to

Introducing E-portfolio Use to Primary School Pupils: Response, Benefits and Challenges

Electronic portfolios (e-portfolios) have a positive impact on the learning process in a broad range of educational sectors and on learners of all ages. Yet because most e-portfolio-related studies are about their implementation in higher education, this type of research is less usual in the early childhood context, and there is no available research for Greek schools. This study aims to investigate the impact of e-portfolios on learning in a Greek primary school and to provide a resource regarding the educational benefits of e-portfolio in primary education. To do that, it employs the qualitative naturalistic method to collect data, along with mixed methods which were used to achieve triangulation and strengthen confidence in the outcomes. Participants in the research were fourteen 8-year-old pupils, and one of the researchers was their regular teacher. Data evaluation revealed that the e-portfolio added value in pupils’ learning, acted as a medium to involve parents, promoted pupils’ self-esteem, and was acknowledged as a valuable assessment tool and a challenge for the school community. Based on the experience of the e-portfolio implementation, the authors provide some suggestions that would possibly help researchers and primary school teachers adopt and develop e-portfolio systems in their particular settings.




to

An Instructional Design Framework to Improve Student Learning in a First-Year Engineering Class

Increasingly, numerous universities have identified benefits of flipped learning environments and have been encouraging instructors to adapt such methodologies in their respective classrooms, at a time when departments are facing significant budget constraints. This article proposes an instructional design framework utilized to strategically enhance traditional flipped methodologies in a first-year engineering course, by using low-cost technology aids and proven pedagogical techniques to enhance student learning. Implemented in a first-year engineering course, this modified flipped model demonstrated an improved student awareness of essential engineering concepts and improved academic performance through collaborative and active learning activities, including flipped learning methodologies, without the need for expensive, formal active learning spaces. These findings have been validated through two studies and have shown similar results confirming that student learning is improved by the implementation of multi-pedagogical strategies in-formed by the use of an instructional design in a traditional classroom setting.




to

Using Autobiographical Digital Storytelling for the Integration of a Foreign Student in the School Environment. A Case Study

Immigrant students face a multitude of problems, among which are poor social adaptation and school integration. On the other hand, although digital narrations are widely used in education, they are rarely used for aiding students or for the resolution of complex problems. This study exploits the potential of digital narrations towards this end, by examining how the development and presentation of an autobiographical digital narration can assist immigrant students in overcoming their adaptation difficulties. For that matter, a female student presenting substantial problems was selected as the study’s subject. Data was collected from all the participating parties (subject, teacher, classmates) using a variety of tools, before, during, and after the intervention. It was found that through the digital narration she was able to externalize her thoughts and feelings and this, in turn, helped her in achieving a smoother integration in the school environment. In addition, the attitudes and perceptions of the other students for their foreign classmate were positively influenced. The intervention was short in duration and it did not require special settings. Hence, it can be easily applied and educators can consider using similar interventions. On the other hand, further research is recommended to establish the generalizability of the study’s findings.




to

Making Mobile Learning Work: Student Perceptions and Implementation Factors

Mobile devices are the constant companions of technology users of all ages. Studies show, however, that making calls is a minimal part of our engagement with today’s smart phones and that even texting has fallen off, leaving web browsing, gaming, and social media as top uses. A cross-disciplinary group of faculty at our university came together in the mLearning Scholars group to study the potential for using mobile devices for student learning. The group met bi-weekly throughout a semester and shared thoughts, ideas, resources, and examples, while experimenting with mobile learning activities in individual classes. This paper summarizes student perceptions and adoption intent for using mobile devices for learning, and discusses implementation issues for faculty in adding mobile learning to a college course. Outcomes reflect that mobile learning adoption is not a given, and students need help in using and understanding the value in using personal devices for learning activities.




to

“Hour of Code”: Can It Change Students’ Attitudes toward Programming?

The Hour of Code is a one-hour introduction to computer science organized by Code.org, a non-profit dedicated to expanding participation in computer science. This study investigated the impact of the Hour of Code on students’ attitudes towards computer programming and their knowledge of programming. A sample of undergraduate students from two universities was selected to participate. Participants completed an Hour of Code tutorial as part of an undergraduate course. An electronic questionnaire was implemented in a pre-survey and post-survey format to gauge the change in student attitudes toward programming and their programming ability. The findings indicated the positive impact of the Hour of Code tutorial on students’ attitude toward programming. However, the students’ programming skills did not significantly change. The authors suggest that a deeper alignment of marketing, teaching, and content would help sustain the type of initiative exemplified by the Hour of Code.




to

Using Interactive Software to Teach Foundational Mathematical Skills

The pilot research presented here explores the classroom use of Emerging Literacy in Mathematics (ELM) software, a research-based bilingual interactive multimedia instructional tool, and its potential to develop emerging numeracy skills. At the time of the study, a central theme of early mathematics curricula, Number Concept, was fully developed. It was broken down into five mathematical concepts including counting, comparing, adding, subtracting and decomposing. Each of these was further subdivided yielding 22 online activities, each building in a level of complexity and abstraction. In total, 234 grade one students from 12 classes participated in the two-group post-test study that lasted about seven weeks and for which students in the experimental group used ELM for about 30 minutes weekly. The results for the final sample of 186 students showed that ELM students scored higher on the standardized math test (Canadian Achievement Test, 2008) and reported less boredom and lower anxiety as measured on the Academic Emotions Questionnaire than their peers in the control group. This short duration pilot study of one ELM theme holds great promise for ELM’s continued development.




to

MOOC Success Factors: Proposal of an Analysis Framework

Aim/Purpose: From an idea of lifelong-learning-for-all to a phenomenon affecting higher education, Massive Open Online Courses (MOOCs) can be the next step to a truly universal education. Indeed, MOOC enrolment rates can be astoundingly high; still, their completion rates are frequently disappointingly low. Nevertheless, as courses, the participants’ enrolment and learning within the MOOCs must be considered when assessing their success. In this paper, the authors’ aim is to reflect on what makes a MOOC successful to propose an analysis framework of MOOC success factors. Background: A literature review was conducted to identify reported MOOC success factors and to propose an analysis framework. Methodology: This literature-based framework was tested against data of a specific MOOC and refined, within a qualitative interpretivist methodology. The data were collected from the ‘As alterações climáticas nos média escolares - Clima@EduMedia’ course, which was developed by the project Clima@EduMedia and was submitted to content analysis. This MOOC aimed to support science and school media teachers in the use of media to teach climate change Contribution: By proposing a MOOC success factors framework the authors are attempting to contribute to fill in a literature gap regarding what concerns criteria to consider a specific MOOC successful. Findings: This work major finding is a literature-based and empirically-refined MOOC success factors analysis framework. Recommendations for Practitioners: The proposed framework is also a set of best practices relevant to MOOC developers, particularly when targeting teachers as potential participants. Recommendation for Researchers: This work’s relevance is also based on its contribution to increasing empirical research on MOOCs. Impact on Society: By providing a proposal of a framework on factors to make a MOOC successful, the authors hope to contribute to the quality of MOOCs. Future Research: Future work should refine further the proposed framework, by in testing it against data collected in other MOOCs.




to

Investigating the Use and Design of Immersive Simulation to Improve Self-Efficacy for Aspiring Principals

Aim/Purpose: Improving public schools is a focus of federal legislation in the United States with much of the burden placed on principals. However, preparing principals for this task has proven elusive despite many changes in programming by institutions of higher learning. Emerging technologies that rely on augmented and virtual realities are posited to be powerful pedagogical tools for closing this gap. Background: This study investigated the effects of immersive simulation technologies on principals’ self-efficacy after treatment and the perceived significance of the design of the immersive simulation experience as an effective tool for adult learners. Methodology: The investigator employed a multiple-methods study that relied on a purposive sample of graduate students enrolled in educational leadership programs at two small universities in the southeastern United States. Participants completed a two-hour module of immersive simulation designed to facilitate transfer of knowledge to skills thereby increasing their self-efficacy. Contribution: This paper contributes to a small body of literature that examines the use of immersive simulation to prepare aspiring principals. Findings: The findings indicate moderate effect sizes in changes in self-efficacy, positive attitudes toward immersive simulation as a pedagogical tool, and significance in the design of immersive simulation modules. This suggests that immersive simulation, when properly designed, aids principals in taking action to improve schools. Recommendations for Practitioners: Educational leadership programs might consider the use of immersive simulations to enhance principals’ ability to meet the complex demands of leading in the 21st century. Impact on Society: Principals may be more adept at improving schools if preparation programs provided consistent opportunities to engage in immersive simulations. Future Research: Future research should be conducted with larger sample sizes and longitudinally to determine the effectiveness of this treatment.




to

Students’ Attention when Using Touchscreens and Pen Tablets in a Mathematics Classroom

Aim/Purpose: The present study investigated and compared students’ attention in terms of time-on-task and number of distractors between using a touchscreen and a pen tablet in mathematical problem-solving activities with virtual manipulatives. Background: Although there is an increasing use of these input devices in educational practice, little research has focused on assessing student attention while using touchscreens or pen tablets in a mathematics classroom. Methodology: A qualitative exploration was conducted in a public elementary school in New Taipei, Taiwan. Six fifth-grade students participated in the activities. Video recordings of the activities and the students’ actions were analyzed. Findings: The results showed that students in the activity using touchscreens maintained greater attention and, thus, had more time-on-task and fewer distractors than those in the activity using pen tablets. Recommendations for Practitioners: School teachers could employ touchscreens in mathematics classrooms to support activities that focus on students’ manipulations in relation to the attention paid to the learning content. Recommendation for Researchers: The findings enhance our understanding of the input devices used in educational practice and provide a basis for further research. Impact on Society: The findings may also shed light on the human-technology interaction process involved in using pen and touch technology conditions. Future Research: Activities similar to those reported here should be conducted using more participants. In addition, it is important to understand how students with different levels of mathematics achievement use the devices in the activities.




to

The Impact of Hands-On Simulation Laboratories on Teaching of Wireless Communications

Aim/Purpose: To prepare students with both theoretical knowledge and practical skills in the field of wireless communications. Background: Teaching wireless communications and networking is not an easy task because it involves broad subjects and abstract content. Methodology: A pedagogical method that combined lectures, labs, assignments, exams, and readings was applied in a course of wireless communications. Contribution: Five wireless networking labs, related to wireless local networks, wireless security, and wireless sensor networks, were developed for students to complete all of the required hands-on lab activities. Findings: Both development and implementation of the labs achieved a successful outcome and provided students with a very effective learning experience. Students expressed that they had a better understanding of different wireless network technologies after finishing the labs. Recommendations for Practitioners: Detailed instructional lab manuals should be developed so that students can carry out hands-on activities in a step-by-step fashion. Recommendation for Researchers: Hands-on lab exercises can not only help students understand the abstract technical terms in a meaningful way, but also provide them with hands-on learning experience in terms of wireless network configuration, implementation, and evaluation. Impact on Society: With the help of a wireless network simulator, students have successfully enhanced their practical skills and it would benefit them should they decide to pursue a career in wireless network design or implementation. Future Research: Continuous revision of the labs will be made according to the feedback from students. Based on the experience, more wireless networking labs and network issues could be studied in the future.




to

Browser App Approach: Can It Be an Answer to the Challenges in Cross-Platform App Development?

