ring Legal help during COVID-19 By feedproxy.google.com Published On :: Thu, 02 Apr 2020 05:47:53 +0000 Find sources of legal help during COVID-19. Full Article
ring Tissue engineering : principles, protocols, and practical exercises By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9783030396985 Full Article
ring Requirements engineering : 26th International Working Conference, REFSQ 2020, Pisa, Italy, March 24-27, 2020, Proceedings By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Author: REFSQ (Conference) (26th : 2020 : Pisa, Italy)Callnumber: OnlineISBN: 9783030444297 Full Article
ring Nanobiomaterial engineering : concepts and their applications in biomedicine and diagnostics By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9789813298408 (electronic bk.) Full Article
ring Latin American dendroecology : combining tree-ring sciences and ecology in a megadiverse territory By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9783030369309 (electronic bk.) Full Article
ring Genetic and metabolic engineering for improved biofuel production from lignocellulosic biomass By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9780128179543 (electronic bk.) Full Article
ring DICTIONARY OF CONSTRUCTION, SURVEYING, AND CIVIL ENGINEERING By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9780192568632 (electronic bk.) Full Article
ring Current developments in biotechnology and bioengineering : resource recovery from wastes By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 0444643222 Full Article
ring Cullin-RING ligases and protein neddylation : biology and therapeutics By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9789811510250 (electronic bk.) Full Article
ring Suntuity AirWorks Offering FREE Assistance in Drone Acquisition... By www.prweb.com Published On :: The drones and programs will be fully paid for by the DOJ as part of the $850 million funding that has been allocated to help public safety departments fight the spread of COVID-19. This includes...(PRWeb April 30, 2020)Read the full story at https://www.prweb.com/releases/suntuity_airworks_offering_free_assistance_in_drone_acquisition_through_850mm_federal_grant_assistance_program_for_public_safety_agencies/prweb17090555.htm Full Article
ring Health Worker Data Alliance: Monitoring Emotional, Physical and... By www.prweb.com Published On :: Surveys provide secure, anonymous feedback from staff at all levels of healthcare organizations(PRWeb May 06, 2020)Read the full story at https://www.prweb.com/releases/health_worker_data_alliance_monitoring_emotional_physical_and_occupational_health_of_healthcare_workers_during_covid_19/prweb17101008.htm Full Article
ring Adaptive risk bounds in univariate total variation denoising and trend filtering By projecteuclid.org Published On :: Mon, 17 Feb 2020 04:02 EST Adityanand Guntuboyina, Donovan Lieu, Sabyasachi Chatterjee, Bodhisattva Sen. Source: The Annals of Statistics, Volume 48, Number 1, 205--229.Abstract: We study trend filtering, a relatively recent method for univariate nonparametric regression. For a given integer $rgeq1$, the $r$th order trend filtering estimator is defined as the minimizer of the sum of squared errors when we constrain (or penalize) the sum of the absolute $r$th order discrete derivatives of the fitted function at the design points. For $r=1$, the estimator reduces to total variation regularization which has received much attention in the statistics and image processing literature. In this paper, we study the performance of the trend filtering estimator for every $rgeq1$, both in the constrained and penalized forms. Our main results show that in the strong sparsity setting when the underlying function is a (discrete) spline with few “knots,” the risk (under the global squared error loss) of the trend filtering estimator (with an appropriate choice of the tuning parameter) achieves the parametric $n^{-1}$-rate, up to a logarithmic (multiplicative) factor. Our results therefore provide support for the use of trend filtering, for every $rgeq1$, in the strong sparsity setting. Full Article
