ari

The establishment of polarity by hippocampal neurons in culture

CG Dotti
Apr 1, 1988; 8:1454-1468
Articles




ari

The Variable Discharge of Cortical Neurons: Implications for Connectivity, Computation, and Information Coding

Michael N. Shadlen
May 15, 1998; 18:3870-3896
Articles




ari

The analysis of visual motion: a comparison of neuronal and psychophysical performance

KH Britten
Dec 1, 1992; 12:4745-4765
Articles




ari

Rassegna trimestrale BRI dicembre 2017: Un paradossale inasprimento ci riporta all'enigma del mercato obbligazionario

Italian translation of the BIS press release about the BIS Quarterly Review, December 2017




ari

Rassegna trimestrale BRI marzo 2018: La volatilità ritorna sulla scena in seguito alle tensioni dei mercati azionari

Italian translation of the BIS press release about the BIS Quarterly Review, March 2018




ari

Bigtech nel settore finanziario: opportunità e rischi

Italian version of BIS Press Release - Big tech in finance: opportunities and risks, 23 June 2019




ari

Las monedas digitales de bancos centrales podrían afectar a los pagos, la política monetaria y la estabilidad financiera

Spanish version of Press release about CPMI and the Markets Committee issuing a report on "Central bank digital currencies" (12 March 2018)




ari

Pablo Hernández de Cos, nombrado Presidente del Comité de Supervisión Bancaria de Basilea

Spanish version of Press release about Pablo Hernández de Cos appointed as Chairman of Basel Committee on Banking Supervision, 7 March 2019. Pablo Hernández de Cos, nombrado Presidente del Comité de Supervisión Bancaria de Basilea.




ari

A Scientist Salarian - :milkie:




ari

Wintrust Financial Corporation Announces Precautionary Decision to Help Achieve Community Health Objectives By Temporarily Closing Selected Branches

To view more press releases, please visit http://www.snl.com/irweblinkx/news.aspx?iid=1024452.




ari

New Engineering X Pandemic Preparedness programme to support global innovation and knowledge sharing




ari

How to Stay Safe on the Internet, Part 2: Take Canaries Into the Data Mine

More than any other factor, it is our asset that determines our adversary. For most of us, our asset is the corpus of sensitive personal details used for online transactions. This all comes down to how much data an adversary can glean from you, and how thoroughly it can analyze it. If your data passes through some software or hardware, its developer or maintainer enjoys some measure of control.




ari

Donations Dropped 11% at Nation's Biggest Charities Last Year




ari

Physiological Basis of Noise-Induced Hearing Loss in a Tympanal Ear

Acoustic overexposure, such as listening to loud music too often, results in noise-induced hearing loss. The pathologies of this prevalent sensory disorder begin within the ear at synapses of the primary auditory receptors, their postsynaptic partners and their supporting cells. The extent of noise-induced damage, however, is determined by overstimulation of primary auditory receptors, upstream of where the pathologies manifest. A systematic characterization of the electrophysiological function of the upstream primary auditory receptors is warranted to understand how noise exposure impacts on downstream targets, where the pathologies of hearing loss begin. Here, we used the experimentally-accessible locust ear (male, Schistocerca gregaria) to characterize a decrease in the auditory receptor's ability to respond to sound after noise exposure. Surprisingly, after noise exposure, the electrophysiological properties of the auditory receptors remain unchanged, despite a decrease in the ability to transduce sound. This auditory deficit stems from changes in a specialized receptor lymph that bathes the auditory receptors, revealing striking parallels with the mammalian auditory system.

