ana

Injury prediction analysis of college basketball players based on FMS scores

It is inevitable for basketball players to have physical injury in sports. Reducing basketball injury is one of the main aims of the study of basketball. In view of this, this paper proposes a monocular vision and FMS injury prediction model for basketball players. Aiming at the limitations of traditional FMS testing methods, this study introduces intelligent machine learning methods. In this study, random forest algorithm was introduced into OpenPose network to improve model node occlusion, missed detection or false detection. In addition, to reduce the computational load of the network, the original OpenPose network was replaced by a lightweight OpenPose network. The experimental results show that the average processing time of the proposed model is about 90 ms, and the output video frame rate is 10 frames per second, which can meet the real-time requirements. This study analysed the students participating in the basketball league of the College of Sports Science of Nantong University, and the results confirmed the accuracy of the injury prediction of college basketball players based on FMS scores. It is hoped that this study can provide some reference for the research of injury prevention of basketball players.




ana

International Journal of Agile Systems and Management




ana

Insights from bibliometric analysis: exploring digital payments future research agendas

Along with amazing advancements in the field of digital payments, this article seeks to provide a summary of research undertaken over the last four decades and to suggest areas in need of additional study. This study employs a two-pronged technique for analysing its data. The first is concerned with performance analysis, and the second with science mapping. The study uses the apps VOS viewer and R-studio to do bibliometric data analysis. From 1982 until May 2022, the most trustworthy database, Scopus, is used to compile a database of 923 publications The findings of this study identify the scope of current research interest, which is explored with critical contributions from a variety of authors, journals, countries, affiliations, keyword analysis, citation analysis, co-citation analysis, and bibliometric coupling, as well as a potential research direction for further investigation in this emerging field.




ana

Business intelligence in human management strategies during COVID-19

The spread of COVID-19 results in disruption, uncertainty, complexity, and ambiguity in all businesses. Employees help companies achieve their aims. To manage human resources sustainably, analyse organisational strategy. This thorough research study attempts to find previously unidentified challenges, cutting-edge techniques, and surprising decisions in human resource management outside of healthcare organisations during the COVID-19 pandemic. The narrative review examined corporate human resource management measures to mitigate COVID-19. Fifteen publications were selected for the study after removing duplicates and applying the inclusion and exclusion criteria. This article examines HR's COVID-19 response. Human resource management's response to economic and financial crises has been extensively studied, but the COVID-19 pandemic has not. This paper reviewed the literature to reach its goal. The results followed the AMO framework for human resource policies and procedures and the HR management system. This document suggests COVID-19 pandemic-related changes to human resource management system architecture, policies, and practises. The study created a COVID-19 pandemic human resource management framework based on the literature. The COVID-19 pandemic had several negative effects, including social and behavioural changes, economic shock, and organisational disruption.




ana

The role of mediator variable in digital payments: a structural equation model analysis

The proliferation of technology and communication has resulted in increased digitalisation that includes digital payments. This study is aimed at unravelling the relationship between awareness of individuals about the digital payment system and customer satisfaction with digital payments. Two models were developed in this study. First model considers awareness → usage pattern → customer satisfaction. Second model considers usage pattern → customer satisfaction → perception of digital payments. These two alternative models were tested by collecting data from 507 respondents in southern India was analysed using the structural equation modelling. The results indicate that usage pattern acted as a mediator between awareness and satisfaction, and satisfaction acted as a mediator between usage pattern and consumers' perception of digital payments. The implications for theory and practice are discussed.




ana

Access controllable multi-blockchain platform for enterprise R&D data management

In the era of big data, enterprises have accumulated a large amount of research and development data. Effective management of their precipitated data and safe sharing of data can improve the collaboration efficiency of research and development personnel, which has become the top priority of enterprise development. This paper proposes to use blockchain technology to assist the collaboration efficiency of enterprise R&D personnel. Firstly, the multi-chain blockchain platform is used to realise the data sharing of internal data of enterprise R&D data department, project internal data and enterprise data centre, and then the process of construction of multi-chain structure and data sharing is analysed. Finally, searchable encryption was introduced to achieve data retrieval and secure sharing, improving the collaboration efficiency of enterprise research and development personnel and maximising the value of data assets. Through the experimental verification, the multi-chain structure improves the collaboration efficiency of researchers and data security sharing.




ana

Human resource management and organisation decision optimisation based on data mining

The utilisation of big data presents significant opportunities for businesses to create value and gain a competitive edge. This capability enables firms to anticipate and uncover information quickly and intelligently. The author introduces a human resource scheduling optimisation strategy using a parallel network fusion structure model. The author's approach involves designing a set of network structures based on parallel networks and streaming media, enabling the macro implementation of the enterprise parallel network fusion structure. Furthermore, the author proposes a human resource scheduling optimisation method based on a parallel deep learning network fusion structure. It combines convolutional neural networks and transformer networks to fuse streaming media features, thereby achieving comprehensive identification of the effectiveness of the current human resource scheduling in enterprises. The result shows that the macro and deep learning methods achieve a recognition rate of 87.53%, making it feasible to assess the current state of human resource scheduling in enterprises.




ana

An empirical study on construction emergency disaster management and risk assessment in shield tunnel construction project with big data analysis

Emergency disaster management presents substantial risks and obstacles to shield tunnel building projects, particularly in the event of water leakage accidents. Contemporary water leak detection is critical for guaranteeing safety by reducing the likelihood of disasters and the severity of any resulting damages. However, it can be difficult. Deep learning models can analyse images taken inside the tunnel to look for signs of water damage. This study introduces a unique strategy that employs deep learning techniques, generative adversarial networks (GAN) with long short-term memory (LSTM) for water leakage detection i shield tunnel construction (WLD-STC) to conduct classification and prediction tasks on the massive image dataset. The results demonstrate that for identifying and analysing water leakage episodes during shield tunnel construction, the WLD-STC strategy using LSTM-based GAN networks outperformed other methods, particularly on huge data.




ana

Natural language processing-based machine learning psychological emotion analysis method