ring Model assisted variable clustering: Minimax-optimal recovery and algorithms By projecteuclid.org Published On :: Mon, 17 Feb 2020 04:02 EST Florentina Bunea, Christophe Giraud, Xi Luo, Martin Royer, Nicolas Verzelen. Source: The Annals of Statistics, Volume 48, Number 1, 111--137.Abstract: The problem of variable clustering is that of estimating groups of similar components of a $p$-dimensional vector $X=(X_{1},ldots ,X_{p})$ from $n$ independent copies of $X$. There exists a large number of algorithms that return data-dependent groups of variables, but their interpretation is limited to the algorithm that produced them. An alternative is model-based clustering, in which one begins by defining population level clusters relative to a model that embeds notions of similarity. Algorithms tailored to such models yield estimated clusters with a clear statistical interpretation. We take this view here and introduce the class of $G$-block covariance models as a background model for variable clustering. In such models, two variables in a cluster are deemed similar if they have similar associations will all other variables. This can arise, for instance, when groups of variables are noise corrupted versions of the same latent factor. We quantify the difficulty of clustering data generated from a $G$-block covariance model in terms of cluster proximity, measured with respect to two related, but different, cluster separation metrics. We derive minimax cluster separation thresholds, which are the metric values below which no algorithm can recover the model-defined clusters exactly, and show that they are different for the two metrics. We therefore develop two algorithms, COD and PECOK, tailored to $G$-block covariance models, and study their minimax-optimality with respect to each metric. Of independent interest is the fact that the analysis of the PECOK algorithm, which is based on a corrected convex relaxation of the popular $K$-means algorithm, provides the first statistical analysis of such algorithms for variable clustering. Additionally, we compare our methods with another popular clustering method, spectral clustering. Extensive simulation studies, as well as our data analyses, confirm the applicability of our approach. Full Article
ring Additive models with trend filtering By projecteuclid.org Published On :: Wed, 30 Oct 2019 22:03 EDT Veeranjaneyulu Sadhanala, Ryan J. Tibshirani. Source: The Annals of Statistics, Volume 47, Number 6, 3032--3068.Abstract: We study additive models built with trend filtering, that is, additive models whose components are each regularized by the (discrete) total variation of their $k$th (discrete) derivative, for a chosen integer $kgeq0$. This results in $k$th degree piecewise polynomial components, (e.g., $k=0$ gives piecewise constant components, $k=1$ gives piecewise linear, $k=2$ gives piecewise quadratic, etc.). Analogous to its advantages in the univariate case, additive trend filtering has favorable theoretical and computational properties, thanks in large part to the localized nature of the (discrete) total variation regularizer that it uses. On the theory side, we derive fast error rates for additive trend filtering estimates, and show these rates are minimax optimal when the underlying function is additive and has component functions whose derivatives are of bounded variation. We also show that these rates are unattainable by additive smoothing splines (and by additive models built from linear smoothers, in general). On the computational side, we use backfitting, to leverage fast univariate trend filtering solvers; we also describe a new backfitting algorithm whose iterations can be run in parallel, which (as far as we can tell) is the first of its kind. Lastly, we present a number of experiments to examine the empirical performance of trend filtering. Full Article
ring Negative association, ordering and convergence of resampling methods By projecteuclid.org Published On :: Tue, 21 May 2019 04:00 EDT Mathieu Gerber, Nicolas Chopin, Nick Whiteley. Source: The Annals of Statistics, Volume 47, Number 4, 2236--2260.Abstract: We study convergence and convergence rates for resampling schemes. Our first main result is a general consistency theorem based on the notion of negative association, which is applied to establish the almost sure weak convergence of measures output from Kitagawa’s [ J. Comput. Graph. Statist. 5 (1996) 1–25] stratified resampling method. Carpenter, Ckiffird and Fearnhead’s [ IEE Proc. Radar Sonar Navig. 