SIGNIFICANCE STATEMENT Noise exposure is the largest preventable cause of hearing loss. It is the auditory receptors that bear the initial brunt of excessive acoustic stimulation, because they must convert excessive sound-induced movements into electrical signals, but remain functional afterward. Here we use the accessible ear of an invertebrate to, for the first time in any animal, characterize changes in auditory receptors after noise overexposure. We find that their decreased ability to transduce sound into electrical signals is, most probably, due to changes in supporting (scolopale) cells that maintain the ionic composition of the ear. An emerging doctrine in hearing research is that vertebrate primary auditory receptors are surprisingly robust, something that we show rings true for invertebrate ears too.




ari

The Right Temporoparietal Junction Is Causally Associated with Embodied Perspective-taking

A prominent theory claims that the right temporoparietal junction (rTPJ) is especially associated with embodied processes relevant to perspective-taking. In the present study, we use high-definition transcranial direct current stimulation to provide evidence that the rTPJ is causally associated with the embodied processes underpinning perspective-taking. Eighty-eight young human adults were stratified to receive either rTPJ or dorsomedial PFC anodal high-definition transcranial direct current stimulation in a sham-controlled, double-blind, repeated-measures design. Perspective-tracking (line-of-sight) and perspective-taking (embodied rotation) were assessed using a visuo-spatial perspective-taking task that required understanding what another person could see or how they see it, respectively. Embodied processing was manipulated by positioning the participant in a manner congruent or incongruent with the orientation of an avatar on the screen. As perspective-taking, but not perspective-tracking, is influenced by bodily position, this allows the investigation of the specific causal role for the rTPJ in embodied processing. Crucially, anodal stimulation to the rTPJ increased the effect of bodily position during perspective-taking, whereas no such effects were identified during perspective-tracking, thereby providing evidence for a causal role for the rTPJ in the embodied component of perspective-taking. Stimulation to the dorsomedial PFC had no effect on perspective-tracking or taking. Therefore, the present study provides support for theories postulating that the rTPJ is causally involved in embodied cognitive processing relevant to social functioning.

SIGNIFICANCE STATEMENT The ability to understand another's perspective is a fundamental component of social functioning. Adopting another perspective is thought to involve both embodied and nonembodied processes. The present study used high-definition transcranial direct current stimulation (HD-tDCS) and provided causal evidence that the right temporoparietal junction is involved specifically in the embodied component of perspective-taking. Specifically, HD-tDCS to the right temporoparietal junction, but not another hub of the social brain (dorsomedial PFC), increased the effect of body position during perspective-taking, but not tracking. This is the first causal evidence that HD-tDCS can modulate social embodied processing in a site-specific and task-specific manner.




ari

Noncoding Microdeletion in Mouse Hgf Disrupts Neural Crest Migration into the Stria Vascularis, Reduces the Endocochlear Potential, and Suggests the Neuropathology for Human Nonsyndromic Deafness DFNB39

Hepatocyte growth factor (HGF) is a multifunctional protein that signals through the MET receptor. HGF stimulates cell proliferation, cell dispersion, neuronal survival, and wound healing. In the inner ear, levels of HGF must be fine-tuned for normal hearing. In mice, a deficiency of HGF expression limited to the auditory system, or an overexpression of HGF, causes neurosensory deafness. In humans, noncoding variants in HGF are associated with nonsyndromic deafness DFNB39. However, the mechanism by which these noncoding variants causes deafness was unknown. Here, we reveal the cause of this deafness using a mouse model engineered with a noncoding intronic 10 bp deletion (del10) in Hgf. Male and female mice homozygous for del10 exhibit moderate-to-profound hearing loss at 4 weeks of age as measured by tone burst auditory brainstem responses. The wild type (WT) 80 mV endocochlear potential was significantly reduced in homozygous del10 mice compared with WT littermates. In normal cochlea, endocochlear potentials are dependent on ion homeostasis mediated by the stria vascularis (SV). Previous studies showed that developmental incorporation of neural crest cells into the SV depends on signaling from HGF/MET. We show by immunohistochemistry that, in del10 homozygotes, neural crest cells fail to infiltrate the developing SV intermediate layer. Phenotyping and RNAseq analyses reveal no other significant abnormalities in other tissues. We conclude that, in the inner ear, the noncoding del10 mutation in Hgf leads to developmental defects of the SV and consequently dysfunctional ion homeostasis and a reduction in the EP, recapitulating human DFNB39 nonsyndromic deafness.