Aim/Purpose: As smartphones proliferate, many different platforms begin to emerge. The challenge to developers as well as IS educators and students is how to learn the skills to design and develop apps to run on cross-platforms. Background: For developers, the purpose of this paper is to describe an alternative to the complex native app development. For IS educators and students, the paper provides a feasible way to learn and develop fully functional mobile apps without technical burdens. Methodology: The methods used in the development of browser-based apps is prototyping. Our proposed approach is browser-based, supports cross-platforms, uses open-source standards, and takes advantage of “write-once-and-run-anywhere” (WORA) concept. Contribution: The paper illustrates the application of the browser-based approach to create a series of browser apps without high learning curve. Findings: The results show the potentials for using browser app approach to teach as well as to create new apps. Recommendations for Practitioners : Our proposed browser app development approach and example would be useful to mobile app developers/IS educators and non-technical students because the source code as well as documentations in this project are available for downloading. Future Research: For further work, we discuss the use of hybrid development framework to enhance browser apps.




to

Investigating the Feasibility of Automatic Assessment of Programming Tasks

Aim/Purpose: The aims of this study were to investigate the feasibility of automatic assessment of programming tasks and to compare manual assessment with automatic assessment in terms of the effect of the different assessment methods on the marks of the students. Background: Manual assessment of programs written by students can be tedious. The assistance of automatic assessment methods might possibly assist in reducing the assessment burden, but there may be drawbacks diminishing the benefits of applying automatic assessment. The paper reports on the experience of a lecturer trying to introduce automated grading. Students’ solutions to a practical Java programming test were assessed both manually and automatically and the lecturer tied the experience to the unified theory of acceptance and use of technology (UTAUT). Methodology: The participants were 226 first-year students registered for a Java programming course. Of the tests the participants submitted, 214 were assessed both manually and automatically. Various statistical methods were used to compare the manual assessment of student’s solutions with the automatic assessment of the same solutions. A detailed investigation of reasons for differences was also carried out. A further data collection method was the lecturer’s reflection on the feasibility of automatic assessment of programming tasks based on the UTAUT. Contribution: This study enhances the knowledge regarding benefits and drawbacks of automatic assessment of students’ programming tasks. The research contributes to the UTAUT by applying it in a context where it has hardly been used. Furthermore, the study is a confirmation of previous work stating that automatic assessment may be less reliable for students with lower marks, but more trustworthy for the high achieving students. Findings: An automatic assessment tool verifying functional correctness might be feasible for assessment of programs written during practical lab sessions but could be less useful for practical tests and exams where functional, conceptual and structural correctness should be evaluated. In addition, the researchers found that automatic assessment seemed to be more suitable for assessing high achieving students. Recommendations for Practitioners: This paper makes it clear that lecturers should know what assessment goals they want to achieve. The appropriate method of assessment should be chosen wisely. In addition, practitioners should be aware of the drawbacks of automatic assessment before choosing it. Recommendation for Researchers: This work serves as an example of how researchers can apply the UTAUT theory when conducting qualitative research in different contexts. Impact on Society: The study would be of interest to lecturers considering automated assessment. The two assessments used in the study are typical of the way grading takes place in practice and may help lecturers understand what could happen if they switch from manual to automatic assessment. Future Research: Investigate the feasibility of automatic assessment of students’ programming tasks in a practical lab environment while accounting for structural, functional and conceptual assessment goals.




to

Introductory Information Systems Course Redesign: Better Preparing Business Students

Aim/Purpose: The dynamic nature of the information systems (IS) field presents educators with the perpetual challenge of keeping course offerings current and relevant. This paper describes the process at a College of Business (COB) to redesign the introductory IS course to better prepare students for advanced business classes and equip them with interdisciplinary knowledge and skills demanded in today’s workplace. Background: The course was previously in the Computer Science (CSC) Department, itself within the COB. However, an administrative restructuring resulted in the CSC department’s removal from the COB and left the core course in limbo. Methodology: This paper presents a case study using focus groups with students, faculty, and advisory council members to assess the value of the traditional introductory course. A survey was distributed to students after implementation of the newly developed course to assess the reception of the course. Contribution: This paper provides an outline of the decision-making process leading to the course redesign of the introductory IS course, including the context and the process of a new course development. Practical suggestions for implementing and teaching an introductory IS course in a business school are given. Findings: Focus group assessment revealed that stakeholders rated the existing introductory IS course of minimal value as students progressed through the COB program, and even less upon entering the workforce. The findings indicated a complete overhaul of the course was required. Recommendations for Practitioners: The subject of technology sometimes requires more than a simple update to the curriculum. When signs point to the need for a complete overhaul, this paper gives practical guidance supplemented with relevant literature for other academicians to follow. Recommendation for Researchers: Students are faced with increasing pressure to be proficient with the latest technology, in both the classroom where educators are trying to prepare them for the modern workplace, as well as the organization which faces an even greater pressure to leverage the latest technology. The newly designed introductory IS course provides students, and eventually organizations, a better measure of this proficiency. Future Research: Future research on the efficacy of this new course design should include longitudinal data to determine the impact on graduates, and eventually the assessment of those graduates’ performance in the workplace.




to

Delving into the Specificity of Instructional Guidance in Social Media-supported Learning Environments

Aim/Purpose: This study investigates the variations in student participation patterns across different types of instructional activities, learning modes, and with different instructional guidance approaches. In the current study, different variables, modes of learning (guided versus unguided), and types of guidance (social versus cognitive) were manipulated in a series of microblogging-supported collaborative learning tasks to examine to what extent and in which aspects instructional guidance affects the effectiveness and student perception of microblogging-supported learning. Background: Despite the overwhelming agreement on the importance of instructional guidance in microblogging-supported learning environments, very few studies have been done to examine the specificity of guidance, such as how to structure and support microblogging activities, as well as what types of guidance are appropriate in what learning contexts. Methodology: This semester-long study utilized a case-study research design via a multi-dimensional approach in a hybrid classroom with both face-to-face and online environments. Tweets were collected from four types of activities and coded based on content within their contextual setting. Twenty-four college students participated in the study. Contribution: In response to the call to improve social media learning environments under-scored in contemporary education, the current case study took an initial step aiming at deepening the understanding of the role of instructional guidance in microblogging-supported learning environments. Findings: This study showcases that with instructor facilitation, students succeeded in being engaged in a highly participatory and interactive learning experience across a variety of tasks and activities. This study indicates that students’ perspectives of social media tools rely heavily on what instructors do with the tool and how the instructional activities are structured and supported. Instructors’ scaffolding and support is instrumental in keeping students on task and engaging students with meaningful events, thus ensuring the success of microblogging-based learning activities. Meanwhile, students’ perception of usefulness of instructional guidance is closely related to their own pre-perception and experience. Recommendations for Practitioners: When incorporating social media tools, it is important to examine learner’s prior knowledge and comfort level with these tools and tailor the design of instructional activities to their attributes. It is also vital to monitor student progress, adjust the type and amount of guidance and scaffolding provided as they progress, and eventually remove the scaffolding until students can demonstrate that they can perform the task successfully without assistance. Recommendation for Researchers: Due to many other potential factors in place that could potentially influence student learning, no conclusive remarks can be made regarding the superiority of either one type of guidance approach. Future researchers should continue to develop robust research methodologies to seek ways to better operationalize this variable and strive to understand its effect. Future Research: Future replication studies in other settings, with a larger sample size, and different populations will certainly provide further insights on the effects of instructional guidance in microblogging-based learning. Alternative coding methods may also shed light on differences in student interaction in terms of content diversity and depth of learning when analyzing the tweets. Advanced data collection techniques may be explored to ascertain the completeness of data collection.




to

A Real-time Plagiarism Detection Tool for Computer-based Assessments

Aim/Purpose: The aim of this article is to develop a tool to detect plagiarism in real time amongst students being evaluated for learning in a computer-based assessment setting. Background: Cheating or copying all or part of source code of a program is a serious concern to academic institutions. Many academic institutions apply a combination of policy driven and plagiarism detection approaches. These mechanisms are either proactive or reactive and focus on identifying, catching, and punishing those found to have cheated or plagiarized. To be more effective against plagiarism, mechanisms that detect cheating or colluding in real-time are desirable. Methodology: In the development of a tool for real-time plagiarism prevention, literature review and prototyping was used. The prototype was implemented in Delphi programming language using Indy components. Contribution: A real-time plagiarism detection tool suitable for use in a computer-based assessment setting is developed. This tool can be used to complement other existing mechanisms. Findings: The developed tool was tested in an environment with 55 personal computers and found to be effective in detecting unauthorized access to internet, intranet, and USB ports on the personal computers. Recommendations for Practitioners: The developed tool is suitable for use in any environment where computer-based evaluation may be conducted. Recommendation for Researchers: This work provides a set of criteria for developing a real-time plagiarism prevention tool for use in a computer-based assessment. Impact on Society: The developed tool prevents academic dishonesty during an assessment process, consequently, inculcating confidence in the assessment processes and respectability of the education system in the society. Future Research: As future work, we propose a comparison between our tool and other such tools for its performance and its features. In addition, we want to extend our work to include testing for scalability of the tool to larger settings.




to

Digital Literacy in Higher Education: A Case Study of Student Engagement with E-Tutorials Using Blended Learning

Aim/Purpose: This paper reports on a case study project which had three goals; to develop a suite of original interactive digital skills e-tutorials to be embedded in undergraduate and postgraduate courses; to evaluate the students’ experience and engagement with the e-tutorials over one semester; and to explore their general attitudes towards online and blended learning. Background: Online and blended learning modes continue to grow in popularity in higher education, with the aim of streamlining and enhancing student learning, supporting collaboration and creativity, and equipping students with the skills they will require to work and live in an increasingly digitized world. This practice-based case study highlights factors which positively and negatively affect user engagement with digital learning objects and explores students’ perceptions of the role of online learning within their academic programs. Methodology: A suite of nine interactive e-tutorials, addressing essential digital literacy skills for university students, was developed through instructor and student peer collaboration using Articulate software, informed by best practice. The e-tutorials were embedded in the institutional Learning Management System for three undergraduate and postgraduate courses, in which digital literacy formed the core learning content, to complement classroom-based learning. Students in these courses were surveyed via SurveyMonkey about their specific experience of using the e-tutorials, as well as their general perceptions of digital literacy and online learning. Eighty-six students in total completed the questionnaire, which consisted of twenty-three closed- and open-ended questions. Contribution: Through highlighting both the positive and the challenging aspects of the students’ reported experience of online learning, this case study contributes useful insights to the body of literature on user engagement with digital learning objects in higher education, as well as students’ perceptions and experience of blended learning. Findings: The e-tutorials were perceived as valuable in reinforcing classroom learning, allowing respondents to revise concepts and materials covered in face-to-face classes, at their own pace and in their own time. Survey responses showed that the accessibility, ease-of-use, design and duration of the e-tutorials were deemed effective in terms of user engagement; however, several technological challenges were identified, such as browser incompatibility, uneven sound quality and general Internet connection issues, which disrupted their learning. Overall, students expressed enjoyment of the learning facilitated by the e-tutorials; however, rather than favoring online learning alone, they expressed a preference for a blended learning environment, with a combination of complementary learning approaches; survey respondents did not generally wish to forego face-to-face classes entirely. Recommendations for Practitioners: Instructors should seek to strategically embed interactive digital learning objects in their courses at defined points of need in a logical structure, e.g., to reinforce classroom-based learning, or to support specific skill development. Potential disruption to learning should be minimized by following best practice guidelines to ensure ease of access, a seamless user experience, and timely feedback, as well as providing adequate support for rapid resolution of technical glitches. Recommendation for Researchers: E-tutorials offer a useful means of exploring ways in which students acquire learning in the digital environment. A wider, collaborative exploration is needed to provide comparative studies which move beyond case studies. Impact on Society: Online learning mechanisms, such as e-tutorials, offer students different means of acquiring essential literacy skills and different ways to interact with content. E-tutorials constitute reusable learning objects, which can be accessed as just-in-time delivery modes, when students perceive they need to review particular skills or reinforce learning material. Future Research: This research is now expanding into different types of reusable learning objects. E-tutorials may be developed in multiple ways, and comparative research around e-tutorial models will deepen our understanding of how students interact with content in formal learning contexts. As the digital educational landscape continues to expand alongside traditional face-to-face and analogue learning modes, a key research focus will be student and instructor perceptions and experience of blended learning in different contexts.




