04:00 EDT Stefano Peluso, Siddhartha Chib, Antonietta Mira. Source: Bayesian Analysis, Volume 14, Number 3, 727--751.Abstract: We develop a general Bayesian semiparametric change-point model in which separate groups of structural parameters (for example, location and dispersion parameters) can each follow a separate multiple change-point process, driven by time-dependent transition matrices among the latent regimes. The distribution of the observations within regimes is unknown and given by a Dirichlet process mixture prior. The properties of the proposed model are studied theoretically through the analysis of inter-arrival times and of the number of change-points in a given time interval. The prior-posterior analysis by Markov chain Monte Carlo techniques is developed on a forward-backward algorithm for sampling the various regime indicators. Analysis with simulated data under various scenarios and an application to short-term interest rates are used to show the generality and usefulness of the proposed model. Full Article
ari A Bayesian Nonparametric Multiple Testing Procedure for Comparing Several Treatments Against a Control By projecteuclid.org Published On :: Fri, 31 May 2019 22:05 EDT Luis Gutiérrez, Andrés F. Barrientos, Jorge González, Daniel Taylor-Rodríguez. Source: Bayesian Analysis, Volume 14, Number 2, 649--675.Abstract: We propose a Bayesian nonparametric strategy to test for differences between a control group and several treatment regimes. Most of the existing tests for this type of comparison are based on the differences between location parameters. In contrast, our approach identifies differences across the entire distribution, avoids strong modeling assumptions over the distributions for each treatment, and accounts for multiple testing through the prior distribution on the space of hypotheses. The proposal is compared to other commonly used hypothesis testing procedures under simulated scenarios. Two real applications are also analyzed with the proposed methodology. Full Article
ari Fast Model-Fitting of Bayesian Variable Selection Regression Using the Iterative Complex Factorization Algorithm By projecteuclid.org Published On :: Wed, 13 Mar 2019 22:00 EDT Quan Zhou, Yongtao Guan. Source: Bayesian Analysis, Volume 14, Number 2, 573--594.Abstract: Bayesian variable selection regression (BVSR) is able to jointly analyze genome-wide genetic datasets, but the slow computation via Markov chain Monte Carlo (MCMC) hampered its wide-spread usage. Here we present a novel iterative method to solve a special class of linear systems, which can increase the speed of the BVSR model-fitting tenfold. The iterative method hinges on the complex factorization of the sum of two matrices and the solution path resides in the complex domain (instead of the real domain). Compared to the Gauss-Seidel method, the complex factorization converges almost instantaneously and its error is several magnitude smaller than that of the Gauss-Seidel method. More importantly, the error is always within the pre-specified precision while the Gauss-Seidel method is not. For large problems with thousands of covariates, the complex factorization is 10–100 times faster than either the Gauss-Seidel method or the direct method via the Cholesky decomposition. In BVSR, one needs to repetitively solve large penalized regression systems whose design matrices only change slightly between adjacent MCMC steps. This slight change in design matrix enables the adaptation of the iterative complex factorization method. The computational innovation will facilitate the wide-spread use of BVSR in reanalyzing genome-wide association datasets. Full Article
ari Efficient Bayesian Regularization for Graphical Model Selection By projecteuclid.org Published On :: Wed, 13 Mar 2019 22:00 EDT Suprateek Kundu, Bani K. Mallick, Veera Baladandayuthapani. Source: Bayesian Analysis, Volume 14, Number 2, 449--476.Abstract: There has been an intense development in the Bayesian graphical model literature over the past decade; however, most of the existing methods are restricted to moderate dimensions. We propose a novel graphical model selection approach for large dimensional settings where the dimension increases with the sample size, by decoupling model fitting and covariance selection. First, a full model based on a complete graph is fit under a novel class of mixtures of inverse–Wishart priors, which induce shrinkage on the precision matrix under an equivalence with Cholesky-based regularization, while enabling conjugate updates. Subsequently, a post-fitting model selection step uses penalized joint credible regions to perform model selection. This allows our methods to be computationally feasible for large dimensional settings using a combination of straightforward Gibbs samplers and efficient post-fitting inferences. Theoretical guarantees in terms of selection consistency are also established. Simulations show that the proposed approach compares favorably with competing methods, both in terms of accuracy metrics and computation times. We apply this approach to a cancer genomics data example. Full Article