SIGNIFICANCE STATEMENT Hereditary deafness is a common, clinically and genetically heterogeneous neurosensory disorder. Previously, we reported that human deafness DFNB39 is associated with noncoding variants in the 3'UTR of a short isoform of HGF encoding hepatocyte growth factor. For normal hearing, HGF levels must be fine-tuned as an excess or deficiency of HGF cause deafness in mouse. Using a Hgf mutant mouse with a small 10 bp deletion recapitulating a human DFNB39 noncoding variant, we demonstrate that neural crest cells fail to migrate into the stria vascularis intermediate layer, resulting in a significantly reduced endocochlear potential, the driving force for sound transduction by inner ear hair cells. HGF-associated deafness is a neurocristopathy but, unlike many other neurocristopathies, it is not syndromic.




ari

Neural Evidence for the Prediction of Animacy Features during Language Comprehension: Evidence from MEG and EEG Representational Similarity Analysis

It has been proposed that people can generate probabilistic predictions at multiple levels of representation during language comprehension. We used magnetoencephalography (MEG) and electroencephalography (EEG), in combination with representational similarity analysis, to seek neural evidence for the prediction of animacy features. In two studies, MEG and EEG activity was measured as human participants (both sexes) read three-sentence scenarios. Verbs in the final sentences constrained for either animate or inanimate semantic features of upcoming nouns, and the broader discourse context constrained for either a specific noun or for multiple nouns belonging to the same animacy category. We quantified the similarity between spatial patterns of brain activity following the verbs until just before the presentation of the nouns. The MEG and EEG datasets revealed converging evidence that the similarity between spatial patterns of neural activity following animate-constraining verbs was greater than following inanimate-constraining verbs. This effect could not be explained by lexical-semantic processing of the verbs themselves. We therefore suggest that it reflected the inherent difference in the semantic similarity structure of the predicted animate and inanimate nouns. Moreover, the effect was present regardless of whether a specific word could be predicted, providing strong evidence for the prediction of coarse-grained semantic features that goes beyond the prediction of individual words.

SIGNIFICANCE STATEMENT Language inputs unfold very quickly during real-time communication. By predicting ahead, we can give our brains a "head start," so that language comprehension is faster and more efficient. Although most contexts do not constrain strongly for a specific word, they do allow us to predict some upcoming information. For example, following the context of "they cautioned the...," we can predict that the next word will be animate rather than inanimate (we can caution a person, but not an object). Here, we used EEG and MEG techniques to show that the brain is able to use these contextual constraints to predict the animacy of upcoming words during sentence comprehension, and that these predictions are associated with specific spatial patterns of neural activity.




ari

Circuit Stability to Perturbations Reveals Hidden Variability in the Balance of Intrinsic and Synaptic Conductances

Neurons and circuits each with a distinct balance of intrinsic and synaptic conductances can generate similar behavior but sometimes respond very differently to perturbation. Examining a large family of circuit models with non-identical neurons and synapses underlying rhythmic behavior, we analyzed the circuits' response to modifications in single and multiple intrinsic conductances in the individual neurons. To summarize these changes over the entire range of perturbed parameters, we quantified circuit output by defining a global stability measure. Using this measure, we identified specific subsets of conductances that when perturbed generate similar behavior in diverse individuals of the population. Our unbiased clustering analysis enabled us to quantify circuit stability when simultaneously perturbing multiple conductances as a nonlinear combination of single conductance perturbations. This revealed surprising conductance combinations that can predict the response to specific perturbations, even when the remaining intrinsic and synaptic conductances are unknown. Therefore, our approach can expose hidden variability in the balance of intrinsic and synaptic conductances of the same neurons across different versions of the same circuit solely from the circuit response to perturbations. Developed for a specific family of model circuits, our quantitative approach to characterizing high-dimensional degenerate systems provides a conceptual and analytic framework to guide future theoretical and experimental studies on degeneracy and robustness.