to

A Study on the Effectiveness of an Undergraduate Online Teaching Laboratory With Semantic Mechanism From a Student Perspective

Aim/Purpose: The current study was conducted to investigate the students’ perceived satisfaction with the use of a semantic-based online laboratory, which provides students with a search mechanism for laboratory resources, such as instruments and devices. Background: The increasing popularity of using online teaching labs, as an important element of experiential learning in STEM education, is because they represent a collection of integrated tools that allow students and teachers to interact and work collaboratively, whereas they provide an enriched learning content delivery mechanism. Moreover, several research studies have proposed various approaches for online teaching laboratories. However, there are hardly any studies that examine the student satisfaction provided by online laboratories based on students’ experiential learning. Methodology: To measure the effectiveness of the laboratory, we performed a case study in a Computer Fundamentals online course in which undergraduate students were able to manage devices and instruments remotely. Participants were a sample of 50 third semester students of Bachelor’s degree in Information Technology Administration who were divided in experimental and control groups (online laboratory vs. traditional manner). Given a laboratory assignment, students were able to carry out the management of devices and instruments through a LabView virtual environment and web services. The data of the experiment were collected through two questionnaires from both groups. The first is a system usability score (SUS) questionnaire concerning lab usability and the second one students’ cognitive load. Contribution: The results of the study showed a high correlation between usability and cognitive load-satisfaction of students who used the online teaching laboratory compared to the students who did not use it. Findings: On the one hand, the online laboratory provided students with an easy way to share and deploy instruments and devices, thus enhancing system usability. On the other hand, it offered important facilities which enabled students to customize the search for instruments and devices, which certainly had a positive impact on the relationship between cognitive load and satisfaction. Recommendations for Practitioners: In this work we propose an intuitive laboratory interface as well as easiness to use but challenging and capable of providing similar experiences to the traditional laboratory. Recommendation for Researchers: This study is one of the first to analyze the cognitive load-satisfaction relationship and compare it with usability scores. Impact on Society: Our analyses make an important contribution to the literature by suggesting a correlation analysis comparing the results of experimental and control groups that participated in this research work, in terms of usability and cognitive load-satisfaction. Future Research: Future work will also investigate other methodological aspects of instructional design with the aim to improve personalized learning and reinforce collaborative experiences, as well as to deal with problems related to laboratory access, such as authentication, scheduling, and interoperability.




to

Redesigning an Introductory Programming Course to Facilitate Effective Student Learning: A Case Study

Aim/Purpose: This study reports the outcome of how a first pilot semester introductory programming course was designed to provide tangible evidence in support of the concept of Student Ownership of Learning (SOL) and how the outcomes of this programming course facilitate effective student learning. Background: Many instructors want to create or redesign their courses to strengthen the relationship between teaching and learning; however, the researchers of this study believe that the concept of Student Ownership of Learning (SOL) connects to student engagement and achievement in the classroom setting. The researchers redesigned the introductory programming course to include valuable teaching methods to increase Student Ownership of Learning and constructive approaches such as making students design an authentic mobile app project as individuals, partners, or within teams. The high quality of students’ projects positioned them as consultants to the university IT department. Methodology: This paper employs a case study design to construct a qualitative research method as it relates to the phenomenon of the study’s goals and lived experiences of students in the redesigned introductory programming course. The redesigned course was marketed to students as a new course with detailed description and elements that were different from the traditional computer science introductory programming course requirement. The redesigned introductory programming course was offered in two sections: one section with 14 registered students and the other section with 15 registered students. One faculty member instructed both sections of the course. A total of 29 students signed up for the newly redesigned introductory programming course, more than in previous semesters, but two students dropped out within the first two weeks of the redesigned course making a total of 27 students. The redesigned coursework was divided into two parts of the semester. The first part of the semester detailed description and elements of the coursework including a redesigned approach with preparation for class, a quiz, and doing homework in class, which gives students control of decisions whenever possible; and working with each other, either with a partner or in a team. The second part of the semester focuses on students designing a non-trivial working mobile app and presenting their developing mobile app at a significant public competition at the end of the semester. Students developed significantly complex mobile apps and incorporated more complex functionality in their apps. Both Management Information System (MIS) major students and Computer Science major students were in the same course despite the fact that MIS students had never taken a programming course before; however, the Computer Science students had taken at least one course of programming. Contribution: This study provides a practical guide for faculty members in Information Technology programs and other faculty members in non-Computer Science programs to create or redesign an introductory course that increases student engagement and achievement in the classroom based on the concept of Student Ownership of Learning (SOL). This study also deepens the discussion in curriculum and instruction on the value to explore issues that departments or programs should consider when establishing coursework or academic programs. Findings: This study found two goals evidently in support to increase Student Ownership of Learning (SOL). The first goal (Increase their ownership of learning SOL) showed that students found value in the course contents and took control of their learning; therefore, the faculty no longer had to point out how important different programming concepts were. The students recognized their own learning gap and were excited when shown a programming concept that addressed the gap. For example, student comments were met with “boy, we can really use this in our app” instead of comments about how complex they were. The coursework produced a desired outcome for students as they would get the knowledge needed to make the best app that they could. The second goal (Develop a positive attitude toward the course) showed positive results as students developed a more positive attitude towards the course. Student actions in the classroom strongly reflected a positive attitude. Attendance was almost 100% during the semester even though no points for attendance were given. Further evidence of Student Ownership of Learning and self-identity was students’ extensive use of the terminology and concept of the course when talking to others, especially during the public competition. Students were also incorporating their learning into their identities. For example, teams became known by their app such as the Game team, the Recipe team, and the Parking team. One team even made team t-shirts. Another exciting reflection of the Student Ownership of Learning which occurred was the learning students did by themselves. Recommendations for Practitioners: Practitioners can share best practices with faculty in different departments, programs, universities, and educational consultants to cultivate the best solution for Student Ownership of Learning based on student engagement and achievement in the classroom setting. Recommendation for Researchers: Researchers can explore different perspectives with scholars and practitioners in various disciplinary fields of study to create or redesign courses and programs to reflect Student Ownership of Learning (SOL). Impact on Society: Student Ownership of Learning is relevant for faculty and universities to incorporate in the creation or redesigning of coursework in academic programs. Readers can gain an understanding that student engagement and achievement are two important drivers of Student Ownership of Learning (SOL) in the classroom setting. Future Research: Practitioners and researchers could follow-up in the future with a study to provide more understanding and updated research information from different research samples and hypotheses on Student Ownership of Learning (SOL).




to

Incorporating Kinesthetic Learning into University Classrooms: An Example from Management Information Systems

Aim/Purpose: Students tend to learn best when an array of learning styles is used by instructors. The purpose of this paper is to add, to introduce, and to apply the concepts of kinesthetic learning and learning structures to university and STEM education. Background: The study applies the concept of kinesthetic learning and a learning structure called Think-Pair-Share to an experiential exercise about Moore’s Law in an introductory MIS classroom. The paper details the exercise and each of its components. Methodology: Students in two classes were asked to complete a short survey about their conceptual understanding of the course material before and after the experiential exercise. Contribution: The paper details the benefits of kinesthetic learning and learning structures and discusses how to apply these concepts through an experiential exercise used in an introductory MIS course. Findings: Results indicate that the kinesthetic learning activity had a positive impact on student learning outcomes. Recommendations for Practitioners: University educators can use this example to structure several other learning activities that apply kinesthetic learning principles. Recommendation for Researchers: Researchers can use this paper to study more about how to incorporate kinesthetic learning into education, and about teaching technology concepts to undergraduate students through kinesthetic learning. Impact on Society: The results of this study may be extremely beneficial for the university and STEM community and overall academic business community. Future Research: Researchers should consider longitudinal studies and other ways to incorporate kinesthetic learning activities into education.




to

Using Educational Data Mining to Predict Students’ Academic Performance for Applying Early Interventions

Aim/Purpose: One of the main objectives of higher education institutions is to provide a high-quality education to their students and reduce dropout rates. This can be achieved by predicting students’ academic achievement early using Educational Data Mining (EDM). This study aims to predict students’ final grades and identify honorary students at an early stage. Background: EDM research has emerged as an exciting research area, which can unfold valuable knowledge from educational databases for many purposes, such as identifying the dropouts and students who need special attention and discovering honorary students for allocating scholarships. Methodology: In this work, we have collected 300 undergraduate students’ records from three departments of a Computer and Information Science College at a university located in Saudi Arabia. We compared the performance of six data mining methods in predicting academic achievement. Those methods are C4.5, Simple CART, LADTree, Naïve Bayes, Bayes Net with ADTree, and Random Forest. Contribution: We tested the significance of correlation attribute predictors using four different methods. We found 9 out of 18 proposed features with a significant correlation for predicting students’ academic achievement after their 4th semester. Those features are student GPA during the first four semesters, the number of failed courses during the first four semesters, and the grades of three core courses, i.e., database fundamentals, programming language (1), and computer network fundamentals. Findings: The empirical results show the following: (i) the main features that can predict students’ academic achievement are the student GPA during the first four semesters, the number of failed courses during the first four semesters, and the grades of three core courses; (ii) Naïve Bayes classifier performed better than Tree-based Models in predicting students’ academic achievement in general, however, Random Forest outperformed Naïve Bayes in predicting honorary students; (iii) English language skills do not play an essential role in students’ success at the college of Computer and Information Sciences; and (iv) studying an orientation year does not contribute to students’ success. Recommendations for Practitioners: We would recommend instructors to consider using EDM in predicting students’ academic achievement and benefit from that in customizing students’ learning experience based on their different needs. Recommendation for Researchers: We would highly endorse that researchers apply more EDM studies across various universities and compare between them. For example, future research could investigate the effects of offering tutoring sessions for students who fail core courses in their first semesters, examine the role of language skills in social science programs, and examine the role of the orientation year in other programs. Impact on Society: The prediction of academic performance can help both teachers and students in many ways. It also enables the early discovery of honorary students. Thus, well-deserved opportunities can be offered; for example, scholarships, internships, and workshops. It can also help identify students who require special attention to take an appropriate intervention at the earliest stage possible. Moreover, instructors can be aware of each student’s capability and customize the teaching tasks based on students’ needs. Future Research: For future work, the experiment can be repeated with a larger dataset. It could also be extended with more distinctive attributes to reach more accurate results that are useful for improving the students’ learning outcomes. Moreover, experiments could be done using other data mining algorithms to get a broader approach and more valuable and accurate outputs.