146 (1999) 2–7] systematic resampling method is similar in structure but can fail to converge depending on the order of the input samples. We introduce a new resampling algorithm based on a stochastic rounding technique of [In 42nd IEEE Symposium on Foundations of Computer Science ( Las Vegas , NV , 2001) (2001) 588–597 IEEE Computer Soc.], which shares some attractive properties of systematic resampling, but which exhibits negative association and, therefore, converges irrespective of the order of the input samples. We confirm a conjecture made by [ J. Comput. Graph. Statist. 5 (1996) 1–25] that ordering input samples by their states in $mathbb{R}$ yields a faster rate of convergence; we establish that when particles are ordered using the Hilbert curve in $mathbb{R}^{d}$, the variance of the resampling error is ${scriptstylemathcal{O}}(N^{-(1+1/d)})$ under mild conditions, where $N$ is the number of particles. We use these results to establish asymptotic properties of particle algorithms based on resampling schemes that differ from multinomial resampling. Full Article
ring Measuring human activity spaces from GPS data with density ranking and summary curves By projecteuclid.org Published On :: Wed, 15 Apr 2020 22:05 EDT Yen-Chi Chen, Adrian Dobra. Source: The Annals of Applied Statistics, Volume 14, Number 1, 409--432.Abstract: Activity spaces are fundamental to the assessment of individuals’ dynamic exposure to social and environmental risk factors associated with multiple spatial contexts that are visited during activities of daily living. In this paper we survey existing approaches for measuring the geometry, size and structure of activity spaces, based on GPS data, and explain their limitations. We propose addressing these shortcomings through a nonparametric approach called density ranking and also through three summary curves: the mass-volume curve, the Betti number curve and the persistence curve. We introduce a novel mixture model for human activity spaces and study its asymptotic properties. We prove that the kernel density estimator, which at the present time, is one of the most widespread methods for measuring activity spaces, is not a stable estimator of their structure. We illustrate the practical value of our methods with a simulation study and with a recently collected GPS dataset that comprises the locations visited by 10 individuals over a six months period. Full Article
ring Surface temperature monitoring in liver procurement via functional variance change-point analysis By projecteuclid.org Published On :: Wed, 15 Apr 2020 22:05 EDT Zhenguo Gao, Pang Du, Ran Jin, John L. Robertson. Source: The Annals of Applied Statistics, Volume 14, Number 1, 143--159.Abstract: Liver procurement experiments with surface-temperature monitoring motivated Gao et al. ( J. Amer. Statist. Assoc. 114 (2019) 773–781) to develop a variance change-point detection method under a smoothly-changing mean trend. However, the spotwise change points yielded from their method do not offer immediate information to surgeons since an organ is often transplanted as a whole or in part. We develop a new practical method that can analyze a defined portion of the organ surface at a time. It also provides a novel addition to the developing field of functional data monitoring. Furthermore, numerical challenge emerges for simultaneously modeling the variance functions of 2D locations and the mean function of location and time. The respective sample sizes in the scales of 10,000 and 1,000,000 for modeling these functions make standard spline estimation too costly to be useful. We introduce a multistage subsampling strategy with steps educated by quickly-computable preliminary statistical measures. Extensive simulations show that the new method can efficiently reduce the computational cost and provide reasonable parameter estimates. Application of the new method to our liver surface temperature monitoring data shows its effectiveness in providing accurate status change information for a selected portion of the organ in the experiment. Full Article
