w The Right Temporoparietal Junction Is Causally Associated with Embodied Perspective-taking By www.jneurosci.org Published On :: 2020-04-08T09:30:18-07:00 A prominent theory claims that the right temporoparietal junction (rTPJ) is especially associated with embodied processes relevant to perspective-taking. In the present study, we use high-definition transcranial direct current stimulation to provide evidence that the rTPJ is causally associated with the embodied processes underpinning perspective-taking. Eighty-eight young human adults were stratified to receive either rTPJ or dorsomedial PFC anodal high-definition transcranial direct current stimulation in a sham-controlled, double-blind, repeated-measures design. Perspective-tracking (line-of-sight) and perspective-taking (embodied rotation) were assessed using a visuo-spatial perspective-taking task that required understanding what another person could see or how they see it, respectively. Embodied processing was manipulated by positioning the participant in a manner congruent or incongruent with the orientation of an avatar on the screen. As perspective-taking, but not perspective-tracking, is influenced by bodily position, this allows the investigation of the specific causal role for the rTPJ in embodied processing. Crucially, anodal stimulation to the rTPJ increased the effect of bodily position during perspective-taking, whereas no such effects were identified during perspective-tracking, thereby providing evidence for a causal role for the rTPJ in the embodied component of perspective-taking. Stimulation to the dorsomedial PFC had no effect on perspective-tracking or taking. Therefore, the present study provides support for theories postulating that the rTPJ is causally involved in embodied cognitive processing relevant to social functioning. SIGNIFICANCE STATEMENT The ability to understand another's perspective is a fundamental component of social functioning. Adopting another perspective is thought to involve both embodied and nonembodied processes. The present study used high-definition transcranial direct current stimulation (HD-tDCS) and provided causal evidence that the right temporoparietal junction is involved specifically in the embodied component of perspective-taking. Specifically, HD-tDCS to the right temporoparietal junction, but not another hub of the social brain (dorsomedial PFC), increased the effect of body position during perspective-taking, but not tracking. This is the first causal evidence that HD-tDCS can modulate social embodied processing in a site-specific and task-specific manner. Full Article
w Integration of Swimming-Related Synaptic Excitation and Inhibition by olig2+ Eurydendroid Neurons in Larval Zebrafish Cerebellum By www.jneurosci.org Published On :: 2020-04-08T09:30:18-07:00 The cerebellum influences motor control through Purkinje target neurons, which transmit cerebellar output. Such output is required, for instance, for larval zebrafish to learn conditioned fictive swimming. The output cells, called eurydendroid neurons (ENs) in teleost fish, are inhibited by Purkinje cells and excited by parallel fibers. Here, we investigated the electrophysiological properties of glutamatergic ENs labeled by the transcription factor olig2. Action potential firing and synaptic responses were recorded in current clamp and voltage clamp from olig2+ neurons in immobilized larval zebrafish (before sexual differentiation) and were correlated with motor behavior by simultaneous recording of fictive swimming. In the absence of swimming, olig2+ ENs had basal firing rates near 8 spikes/s, and EPSCs and IPSCs were evident. Comparing Purkinje firing rates and eurydendroid IPSC rates indicated that 1-3 Purkinje cells converge onto each EN. Optogenetically suppressing Purkinje simple spikes, while preserving complex spikes, suggested that eurydendroid IPSC size depended on presynaptic spike duration rather than amplitude. During swimming, EPSC and IPSC rates increased. Total excitatory and inhibitory currents during sensory-evoked swimming were both more than double those during spontaneous swimming. During both spontaneous and sensory-evoked swimming, the total inhibitory current was more than threefold larger than the excitatory current. Firing rates of ENs nevertheless increased, suggesting that the relative timing of IPSCs and EPSCs may permit excitation to drive additional eurydendroid spikes. The data indicate that olig2+ cells are ENs whose activity is modulated with locomotion, suiting them to participate in sensorimotor integration associated with cerebellum-dependent learning. SIGNIFICANCE