to

Towards Understanding Information Systems Students’ Experience of Learning Introductory Programming: A Phenomenographic Approach

Aim/Purpose: This study seeks to understand the various ways information systems (IS) students experience introductory programming to inform IS educators on effective pedagogical approaches to teaching programming. Background: Many students who choose to major in information systems (IS), enter university with little or no experience of learning programming. Few studies have dealt with students’ learning to program in the business faculty, who do not necessarily have the computer science goal of programming. It has been shown that undergraduate IS students struggle with programming. Methodology: The qualitative approach was used in this study to determine students’ notions of learning to program and to determine their cognitive processes while learning to program in higher education. A cohort of 47 students, who were majoring in Information Systems within the Bachelor of Commerce degree programme were part of the study. Reflective journals were used to allow students to record their experiences and to study in-depth their insights and experiences of learning to program during the course. Using phenomenographic methods, categories of description that uniquely characterises the various ways IS students experience learning to program were determined. Contribution: This paper provides educators with empirical evidence on IS students’ experiences of learning to program, which play a crucial role in informing IS educators on how they can lend support and modify their pedagogical approach to teach programming to students who do not necessarily need to have the computer science goal of programming. This study contributes additional evidence that suggests more categories of description for IS students within a business degree. It provides valuable pedagogical insights for IS educators, thus contributing to the body of knowledge Findings: The findings of this study reveal six ways in which IS students’ experience the phenomenon, learning to program. These ways, referred to categories of description, formed an outcome space. Recommendations for Practitioners: Use the experiences of students identified in this study to determine approach to teaching and tasks or assessments assigned Recommendation for Researchers: Using phenomenographic methods researchers in IS or IT may determine pedagogical content knowledge in teaching specific aspects of IT or IS. Impact on Society: More business students would be able to program and improve their logical thinking and coding skills. Future Research: Implement the recommendations for practice and evaluate the students’ performance.




to

A Cognitive Approach to Assessing the Materials in Problem-Based Learning Environments

Aim/Purpose: The purpose of this paper is to develop and evaluate a debiasing-based approach to assessing the learning materials in problem-based learning (PBL) environments. Background: Research in cognitive debiasing suggests nine debiasing strategies improve decision-making. Given the large number of decisions made in semester-long, problem-based learning projects, multiple tools and techniques help students make decisions. However, instructors may struggle to identify the specific tools or techniques that could be modified to best improve students’ decision-making in the project. Furthermore, a structured approach for identifying these modifications is lacking. Such an approach would match the debiasing strategies with the tools and techniques. Methodology: This debiasing framework for the PBL environment is developed through a study of debiasing literature and applied within an e-commerce course using the Model for Improvement, continuous improvement process, as an illustrative case to show its potential. In addition, a survey of the students, archival information, and participant observation provided feedback on the debiasing framework and its ability to assess the tools and techniques within the PBL environment. Contribution: This paper demonstrates how debiasing theory can be used within a continuous improvement process for PBL courses. By focusing on a cognitive debiasing-based approach, this debiasing framework helps instructors 1) identify what tools and techniques to change in an PBL environment, and 2) assess which tools and techniques failed to debias the students adequately, providing potential changes for future cycles. Findings: Using the debiasing framework in an e-commerce course with significant PBL elements provides evidence that this framework can be used within IS courses and more broadly. In this particular case, the change identified in a prior cycle proved effective and additional issues were identified for improvement. Recommendations for Practitioners: With the growing usage of semester-long PBL projects in business schools, instructors need to ensure that their design of the projects incorporates techniques that improve student learning and decision making. This approach provides a means for assessing the quality of that design. Recommendation for Researchers: This study uses debiasing theory to improve course techniques. Researchers interested in assessment, course improvement, and program improvement should incorporate debiasing theory within PBL environments or other types of decision-making scenarios. Impact on Society: Increased awareness of cognitive biases can help instructors, students, and professionals make better decisions and recommendations. By developing a framework for evaluating cognitive debiasing strategies, we help instructors improve projects that prepare students for complex and multifaceted real-world projects. Future Research: The approach could be applied to multiple contexts, within other courses, and more widely within information systems to extend this research. The framework might also be refined to make it more concise, integrated with assessment, or usable in more contexts.




to

Formative Assessment Activities to Advance Education: A Case Study

Aim/Purpose: During the education of future engineers and experts in the field of computer science and information communication technology, the achievement of learning outcomes related to different levels of cognitive ability and knowledge dimensions can be a challenge. Background: Teachers need to design an appropriate set of activities for students and combine theory-based knowledge acquisition with practical training in technical skills. Including various activities for formative assessment during the course can positively affect students’ motivation for learning and ensure appropriate and timely feedback that will guide students in further learning. Methodology: The aim of the research presented in this paper is to propose an approach for course delivery in the field of software engineering and to determine whether the use of the approach increases student’s academic achievement. Using the proposed approach, the course Process Modeling for undergraduate students was redesigned and experimental study was conducted. Course results of the students (N=82) who took the new version of the course (experimental group) were compared to the results of the students from the control group (N=66). Contribution: An approach for a blended learning course in the field of software engineering was developed. This approach is based on the formative assessment activities that promote collaboration and the use of digital tools. Newly designed activities are used to encourage a greater level of acquired theoretical content and enhance the acquisition of subject-specific skills needed for practical tasks. Findings: The results showed that students who participated in the formative assessment activities achieved significantly better results. They had significantly higher scores in the main components of assessment compared to the students from the control group. In addition, students from the experimental group expressed positive views about the effectiveness of the used approach. Recommendations for Practitioners: The proposed approach has potential to increase students’ motivation and academic achievements so practitioners should consider to apply it in their own context. Recommendation for Researchers: Researchers are encouraged to conduct additional studies to explore the effectiveness of the approach with different courses and participants as well as to provide further insights regarding its applicability and acceptance by students. Impact on Society: The paper provides an approach and an example of good practice that may be beneficial for the university teachers in the field of computer science, information-communication technology, and engineering. Future Research: In the future, face-to-face activities will be adapted for performance in an online environment. Future work will also include a research on the possibilities of personalization of activities in accordance with the students’ characteristics.




to

Innovative Pedagogical Strategies of Streaming, Just-in-Time Teaching, and Scaffolding: A Case Study of Using Videos to Add Business Analytics Instruction Across a Curriculum

Aim/Purpose: Business analytics is a cross-functional field that is important to implement for a college and has emerged as a critically important core component of the business curriculum. It is a difficult task due to scheduling concerns and limits to faculty and student resources. This paper describes the process of creating a central video repository to serve as a platform for just in time teaching and the impact on student learning outcomes. Background: Industry demand for employees with analytical knowledge, skills, and abilities requires additional analytical content throughout the college of business curriculum. This demand needs other content to be added to ensure that students have the prerequisite skills to complete assignments. Two pedagogical approaches to address this issue are Just-in-Time Teaching (JiTT) and scaffolding, grounded in the Vygoskian concept of “Zone of Proximal Development. Methodology: This paper presents a case study that applies scaffolding and JiTT teaching to create a video repository to add business analytics instruction to a curriculum. The California Critical Thinking Skills Test (CCTST) and Major Field Test (MFT) scores were analyzed to assess learning outcomes. Student and faculty comments were considered to inform the results of the review. Contribution: This paper demonstrates a practical application of scaffolding and JiTT theory by outlining the process of using a video library to provide valuable instructional resources that support meaningful learning, promote student academic achievement, and improve program flexibility. Findings: A centrally created library is a simple and inexpensive way to provide business analytics course content, augmenting standard content delivery. Assessment of learning scores showed an improvement, and a summary of lessons learned is provided to guide implications. Recommendations for Practitioners: Pedagogical implications of this research include the observation that producing a central library of instructor created videos and assignments can help address knowledge and skills gaps, augment the learning of business analytics content, and provide a valuable educational resource throughout the college of business curriculum. Recommendation for Researchers: This paper examines the use of scaffolding and JiTT theories. Additional examination of these theories may improve the understanding and limits of these concepts as higher education evolves due to the combination of market forces changing the execution of course delivery. Impact on Society: Universities are tasked with providing new and increasing skills to students while controlling the costs. A centrally created library of instructional videos provides a means of delivering meaningful content while controlling costs. Future Research: Future research may examine student success, including the immediate impact of videos and longitudinally using video repositories throughout the curriculum. Studies examining the approach across multiple institutions may help to evaluate the success of video repositories. Faculty acceptance of centrally created video libraries and assignments should be considered for the value of faculty recruiting and use in the classroom. The economic impact on both the university and students should be evaluated.




to

Knowledge Management Applied to Learning English as a Second Language Through Asynchronous Online Instructional Videos

Aim/Purpose: The purpose of this research is to determine whether ESL teaching videos as a form of asynchronous online knowledge sharing can act as an aid to ESL learners internalizing knowledge in language acquisition. In this context, internalizing knowledge carries the meaning of being able to remember language, and purposefully and accurately use it context, including appropriacy of language, and aspects of correct pronunciation, intonation, stress patterns and connected speech, these being the elements of teaching and practice that are very often lacking in asynchronous, online, instructional video. Background: Knowledge Management is the field of study, and the practice, of discovering, capturing, sharing, and applying knowledge, typically with a view to translating individuals’ knowledge into organizational knowledge. In the field of education, it is the sharing of instructors’ knowledge for students to be able to learn and usefully apply that knowledge. In recent pandemic times, however, the mode of instruction has, of necessity, transitioned from face-to-face learning to an online environment, transforming the face of education as we know it. While this mode of instruction and knowledge sharing has many advantages for the online learner, in both synchronous and asynchronous learning environments, it presents certain challenges for language learners due to the absence of interaction and corrective feedback that needs to take place for learners of English as a Second Language (ESL) to master language acquisition. Unlike other subjects where the learner has recourse to online resources to reinforce learning through referencing external information, such as facts, figures, or theories, to be successful in learning a second language, the ESL learner needs to be able to learn to process thought and speech in that language; essentially, they need to learn to think in another language, which takes time and practice. Methodology: The research employs a systematic literature review (SLR) to determine the scope and extent to which the subject is covered by existing research in this field, and the findings thereof. Contribution: Whilst inconclusive in relation to internalizing language through online, asynchronous instructional video, through its exploratory nature, the research contributes towards the body of knowledge in online learning through the drawing together of various studies in the field of learning through asynchronous video through improving video and instructional quality. Findings: The findings of the systematic literature review revealed that there is negligible research in this area, and while information exists on blended and flipped modes of online learning, and ways to improve the quality and delivery of instructional video generally, no prior research on the exclusive use of asynchronous videos as an aid to internalizing English as a second language were found. Recommendations for Practitioners: From this research, it is apparent that there is considerably more that practitioners can do to improve the quality of instructional videos that can help students engage with the learning, from which students stand a much better chance of internalizing the learning. Recommendation for Researchers: For researchers, the absence of existing research is an exciting opportunity to further explore this field. Impact on Society: Online learning is now globally endemic, but it poses specific challenges in the field of second language learning, so the development of instructional videos that can facilitate this represents a clear benefit to all ESL learners in society as a whole. Future Research: Clearly the absence of existing research into whether online asynchronous instructional videos can act as an aid to internalizing the acquisition of English as a second language would indicate that this very specific field is one that merits future research. Indeed, it is one that the author intends to exploit through primary data collection from the production of a series of asynchronous, online, instructional videos.