ring Efficient real-time monitoring of an emerging influenza pandemic: How feasible? By projecteuclid.org Published On :: Wed, 15 Apr 2020 22:05 EDT Paul J. Birrell, Lorenz Wernisch, Brian D. M. Tom, Leonhard Held, Gareth O. Roberts, Richard G. Pebody, Daniela De Angelis. Source: The Annals of Applied Statistics, Volume 14, Number 1, 74--93.Abstract: A prompt public health response to a new epidemic relies on the ability to monitor and predict its evolution in real time as data accumulate. The 2009 A/H1N1 outbreak in the UK revealed pandemic data as noisy, contaminated, potentially biased and originating from multiple sources. This seriously challenges the capacity for real-time monitoring. Here, we assess the feasibility of real-time inference based on such data by constructing an analytic tool combining an age-stratified SEIR transmission model with various observation models describing the data generation mechanisms. As batches of data become available, a sequential Monte Carlo (SMC) algorithm is developed to synthesise multiple imperfect data streams, iterate epidemic inferences and assess model adequacy amidst a rapidly evolving epidemic environment, substantially reducing computation time in comparison to standard MCMC, to ensure timely delivery of real-time epidemic assessments. In application to simulated data designed to mimic the 2009 A/H1N1 epidemic, SMC is shown to have additional benefits in terms of assessing predictive performance and coping with parameter nonidentifiability. Full Article
ring A hierarchical Bayesian model for single-cell clustering using RNA-sequencing data By projecteuclid.org Published On :: Wed, 16 Oct 2019 22:03 EDT Yiyi Liu, Joshua L. Warren, Hongyu Zhao. Source: The Annals of Applied Statistics, Volume 13, Number 3, 1733--1752.Abstract: Understanding the heterogeneity of cells is an important biological question. The development of single-cell RNA-sequencing (scRNA-seq) technology provides high resolution data for such inquiry. A key challenge in scRNA-seq analysis is the high variability of measured RNA expression levels and frequent dropouts (missing values) due to limited input RNA compared to bulk RNA-seq measurement. Existing clustering methods do not perform well for these noisy and zero-inflated scRNA-seq data. In this manuscript we propose a Bayesian hierarchical model, called BasClu, to appropriately characterize important features of scRNA-seq data in order to more accurately cluster cells. We demonstrate the effectiveness of our method with extensive simulation studies and applications to three real scRNA-seq datasets. Full Article
ring RCRnorm: An integrated system of random-coefficient hierarchical regression models for normalizing NanoString nCounter data By projecteuclid.org Published On :: Wed, 16 Oct 2019 22:03 EDT Gaoxiang Jia, Xinlei Wang, Qiwei Li, Wei Lu, Ximing Tang, Ignacio Wistuba, Yang Xie. Source: The Annals of Applied Statistics, Volume 13, Number 3, 1617--1647.Abstract: Formalin-fixed paraffin-embedded (FFPE) samples have great potential for biomarker discovery, retrospective studies and diagnosis or prognosis of diseases. Their application, however, is hindered by the unsatisfactory performance of traditional gene expression profiling techniques on damaged RNAs. NanoString nCounter platform is well suited for profiling of FFPE samples and measures gene expression with high sensitivity which may greatly facilitate realization of scientific and clinical values of FFPE samples. However, methodological development for normalization, a critical step when analyzing this type of data, is far behind. Existing methods designed for the platform use information from different types of internal controls separately and rely on an overly-simplified assumption that expression of housekeeping genes is constant across samples for global scaling. Thus, these methods are not optimized for the nCounter system, not mentioning that they were not developed for FFPE samples. We construct an integrated system of random-coefficient hierarchical regression models to capture main patterns and characteristics observed from NanoString data of FFPE samples and develop a Bayesian approach to estimate parameters and normalize gene expression across samples. Our method, labeled RCRnorm, incorporates information from all aspects of the experimental design and simultaneously removes biases from various sources. It eliminates the unrealistic assumption on housekeeping genes and offers great interpretability. Furthermore, it is applicable to freshly frozen or like samples that can be generally viewed as a reduced case of FFPE samples. Simulation and applications showed the superior performance of RCRnorm. Full Article