To achieve psychological and emotional analysis of massive internet chats, researchers have used statistical methods, machine learning, and neural networks to analyse the dynamic tendencies of texts dynamically. For long readers, the author first compares and explores the differences between the two psychoanalysis algorithms based on the emotion dictionary and machine learning for simple sentences, then studies the expansion algorithm of the emotion dictionary, and finally proposes an extended text psychoanalysis algorithm based on conditional random field. According to the experimental results, the mental dictionary's accuracy, recall, and F-score based on the cognitive understanding of each additional ten words were calculated. The optimisation decreased, and the memory and F-score improved. An <i>F</i>-value greater than 1, which is the most effective indicator for evaluating the effectiveness of a mental analysis problem, can better demonstrate that the algorithm is adaptive in the literature dictionary. It has been proven that this scheme can achieve good results in analysing emotional tendencies and has higher efficiency than ordinary weight-based psychological sentiment analysis algorithms.




ana

Application of AI intelligent technology in natural resource planning and management

This article studies the application of artificial intelligence technology in natural resource planning and management. This article first introduces the background of NR and AI intelligent technology, then conducts academic research and summary on NR planning management and AI intelligent technology. Then, an algorithm model based on multi-objective intelligent planning algorithm is established. Finally, simulation experiments are conducted, and experiments summary and discussion are provided. The experimental results show that the average efficiency value of the four stages of NR planning and management before use is 5.25, and the average efficiency value of the four stages of NR planning and management after use is 7. The difference in the average efficiency value before and after use is 1.75. It can be seen that the use of AI intelligent technology can effectively improve the efficiency of natural resource planning and management.




ana

Artificial neural networks for demand forecasting of the Canadian forest products industry

The supply chains of the Canadian forest products industry are largely dependent on accurate demand forecasts. The USA is the major export market for the Canadian forest products industry, although some Canadian provinces are also exporting forest products to other global markets. However, it is very difficult for each province to develop accurate demand forecasts, given the number of factors determining the demand of the forest products in the global markets. We develop multi-layer feed-forward artificial neural network (ANN) models for demand forecasting of the Canadian forest products industry. We find that the ANN models have lower prediction errors and higher threshold statistics as compared to that of the traditional models for predicting the demand of the Canadian forest products. Accurate future demand forecasts will not only help in improving the short-term profitability of the Canadian forest products industry, but also their long-term competitiveness in the global markets.




ana

International Journal of Technology Management




ana

Loan delinquency analysis using predictive model

The research uses a machine learning approach to appraising the validity of customer aptness for a loan. Banks and non-banking financial companies (NBFC) face significant non-performing assets (NPAs) threats because of the non-payment of loans. In this study, the data is collected from Kaggle and tested using various machine learning models to determine if the borrower can repay its loan. In addition, we analysed the performance of the models [K-nearest neighbours (K-NN), logistic regression, support vector machines (SVM), decision tree, naive Bayes and neural networks]. The purpose is to support decisions that are based not on subjective aspects but objective data analysis. This work aims to analyse how objective factors influence borrowers to default loans, identify the leading causes contributing to a borrower's default loan. The results show that the decision tree classifier gives the best result, with a recall rate of 0.0885 and a false- negative rate of 5.4%.




ana

Why students need to learn biomimicry rather than select a correct answer? A neurological explanation

For a long time, high school students have been forced to practice selecting correct answers on college scholastic ability tests. Recently, it has been suggested that schools introduce biomimicry activities for STEM education to develop students' 21st century competency. However, there have been arguments about which system is more appropriate in terms of enhancing a student's competency development. Therefore, we evaluated neurological evidence of students' competency using fMRI scans taken during the selecting a correct answer for a biology question and during a biomimicry activity. Results showed that the repetitive practice of selecting correct responses limited a student's neurological activities to the brain network of the visual cortex and the front-parietal working memory cortex. However, the biomimicry activity simultaneously involved diverse prefrontal, parietal and temporal cortexes, and the putamen, limbic and cerebellum lobes. Therefore, this study proposes that the biomimicry activities could stimulate their coordinated brain development.




ana

Role of career adaptability and optimism in Indian economy: a dual mediation analysis

The face of the hospitality sector in India is continuously changing and in times of career transitiveness, it is important to know the factors that support a successful career. The current research aims to explore the relationship between career planning, employee optimism, career adaptability and career satisfaction in the Indian hospitality sector. The study included 283 employees from Indian hospitality sector. Additionally, the study used SEM and bootstrap method to measure the dual mediating relationship between career planning, employee optimism dimensions, career adaptability dimensions, and career satisfaction in Indian setting. The results indicated that optimism dimensions and career adaptability dimensions partially mediate the relationship between career planning and career satisfaction in Indian hospitality sector. The study suggests useful implications for academia and industrial purpose. The limitations and future research avenues have been discussed. The study would contribute to the sparse literature on employee optimism, career planning, career adaptability and subjective career success. It would contribute to the social cognitive career theory (SCCT).




ana

Introducing Text Analytics as a Graduate Business School Course




ana

Open-Source ERP: Is It Ripe for Use in Teaching Supply Chain Management?




ana

A Hybrid Approach for Selecting a Course Management System: A Case Study




ana

The Study of Motivation in Library and Information Management Education: Qualitative and Quantitative Research




ana

A Critical Analysis of Active Learning and an Alternative Pedagogical Framework for Introductory Information Systems Courses




ana

A Cross-Case Analysis of the Use of Web-Based ePortfolios in Higher Education




ana

Recognizing and Managing Complexity: Teaching Advanced Programming Concepts and Techniques Using the Zebra Puzzle

Teaching advanced programming can be a challenge, especially when the students are pursuing different majors with diverse analytical and problem-solving capabilities. The purpose of this paper is to explore the efficacy of using a particular problem as a vehicle for imparting a broad set of programming concepts and problem-solving techniques. We present a classic brain teaser that is used to communicate and demonstrate advanced software development concepts and techniques. Our results show that students with varied academic experiences and goals, assuming at least one procedural/structured programming pre-requisite, can benefit from and also be challenged by such an exercise. Although this problem has been used by others in the classroom, we believe that our use of this problem in imparting such a broad range of topics to a diverse student population is unique.