to

A Deep Learning Based Model to Assist Blind People in Their Navigation

Aim/Purpose: This paper proposes a new approach to developing a deep learning-based prototyping wearable model which can assist blind and visually disabled people to recognize their environments and navigate through them. As a result, visually impaired people will be able to manage day-to-day activities and navigate through the world around them more easily. Background: In recent decades, the development of navigational devices has posed challenges for researchers to design smart guidance systems for visually impaired and blind individuals in navigating through known or unknown environments. Efforts need to be made to analyze the existing research from a historical perspective. Early studies of electronic travel aids should be integrated with the use of assistive technology-based artificial vision models for visually impaired persons. Methodology: This paper is an advancement of our previous research work, where we performed a sensor-based navigation system. In this research, the navigation of the visually disabled person is carried out with a vision-based 3D-designed wearable model and a vision-based smart stick. The wearable model used a neural network-based You Only Look Once (YOLO) algorithm to detect the course of the navigational path which is augmented by a GPS-based smart Stick. Over 100 images of each of the three classes, namely straight path, left path and right path, are being trained using supervised learning. The model accurately predicts a straight path with 79% mean average precision (mAP), the right path with 83% mAP, and the left path with 85% mAP. The average accuracy of the wearable model is 82.33% and that of the smart stick is 96.14% which combined gives an overall accuracy of 89.24%. Contribution: This research contributes to the design of a low-cost navigational standalone system that will be handy to use and help people to navigate safely in real-time scenarios. The challenging self-built dataset of various paths is generated and transfer learning is performed on the YOLO-v5 model after augmentation and manual annotation. To analyze and evaluate the model, various metrics, such as model losses, recall value, precision, and maP, are used. Findings: These were the main findings of the study: • To detect objects, the deep learning model uses a higher version of YOLO, i.e., a YOLOv5 detector, that may help those with visual im-pairments to improve their quality of navigational mobilities in known or unknown environments. • The developed standalone model has an option to be integrated into any other assistive applications like Electronic Travel Aids (ETAs) • It is the single neural network technology that allows the model to achieve high levels of detection accuracy of around 0.823 mAP with a custom dataset as compared to 0.895 with the COCO dataset. Due to its lightning-speed of 45 FPS object detection technology, it has become popular. Recommendations for Practitioners: Practitioners can help the model’s efficiency by increasing the sample size and classes used in training the model. Recommendation for Researchers: To detect objects in an image or live cam, there are various algorithms, e.g., R-CNN, Retina Net, Single Shot Detector (SSD), YOLO. Researchers can choose to use the YOLO version owing to its superior performance. Moreover, one of the YOLO versions, YOLOv5, outperforms its other versions such as YOLOv3 and YOLOv4 in terms of speed and accuracy. Impact on Society: We discuss new low-cost technologies that enable visually impaired people to navigate effectively in indoor environments. Future Research: The future of deep learning could incorporate recurrent neural networks on a larger set of data with special AI-based processors to avoid latency.




to

Using Design-Based Research to Layer Career-Like Experiences onto Software Development Courses

Aim/Purpose: This research aims to describe layering of career-like experiences over existing curriculum to improve perceived educational value. Background: Feedback from students and regional businesses showed a clear need to increase student’s exposure to career-like software development projects. The initial goal was to develop an instructor-optional project that could be used in a single mid-level programming course; however, the pilot quickly morphed into a multi-year study examining the feasibility of agile projects in a variety of settings. Methodology: Over the course of four years, an agile project was honed through repeated Design Based Research (DBR) cycles of design, implementation, testing, communication, and reflective analysis. As is common with DBR, this study did not follow single methodology design; instead, analysis of data coupled with review of literature led to exploration and testing of a variety of methodologies. The review phase of each cycle included examination of best practices and methodologies as determined by analysis of oral and written comments, weekly journals, instructor feedback, and surveys. As a result of participant feedback, the original project was expanded to a second project, which was tested in another Software Engineering (SE) course. The project included review and testing of many academic and professional methodologies, such as Student Ownership of Learning, Flipped Classroom, active learning, waterfall, agile, Scrum, and Kanban. The study was homogenous and quasi-experimental as the population consisted solely of software engineering majors taking required courses; as based on validity of homogenous studies, class sizes were small, ranging from 8 to 20 students. Close interactions between respondents and the instructor provided interview-like settings and immersive data capture in a natural environment. Further, the iterative development practices of DBR cycles, along with the inclusion of participants as active and valued stakeholders, was seen to align well with software development practitioner practices broadly known as agile. Contribution: This study is among the first to examine layering a career-like software development project on top of a course through alteration of traditional delivery, agile development, and without supplanting existing material. Findings: In response to industry recommendations for additional career-like experiences, a standalone agile capstone-like project was designed that could be layered over an existing course. Pilot data reflected positive perceptions of the project, although students did not have enough time to develop a working prototype in addition to completing existing course materials. Participant feedback led to simultaneous development of a second, similar project. DBR examination of both projects resulted in a simplified design and the ability to develop a working prototype, if and only if the instructor was willing to make adjustments to delivery. After four years, a solution was developed that is both stable and flexible. The solution met the original charge in that it required course delivery, not course material, to be adjusted. It is critical to note that when a working prototype is desired, a portion of the lecture should be flipped allowing more time for guided instruction through project-focused active learning and study group requirements. The results support agile for standalone software development projects, as long as passive delivery methods are correspondingly reduced. Recommendations for Practitioners: Based on the findings, implementation of a career-like software development project can be well received as long as active learning components are also developed. Multiple cycles of DBR are recommended if future researchers wish to customize instructional delivery and develop complex software development projects. Programming instructors are recommended to explore hybrid delivery to support development of agile career-like experiences. Small class sizes allowed the researchers to maintain an interview-like setting throughout the study and future studies with larger classes are recommended to include additional subject matter experts such as graduate students as interaction with a subject matter expert was highly valued by students. Recommendation for Researchers: Researchers are recommended to further examine career-like software development experiences that combine active learning with agile methods; more studies following agile and active learning are needed to address the challenges faced when complex software development is taught in academic settings. Further testing of standalone agile project development has now occurred in medium sized in person classes, online classes, independent studies, and creative works research settings; however, further research is needed. Future research should also examine the implementation of agile projects in larger class sizes. Increasing class size should be coupled with additional subject matter experts such as graduate students. Impact on Society: This study addresses professional recommendations for development of agile career-like experiences at the undergraduate level. This study provides empirical evidence of programming projects that can be layered over existing curriculum, with no additional cost to the students. Initial feedback from local businesses and graduates, regarding agile projects with active learning, has been positive. The area business that refused to hire our underprepared SE graduates has now hired several. Future Research: Future research should explore layering agile projects over a broader range of software development courses. Feedback from hiring professionals and former students has been positive. It is also recommended that DBR be used to develop career-like experiences for online programming courses.




to

Unveiling the Digital Equation Through Innovative Approaches for Teaching Discrete Mathematics to Future Computer Science Educators

Aim/Purpose: This study seeks to present a learning model of discrete mathematics elements, elucidate the content of teaching, and validate the effectiveness of this learning in a digital education context. Background: Teaching discrete mathematics in the realm of digital education poses challenges, particularly in crafting the optimal model, content, tools, and methods tailored for aspiring computer science teachers. The study draws from both a comprehensive review of relevant literature and the synthesis of the authors’ pedagogical experiences. Methodology: The research utilized a system-activity approach and aligned with the State Educational Standard. It further integrated the theory of continuous education as its psychological and pedagogical foundation. Contribution: A unique model for instructing discrete mathematics elements to future computer science educators has been proposed. This model is underpinned by informative, technological, and personal competencies, intertwined with the mathematical bedrock of computer science. Findings: The study revealed the importance of holistic teaching of discrete mathematics elements for computer science teacher aspirants in line with the Informatics educational programs. An elective course, “Elements of Discrete Mathematics in Computer Science”, comprising three modules, was outlined. Practical examples spotlighting elements of mathematical logic and graph theory of discrete mathematics in programming and computer science were showcased. Recommendations for Practitioners: Future computer science educators should deeply integrate discrete mathematics elements in their teaching methodologies, especially when aligning with professional disciplines of the Informatics educational program. Recommendation for Researchers: Further exploration is recommended on the seamless integration of discrete mathematics elements in diverse computer science curricula, optimizing for varied learning outcomes and student profiles. Impact on Society: Enhancing the quality of teaching discrete mathematics to future computer science teachers can lead to better-educated professionals, driving advancements in the tech industry and contributing to societal progress. Future Research: There is scope to explore the wider applications of the discrete mathematics elements model in varied computer science sub-disciplines, and its adaptability across different educational frameworks.




to

Utilizing Design Thinking to Create Digital Self-Directed Learning Environment for Enhancing Digital Literacy in Thai Higher Education

Aim/Purpose: To explore the effectiveness of utilizing the design thinking approach in developing digital self-directed learning environment to enhance digital literacy skills in Thai higher education. Background: To foster digital literacy skills in higher education, Thai students require more than access to technology. Emphasizing digital self-directed learning and incorporating Design Thinking approach, can empower students to learn and develop their digital skills effectively. This study explores the impact of digital self-directed learning environment, developed using a design thinking approach, on enhancing digital literacy skills among higher education students in Thailand. Methodology: The research methodology involves developing a digital self-directed learning environment, collecting and analyzing data, and using statistical analysis to compare the outcomes between different groups. The sample includes 60 undergraduate students from the School of Industrial Education and Technology at King Mongkut Institute of Technology, divided into a control group (n=30) and an experimental group (n=30). Data analysis involves mean, standard deviation, and one-way MANOVA. Contribution: This research contributes to the evidence supporting the use of Design Thinking in developing digital self-directed learning environment, demonstrating its effectiveness in meeting learners’ needs and improving learning outcomes in higher education. Findings: Key findings include: 1) the digital media and self-directed learning activities plan developed through the design thinking approach received high-quality ratings from experts, with mean scores of 4.87 and 4.93, respectively; and 2) post-lesson comparisons of learning outcome and digital literacy assessment scores revealed that the group utilizing digital media with self-directed learning activities had significantly higher mean scores than the traditional learning group, with a significance level of 0.001. Recommendations for Practitioners: Practitioners in higher education should use design thinking to develop digital self-directed learning environments that enhance digital literacy skills. This approach involves creating high-quality digital media and activities, promoting engagement and improved outcomes. Collaboration and stakeholder involvement are essential for effective implementation. Recommendation for Researchers: Researchers should continue to explore the effectiveness of design thinking approaches in the development of learning environments, as well as their influence on different educational aspects such as student engagement, satisfaction, and overall learning outcomes. Impact on Society: By enhancing digital literacy skills among higher education students, this study contributes to the development of a digitally skilled workforce, encourages lifelong learning, and aids individuals in effectively navigating the challenges of the digital era. Future Research: Future research could explore a broader range of student demographics and educational settings to validate the effectiveness of the Design Thinking approach in enhancing digital literacy. This could include integrating design thinking with alternative digital learning and teaching methods to further improve digital literacy.