ring Matching strings in encoded sequences By projecteuclid.org Published On :: Mon, 27 Apr 2020 04:02 EDT Adriana Coutinho, Rodrigo Lambert, Jérôme Rousseau. Source: Bernoulli, Volume 26, Number 3, 2021--2050.Abstract: We investigate the length of the longest common substring for encoded sequences and its asymptotic behaviour. The main result is a strong law of large numbers for a re-scaled version of this quantity, which presents an explicit relation with the Rényi entropy of the source. We apply this result to the zero-inflated contamination model and the stochastic scrabble. In the case of dynamical systems, this problem is equivalent to the shortest distance between two observed orbits and its limiting relationship with the correlation dimension of the pushforward measure. An extension to the shortest distance between orbits for random dynamical systems is also provided. Full Article
ring Reliable clustering of Bernoulli mixture models By projecteuclid.org Published On :: Fri, 31 Jan 2020 04:06 EST Amir Najafi, Seyed Abolfazl Motahari, Hamid R. Rabiee. Source: Bernoulli, Volume 26, Number 2, 1535--1559.Abstract: A Bernoulli Mixture Model (BMM) is a finite mixture of random binary vectors with independent dimensions. The problem of clustering BMM data arises in a variety of real-world applications, ranging from population genetics to activity analysis in social networks. In this paper, we analyze the clusterability of BMMs from a theoretical perspective, when the number of clusters is unknown. In particular, we stipulate a set of conditions on the sample complexity and dimension of the model in order to guarantee the Probably Approximately Correct (PAC)-clusterability of a dataset. To the best of our knowledge, these findings are the first non-asymptotic bounds on the sample complexity of learning or clustering BMMs. Full Article
ring Prediction and estimation consistency of sparse multi-class penalized optimal scoring By projecteuclid.org Published On :: Tue, 26 Nov 2019 04:00 EST Irina Gaynanova. Source: Bernoulli, Volume 26, Number 1, 286--322.Abstract: Sparse linear discriminant analysis via penalized optimal scoring is a successful tool for classification in high-dimensional settings. While the variable selection consistency of sparse optimal scoring has been established, the corresponding prediction and estimation consistency results have been lacking. We bridge this gap by providing probabilistic bounds on out-of-sample prediction error and estimation error of multi-class penalized optimal scoring allowing for diverging number of classes. Full Article
ring High on the hill : the people of St Philip & St James Church, Old Noarlunga / City of Onkaparinga. By www.catalog.slsa.sa.gov.au Published On :: St. Philip and St. James Church (Noarlunga, S.A.) Full Article
ring High on the hill : the people of St Philip & St James Church, Old Noarlunga%cCity of Onkaparinga. By www.catalog.slsa.sa.gov.au Published On :: St. Philip and St. James Church (Noarlunga, S.A.) Full Article
ring As States’ Budgets Reel During COVID-19, Districts to Feel the Wrath By marketbrief.edweek.org Published On :: Wed, 06 May 2020 21:23:43 +0000 State funding for K-12 is likely to fall sharply, though districts could look to protect essentials like distance-learning support and professional development, says school finance expert Mike Griffith. The post As States’ Budgets Reel During COVID-19, Districts to Feel the Wrath appeared first on Market Brief. Full Article Analyst's View COVID-19 Federal / State Policy Funding / Budgets Procurement / Purchasing / RFPs State Policy
ring Pence aimed to project normalcy during his trip to Iowa, but coronavirus got in the way By news.yahoo.com Published On :: Fri, 08 May 2020 21:35:24 -0400 Vice President Pence’s trip to Iowa shows how the Trump administration’s aims to move past coronavirus are sometimes complicated by the virus itself. Full Article
ring The accusation against Joe Biden has Democrats rediscovering the value of due process By news.yahoo.com Published On :: Sat, 09 May 2020 08:37:00 -0400 Some Democrats took "Believe Women" literally until Joe Biden was accused. Now they're relearning that guilt-by-accusation doesn't serve justice. Full Article