ana

MOOC Success Factors: Proposal of an Analysis Framework

Aim/Purpose: From an idea of lifelong-learning-for-all to a phenomenon affecting higher education, Massive Open Online Courses (MOOCs) can be the next step to a truly universal education. Indeed, MOOC enrolment rates can be astoundingly high; still, their completion rates are frequently disappointingly low. Nevertheless, as courses, the participants’ enrolment and learning within the MOOCs must be considered when assessing their success. In this paper, the authors’ aim is to reflect on what makes a MOOC successful to propose an analysis framework of MOOC success factors. Background: A literature review was conducted to identify reported MOOC success factors and to propose an analysis framework. Methodology: This literature-based framework was tested against data of a specific MOOC and refined, within a qualitative interpretivist methodology. The data were collected from the ‘As alterações climáticas nos média escolares - Clima@EduMedia’ course, which was developed by the project Clima@EduMedia and was submitted to content analysis. This MOOC aimed to support science and school media teachers in the use of media to teach climate change Contribution: By proposing a MOOC success factors framework the authors are attempting to contribute to fill in a literature gap regarding what concerns criteria to consider a specific MOOC successful. Findings: This work major finding is a literature-based and empirically-refined MOOC success factors analysis framework. Recommendations for Practitioners: The proposed framework is also a set of best practices relevant to MOOC developers, particularly when targeting teachers as potential participants. Recommendation for Researchers: This work’s relevance is also based on its contribution to increasing empirical research on MOOCs. Impact on Society: By providing a proposal of a framework on factors to make a MOOC successful, the authors hope to contribute to the quality of MOOCs. Future Research: Future work should refine further the proposed framework, by in testing it against data collected in other MOOCs.




ana

Concept–based Analysis of Java Programming Errors among Low, Average and High Achieving Novice Programmers

Aim/Purpose: The study examined types of errors made by novice programmers in different Java concepts with students of different ability levels in programming as well as the perceived causes of such errors. Background: To improve code writing and debugging skills, efforts have been made to taxonomize programming errors and their causes. However, most of the studies employed omnibus approaches, i.e. without consideration of different programing concepts and ability levels of the trainee programmers. Such concepts and ability specific errors identification and classifications are needed to advance appropriate intervention strategy. Methodology: A sequential exploratory mixed method design was adopted. The sample was an intact class of 124 Computer Science and Engineering undergraduate students grouped into three achievement levels based on first semester performance in a Java programming course. The submitted codes in the course of second semester exercises were analyzed for possible errors, categorized and grouped across achievement level. The resulting data were analyzed using descriptive statistics as well as Pearson product correlation coefficient. Qualitative analyses through interviews and focused group discussion (FGD) were also employed to identify reasons for the committed errors. Contribution:The study provides a useful concept-based and achievement level specific error log for the teaching of Java programming for beginners. Findings: The results identified 598 errors with Missing symbols (33%) and Invalid symbols (12%) constituting the highest and least committed errors respec-tively. Method and Classes concept houses the highest number of errors (36%) followed by Other Object Concepts (34%), Decision Making (29%), and Looping (10%). Similar error types were found across ability levels. A significant relationship was found between missing symbols and each of Invalid symbols and Inappropriate Naming. Errors made in Methods and Classes were also found to significantly predict that of Other Object concepts. Recommendations for Practitioners: To promote better classroom practice in the teaching of Java programming, findings for the study suggests instructions to students should be based on achievement level. In addition to this, learning Java programming should be done with an unintelligent editor. Recommendations for Researchers: Research could examine logic or semantic errors among novice programmers as the errors analyzed in this study focus mainly on syntactic ones. Impact on Society: The digital age is code-driven, thus error analysis in programming instruction will enhance programming ability, which will ultimately transform novice programmers into experts, particularly in developing countries where most of the software in use is imported. Future Research: Researchers could look beyond novice or beginner programmers as codes written by intermediate or even advanced programmers are still not often completely error free.




ana

Design and Delivery of an Online Information Systems Management Course for MBA Programs

Aim/Purpose: In this paper, we present our experience in design and delivery of a graduate Information Systems Management (ISM) course in an online MBA program. Also presented are a detailed examination of the design and delivery of the online course, survey results of students’ perceptions and backgrounds, course evaluation results, best practices and lessons learned, and potential changes and future actions. Background: This graduate ISM course needs to not only cover a broad range of dynamic technology and business topics, but also strike a balance between the width and depth of the content. Effective course design and delivery are critical to improved teaching and learning, especially when the course is delivered online. Methodology: We provided a comprehensive review of the related literature to develop guidelines for the design and delivery of our ISM course; we collected survey data to evaluate the students’ backgrounds and their perceptions of the course; we used data analysis and content analysis methods to assess the course evaluation results. Contribution: A review of the related literature indicates that IS researchers and educators have not adequately studied online graduate education. Given the importance of the graduate ISM course in most MBA programs, and the lack of attention from the IS community, it is critical to address this gap in the research. We believe we have done so with this paper. Findings: The paper’s major findings are embedded in a detailed examination of the design and delivery of the online course, survey results of students’ perceptions and backgrounds, course evaluation results, best practices and lessons learned, and potential changes and future actions. Recommendations for Practitioners: Even though our experience may not be fully applicable to other institutions, we hope our IS colleagues can learn from the design and delivery of this online course, as well as our best practices and lessons learned to improve the teaching and learning effectiveness in IS online graduate education, in general. Furthermore, we provide instructors with an actionable framework onto which they can map their current course offering, and compare their current pedagogical offering to literature driven best practices for ISM courses, in particular. Recommendation for Researchers: It is our hope that the design and delivery of this online course, and our best practices and lessons learned can inspire our IS colleagues to search for innovative ways to improve the teaching and learning effectiveness in IS online graduate education. In addition, we distill a literature driven framework for ISM courses design and delivery that can help researchers frame their pedagogical research questions. Impact on Society: The online course in this study prepares students for more efficiently and effectively delivering IT systems in organizations. Many MBA students work for non-profits and other socially-focused organizations and are able to use the skills learned in the course for the betterment of society. Future Research: We will continue to monitor the impact of the changes on student learning effectiveness and attempt to identify additional innovative ways to improve the design and delivery of this online ISM course.