to

Measurement of Doctoral Students’ Intention to Use Online Learning: A SEM Approach Using the TRAM Model

Aim/Purpose: The study aims to supplement existing knowledge of information systems by presenting empirical data on the factors influencing the intentions of doctoral students to learn through online platforms. Background: E-learning platforms have become popular among students and professionals over the past decade. However, the intentions of the doctoral students are not yet known. They are an important source of knowledge production in academics by way of teaching and research. Methodology: The researchers collected data from universities in the Delhi National Capital Region (NCR) using a survey method from doctoral students using a convenience sampling method. The model studied was the Technology Readiness and Acceptance Model (TRAM), an integration of the Technology Readiness Index (TRI) and Technology Acceptance Model (TAM). Contribution: TRAM provides empirical evidence that it positively predicts behavioral intentions to learn from online platforms. Hence, the study validated the model among doctoral students from the perspective of a developing nation. Findings: The model variables predicted 49% of the variance in doctoral students’ intent. The TRAM model identified motivating constructs such as optimism and innovativeness as influencing TAM predictors. Finally, doctoral students have positive opinions about the usefulness and ease of use of online learning platforms. Recommendations for Practitioners: Academic leaders motivate scholars to use online platforms, and application developers to incorporate features that facilitate ease of use. Recommendation for Researchers: Researchers can explore the applicability of TRAM in other developing countries and examine the role of cultural and social factors in the intent to adopt online learning. Future Research: The influence of demographic variables on intentions can lead to additional insights.




to

Digital Technologies Easing the Learning Curve in the Transition to Practicum

Aim/Purpose: This study aims to explore the value of utilizing non-immersive virtual reality (VR) to create virtual learning environments (VLEs) to support and prepare optometry students in their transition into preclinical and clinical teaching spaces. Background: Digital education is widely integrated into university curricula with the use of online simulators, immersive VR, and other digital technologies to support student learning. This study focuses on non-immersive VR as an accessible and low-friction means of accessing VLEs to reduce students’ learning burden. Methodology: Current optometry students were invited to explore 360° 3D panoramic virtual learning environments of preclinical and clinical teaching spaces. Students were recruited to participate in an online Qualtrics survey and individual semi-structured interviews. Quantitative data was analyzed, and thematic analysis was conducted on qualitative data from students’ responses to identify key takeaways on the accessibility and impact of VLEs on students’ learning. Contribution: Non-immersive VR has utility in alleviating student stress and helping transition students into practicum. The VLEs have the means to supplement the curriculum to provide support to students entering the preclinical and clinical teaching spaces. Findings: Students engaged voluntarily with the novel VLEs and utilized the resources to help familiarize themselves with the preclinical and clinical teaching spaces. The open-access resource supported students in their preparation for practical learning and helped to reduce self-reported stress and build confidence prior to entering practical classes. Many of the students enjoyed the experience of navigating through the spaces, which helped to appease their curiosity and reduce the learning curve associated with entering new spaces. The VLEs did not replace attending practical spaces but rather were supportive learning resources that aided students due to limited face-to-face contact hours. For students with existing familiarity with the spaces, through their in-person attendance in pre-clinical and clinical teaching sessions prior to accessing the VLEs, the digital resources were not as beneficial compared to students who were still transitioning into practicum. Recommendations for Practitioners: Introductory digital resources like non-immersive VR are accessible platforms that help to orient and familiarize students with new environments. VLEs can potentially help to relieve student stress and reduce the learning load associated with entering practicum or new learning spaces. Recommendation for Researchers: More work needs to be done on how student preparation can translate to feeling less stressed and more confident in relation to transitioning from traditional learning environments to practical learning spaces. Impact on Society: A broader application of non-immersive VR can be implemented as an introductory learning preparation tool across different disciplines to alleviate student stress and maximize the limited time in practicum to allow focus on learning outcomes and practical skills. Future Research: Future studies should consider different cohorts to study, with a focus on objective measures of engagement with VLEs. The effect of VLEs on students’ cognitive load should be assessed and assessment of self-perceived stress can be evaluated with instruments such as Cohen’s Perceived Stress Scale.




to

MOOC Appropriation and Agency in Face-to-Face Learning Communities

Aim/Purpose: The emergence of massive open online courses (MOOCs) has fostered the creation of co-located learning communities; however, there is limited research on the types of interactions unfolding in these spaces. Background: This study explores Peer 2 Peer University’s Learning Circles, a project that allows individuals to take MOOCs together at the library. I investigated the patterns that emerged from the interactions between facilitators, learners, course materials, and digital media in the pilot round of these Learning Circles. Methodology: This study employs an ethnography of hybrid spaces (online/offline participant observations, in-depth interviews, and artifact collection) of face-to-face study groups taking place at library branches in a Midwest metropolitan area. Data analysis employs the constant comparison method. Contribution: Interactions taking place in the Learning Circles increased individuals’ agency as learners and subverted the MOOC model through processes of technological appropriation. Findings: The findings reveal that interactions within Learning Circles created a dynamic negotiation of roles, produced tension points, enabled a distributed model of knowledge, and structured study routines. The pilot round of Learning Circles attracted diverse participants beyond the typical digitally literate MOOC student. Many of them had no previous experience taking online courses and, in some cases, no Internet connection at home. This paper argues that Learning Circles favored the appropriation of artifacts (technologies) and increased participants’ agency as learners in the Internet age. Recommendations for Practitioners: Practitioners can use the Learning Circles model to benefit disenfranchised individuals by providing them with access to materials resources and a network of peers that can help increase their agency as learners. Recommendation for Researchers: This study suggests that it is fundamental to pay attention to learning initiatives that are unfolding outside the scope of traditional and formal education. Impact on Society: Open educational resources and public libraries are opening new pathways for learning beyond traditional higher education institutions. Future Research: Future research can explore how the learning circles are adapted in cultural contexts outside the United States.




to

Key Factors for a Creative Environment in Saudi Arabian Higher Education Institutions

Aim/Purpose: This research explores the influence of organizational-level and individual-level creativity and innovation and the technology acceptance model toward the higher education creative environment that consists of research creativity and teaching creativity. Background: Creativity and innovation are essential pillars for higher education institutions (HEIs). The two terms are interconnected, where creativity is referring to finding better ideas to do the work, while innovation is referring to how to do and implement these creative ideas. Choosing the optimal creative process and the organizational support needed to develop it is an important goal in achieving a creative and inventive environment. For the success of the creative environment to ensure the improvement of higher education institutions, information technology as social networking sites plays a crucial part in the creative process within universities. However, assessing the creativity and innovation of Saudi higher education institutions has not been well recognized. Universities today serve as knowledge-based institutions because they are at the forefront of cutting-edge R&D and scientific innovations. Creating such a productive research environment in universities, however, necessitates a work culture that encourages employees to be more creative while also encouraging the creation of new ideas and innovations. Methodology: A survey instrument was utilized as a quantitative method for this research to gather data from the study sample on the influencing variables employed in the research framework. Respondent data were analyzed using a disjoint two-stage method using PLS-SEM path modelling. Contribution: The results of this research contribute to the theoretical and scientific literature by offering a model of creativity and innovation in higher education institutions. The model proposes an optimal blend of organizational, individual, and technology variables that contribute to the development of the Higher Education Creative Environment in HEIs via creativity in teaching and research and a culture of innovation. In another way, the proposed framework especially helps to comprehend the challenges regulating establishing teaching and research creativity in HEIs via the adoption of organizational, individual, and technology enablers identified as part of this study. Findings: According to the results, organizational factors such as organizational encouragement, freedom, and challenging work have a positive relationship with the higher education creative environment. However, realistic work pressure, a lack of organizational impediments, managerial encouragement, and work group support is insufficient to affect the creative environment in higher education in Saudi Arabia. Individual variables (creative thinking skills and expertise, for example) also have a positive impact on the higher education creative environment. In the higher education creative environment, however, the influence of intrinsic motivation is insignificant. Finally, technology factors such as social networking site adoption intention, perceived usefulness, and perceived ease of use have the potential to influence the higher education creative environment. Recommendations for Practitioners: On the practical front, the obvious recommendation of this research is that it enables top leadership in Saudi HEIs to rethink the norms of creativity and innovation in their institutions, thereby instilling a mindset guided by a flourishing culture of creativity in the HEI environment with a specific focus on creativity practices in research and teaching domains. Furthermore, to promote the environment’s creativity within Saudi Arabian HEIs, university leaders must consider the suggested Organizational, Individual, and Technology factors as key enablers of creativity and innovation, which will guide them in revisiting their strategic actions in terms of further augmenting the creative performance of their academic’s staff, thereby sustaining a culture of Higher Education Creative Environment (HECE). Recommendation for Researchers: This study addressed many organizational, individual, and technology variables that facilitate Saudi Arabian HECE accomplishment in the form of research and teaching creativity. Furthermore, fresh insights for Saudi public HEIs are revealed when the success aspects of the creative environment are considered. If academic leadership at Saudi HEIs is to encourage the creative environment in general and creativity in teaching and research, it would be suitable for them to highlight individual, organizational, and technology success elements. As a result, their HEIs will be able to produce more innovative research, products, and services that can support and meaningfully achieve national transformation initiatives, opening the path for a transition into a knowledge-based economy. Impact on Society: In fact, this research is based on a quantitative research method, and the findings were also significant especially considering the current global crises. It is clearly understood by this process that includes organizational, individual, and technology factors as key enablers of the creative performance of academic staff, thereby sustaining a culture of HECE. Future Research: While providing the research model, it is probable that this study overlooked any other crucial aspects influencing creativity and innovation. As a result, future research should look at additional variables that may impact HECE in Saudi Arabian HEIs. Furthermore, while this study focused on deriving HECE with a particular emphasis on research and teaching creativity as results, future research might look at deriving other creativity outcomes (e.g., entrepreneurial creativity) within the investigated HECE dimension.