SIGNIFICANCE STATEMENT Neural circuits can generate nearly identical behavior despite neuronal and synaptic parameters varying several-fold between individual instantiations. Yet, when these parameters are perturbed through channel deletions and mutations or environmental disturbances, seemingly identical circuits can respond very differently. What distinguishes inconsequential perturbations that barely alter circuit behavior from disruptive perturbations that drastically disturb circuit output remains unclear. Focusing on a family of rhythmic circuits, we propose a computational approach to reveal hidden variability in the intrinsic and synaptic conductances in seemingly identical circuits based solely on circuit output to different perturbations. We uncover specific conductance combinations that work similarly to maintain stability and predict the effect of changing multiple conductances simultaneously, which often results from neuromodulation or injury.




ari

Cortical Tonotopic Map Changes in Humans Are Larger in Hearing Loss Than in Additional Tinnitus

Neural plasticity due to hearing loss results in tonotopic map changes. Several studies have suggested a relation between hearing loss-induced tonotopic reorganization and tinnitus. This large fMRI study on humans was intended to clarify the relations between hearing loss, tinnitus, and tonotopic reorganization. To determine the differential effect of hearing loss and tinnitus, both male and female participants with bilateral high-frequency hearing loss, with and without tinnitus, and a control group were included. In a total of 90 participants, bilateral cortical responses to sound stimulation were measured with loudness-matched pure-tone stimuli (0.25-8 kHz). In the bilateral auditory cortices, the high-frequency sound-evoked activation level was higher in both hearing-impaired participant groups, compared with the control group. This was most prominent in the hearing loss group without tinnitus. Similarly, the tonotopic maps for the hearing loss without tinnitus group were significantly different from the controls, whereas the maps of those with tinnitus were not. These results show that higher response amplitudes and map reorganization are a characteristic of hearing loss, not of tinnitus. Both tonotopic maps and response amplitudes of tinnitus participants appear intermediate to the controls and hearing loss without tinnitus group. This observation suggests a connection between tinnitus and an incomplete form of central compensation to hearing loss, rather than excessive adaptation. One implication of this may be that treatments for tinnitus shift their focus toward enhancing the cortical plasticity, instead of reversing it.

SIGNIFICANCE STATEMENT Tinnitus, a common and potentially devastating condition, is the presence of a "phantom" sound that often accompanies hearing loss. Hearing loss is known to induce plastic changes in cortical and subcortical areas. Although plasticity is a valuable trait that allows the human brain to rewire and recover from injury and sensory deprivation, it can lead to tinnitus as an unwanted side effect. In this large fMRI study, we provide evidence that tinnitus is related to a more conservative form of reorganization than in hearing loss without tinnitus. This result contrasts with the previous notion that tinnitus is related to excessive reorganization. As a consequence, treatments for tinnitus may need to enhance the cortical plasticity, rather than reverse it.




ari

Coding of Navigational Distance and Functional Constraint of Boundaries in the Human Scene-Selective Cortex

For visually guided navigation, the use of environmental cues is essential. Particularly, detecting local boundaries that impose limits to locomotion and estimating their location is crucial. In a series of three fMRI experiments, we investigated whether there is a neural coding of navigational distance in the human visual cortex (both female and male). We used virtual reality software to systematically manipulate the distance from a viewer perspective to different types of a boundary. Using a multivoxel pattern classification employing a linear support vector machine, we found that the occipital place area (OPA) is sensitive to the navigational distance restricted by the transparent glass wall. Further, the OPA was sensitive to a non-crossable boundary only, suggesting an importance of the functional constraint of a boundary. Together, we propose the OPA as a perceptual source of external environmental features relevant for navigation.

SIGNIFICANCE STATEMENT One of major goals in cognitive neuroscience has been to understand the nature of visual scene representation in human ventral visual cortex. An aspect of scene perception that has been overlooked despite its ecological importance is the analysis of space for navigation. One of critical computation necessary for navigation is coding of distance to environmental boundaries that impose limit on navigator's movements. This paper reports the first empirical evidence for coding of navigational distance in the human visual cortex and its striking sensitivity to functional constraint of environmental boundaries. Such finding links the paper to previous neurological and behavioral works that emphasized the distance to boundaries as a crucial geometric property for reorientation behavior of children and other animal species.




ari

The Firing of Theta State-Related Septal Cholinergic Neurons Disrupt Hippocampal Ripple Oscillations via Muscarinic Receptors