ana

Incorporating Kinesthetic Learning into University Classrooms: An Example from Management Information Systems

Aim/Purpose: Students tend to learn best when an array of learning styles is used by instructors. The purpose of this paper is to add, to introduce, and to apply the concepts of kinesthetic learning and learning structures to university and STEM education. Background: The study applies the concept of kinesthetic learning and a learning structure called Think-Pair-Share to an experiential exercise about Moore’s Law in an introductory MIS classroom. The paper details the exercise and each of its components. Methodology: Students in two classes were asked to complete a short survey about their conceptual understanding of the course material before and after the experiential exercise. Contribution: The paper details the benefits of kinesthetic learning and learning structures and discusses how to apply these concepts through an experiential exercise used in an introductory MIS course. Findings: Results indicate that the kinesthetic learning activity had a positive impact on student learning outcomes. Recommendations for Practitioners: University educators can use this example to structure several other learning activities that apply kinesthetic learning principles. Recommendation for Researchers: Researchers can use this paper to study more about how to incorporate kinesthetic learning into education, and about teaching technology concepts to undergraduate students through kinesthetic learning. Impact on Society: The results of this study may be extremely beneficial for the university and STEM community and overall academic business community. Future Research: Researchers should consider longitudinal studies and other ways to incorporate kinesthetic learning activities into education.




ana

The Effect of E-Learning Experience on Readiness, Attitude, and Self-Control/Self-Management

Aim/Purpose: This study aimed to reveal the effect of the previous Internet-based education (IBE) experiences of the students’ readiness, attitude, and self-control / self-management variables towards the e-learning process, and also to determine their opinions. Background: The institutions have made efforts to ensure the continuity of education through their learning management systems and the necessity of addressing the e-learning process from the perspective of students once again showed itself as an undeniable fact. Accordingly, the necessity to consider holistically the variables of readiness, attitude, and self-control/self-management, which affect students’ adaptation to e-learning process, has once again emerged based on the relevant literature. Methodology: This research based on the simultaneous mixed method considering the previous IBE experiences of 75 Computer Education and Instructional Technology (CEIT) students taking part in the study in Turkey. The quantitative results of the study were analyzed based on the single-group pretest-posttest weak experimental design. Qualitative results were obtained through the structured interview form and set an example for the case study. Contribution: The results showed that regardless of students’ previous Internet-based education (IBE) experience, it is seen that increasing and continuous experience has a significant effect on the readiness, attitude and self-control / self-management variables towards the e-learning process. The main contribution of experimental results showed that IBE experience is effective on individuals’ perceptions of internet self-efficacy, and has an impact on the self-learning skills of individuals. In addition to this, the e-learning experience has an impact on individuals’ self-evaluation. It is also seen that the certificate presented to learners in the e-learning environment has a positive effect on students’ attitudes towards e-learning processes. Finally, the experiences of e-learning processes, the methods used to transfer the content in the learning environment, the motivation and feedback provided to the learner also support the significant difference obtained in terms of readiness, attitude and self-control / self-management. Findings: After the findings were analyzed holistically in depth, it has been observed that; if the contents offered to students in e-learning environments support their professional development, in this case, their attitudes, readiness (excluding the sub-dimension of learner control), and self-control/self-management skills for these environments differ significantly in the posttest. It is also among the results that students having previous IBE experience have not higher awareness levels on online communication self-efficacy, technology use self-efficacy, readiness for e-learning, e-learning predisposition, self-reinforcement, self-control management, although significantly found. The findings regarding the effectiveness of the experimental process are as follows: Although it is possible for the students having previous IBE experience to use these experiences within the course for their personal development, it has been seen that the observed differences regarding students’ readiness, attitude, and self-control/self-management towards e-learning processes arise from the experimental operation. Recommendations for Practitioners: It is recommended for the policy-makers and practitioners that while e-learning platforms were designing, using different methods for delivering the content is as important as making the interaction meaningful and sustainable. In addition to this, to develop a positive attitude it is recommended that individuals’ participation of an e-learning platform should be supported with a certificate. Recommendation for Researchers: Researchers should test the obtained results by a well-structured e-learning platform with their recorded activities on the platform (e.g. in which section was used mostly by a learner etc.). Hence, the impact of IBE experiences might be discussed in an up level framework. Impact on Society: Actually, this study is based on a mix design and the results were also meaningful especially considering the implacable global pandemic. It is clearly understood by this process that e-learning is very important. In line with this, to support the e-learning process (e.g. with the method while delivering the content, well-structured feedback, motivation strategies etc.) and make it sustainable, the increasing of individual’s readiness, attitude, and self-control through the IBE would be indispensable. Future Research: Future studies might focus on the longitudinal methods. It is worth to find out how the students experiences affect the sustainability of the course content, and what should the program developer make to improve their course content in line with the findings of longitudinal studies.




ana

Innovative Pedagogical Strategies of Streaming, Just-in-Time Teaching, and Scaffolding: A Case Study of Using Videos to Add Business Analytics Instruction Across a Curriculum