ari Variational Message Passing for Elaborate Response Regression Models By projecteuclid.org Published On :: Wed, 13 Mar 2019 22:00 EDT M. W. McLean, M. P. Wand. Source: Bayesian Analysis, Volume 14, Number 2, 371--398.Abstract: We build on recent work concerning message passing approaches to approximate fitting and inference for arbitrarily large regression models. The focus is on regression models where the response variable is modeled to have an elaborate distribution, which is loosely defined to mean a distribution that is more complicated than common distributions such as those in the Bernoulli, Poisson and Normal families. Examples of elaborate response families considered here are the Negative Binomial and $t$ families. Variational message passing is more challenging due to some of the conjugate exponential families being non-standard and numerical integration being needed. Nevertheless, a factor graph fragment approach means the requisite calculations only need to be done once for a particular elaborate response distribution family. Computer code can be compartmentalized, including that involving numerical integration. A major finding of this work is that the modularity of variational message passing extends to elaborate response regression models. Full Article
ari Separable covariance arrays via the Tucker product, with applications to multivariate relational data By projecteuclid.org Published On :: Wed, 13 Jun 2012 14:27 EDT Peter D. HoffSource: Bayesian Anal., Volume 6, Number 2, 179--196.Abstract: Modern datasets are often in the form of matrices or arrays, potentially having correlations along each set of data indices. For example, data involving repeated measurements of several variables over time may exhibit temporal correlation as well as correlation among the variables. A possible model for matrix-valued data is the class of matrix normal distributions, which is parametrized by two covariance matrices, one for each index set of the data. In this article we discuss an extension of the matrix normal model to accommodate multidimensional data arrays, or tensors. We show how a particular array-matrix product can be used to generate the class of array normal distributions having separable covariance structure. We derive some properties of these covariance structures and the corresponding array normal distributions, and show how the array-matrix product can be used to define a semi-conjugate prior distribution and calculate the corresponding posterior distribution. We illustrate the methodology in an analysis of multivariate longitudinal network data which take the form of a four-way array. Full Article
ari Conditionally Conjugate Mean-Field Variational Bayes for Logistic Models By projecteuclid.org Published On :: Fri, 11 Oct 2019 04:03 EDT Daniele Durante, Tommaso Rigon. Source: Statistical Science, Volume 34, Number 3, 472--485.Abstract: Variational Bayes (VB) is a common strategy for approximate Bayesian inference, but simple methods are only available for specific classes of models including, in particular, representations having conditionally conjugate constructions within an exponential family. Models with logit components are an apparently notable exception to this class, due to the absence of conjugacy among the logistic likelihood and the Gaussian priors for the coefficients in the linear predictor. To facilitate approximate inference within this widely used class of models, Jaakkola and Jordan ( Stat. Comput. 10 (2000) 25–37) proposed a simple variational approach which relies on a family of tangent quadratic lower bounds of the logistic log-likelihood, thus restoring conjugacy between these approximate bounds and the Gaussian priors. This strategy is still implemented successfully, but few attempts have been made to formally understand the reasons underlying its excellent performance. Following a review on VB for logistic models, we cover this gap by providing a formal connection between the above bound and a recent Pólya-gamma data augmentation for logistic regression. Such a result places the computational methods associated with the aforementioned bounds within the framework of variational inference for conditionally conjugate exponential family models, thereby allowing recent advances for this class to be inherited also by the methods relying on Jaakkola and Jordan ( Stat. Comput. 10 (2000) 25–37). Full Article
ari User-Friendly Covariance Estimation for Heavy-Tailed Distributions By projecteuclid.org Published On :: Fri, 11 Oct 2019 04:03 EDT Yuan Ke, Stanislav Minsker, Zhao Ren, Qiang Sun, Wen-Xin Zhou. Source: Statistical Science, Volume 34, Number 3, 454--471.Abstract: We provide a survey of recent results on covariance estimation for heavy-tailed distributions. By unifying ideas scattered in the literature, we propose user-friendly methods that facilitate practical implementation. Specifically, we introduce elementwise and spectrumwise truncation operators, as well as their $M$-estimator counterparts, to robustify the sample covariance matrix. Different from the classical notion of robustness that is characterized by the breakdown property, we focus on the tail robustness which is evidenced by the connection between nonasymptotic deviation and confidence level. The key insight is that estimators should adapt to the sample size, dimensionality and noise level to achieve optimal tradeoff between bias and robustness. Furthermore, to facilitate practical implementation, we propose data-driven procedures that automatically calibrate the tuning parameters. We demonstrate their applications to a series of structured models in high dimensions, including the bandable and low-rank covariance matrices and sparse precision matrices. Numerical studies lend strong support to the proposed methods. Full Article