STATEMENT The cerebellum contributes to movements through signals generated by cerebellar output neurons, called eurydendroid neurons (ENs) in fish (cerebellar nuclei in mammals). ENs receive sensory and motor signals from excitatory parallel fibers and inhibitory Purkinje cells. Here, we report electrophysiological recordings from ENs of larval zebrafish that directly illustrate how synaptic inhibition and excitation are integrated by cerebellar output neurons in association with motor behavior. The results demonstrate that inhibitory and excitatory drive both increase during fictive swimming, but inhibition greatly exceeds excitation. Firing rates nevertheless increase, providing evidence that synaptic integration promotes cerebellar output during locomotion. The data offer a basis for comparing aspects of cerebellar coding that are conserved and that diverge across vertebrates. Full Article
w Neural Correlates of Strategy Switching in the Macaque Orbital Prefrontal Cortex By www.jneurosci.org Published On :: 2020-04-08T09:30:18-07:00 We can adapt flexibly to environment changes and search for the most appropriate rule to a context. The orbital prefrontal cortex (PFo) has been associated with decision making, rule generation and maintenance, and more generally has been considered important for behavioral flexibility. To better understand the neural mechanisms underlying the flexible behavior, we studied the ability to generate a switching signal in monkey PFo when a strategy is changed. In the strategy task, we used a visual cue to instruct two male rhesus monkeys either to repeat their most recent choice (i.e., stay strategy) or to change it (i.e., shift strategy). To identify the strategy switching-related signal, we compared nonswitch and switch trials, which cued the same or a different strategy from the previous trial, respectively. We found that the switching-related signal emerged during the cue presentation and it was combined with the strategy signal in a subpopulation of cells. Moreover, the error analysis showed that the activity of the switch-related cells reflected whether the monkeys erroneously switched or not the strategy, rather than what was required for that trial. The function of the switching signal could be to prompt the use of different strategies when older strategies are no longer appropriate, conferring the ability to adapt flexibly to environmental changes. In our task, the switching signal might contribute to the implementation of the strategy cued, overcoming potential interference effects from the strategy previously cued. Our results support the idea that ascribes to PFo an important role for behavioral flexibility. SIGNIFICANCE STATEMENT We can flexibly adapt our behavior to a changing environment. One of the prefrontal areas traditionally associated with the ability to adapt to new contingencies is the orbital prefrontal cortex (PFo). We analyzed the switching related activity using a strategy task in which two rhesus monkeys were instructed by a visual cue either to repeat or change their most recent choice, respectively using a stay or a shift strategy. We found that PFo neurons were modulated by the strategy switching signal, pointing to the importance of PFo in behavioral flexibility by generating control over the switching of strategies. Full Article
w Contribution of NPY Y5 Receptors to the Reversible Structural Remodeling of Basolateral Amygdala Dendrites in Male Rats Associated with NPY-Mediated Stress Resilience By www.jneurosci.org Published On :: 2020-04-15T09:30:18-07:00 Endogenous neuropeptide Y (NPY) and corticotrophin-releasing factor (CRF) modulate the responses of the basolateral amygdala (BLA) to stress and are associated with the development of stress resilience and vulnerability, respectively. We characterized persistent effects of repeated NPY and CRF treatment on the structure and function of BLA principal neurons in a novel organotypic slice culture (OTC) model of male rat BLA, and examined the contributions of specific NPY receptor subtypes to these neural and behavioral effects. In BLA principal neurons within the OTCs, repeated NPY treatment caused persistent attenuation of excitatory input and induced dendritic hypotrophy via Y5 receptor activation; conversely, CRF increased excitatory input and induced hypertrophy of BLA principal neurons. Repeated treatment of OTCs with NPY followed by an identical treatment with CRF, or vice versa, inhibited or reversed all structural changes in OTCs. These structural responses to NPY or CRF required calcineurin or CaMKII, respectively. Finally, repeated intra-BLA injections of