Aim/Purpose: Business analytics is a cross-functional field that is important to implement for a college and has emerged as a critically important core component of the business curriculum. It is a difficult task due to scheduling concerns and limits to faculty and student resources. This paper describes the process of creating a central video repository to serve as a platform for just in time teaching and the impact on student learning outcomes. Background: Industry demand for employees with analytical knowledge, skills, and abilities requires additional analytical content throughout the college of business curriculum. This demand needs other content to be added to ensure that students have the prerequisite skills to complete assignments. Two pedagogical approaches to address this issue are Just-in-Time Teaching (JiTT) and scaffolding, grounded in the Vygoskian concept of “Zone of Proximal Development. Methodology: This paper presents a case study that applies scaffolding and JiTT teaching to create a video repository to add business analytics instruction to a curriculum. The California Critical Thinking Skills Test (CCTST) and Major Field Test (MFT) scores were analyzed to assess learning outcomes. Student and faculty comments were considered to inform the results of the review. Contribution: This paper demonstrates a practical application of scaffolding and JiTT theory by outlining the process of using a video library to provide valuable instructional resources that support meaningful learning, promote student academic achievement, and improve program flexibility. Findings: A centrally created library is a simple and inexpensive way to provide business analytics course content, augmenting standard content delivery. Assessment of learning scores showed an improvement, and a summary of lessons learned is provided to guide implications. Recommendations for Practitioners: Pedagogical implications of this research include the observation that producing a central library of instructor created videos and assignments can help address knowledge and skills gaps, augment the learning of business analytics content, and provide a valuable educational resource throughout the college of business curriculum. Recommendation for Researchers: This paper examines the use of scaffolding and JiTT theories. Additional examination of these theories may improve the understanding and limits of these concepts as higher education evolves due to the combination of market forces changing the execution of course delivery. Impact on Society: Universities are tasked with providing new and increasing skills to students while controlling the costs. A centrally created library of instructional videos provides a means of delivering meaningful content while controlling costs. Future Research: Future research may examine student success, including the immediate impact of videos and longitudinally using video repositories throughout the curriculum. Studies examining the approach across multiple institutions may help to evaluate the success of video repositories. Faculty acceptance of centrally created video libraries and assignments should be considered for the value of faculty recruiting and use in the classroom. The economic impact on both the university and students should be evaluated.




ana

Knowledge Management Applied to Learning English as a Second Language Through Asynchronous Online Instructional Videos

Aim/Purpose: The purpose of this research is to determine whether ESL teaching videos as a form of asynchronous online knowledge sharing can act as an aid to ESL learners internalizing knowledge in language acquisition. In this context, internalizing knowledge carries the meaning of being able to remember language, and purposefully and accurately use it context, including appropriacy of language, and aspects of correct pronunciation, intonation, stress patterns and connected speech, these being the elements of teaching and practice that are very often lacking in asynchronous, online, instructional video. Background: Knowledge Management is the field of study, and the practice, of discovering, capturing, sharing, and applying knowledge, typically with a view to translating individuals’ knowledge into organizational knowledge. In the field of education, it is the sharing of instructors’ knowledge for students to be able to learn and usefully apply that knowledge. In recent pandemic times, however, the mode of instruction has, of necessity, transitioned from face-to-face learning to an online environment, transforming the face of education as we know it. While this mode of instruction and knowledge sharing has many advantages for the online learner, in both synchronous and asynchronous learning environments, it presents certain challenges for language learners due to the absence of interaction and corrective feedback that needs to take place for learners of English as a Second Language (ESL) to master language acquisition. Unlike other subjects where the learner has recourse to online resources to reinforce learning through referencing external information, such as facts, figures, or theories, to be successful in learning a second language, the ESL learner needs to be able to learn to process thought and speech in that language; essentially, they need to learn to think in another language, which takes time and practice. Methodology: The research employs a systematic literature review (SLR) to determine the scope and extent to which the subject is covered by existing research in this field, and the findings thereof. Contribution: Whilst inconclusive in relation to internalizing language through online, asynchronous instructional video, through its exploratory nature, the research contributes towards the body of knowledge in online learning through the drawing together of various studies in the field of learning through asynchronous video through improving video and instructional quality. Findings: The findings of the systematic literature review revealed that there is negligible research in this area, and while information exists on blended and flipped modes of online learning, and ways to improve the quality and delivery of instructional video generally, no prior research on the exclusive use of asynchronous videos as an aid to internalizing English as a second language were found. Recommendations for Practitioners: From this research, it is apparent that there is considerably more that practitioners can do to improve the quality of instructional videos that can help students engage with the learning, from which students stand a much better chance of internalizing the learning. Recommendation for Researchers: For researchers, the absence of existing research is an exciting opportunity to further explore this field. Impact on Society: Online learning is now globally endemic, but it poses specific challenges in the field of second language learning, so the development of instructional videos that can facilitate this represents a clear benefit to all ESL learners in society as a whole. Future Research: Clearly the absence of existing research into whether online asynchronous instructional videos can act as an aid to internalizing the acquisition of English as a second language would indicate that this very specific field is one that merits future research. Indeed, it is one that the author intends to exploit through primary data collection from the production of a series of asynchronous, online, instructional videos.




ana

Unveiling Learner Emotions: Sentiment Analysis of Moodle-Based Online Assessments Using Machine Learning

Aim/Purpose: The study focused on learner sentiments and experiences after using the Moodle assessment module and trained a machine learning classifier for future sentiment predictions. Background: Learner assessment is one of the standard methods instructors use to measure students’ performance and ascertain successful teaching objectives. In pedagogical design, assessment planning is vital in lesson content planning to the extent that curriculum designers and instructors primarily think like assessors. Assessment aids students in redefining their understanding of a subject and serves as the basis for more profound research in that particular subject. Positive results from an evaluation also motivate learners and provide employment directions to the students. Assessment results guide not just the students but also the instructor. Methodology: A modified methodology was used for carrying out the study. The revised methodology is divided into two major parts: the text-processing phase and the classification model phase. The text-processing phase consists of stages including cleaning, tokenization, and stop words removal, while the classification model phase consists of dataset training using a sentiment analyser, a polarity classification model and a prediction validation model. The text-processing phase of the referenced methodology did not utilise tokenization and stop words. In addition, the classification model did not include a sentiment analyser. Contribution: The reviewed literature reveals two major omissions: sentiment responses on using the Moodle for online assessment, particularly in developing countries with unstable internet connectivity, have not been investigated, and variations of the k-fold cross-validation technique in detecting overfitting and developing a reliable classifier have been largely neglected. In this study we built a Sentiment Analyser for Learner Emotion Management using the Moodle for assessment with data collected from a Ghanaian tertiary institution and developed a classification model for future sentiment predictions by evaluating the 10-fold and the 5-fold techniques on prediction accuracy. Findings: After training and testing, the RF algorithm emerged as the best classifier using the 5-fold cross-validation technique with an accuracy of 64.9%. Recommendations for Practitioners: Instead of a closed-ended questionnaire for learner feedback assessment, the open-ended mechanism should be utilised since learners can freely express their emotions devoid of restrictions. Recommendation for Researchers: Feature selection for sentiment analysis does not always improve the overall accuracy for the classification model. The traditional machine learning algorithms should always be compared to either the ensemble or the deep learning algorithms Impact on Society: Understanding learners’ emotions without restriction is important in the educational process. The pedagogical implementation of lessons and assessment should focus on machine learning integration Future Research: To compare ensemble and deep learning algorithms




ana

Emerging Research on Virtual Reality Applications in Vocational Education: A Bibliometric Analysis