ring A Bayesian Nonparametric Multiple Testing Procedure for Comparing Several Treatments Against a Control By projecteuclid.org Published On :: Fri, 31 May 2019 22:05 EDT Luis Gutiérrez, Andrés F. Barrientos, Jorge González, Daniel Taylor-Rodríguez. Source: Bayesian Analysis, Volume 14, Number 2, 649--675.Abstract: We propose a Bayesian nonparametric strategy to test for differences between a control group and several treatment regimes. Most of the existing tests for this type of comparison are based on the differences between location parameters. In contrast, our approach identifies differences across the entire distribution, avoids strong modeling assumptions over the distributions for each treatment, and accounts for multiple testing through the prior distribution on the space of hypotheses. The proposal is compared to other commonly used hypothesis testing procedures under simulated scenarios. Two real applications are also analyzed with the proposed methodology. Full Article
ring Statistical Theory Powering Data Science By projecteuclid.org Published On :: Wed, 08 Jan 2020 04:00 EST Junhui Cai, Avishai Mandelbaum, Chaitra H. Nagaraja, Haipeng Shen, Linda Zhao. Source: Statistical Science, Volume 34, Number 4, 669--691.Abstract: Statisticians are finding their place in the emerging field of data science. However, many issues considered “new” in data science have long histories in statistics. Examples of using statistical thinking are illustrated, which range from exploratory data analysis to measuring uncertainty to accommodating nonrandom samples. These examples are then applied to service networks, baseball predictions and official statistics. Full Article
ring The Importance of Being Clustered: Uncluttering the Trends of Statistics from 1970 to 2015 By projecteuclid.org Published On :: Thu, 18 Jul 2019 22:01 EDT Laura Anderlucci, Angela Montanari, Cinzia Viroli. Source: Statistical Science, Volume 34, Number 2, 280--300.Abstract: In this paper, we retrace the recent history of statistics by analyzing all the papers published in five prestigious statistical journals since 1970, namely: The Annals of Statistics , Biometrika , Journal of the American Statistical Association , Journal of the Royal Statistical Society, Series B and Statistical Science . The aim is to construct a kind of “taxonomy” of the statistical papers by organizing and clustering them in main themes. In this sense being identified in a cluster means being important enough to be uncluttered in the vast and interconnected world of the statistical research. Since the main statistical research topics naturally born, evolve or die during time, we will also develop a dynamic clustering strategy, where a group in a time period is allowed to migrate or to merge into different groups in the following one. Results show that statistics is a very dynamic and evolving science, stimulated by the rise of new research questions and types of data. Full Article
ring Jennifer Lopez Is Wearing the Hell Out of These $60 Sneakers—and You Can Buy Them at Zappos By www.health.com Published On :: Mon, 22 Jul 2019 17:56:20 -0400 The chic sneaks are part of Zappos' massive Cyber Monday sale. Full Article
ring Forget Black Booties, Amal Clooney and J.Lo Are Wearing This Weather-Resistant Boot Trend Instead By www.health.com Published On :: Tue, 10 Dec 2019 15:31:21 -0500 And it’s on sale at Nordstrom. Full Article
ring The Representation of Semantic Information Across Human Cerebral Cortex During Listening Versus Reading Is Invariant to Stimulus Modality By www.jneurosci.org Published On :: 2019-09-25 Fatma DenizSep 25, 2019; 39:7722-7736BehavioralSystemsCognitive Full Article
ring Physiological Basis of Noise-Induced Hearing Loss in a Tympanal Ear By www.jneurosci.org Published On :: 2020-04-08 Ben WarrenApr 8, 2020; 40:3130-3140Neurobiology of Disease Full Article
ring Brain Activation during Human Male Ejaculation By www.jneurosci.org Published On :: 2003-10-08 Gert HolstegeOct 8, 2003; 23:9185-9193BehavioralSystemsCognitive Full Article
ring The effects of changes in the environment on the spatial firing of hippocampal complex-spike cells By www.jneurosci.org Published On :: 1987-07-01 RU MullerJul 1, 1987; 7:1951-1968Articles Full Article
ring Adaptive representation of dynamics during learning of a motor task By www.jneurosci.org Published On :: 1994-05-01 R ShadmehrMay 1, 1994; 14:3208-3224Articles Full Article