The septo-hippocampal cholinergic system is critical for hippocampal learning and memory. However, a quantitative description of the in vivo firing patterns and physiological function of medial septal (MS) cholinergic neurons is still missing. In this study, we combined optogenetics with multichannel in vivo recording and recorded MS cholinergic neuron firings in freely behaving male mice for 5.5–72 h. We found that their firing activities were highly correlated with hippocampal theta states. MS cholinergic neurons were highly active during theta-dominant epochs, such as active exploration and rapid eye movement sleep, but almost silent during non-theta epochs, such as slow-wave sleep (SWS). Interestingly, optogenetic activation of these MS cholinergic neurons during SWS suppressed CA1 ripple oscillations. This suppression could be rescued by muscarinic M2 or M4 receptor antagonists. These results suggest the following important physiological function of MS cholinergic neurons: maintaining high hippocampal acetylcholine level by persistent firing during theta epochs, consequently suppressing ripples and allowing theta oscillations to dominate.

SIGNIFICANCE STATEMENT The major source of acetylcholine in the hippocampus comes from the medial septum. Early experiments found that lesions to the MS result in the disappearance of hippocampal theta oscillation, which leads to speculation that the septo-hippocampal cholinergic projection contributing to theta oscillation. In this article, by long-term recording of MS cholinergic neurons, we found that they show a theta state-related firing pattern. However, optogenetically activating these neurons shows little effect on theta rhythm in the hippocampus. Instead, we found that activating MS cholinergic neurons during slow-wave sleep could suppress hippocampal ripple oscillations. This suppression is mediated by muscarinic M2 and M4 receptors.




ari

Quinoa breaches the boundaries of outer space

It’s been around for thousands of years; the UN General Assembly named an international year for it in 2013; and now it has been sent into space. Quinoa is a superfood in more ways than one. It is a good source of protein, the highest of all the whole grains; and its edible seeds provide all of the essential amino acids the body [...]




ari

Codex Alimentarius: protecting health, facilitating trade

Eradicating world hunger can only be achieved if food is safe, nutritious and of good quality. Eating unsafe food increases the chances of contracting diseases and can be, in some cases, deadly. Unsafe food can also lead to rejections causing food to be wasted, which then impacts on food security. One thing is certain: there can be no food security [...]




ari

Rising popularity of email newsletters across the Organization

FAO email newsletters have sparked great interest across the Organization in the last few years, with over 2 million emails sent out in 2018 and over 3 million last year.

Corporate newsletters cover approximately 100 [...]




ari

(2/08/07) Charity Begins at Home




ari

A Torpedo Malfunction Threatens to Destroy a U.S. Submarine

The USS Silversides is patrolling the Pacific during WWII when it finds itself in a terrifying situation: one of its torpedoes has jammed




ari

The First Submarine to Launch Rockets From Its Deck

It's June 1945 and the USS Barb has just launched an unprecedented attack on the factories of the Japanese island of Shari




ari

Rare WWII Submarine Dog Fight Turns Deadly

On February 9, 1945, two submarines are poised to engage in a direct, underwater confrontation. It's the first - and only - underwater submarine dog fight




ari

Lego Pieces Could Last for 1,300 Years in Marine Environments

The extent of the toy’s durability came as a 'surprise' to researchers behind a new study




ari

Wreck of Cold War-Era Submarine Found Off the Coast of Oahu

After 62 years underwater, the USS "Stickleback"—the casualty of an accidental friendly collision—has finally been found




ari

Ten Apple Varieties Once Thought Extinct Rediscovered in Pacific Northwest

The "lost" apples will help restore genetic, culinary diversity to a crop North America once produced in astonishing variety




ari

Bald Eagles Found Nesting in Arizona Saguaro Cactus for First Time in Decades

The prickly perch is an exciting sign of success for the birds, which came off the endangered species list in 2007




ari

'Disappearing' Exoplanet Might Not Have Been a Planet After All

Study suggests alleged exoplanet may have been a cloud of asteroid debris




ari

Why the Anne Frank House Is Reimagining the Young Diarist as a Vlogger

The controversial series stems from the museum's desire to reach a younger generation by telling history in new ways




ari

Arts and Crafts Are Experiencing Surge in Popularity Amid COVID-19

Stay-at-home orders have inspired those with ample free time to pick up hands-on projects




ari

Join a Smithsonian Entomologist and the Monterey Bay Aquarium for This Beetle-Centric 'Animal Crossing' Livestream