Aim/Purpose: This study explores the subject structure, social networks, research trends, and issues in the domain that have the potential to derive an overview of the development of virtual reality-based learning media in vocational education. Background: Notwithstanding the increasingly growing interest in the application of virtual reality in vocational learning, the existing research literature may still leave out some issues necessary for a comprehensive understanding. This study will point out such areas that need more exploration and a more comprehensive synthesis of the literature by conducting a bibliometric analysis. It will be interesting to keep track of the changing concepts and methodologies applied in the development of VR-based learning media in vocational education research. Methodology: This review was carried out using bibliometric methodology, which can highlight patterns of publication and research activity in this hitherto little studied area. The results of the study have the potential to lead to evidence-based priority in VR development, which will tailor work for vocational contexts and set the compass against the growing worldwide interest in this area. The study provides a descriptive analysis of publications, citations, and keyword data for 100 documents published between the years 2013 and 2022 from the Scopus database, which is conducted to illustrate the trends in the field. Contribution: This study also counts as a contribution to understanding the research hotspots of VR-based learning media in vocational education. Through bibliometric analysis, this study thoroughly summarized the relevant research and literature laying a knowledge foundation for researchers and policy makers. Additionally, this analysis identified knowledge gaps, recent trends, and directions for future research. Findings: The bibliometric analysis revealed the following key findings: 1. A growing publication trajectory, with output increasing from 7 articles in 2013 to 25 articles in 2022. 2. The United States led the contributions, followed by China, and Germany. 3. The most prominent authors are affiliated with American medical institutions. 4. Lecture proceedings include familiar sources that reflect this nascent domain. 5. Citation analysis identified highly influential work and researchers. 6. Keyword analysis exposed technology-oriented topics rather than learning-oriented terms. These findings present an emerging landscape with opportunities to address geographic and pedagogical research gaps. Recommendations for Practitioners: This study will be beneficial for designers and developers of VR-based learning programs because it aligns with the most discussed and influential VR technologies within the literature. Such an alignment of an approach with relevant research trends and focus can indeed be very useful for the effective application and use of VR-based learning media for quality improvements in vocational students' learning. Recommendation for Researchers: In fact, in this bibliometric review of VR integration within vocational classrooms, a future call for focused research is presented, especially on teaching methods, course design, and learning impact. This is a framework that seeks to establish its full potential with effective and integrated use of VR in the various vocational curricula and settings of learners. Impact on Society: From the findings of the bibliometric analysis, it is evident that virtual reality technologies (VR) have significantly led to transformation within educational media. There is no denying that the growing interest and investment in the integration of virtual reality into vocational education has been well manifested in the substantive increase in publications in the last decade. This shows what the innovation driving factor is in the United States. At the same time the rapid contributions from China signal worldwide recognition of the potential of VR to improve technical skills training. This study points the way for more research to bridge critical gaps, specifically how VR tools can be used in vocational high school classrooms. Furthermore, research should be aligned to meet specific needs of vocational learners and even promote international cross-border partnerships, pointing out the potential of virtual reality to be a universally beneficial tool in vocational education. The examination of highly cited articles provides evidence of the potential of VR to be an impactful pedagogical tool in vocational education. The findings suggest that researchers need to move forward looking at the trajectory of VR in vocational education and how promising it is in defining the future for innovative and effective learning methodologies. Future Research: This study is an exceptionally valuable contribution, a true landmark in the field of dynamic development, and one that denotes very meaningful implications for the future course of research in the dynamically developing field of bibliometric analysis of VR-based learning media for vocational education. The increase in the number of publications emanates from growing interests in the application of virtual reality (VR) technologies in vocational education. The high concentration of authorship from the USA, along with the ever increasing contributions from China, spotlights the increasing worldwide recognition of the impact of immersive technologies in the enhancement of training in technical skills. These are emerging trends that call for research to exemplify the diverse views and global teamwork opportunities presented by VR technologies. The study also highlights critical areas that need focused attention in future research endeavors. The fact that the embedding of VR tools into classrooms in vocational high schools has been poorly researched points to the major gap in pedagogical research within authentic educational settings. Therefore, further investigations should evaluate teaching methods in VR, lesson designs, and the impacts of VR in specific vocational trades. This supports the need for learner-centered frameworks that are tailor-made to the needs of vocational learners. This calls for more direct and focused investigations into identified research gaps noting a growing dominance in the field of health-related research with the most cited articles in this field, to integrate virtual reality into additional vocational education contexts. In this way, the gaps present an opportunity for researchers to make significant contributions to the development of interventions responsive to the unique needs of vocational learners; this will contribute to strengthening the evidence base for the worldwide implementation of VR within vocational education systems. This was recommended as the intention of such a bibliometric analysis: supporting the potential of VR as a pedagogical tool in vocational contexts and providing grounding for a strong and focused future research agenda within this burgeoning area of educational technology.




ana

Android malware analysis using multiple machine learning algorithms

Currently, Android is a booming technology that has occupied the major parts of the market share. However, as Android is an open-source operating system there are possibilities of attacks on the users, there are various types of attacks but one of the most common attacks found was malware. Malware with machine learning (ML) techniques has proven as an impressive result and a useful method for malware detection. Here in this paper, we have focused on the analysis of malware attacks by collecting the dataset for the various types of malware and we trained the model with multiple ML and deep learning (DL) algorithms. We have gathered all the previous knowledge related to malware with its limitations. The machine learning algorithms were having various accuracy levels and the maximum accuracy observed is 99.68%. It also shows which type of algorithm is preferred depending on the dataset. The knowledge from this paper may also guide and act as a reference for future research related to malware detection. We intend to make use of Static Android Activity to analyse malware to mitigate security risks.




ana

'CSR, sustainability and firm performance linkage' current status and future dimensions - a bibliometric review analysis