ring The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs By www.jneurosci.org Published On :: 1993-01-01 WR SoftkyJan 1, 1993; 13:334-350Articles Full Article
ring Response of Neurons in the Lateral Intraparietal Area during a Combined Visual Discrimination Reaction Time Task By www.jneurosci.org Published On :: 2002-11-01 Jamie D. RoitmanNov 1, 2002; 22:9475-9489Behavioral Full Article
ring Wintrust Financial Corporation Announces Pricing of $250 Million Preferred Stock Offering By www.snl.com Published On :: Wed, 06 May 2020 22:37:00 GMT To view more press releases, please visit http://www.snl.com/irweblinkx/news.aspx?iid=1024452. Full Article
ring Engineering researcher’s non-invasive aid to monitoring pressure in the skull wins gold medal By www.raeng.org.uk Published On :: Wed, 11 Mar 2020 11:49:33 +00:00 Full Article
ring Seeking 'Engineers in the Making': Academy sets engineering challenges children can do at home By www.raeng.org.uk Published On :: Thu, 23 Apr 2020 11:37:27 +01:00 Full Article
ring Academy maps out engineering challenges for recovery from COVID-19 By www.raeng.org.uk Published On :: Mon, 04 May 2020 10:14:10 +01:00 Full Article
ring New Engineering X Pandemic Preparedness programme to support global innovation and knowledge sharing By www.raeng.org.uk Published On :: Mon, 04 May 2020 13:00:00 +01:00 Full Article
ring National Engineering Policy Centre to provide advice to government on reaching net zero emissions By www.raeng.org.uk Published On :: Wed, 06 May 2020 00:01:54 +01:00 Full Article
ring The new BIS strategy - bringing the Americas and Basel closer together By www.bis.org Published On :: 2019-10-01T15:00:00Z Speech by Mr Agustín Carstens, General Manager of the BIS, at the Fourteenth ASBA-BCBS-FSI High-level Meeting on Global and Regional Supervisory Priorities, Lima, 1 October 2019. Full Article
ring [~20.8 MB mp3] The 'Worm' That Could Bring Down The Internet By podcastdownload.npr.org Published On :: Story: As many as 12 million computers worldwide have been infected with a highly encrypted computer worm called Conficker. Writer Mark Bowden details how Conficker was discovered, how it works, and the ongoing programming battle to bring down Conficker in his book Worm: The First Digital World War. Full Article
ring Physiological Basis of Noise-Induced Hearing Loss in a Tympanal Ear By www.jneurosci.org Published On :: 2020-04-08T09:30:18-07:00 Acoustic overexposure, such as listening to loud music too often, results in noise-induced hearing loss. The pathologies of this prevalent sensory disorder begin within the ear at synapses of the primary auditory receptors, their postsynaptic partners and their supporting cells. The extent of noise-induced damage, however, is determined by overstimulation of primary auditory receptors, upstream of where the pathologies manifest. A systematic characterization of the electrophysiological function of the upstream primary auditory receptors is warranted to understand how noise exposure impacts on downstream targets, where the pathologies of hearing loss begin. Here, we used the experimentally-accessible locust ear (male, Schistocerca gregaria) to characterize a decrease in the auditory receptor's ability to respond to sound after noise exposure. Surprisingly, after noise exposure, the electrophysiological properties of the auditory receptors remain unchanged, despite a decrease in the ability to transduce sound. This auditory deficit stems from changes in a specialized receptor lymph that bathes the auditory receptors, revealing striking parallels with the mammalian auditory system. SIGNIFICANCE STATEMENT Noise exposure is the largest preventable cause of hearing loss. It is the auditory receptors that bear the initial brunt of excessive acoustic stimulation, because they must convert excessive sound-induced movements into electrical signals, but remain functional afterward. Here we use the accessible ear of an invertebrate to, for the first time in any animal, characterize changes in auditory receptors after noise overexposure. We find that their decreased ability to transduce sound into electrical signals is, most probably, due to changes in supporting (scolopale) cells that maintain the ionic composition of the ear. An emerging doctrine in hearing research is that vertebrate primary auditory receptors are surprisingly robust, something that we show rings true for invertebrate ears too. Full Article