to

Critical Thinking: The Code to Crack Computer Science Education

Aim/Purpose: This paper explores the potential value of critical thinking in computer science education and discusses strategies for its integration across the curriculum. Background: As technology rapidly evolves and becomes increasingly integrated into society, there is a growing need for computer science graduates who can think critically about the ethical, societal, and technical implications of their work. Methodology: This study employs a conceptual analysis approach, reviewing existing literature on critical thinking in computer science education and synthesising insights from various sources. The analysis focuses on identifying challenges in implementing critical thinking instruction and proposing practical solutions. Contribution: This paper provides an overview of the current discourse on integrating critical thinking into computer science curricula. It explores the distinction between critical thinking and computational thinking, discusses various pedagogical approaches, and offers insights into potential challenges of implementation. Findings: The paper identifies six key challenges in embedding critical thinking into computer science education. It proposes initial steps to address these challenges, including curriculum redesign, innovative assessment methods, and faculty development strategies. Recommendations for Practitioners: Educators should adopt a balanced approach that complements technical education with critical thinking exercises, using diverse teaching methods such as dialogue-based teaching and authentic instruction. Recommendation for Researchers: Future research should focus on empirical studies to assess the effectiveness of the proposed solutions and develop standardised tools for evaluating critical thinking skills in computer science. Impact on Society: By enhancing critical thinking skills in computer science education, we can produce graduates who are better equipped to address complex technological challenges and their societal implications. Future Research: Further investigation is needed into the most effective pedagogical approaches for teaching critical thinking in computer science, with a focus on multidisciplinary perspectives.




to

A Constructionist Approach to Learning Computational Thinking in Mathematics Lessons

Aim/Purpose: This study presents some activities that integrate computational thinking (CT) into mathematics lessons utilizing GeoGebra to promote constructionist learning. Background: CT activities in the Indonesian curriculum are dominated by worked examples with less plugged-mode activities that might hinder students from acquiring CT skills. Therefore, we developed mathematics and CT (math+CT) lessons to promote students’ constructionist key behaviors while learning. Methodology: The researchers utilized an educational design research (EDR) to guide the lesson’s development. The lesson featured 11 applets and 22 short questions developed in GeoGebra. To improve the lesson, it was sent to eight mathematics teachers and an expert in educational technology for feedback, and the lesson was improved accordingly. The improved lessons were then piloted with 17 students, during which the collaborating mathematics teachers taught the lessons. Data were collected through the students’ work on GeoGebra, screen recording when they approached the activities, and interviews. We used content analysis to analyze the qualitative data and presented descriptive statistics to quantitative data. Contribution: This study provided an example and insight into how CT can be enhanced in mathematics lessons in a constructionist manner. Findings: Students were active in learning mathematics and CT, especially when they were engaged in programming and debugging tasks. Recommendations for Practitioners: Educators are recommended to use familiar mathematics software such as GeoGebra to support students’ CT skills while learning mathematics. Additionally, our applets are better run on big-screen devices to optimize students’ CT programming and debugging skills. Moreover, it is recommended that students work collaboratively to benefit from peer feedback and discussion. Recommendation for Researchers: Collaboration with teachers will help researchers better understand the situation in the classroom and how the students will respond to the activities. Additionally, it is important to provide more time for students to get familiar with GeoGebra and start with fewer errors to debug. Future Research: Further research can explore more mathematics topics when integrating CT utilizing GeoGebra or other mathematics software or implement the lessons with a larger classroom size to provide a more generalizable result and deeper understanding.




to

Adoption and Usage of Augmented Reality-based Virtual Laboratories Tool for Engineering Studies

Aim/Purpose: The study seeks to utilize Augmented Reality (AR) in creating virtual laboratories for engineering education, focusing on enhancing teaching methodologies to facilitate student understanding of intricate and theoretical engineering principles while also assessing engineering students’ acceptance of such laboratories. Background: AR, a part of next-generation technology, has enhanced the perception of reality by overlaying virtual elements in the physical environment. The utilization of AR is prevalent across different disciplines, yet its efficacy in facilitating Science, Technology, Engineering, and Mathematics (STEM) education is limited. Engineering studies, a part of STEM learning, involves complex and abstract concepts like machine simulation, structural analysis, and design optimization; these things would be easy to grasp with the help of AR. This restriction can be attributed to their innovative characteristics and disparities. Therefore, providing a comprehensive analysis of the factors influencing the acceptance of these technologies by students - the primary target demographic – and examining the impact of these factors is essential to maximize the advantages of AR while refining the implementation processes. Methodology: The primary objective of this research is to develop and evaluate a tool that enriches the educational experience within engineering laboratories. Utilizing Unity game engine libraries, digital content is meticulously crafted for this tool and subsequently integrated with geo-location functionalities. The tool’s user-friendly interface allows both faculty and non-faculty members of the academic institution to establish effortlessly the virtual laboratory. Subsequently, an assessment of the tool is conducted through the application of the Unified Theory of Acceptance and Use of Technology (UTAUT2) model, involving the administration of surveys to university students to gauge their level of adaptability. Contribution: The utilization of interactive augmented learning in laboratory settings enables educational establishments to realize notable savings in time and resources, thereby achieving sustainable educational outcomes. The study is of great importance due to its utilization of student behavioral intentions as the underlying framework for developing an AR tool and illustrating the impact of learner experience on various objectives and the acceptance of AR in Engineering studies. Furthermore, the research results enable educational institutions to implement AR-based virtual laboratories to improve student experiences strategically, align with learner objectives, and ultimately boost the adaptability of AR technologies. Findings: Drawing on practice-based research, the authors showcase work samples and a digital project of AR-based Virtual labs to illustrate the evaluation of the adaptability of AR technology. Adaptability is calculated by conducting a survey of 300 undergraduate university students from different engineering departments and applying an adaptability method to determine the behavioral intentions of students. Recommendations for Practitioners: Engineering institutions could leverage research findings in the implementation of AR to enhance the effectiveness of AR technology in practical education settings. Recommendation for Researchers: The authors implement a pragmatic research framework aimed at integrating AR technology into virtual AR-based labs for engineering education. This study delves into a unique perspective within the realm of engineering studies, considering students’ perspectives and discerning their behavioral intentions by drawing upon previous research on technology utilization. The research employs various objectives and learner experiences to assess their influence on students’ acceptance of AR technology. Impact on Society: The use of AR in engineering institutions, especially in laboratory practicals, has a significant impact on society, supported by the UTAUT2 model. UTAUT2 model assesses factors like performance, effort expectancy, social influence, and conditions, showing that AR in education is feasible and adaptable. This adaptability helps students and educators incorporate AR tools effectively for better educational results. AR-based labs allow students to interact with complex engineering concepts in immersive settings, enhancing understanding and knowledge retention. This interactive augmented learning for laboratories saves educational institutions significant time and resources, attaining sustainable learning. Future Research: Further research can employ a more comprehensive acceptance model to examine learners’ adaptability to AR technology and try comparing different adaptability models to determine which is more effective for engineering students.




to

Investigating Factors Contributing to Student Disengagement and Ownership in Learning: A Case Study of Undergraduate Engineering Students

Aim/Purpose: Despite playing a critical role in shaping the future, 70% of undergraduate engineers report low levels of motivation. Student disengagement and a lack of ownership of their learning are significant challenges in higher education, specifically engineering students in the computer science department. This study investigates the various causes of these problems among first-year undergraduate engineers. Background: Student disengagement has become a significant problem, especially in higher education, leading to reduced academic performance, lower graduation rates, and less satisfaction with learning. The study intends to develop approaches that encourage a more interesting and learner-motivated educational environment. Methodology: This research uses a mixed methods approach by combining quantitative data from a survey-based questionnaire with qualitative insights from focus groups to explore intrinsic and extrinsic motivators, instructional practices, and student perceptions of relevance and application of course content. The aim of this method is to make an all-inclusive exploration into undergraduate engineering students’ perspectives on factors contributing to this disengagement and the need for more ownership. Contribution: Inculcating passion for engineering among learners seems demanding, with numerous educational programs struggling with issues such as a lack of interest by students and no personal investment in learning. Understanding the causes is of paramount importance. The study gives suggestions to help teachers or institutions create a more engaged and ownership-based learning environment for engineering students. Findings: The findings revealed a tangled web influencing monotonous teaching styles, limited opportunities and applications, and a perceived gap between theoretical knowledge and real-world engineering problems. It emphasized the need to implement more active learning strategies that could increase autonomy and a stronger sense of purpose in their learning journey. It also highlights the potential use of technology in promoting student engagement and ownership. Further research is needed to explore optimal implementation strategies for online simulations, interactive learning platforms, and gamification elements in the engineering curriculum. Recommendations for Practitioners: It highlights the complex interplay of intrinsic and extrinsic motivation factors and the need to re-look at instructional practice and emphasize faculty training to develop a more student-centered approach. It also stresses the need to look into the relevance and application of the course content. Recommendation for Researchers: More work needs to be done with a larger, more diverse sample population across multiple institutions and varied sociocultural and economic backgrounds. Impact on Society: Enhancing learners’ educational experience can result in creating a passionate and competent team of engineers who can face future obstacles fearlessly and reduce the production of half-baked graduates unprepared for the profession’s challenges. Future Research: Conduct long-term studies to assess the impact of active learning and technology use on student outcomes and career readiness. Investigate scaling up successful strategies across diverse engineering programs. See if promising practices work well everywhere.




to

Impact of a Digital Tool to Improve Metacognitive Strategies for Self-Regulation During Text Reading in Online Teacher Education

Aim/Purpose: The aim of the study is to test whether the perception of self-regulated learning during text reading in online teacher education is improved by using a digital tool for the use of metacognitive strategies for planning, monitoring, and self-assessment. Background: The use of self-regulated learning is important in reading skills, and for students to develop self-regulated learning, their teachers must master it. Therefore, teaching strategies for self-regulated learning in teacher education is essential. Methodology: The sample size was 252 participants with the tool used by 42% or the participants. A quasi-experimental design was used in a pre-post study. ARATEX-R, a text-based scale, was used to evaluate self-regulated learning. The 5-point Likert scale includes the evaluation of five dimensions: planning strategies, cognition management, motivation management, comprehension assessment and context management. A Generalized Linear Model was used to analyse the results. Contribution: Using the tool to self-regulate learning has led to an improvement during text reading, especially in the dimensions of motivation management, planning management and comprehension assessment, key dimensions for text comprehension and learning. Findings: Participants who use the app perceive greater improvement, especially in the dimensions of motivation management (22,3%), planning management (19.9%) and comprehension assessment (24,6%), which are fundamental dimensions for self-regulation in text reading. Recommendations for Practitioners: This tool should be included in teacher training to enable reflection during the reading of texts, because it helps to improve three key types of strategies in self-regulation: (1) planning through planning management, (2) monitoring through motivation management and comprehension assessment, and (3) self-assessment through comprehension assessment. Recommendation for Researchers: The success of the tool suggests further study for its application in other use cases: other student profiles in higher education, other teaching modalities, and other educational stages. These studies will help to identify adaptations that will extend the tool’s use in education. Impact on Society: The use of Metadig facilitates reflection during the reading of texts in order to improve comprehension and thus self-regulate the learning of content. This reflection is crucial for students’ knowledge construction. Future Research: Future research will focus on enhancing the digital tool by adding features to support the development of cognition and context management. It will also focus on how on adapting the tool to help other types of learners.




to

Crafting Digital Micro-Storytelling for Smarter Thai Youth: A Novel Approach to Boost Digital Intelligent Quotient