Corporate social responsibility (CSR) and sustainability are gaining worldwide recognition. The question of whether CSR and sustainability programs benefit an organisation's financial success is still being debated. This study aims to verify this phenomenon by examining the current literature pattern on this relationship using bibliometric and systematic review analysis. It further provides a taxonomy for understanding this association. VOSviewer is used to obtain comprehensive dataset mapping and clustering in the field. The manuscript offers promising insights regarding academia by assessing the pattern of publication trends, the most influential author in the area, and analysing the methodological and theoretical underpinnings of CSR, sustainability and firm performance linkage. The outcome of this study provides exploratory insights into research gaps and avenues for future research.




ana

Development and validation of scale to measure minimalism - a study analysing psychometric assessment of minimalistic behaviour! Consumer perspective

This research aims to establish a valid and accurate measurement scale and identify consumer-driven characteristics for minimalism. The study has employed a hybrid approach to produce items for minimalism. Expert interviews were conducted to identify the items for minimalism in the first phase followed by consumer survey to obtain their response in second phase. A five-point Likert scale was used to collect the data. Further, data was subjected to reliability and validity check. Structural equation modelling was used to test the model. The findings demonstrated that there are five dimensions by which consumers perceive minimalism: decluttering, mindful consumption, aesthetic choices, financial freedom, and sustainable lifestyle. The outcome also revealed a high correlation between simplicity and well-being. This study is the first to provide a reliable and valid instrument for minimalism. The results will have several theoretical and practical ramifications for society and policymakers. It will support policymakers in gauging and encouraging minimalistic practices, which enhance environmental performance and lower carbon footprint.




ana

Navigating e-customer relationship management through emerging information and communication technologies: moderation of trust and financial risk

This study examines the relationships between ICTs (e.g., chatbots, virtual assistants, social media platforms, e-mail marketing, mobile marketing, data analytics, interactive voice response, big data analytics, push notifications, cloud computing, and augmented reality) and e-customer relationship management (e-CRM) from the banking industry of China. Similarly, this study unfolds the moderation interference of trust and risk between the association of ICTs and e-CRM, respectively. The study provided a positive nexus between ICTs and e-CRM. On the other side, a significant moderation of trust, as well as financial risk was observed between the correlation of ICTs and customer relationship management. This study endows with insights into ICTs which are critical for achieving e-CRM by streamlining interactions and enhancing their experience. Similarly, trust and financial risk were observed as potential forces that sway the association between ICTs and e-CRM.




ana

Effective inventory management among Malaysian SMEs in the manufacturing sector towards organisational performance

In several manufacturing firms, inventory constitutes most of the current assets, and this underscores the importance of inventory management as a fundamental issue for the majority of the firms irrespective of their sizes. Therefore, the purpose of this research is to assess the factors that influence the effectiveness of inventory management of Malaysian SMEs in the manufacturing sector. The study employs PLS-SEM technique to test the hypotheses. The main findings show that documentation and records, inventory control system and qualified personnel have positive effects on effective inventory management of Malaysian SMEs in the manufacturing sector. The study also reveals that effective inventory management has a mediating effect on the relationship between documentation and records, inventory control system, qualified personnel and organisational performance. Therefore, the study recommends that Malaysian SMEs in the manufacturing sector should improve their approaches to embracing effective inventory management practices in order to enhance organisational performance.




ana

International Journal of Internet and Enterprise Management




ana

Assessing supply chain risk management capabilities and its impact on supply chain performance: moderation of AI-embedded technologies

This research investigates the correlation between risk management and supply chain performance (SCP) along with moderation of AI-embedded technologies such as big data analytics, Internet of Things (IoT), virtual reality, and blockchain technologies. To calculate the results, this study utilised 644 questionnaires through the structural equation modelling (SEM) method. It is revealed using SmartPls that financial risk management (FRM) is positively linked with SCP. Second, it was observed that AI significantly moderates the connection between FRM and SCP. In addition, the study presents certain insights into supply chain and AI-enabled technologies and how these capabilities can beneficially advance SCP. Besides, certain implications, both managerial and theoretical are described for the supply chain managers along with limitations for future scholars of the world.




ana

Entrepreneurship vs. mentorship: an analysis of leadership modes on sustainable development with moderation of innovation management

This study explores the connection between mentorship and sustainable development (SD) within three major perspectives of sustainable development, such as social, environmental, and economic perspectives from China. Second, the study revealed the relationship between entrepreneurship and SD. Third, a moderation influence of innovation management (IM) was observed among the proposed nexuses of mentorship, entrepreneurship, and SD. To this end, a total of 535 questionnaires were eventually utilised with the support of SmartPLS and the structure equation modelling (SEM) approach. A positive connection was confirmed between mentorship and SD. The outcome uncovered a positive correlation between entrepreneurship and SD. In addition, a moderation of IM was found between mentorship, entrepreneurship, and SD. The study enlists several interesting lines about mentorship, entrepreneurship, and IM that might help to improve SD in terms of social, environmental, and economic perspectives. Besides, the study provides various implications for management and states the weaknesses along with the future directions for worldly researchers.




ana

International Journal of Information Systems and Change Management




ana

Measuring information quality and success in business intelligence and analytics: key dimensions and impacts

The phenomenon of cloud computing and related innovations such as Big Data have given rise to many fundamental changes that are evident in information and data. Managing, measuring and developing business value from the plethora of this new data has significant impact on many corporate agendas, particularly in relation to the successful implementation of business intelligence and analytics (BI&A). However, although the influence of Big Data has fundamentally changed the IT application landscape, the metrics for measuring success and in particular, the quality of information, have not evolved. The measurement of information quality and the antecedent factors that influence information has also been identified as an area that has suffered from a lack of research in recent decades. Given the rapid increase in data volume and the growth and ubiquitous use of BI&A systems in organisations, there is an urgent need for accurate metrics to identify information quality.