ari ROS Regression: Integrating Regularization with Optimal Scaling Regression By projecteuclid.org Published On :: Fri, 11 Oct 2019 04:03 EDT Jacqueline J. Meulman, Anita J. van der Kooij, Kevin L. W. Duisters. Source: Statistical Science, Volume 34, Number 3, 361--390.Abstract: We present a methodology for multiple regression analysis that deals with categorical variables (possibly mixed with continuous ones), in combination with regularization, variable selection and high-dimensional data ($Pgg N$). Regularization and optimal scaling (OS) are two important extensions of ordinary least squares regression (OLS) that will be combined in this paper. There are two data analytic situations for which optimal scaling was developed. One is the analysis of categorical data, and the other the need for transformations because of nonlinear relationships between predictors and outcome. Optimal scaling of categorical data finds quantifications for the categories, both for the predictors and for the outcome variables, that are optimal for the regression model in the sense that they maximize the multiple correlation. When nonlinear relationships exist, nonlinear transformation of predictors and outcome maximize the multiple correlation in the same way. We will consider a variety of transformation types; typically we use step functions for categorical variables, and smooth (spline) functions for continuous variables. Both types of functions can be restricted to be monotonic, preserving the ordinal information in the data. In combination with optimal scaling, three popular regularization methods will be considered: Ridge regression, the Lasso and the Elastic Net. The resulting method will be called ROS Regression (Regularized Optimal Scaling Regression). The OS algorithm provides straightforward and efficient estimation of the regularized regression coefficients, automatically gives the Group Lasso and Blockwise Sparse Regression, and extends them by the possibility to maintain ordinal properties in the data. Extended examples are provided. Full Article
ari Two-Sample Instrumental Variable Analyses Using Heterogeneous Samples By projecteuclid.org Published On :: Thu, 18 Jul 2019 22:01 EDT Qingyuan Zhao, Jingshu Wang, Wes Spiller, Jack Bowden, Dylan S. Small. Source: Statistical Science, Volume 34, Number 2, 317--333.Abstract: Instrumental variable analysis is a widely used method to estimate causal effects in the presence of unmeasured confounding. When the instruments, exposure and outcome are not measured in the same sample, Angrist and Krueger ( J. Amer. Statist. Assoc. 87 (1992) 328–336) suggested to use two-sample instrumental variable (TSIV) estimators that use sample moments from an instrument-exposure sample and an instrument-outcome sample. However, this method is biased if the two samples are from heterogeneous populations so that the distributions of the instruments are different. In linear structural equation models, we derive a new class of TSIV estimators that are robust to heterogeneous samples under the key assumption that the structural relations in the two samples are the same. The widely used two-sample two-stage least squares estimator belongs to this class. It is generally not asymptotically efficient, although we find that it performs similarly to the optimal TSIV estimator in most practical situations. We then attempt to relax the linearity assumption. We find that, unlike one-sample analyses, the TSIV estimator is not robust to misspecified exposure model. Additionally, to nonparametrically identify the magnitude of the causal effect, the noise in the exposure must have the same distributions in the two samples. However, this assumption is in general untestable because the exposure is not observed in one sample. Nonetheless, we may still identify the sign of the causal effect in the absence of homogeneity of the noise. Full Article
ari Comment: Variational Autoencoders as Empirical Bayes By projecteuclid.org Published On :: Thu, 18 Jul 2019 22:01 EDT Yixin Wang, Andrew C. Miller, David M. Blei. Source: Statistical Science, Volume 34, Number 2, 229--233. Full Article
ari Jennifer Lopez Is Wearing the Hell Out of These $60 Sneakers—and You Can Buy Them at Zappos By www.health.com Published On :: Mon, 22 Jul 2019 17:56:20 -0400 The chic sneaks are part of Zappos' massive Cyber Monday sale. Full Article
ari Forget Black Booties, Amal Clooney and J.Lo Are Wearing This Weather-Resistant Boot Trend Instead By www.health.com Published On :: Tue, 10 Dec 2019 15:31:21 -0500 And it’s on sale at Nordstrom. Full Article
ari The Representation of Semantic Information Across Human Cerebral Cortex During Listening Versus Reading Is Invariant to Stimulus Modality By www.jneurosci.org Published On :: 2019-09-25 Fatma DenizSep 25, 2019; 39:7722-7736BehavioralSystemsCognitive Full Article
ari Daily Marijuana Use Is Not Associated with Brain Morphometric Measures in Adolescents or Adults By www.jneurosci.org Published On :: 2015-01-28 Barbara J. WeilandJan 28, 2015; 35:1505-1512Neurobiology of Disease Full Article
ari Circuit Stability to Perturbations Reveals Hidden Variability in the Balance of Intrinsic and Synaptic Conductances By www.jneurosci.org Published On :: 2020-04-15 Sebastian OnaschApr 15, 2020; 40:3186-3202Systems/Circuits Full Article
ari Significant Neuroanatomical Variation Among Domestic Dog Breeds By www.jneurosci.org Published On :: 2019-09-25 Erin E. HechtSep 25, 2019; 39:7748-7758BehavioralSystemsCognitive Full Article
ari Physiological Basis of Noise-Induced Hearing Loss in a Tympanal Ear By www.jneurosci.org Published On :: 2020-04-08 Ben WarrenApr 8, 2020; 40:3130-3140Neurobiology of Disease Full Article
ari Linearity and Normalization in Simple Cells of the Macaque Primary Visual Cortex By www.jneurosci.org Published On :: 1997-11-01 Matteo CarandiniNov 1, 1997; 17:8621-8644Articles Full Article
ari A novel slow (< 1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components By www.jneurosci.org Published On :: 1993-08-01 M SteriadeAug 1, 1993; 13:3252-3265Articles Full Article
ari Response of Neurons in the Lateral Intraparietal Area during a Combined Visual Discrimination Reaction Time Task By www.jneurosci.org Published On :: 2002-11-01 Jamie D. RoitmanNov 1, 2002; 22:9475-9489Behavioral Full Article