Aim/Purpose: To conduct a needs assessment and subsequently create micro-storytelling media aimed at enhancing the Digital Intelligence Quotient (DQ) skills of young individuals. Background: In today's digital society, DQ has emerged as a vital skill that elevates individuals in all aspects of life, from daily living to education. To empower Thai youth, this study seeks to innovate DQ content by adapting it into a digital format known as micro-storytelling. This unique approach combines the art of storytelling with digital elements, creating engaging and effective micro-learning media Methodology: The methodology comprises three phases: 1) assessing the need for digital micro-storytelling development; 2) developing digital micro-storytelling; and 3) evaluating the DQ skills among young individuals. The sample group consisted of 55 higher education learners for needs assessment and 30 learners in the experiment group. Data analysis involves PNI modified, mean, and standard deviation. Contribution: This research contributes by addressing the urgent need for DQ skills in the digital era and by providing a practical solution in the form of digital micro-storytelling, tailored to the preferences and needs of Thai youth. It serves as a valuable resource for educators and policymakers seeking to empower young learners with essential digital competencies. Findings: The findings demonstrate three significant outcomes: 1) The learners wanted to organize their own learning experience with self-paced learning in a digital landscape, and they preferred digital media in the form of video. They were most interested in developing DQ to enhance their understanding of digital safety, digital security, and digital literacy; 2) according to a consensus of experts, digital micro-storytelling has the greatest degree of quality in terms of its development, content, and utilization, with an overall average of 4.86; and 3) the overall findings of the assessment of DQ skills indicate a favorable level of proficiency. Recommendations for Practitioners: Align materials with micro-learning principles, keeping content concise for effective knowledge retention. Empower students to personalize their digital learning and promote self-paced exploration based on their interests. Recommendation for Researchers: Researchers should continuously assess and update digital learning materials to align with the evolving digital landscape and the changing needs of students and investigate the long-term effects of DQ improvement, especially in terms of online safety and digital literacy in students' future lives and careers. Impact on Society: This study's impact on society is centered around fostering a DQ, promoting innovative educational approaches, and elevating Thai youth with essential digital skills. It contributes to a safer, more informed, and digitally literate generation prepared for the challenges of the digital era. Future Research: Undertake comparative studies to analyze the effectiveness of different digital learning formats and methodologies. Comparing micro-storytelling with other approaches can help identify the most efficient and engaging methods for enhancing DQ.




to

A novel IoT-enabled portable, secure automatic self-lecture attendance system: design, development and comparison

This study focuses on the importance of monitoring student attendance in education and the challenges faced by educators in doing so. Existing methods for attendance tracking have drawbacks, including high costs, long processing times, and inaccuracies, while security and privacy concerns have often been overlooked. To address these issues, the authors present a novel internet of things (IoT)-based self-lecture attendance system (SLAS) that leverages smartphones and QR codes. This system effectively addresses security and privacy concerns while providing streamlined attendance tracking. It offers several advantages such as compact size, affordability, scalability, and flexible features for teachers and students. Empirical research conducted in a live lecture setting demonstrates the efficacy and precision of the SLAS system. The authors believe that their system will be valuable for educational institutions aiming to streamline attendance tracking while ensuring security and privacy.




to

Determinants of FinTech adoption by microfinance institutions in India to increase efficiency and productivity

The present study attempts to find out the determinants of FinTech adoption for financial inclusion by a microfinance institution in India. The factors such as efficiency, consistency, convenience, reliability are taken as predictors of organisational attitude. Similarly, organisational attitude, ease of use, and perceived benefits are considered as antecedents of organisational adoption intention of FinTech in microfinance institutions of India. The purposive sampling technique was used to get a filled survey instrument by target samples. The results indicate that convenience and consistency in the use of FinTech applications build a favourable attitude to adopt it. Furthermore, perceived benefits are the most important antecedents of the adoption intention of FinTech in the microfinance institution in India. Additionally, the reliability of the application has a positive but insignificant impact on organisational attitude to adopt FinTech. The implications of the present study are discussed.




to

Nexus between women directors and firm performance: a study on BSE 200 companies

The present study is a modest attempt to investigate the impact of gender diversity on firm performance of BSE 200 listed companies. The study is based on the secondary data collected from the EMIS database and the corporate governance reports for a period of eight years, i.e., from 2012 to 2019. Sample size of the present study is 174 Indian companies listed in the Bombay Stock Exchange. The study has employed multiple regression models by considering the endogeneity issue to empirically test the impact of gender diversity on firm performance in Indian context. Based on the multiple regression models, we find that the impact of gender diversity is positive and significant on the market-based measure of firm performance. However, the impact becomes negative significant when firm performance was measured by accounting based measure of firm performance.




to

Identification of badminton players' swinging movements based on improved dense trajectory algorithm

Badminton, as a fast and highly technical sport, requires high accuracy in identifying athletes' swing movements. Accurately identifying different swing movements is of great significance for technical analysis, coach guidance, and game evaluation. To improve the recognition accuracy of badminton players' swing movements, this text is based on an improved dense trajectory algorithm to improve the accuracy of recognising badminton players' swing movements. The features are efficiently extracted and encoded. The results on the KTH, UCF Sports, and Hollywood2 datasets demonstrated that the improved algorithm achieved recognition accuracy of 94.2%, 88.2%, and 58.3%, respectively. Compared to traditional methods, the innovation of research lies in optimised feature extraction methods, efficient algorithm design, and accurate action recognition. These results provide new ideas for the research and application of badminton swing motion recognition.




to

An MCDM approach to compare different concepts of SMED to reduce the setup time in concrete products manufacturing: a case study

In the construction sector, moulding machines are crucial in producing concrete products, yet changing their mould can pose challenges for some businesses. This paper presents a case study aimed at reducing the setup time of HESS RH 600 moulding machine. Four alternatives are proposed and evaluated to achieve this goal. The first alternative involves converting internal to external activities, while the subsequent alternatives aim to improve the basic solution. These include building a canopy near the machine (alternative 2), installing an air reservoir (alternative 3), and a comprehensive approach involving building the canopy, installing the air reservoir, and adding a new forklift to facilitate the machine setup process (alternative 4). The analytic hierarchy process (AHP) heuristic method is used to select the best alternative solution based on prespecified criteria. It is found that the application of the single-minute exchange of die (SMED) solution without any further improvement is the most favourable.




to

Development and validation of scale to measure minimalism - a study analysing psychometric assessment of minimalistic behaviour! Consumer perspective

This research aims to establish a valid and accurate measurement scale and identify consumer-driven characteristics for minimalism. The study has employed a hybrid approach to produce items for minimalism. Expert interviews were conducted to identify the items for minimalism in the first phase followed by consumer survey to obtain their response in second phase. A five-point Likert scale was used to collect the data. Further, data was subjected to reliability and validity check. Structural equation modelling was used to test the model. The findings demonstrated that there are five dimensions by which consumers perceive minimalism: decluttering, mindful consumption, aesthetic choices, financial freedom, and sustainable lifestyle. The outcome also revealed a high correlation between simplicity and well-being. This study is the first to provide a reliable and valid instrument for minimalism. The results will have several theoretical and practical ramifications for society and policymakers. It will support policymakers in gauging and encouraging minimalistic practices, which enhance environmental performance and lower carbon footprint.




to

Navigating e-customer relationship management through emerging information and communication technologies: moderation of trust and financial risk

This study examines the relationships between ICTs (e.g., chatbots, virtual assistants, social media platforms, e-mail marketing, mobile marketing, data analytics, interactive voice response, big data analytics, push notifications, cloud computing, and augmented reality) and e-customer relationship management (e-CRM) from the banking industry of China. Similarly, this study unfolds the moderation interference of trust and risk between the association of ICTs and e-CRM, respectively. The study provided a positive nexus between ICTs and e-CRM. On the other side, a significant moderation of trust, as well as financial risk was observed between the correlation of ICTs and customer relationship management. This study endows with insights into ICTs which are critical for achieving e-CRM by streamlining interactions and enhancing their experience. Similarly, trust and financial risk were observed as potential forces that sway the association between ICTs and e-CRM.




to

Effective inventory management among Malaysian SMEs in the manufacturing sector towards organisational performance

In several manufacturing firms, inventory constitutes most of the current assets, and this underscores the importance of inventory management as a fundamental issue for the majority of the firms irrespective of their sizes. Therefore, the purpose of this research is to assess the factors that influence the effectiveness of inventory management of Malaysian SMEs in the manufacturing sector. The study employs PLS-SEM technique to test the hypotheses. The main findings show that documentation and records, inventory control system and qualified personnel have positive effects on effective inventory management of Malaysian SMEs in the manufacturing sector. The study also reveals that effective inventory management has a mediating effect on the relationship between documentation and records, inventory control system, qualified personnel and organisational performance. Therefore, the study recommends that Malaysian SMEs in the manufacturing sector should improve their approaches to embracing effective inventory management practices in order to enhance organisational performance.




to

Entrepreneurship vs. mentorship: an analysis of leadership modes on sustainable development with moderation of innovation management

This study explores the connection between mentorship and sustainable development (SD) within three major perspectives of sustainable development, such as social, environmental, and economic perspectives from China. Second, the study revealed the relationship between entrepreneurship and SD. Third, a moderation influence of innovation management (IM) was observed among the proposed nexuses of mentorship, entrepreneurship, and SD. To this end, a total of 535 questionnaires were eventually utilised with the support of SmartPLS and the structure equation modelling (SEM) approach. A positive connection was confirmed between mentorship and SD. The outcome uncovered a positive correlation between entrepreneurship and SD. In addition, a moderation of IM was found between mentorship, entrepreneurship, and SD. The study enlists several interesting lines about mentorship, entrepreneurship, and IM that might help to improve SD in terms of social, environmental, and economic perspectives. Besides, the study provides various implications for management and states the weaknesses along with the future directions for worldly researchers.




to

Leveraging the internet of behaviours and digital nudges for enhancing customers' financial decision-making

Human behaviour, which is led by the human, emotional and occasionally fallible brain, is highly influenced by the environment in which choices are presented. This research paper explores the synergistic potential of the Internet of Behaviours (IoB) and digital nudges in the financial sector as new avenues for intervention while shedding light on the IoB benefits and the digital nudges' added value in these financial settings. Afterward, it proposes an IoB-Nudges conceptual model to explain how these two concepts would be incorporated and investigates their complementary relationship and benefits for this sector. Finally, the paper also discusses key challenges to be addressed by the IoB framework.




to

Advancing mobile open learning through DigiBot technology: a case study of using WhatsApp as a scalable learning tool

This article presents a case study that outlines the potential of DigiBot technology, an interactive automated response program, in mobile open learning (MOL) for business subjects. The study, which draws on a project implemented in Sub-Saharan Africa, demonstrates the applications of DigiBots delivered via WhatsApp to over 650,000 learners. Employing a mixed-methods approach, the article reports on live event tracking, qualitative observations from facilitators and learning technologists, and a learner survey (<i>N</i> = 304,000). The research offers practical recommendations and proposes a model for scalable DigiBot learning. Findings reveal that in this case, DigiBot MOL had the potential to effectively address two key obstacles in open learning: accessibility and scalability. Leveraging mobile platforms such as WhatsApp mitigates accessibility restrictions, particularly in resource-constrained contexts, while tailored micro-learning enhances scalability.