ana

Taxable income management and information content of income

Today, income management is one of the attractive and controversial issues in accounting investigation areas from both investigations and regulatory view. Managers do manage income either to distort information or to defer and report the information related to future incomes. This investigation aims at examining the effect of taxable income management on the information content of taxable income of firms. Tests of research hypotheses were performed with an empirical method based on econometric and using multivariate regression analysis, t-test, Wilcoxon total scores, and specifically by using the panel data model across 147 firms listed on the Tehran Stock Exchange between 2002 and 2011. Findings show that taxable income management reduces the information content of taxable income. In addition, firms manage accounting income to defer information.




ana

Electronic management of enterprise accounting files under the condition of informatisation

With the rapid development of computer information technology, the work of accountants has gradually evolved into an electronic trend and the management of accounting files has also undergone great changes. Combining with the current development trend of informatisation, this paper discusses the electronic management mode of enterprise accounting files under the condition of informatisation. Combined with the latest information technology, an enterprise electronic accounting file system is established and the research and development system is compared with the traditional paper accounting file management. The results have shown that the retrieval and query time of traditional paper accounting files is close to 2 hours. After the implementation of the electronic accounting file system, the retrieval and query time of files can be completed in only 2 minutes, and the query efficiency of files has been increased by nearly 60 times.




ana

Application of artificial intelligence in enterprise human resource management and employee performance evaluation

With the rapid development of Artificial Intelligence (AI) technology, significant breakthroughs have been made in its application in many fields. Especially, in the field of enterprise human resource management and employee performance evaluation, AI has demonstrated its powerful ability to optimise and improve performance. This study explores the application of AI in enterprise human resource management and how to use AI to evaluate employee performance. The research includes analysing and comparing existing AI-driven human resource management models, evaluating how AI can help improve employee performance and leadership styles, and designing and developing human resource management computer systems for enterprise employees. Through empirical research and case analysis, this study proposes a new AI-optimised employee performance evaluation model and explores its application and effect in practice. In general, the application of AI can improve the efficiency and accuracy of enterprise human resource management, and provide new possibilities for employee performance evaluation. At present, artificial intelligence technology has been widely used in various fields of daily life, especially in corporate human resource management, providing better support for the development of enterprises.




ana

High quality management of higher education based on data mining

In order to improve the quality of higher education, student satisfaction, and employment rate, a data mining based high-quality management method for higher education is proposed. Firstly, construct a high-quality evaluation system for higher education based on the principles of education quality evaluation. Secondly, the association rule mining method is used to construct a university education quality management model and determine the weight of the impact indicators for high-quality management of university education. Finally, the fuzzy evaluation method is used to determine the high-quality evaluation function of higher education, and the results of high-quality evaluation of higher education are obtained. High-quality management strategies are developed based on the evaluation results to improve the quality of education. The experimental results show that the student satisfaction rate of this method can reach 99.3%, and the student employment rate can reach 99.9%.




ana

Evaluation method of teaching reform quality in colleges and universities based on big data analysis

Research on the quality evaluation of teaching reforms plays an important role in promoting improvements in teaching quality. Therefore, an evaluation method of teaching reform quality in colleges and universities based on big data analysis is proposed. A multivariate logistic model is used to select the evaluation indicators for the quality evaluation of teaching reforms in universities. And clustering and cleaning of the evaluation indicator data are performed through big data analysis. The evaluation indicator data is used as input vectors, and the results of the teaching reform quality evaluation are used as output vectors. A support vector machine model based on the whale algorithm is built to obtain the relevant evaluation results. Experimental results show that the proposed method achieves a minimum recall rate of 98.7% for evaluation indicator data, the minimum data processing time of 96.3 ms, the accuracy rate consistently above 97.1%.




ana

Intellectual property management in technology management: a comprehensive bibliometric analysis during 2000-2022

Presently, there are many existing academic studies on the development, protection and operation of intellectual property management (IPM). Therefore, provides a comprehensive econometric analysis in order to provide scholars, with a clearer understanding of the evolution and development of IP management research during 2000 to 2022. The study is aiming to help scholars to better discern the expanding IPM research field from a multidimensional perspective. The database used for this analysis is the Web of Science Core Collection database. After retrieval through keywords and using a variety of tools such as CiteSpace, VOSviewer, Bibliometrix and HistCite, 1033 documents were refined to conduct the econometric analysis, and produce graphs. The findings indicate that the US is a highly active country/region in the field IP management research, and its expanding IP management research is branching out into other disciplines. The study also presents the future directions and possible challenges for IPM in technology management.




ana

Emotional intelligence and managerial leadership in the fast moving consumer durable goods industry in India's perspective

Dynamic nature of the FMCG sector perpetually provides a tricky challenge for organisational leaders to nurture their employees. High demand for products, less shelf life and tough competitors always challenge the leaders to uphold their products in the market. Due to technology and e-commerce, many new competitors have joined the market, vying with the industry's veterans. Due to their unique business models that match client needs, these firms are expected to boost FMCG industry income in the future. Managers' leadership styles depend primarily on emotional intelligence. This quantitative study examines how emotional intelligence influences West Bengal FMCG senior managers' leadership styles. 500 FMCG managers were selected. PLS-SEM is used to study. Emotionally competent leaders choose transactional and transformational leadership styles depending on the occasion. Managers' transactional leadership style is strongly influenced by their sympathetic awareness, as shown by a path coefficient of 0.755. Transformational leadership style has a path coefficient of 0.693, indicating that managers' empathy affects their organisational management. Thus, sympathetic awareness and emotion regulation predict good management leadership.




ana

International Journal of Intellectual Property Management




ana

Risk assessment method of power grid construction project investment based on grey relational analysis

In view of the problems of low accuracy, long time consuming and low efficiency of the existing engineering investment risk assessment method; this paper puts forward the investment risk assessment method of power grid construction project based on grey correlation analysis. Firstly, classify the risks of power grid construction project; secondly, determine the primary index and secondary index of investment risk assessment of power grid construction project; then construct the correlation coefficient matrix of power grid project investment risk to calculate the correlation degree and weight of investment risk index; finally, adopt the grey correlation analysis method to construct investment risk assessment function to realise investment risk assessment. The experimental results show that the average accuracy of evaluating the investment risk of power grid construction projects using the method is 95.08%, and the maximum time consuming is 49 s, which proves that the method has high accuracy, short time consuming and high evaluation efficiency.