NPY or a Y5 receptor agonist increased social interaction, a validated behavior for anxiety, and recapitulated structural changes in BLA neurons seen in OTCs, while a Y5 receptor antagonist prevented NPY's effects both on behavior and on structure. These results implicate the Y5 receptor in the long-term, anxiolytic-like effects of NPY in the BLA, consistent with an intrinsic role in stress buffering, and highlight a remarkable mechanism by which BLA neurons may adapt to different levels of stress. Moreover, BLA OTCs offer a robust model to study mechanisms associated with resilience and vulnerability to stress in BLA. SIGNIFICANCE STATEMENT Within the basolateral amygdala (BLA), neuropeptide Y (NPY) is associated with buffering the neural stress response induced by corticotropin releasing factor, and promoting stress resilience. We used a novel organotypic slice culture model of BLA, complemented with in vivo studies, to examine the cellular mechanisms associated with the actions of NPY. In organotypic slice cultures, repeated NPY treatment reduces the complexity of the dendritic extent of anxiogenic BLA principal neurons, making them less excitable. NPY, via activation of Y5 receptors, additionally inhibits and reverses the increases in dendritic extent and excitability induced by the stress hormone, corticotropin releasing factor. This NPY-mediated neuroplasticity indicates that resilience or vulnerability to stress may thus involve neuropeptide-mediated dendritic remodeling in BLA principal neurons. Full Article
w Adaptive Resetting of Tuberoinfundibular Dopamine (TIDA) Network Activity during Lactation in Mice By www.jneurosci.org Published On :: 2020-04-15T09:30:18-07:00 Giving birth triggers a wide repertoire of physiological and behavioral changes in the mother to enable her to feed and care for her offspring. These changes require coordination and are often orchestrated from the CNS, through as of yet poorly understood mechanisms. A neuronal population with a central role in puerperal changes is the tuberoinfundibular dopamine (TIDA) neurons that control release of the pituitary hormone, prolactin, which triggers key maternal adaptations, including lactation and maternal care. Here, we used Ca2+ imaging on mice from both sexes and whole-cell recordings on female mouse TIDA neurons in vitro to examine whether they adapt their cellular and network activity according to reproductive state. In the high-prolactin state of lactation, TIDA neurons shift to faster membrane potential oscillations, a reconfiguration that reverses upon weaning. During the estrous cycle, however, which includes a brief, but pronounced, prolactin peak, oscillation frequency remains stable. An increase in the hyperpolarization-activated mixed cation current, Ih, possibly through unmasking as dopamine release drops during nursing, may partially explain the reconfiguration of TIDA rhythms. These findings identify a reversible plasticity in hypothalamic network activity that can serve to adapt the dam for motherhood. SIGNIFICANCE STATEMENT Motherhood requires profound behavioral and physiological adaptations to enable caring for offspring, but the underlying CNS changes are poorly understood. Here, we show that, during lactation, neuroendocrine dopamine neurons, the "TIDA" cells that control prolactin secretion, reorganize their trademark oscillations to discharge in faster frequencies. Unlike previous studies, which typically have focused on structural and transcriptional changes during pregnancy and lactation, we demonstrate a functional switch in activity and one that, distinct from previously described puerperal modifications, reverses fully on weaning. We further provide evidence that a specific conductance (Ih) contributes to the altered network rhythm. These findings identify a new facet of maternal brain plasticity at the level of membrane properties and consequent ensemble activity. Full Article
w Comparative Transcriptomic Analyses of Developing Melanocortin Neurons Reveal New Regulators for the Anorexigenic Neuron Identity By www.jneurosci.org Published On :: 2020-04-15T09:30:18-07:00 Despite their opposing actions on food intake, POMC and NPY/AgRP neurons in the arcuate nucleus of the hypothalamus (ARH) are derived from the same progenitors that give rise to ARH neurons. However, the mechanism whereby common neuronal precursors subsequently adopt either the anorexigenic (POMC) or the orexigenic (NPY/AgRP) identity remains elusive. We hypothesize that POMC and NPY/AgRP cell fates are specified and maintained by distinct intrinsic factors. In search of them, we profiled the transcriptomes