Airing on the aquarium's Twitch channel at 4 p.m. EST today, the two-hour session will focus on the video game's diverse insect population




ari

Recall opponents seek to drop court fight: Stand Tall With Mike withdraws its appeal, gearing up for possible recall election




ari

Blue Insularis 5

The Blue Insularis is a venomous pit viper species commonly found in Indonesia. This is a photo of a specimen feeding on a frog, and with another snake close by trying to take a bite.




ari

'A warming feeling' : Alberta veterinarian granted travel exemption to practice in the N.W.T. 

The government of the Northwest Territories has made an exemption on border restrictions for a veterinarian from Alberta to practice in the territory, after he received public and political support.



  • News/Canada/North

ari

Two Ontario cities sell their electric utilities as Saint John quashes the idea

Days before Saint John council passed a motion to ensure Saint John Energy could not be sold, the Ontario cities of Peterborough and Orillia both got approval to sell their municipally owned power distribution companies.



  • News/Canada/New Brunswick

ari

Man pleads guilty to violating ban on travel to N.B., to be flown back to Ontario

A 19-year-old man was flown back to Ontario after he pleaded guilty to violating New Brunswick’s emergency measures order prohibiting visitors from entering the province.



  • News/Canada/New Brunswick

ari

No magic bullet: Former head of AIDS Thunder Bay talks about similarities between HIV, COVID-19

A virus that spreads fear and stigma, as well as disease. It’s the story of HIV/AIDS as well as COVID-19. The former executive director of AIDS Thunder Bay reflects on the similarities he sees between HIV 35 years ago, and the coronavirus now.



  • News/Canada/Thunder Bay

ari

Mount Pearl entrepreneur cast into limbo by pandemic is symbolic of soaring jobless rate

Newfoundland and Labrador's already fragile economy suffered another gut-punch in April, with Statistics Canada reporting Friday that 29,000 jobs were lost in April alone.



  • News/Canada/Nfld. & Labrador

ari

Marine Atlantic cancels Argentia run while provincial ferries look to ease restrictions

Demand for service is not expected to recover in the coming weeks, says Marine Atlantic.



  • News/Canada/Nfld. & Labrador

ari

3 long-term residents in Sault Ste. Marie test positive for COVID-19

Three residents at a long-term care facility in Sault Ste. Marie have tested positive for COVID-19, prompting officials to declare an outbreak at Extendicare Maple View.



  • News/Canada/Sudbury

ari

Incidence of Parksinson's higher in miners who inhaled McIntyre Powder, Ontario WSIB study concludes

A new study facilitated by the Workplace Safety and Insurance Board of Ontario states miners who were forced to inhale an aluminum powder were found to have a higher risk of Parkinson’s disease.



  • News/Canada/Sudbury

ari

Chance for northern Ontario business owners to share concerns with federal economic development minister

Business owners throughout northern Ontario will have the chance Friday morning to speak directly with federal Economic Development Minister Mélanie Joly.



  • News/Canada/Sudbury

ari

COVID-19 by the numbers in northeastern Ontario

There are now 176 confirmed cases of COVID-19 in northeastern Ontario, and seven deaths.



  • News/Canada/Sudbury

ari

Marian Anderson in Performance: A Visual (and Musical) Story

The following is a post by Kristi Finefield, Reference Specialist in the Prints & Photographs Division, and member of the Picture This blog team. Images have a way of opening our eyes to new aspects of a well-known story. When I think of singer Marian Anderson, an image of her performing at the Lincoln Memorial […]




ari

Best of the National Book Festival: Karin Slaughter, 2010

Our ongoing celebration of the Library of Congress National Book Festival continues with crime and mystery writer Karin Slaughter discussing "Broken," part of her Will Trent series, on the Fiction & Mystery stage at the 2010 Festival.