of developing POMC and NPY/AgRP neurons in mice. Moreover, cell-type-specific transcriptomic analyses revealed transcription regulators that are selectively enriched in either population, but whose developmental functions are unknown in these neurons. Among them, we found the expression of the PR domain-containing factor 12 (Prdm12) was enriched in POMC neurons but absent in NPY/AgRP neurons. To study the role of Prdm12 in vivo, we developed and characterized a floxed Prdm12 allele. Selective ablation of Prdm12 in embryonic POMC neurons led to significantly reduced Pomc expression as well as early-onset obesity in mice of either sex that recapitulates symptoms of human POMC deficiency. Interestingly, however, specific deletion of Prdm12 in adult POMC neurons showed that it is no longer required for Pomc expression or energy balance. Collectively, these findings establish a critical role for Prdm12 in the anorexigenic neuron identity and suggest that it acts developmentally to program body weight homeostasis. Finally, the combination of cell-type-specific genomic and genetic analyses provides a means to dissect cellular and functional diversity in the hypothalamus whose neurodevelopment remains poorly studied. SIGNIFICANCE STATEMENT POMC and NPY/AgRP neurons are derived from the same hypothalamic progenitors but have opposing effects on food intake. We profiled the transcriptomes of genetically labeled POMC and NPY/AgRP neurons in the developing mouse hypothalamus to decipher the transcriptional codes behind the versus orexigenic neuron identity. Our analyses revealed 29 transcription regulators that are selectively enriched in one of the two populations. We generated new mouse genetic models to selective ablate one of POMC-neuron enriched transcription factors Prdm12 in developing and adult POMC neurons. Our studies establish a previously unrecognized role for Prdm12 in the anorexigenic neuron identity and suggest that it acts developmentally to program body weight homeostasis. Full Article
w {beta}4-Nicotinic Receptors Are Critically Involved in Reward-Related Behaviors and Self-Regulation of Nicotine Reinforcement By www.jneurosci.org Published On :: 2020-04-22T09:29:41-07:00 Nicotine addiction, through smoking, is the principal cause of preventable mortality worldwide. Human genome-wide association studies have linked polymorphisms in the CHRNA5-CHRNA3-CHRNB4 gene cluster, coding for the α5, α3, and β4 nicotinic acetylcholine receptor (nAChR) subunits, to nicotine addiction. β4*nAChRs have been implicated in nicotine withdrawal, aversion, and reinforcement. Here we show that β4*nAChRs also are involved in non-nicotine-mediated responses that may predispose to addiction-related behaviors. β4 knock-out (KO) male mice show increased novelty-induced locomotor activity, lower baseline anxiety, and motivational deficits in operant conditioning for palatable food rewards and in reward-based Go/No-go tasks. To further explore reward deficits we used intracranial self-administration (ICSA) by directly injecting nicotine into the ventral tegmental area (VTA) in mice. We found that, at low nicotine doses, β4KO self-administer less than wild-type (WT) mice. Conversely, at high nicotine doses, this was reversed and β4KO self-administered more than WT mice, whereas β4-overexpressing mice avoided nicotine injections. Viral expression of β4 subunits in medial habenula (MHb), interpeduncular nucleus (IPN), and VTA of β4KO mice revealed dose- and region-dependent differences: β4*nAChRs in the VTA potentiated nicotine-mediated rewarding effects at all doses, whereas β4*nAChRs in the MHb-IPN pathway, limited VTA-ICSA at high nicotine doses. Together, our findings indicate that the lack of functional β4*nAChRs result in deficits in reward sensitivity including increased ICSA at high doses of nicotine that is restored by re-expression of β4*nAChRs in the MHb-IPN. These data indicate that β4 is a critical modulator of reward-related behaviors. SIGNIFICANCE STATEMENT Human genetic studies have provided strong evidence for a relationship between variants in the CHRNA5-CHRNA3-CHRNB4 gene cluster and nicotine addiction. Yet, little is known about the role of β4 nicotinic acetylcholine receptor (nAChR) subunit encoded by this cluster. We investigated the implication of β4*nAChRs in anxiety-, food reward- and nicotine reward-related behaviors. Deletion of the β4 subunit gene resulted in an addiction-related phenotype characterized by low anxiety, high novelty-induced response, lack of sensitivity to palatable food rewards and increased intracranial nicotine self-administration at high doses. Lentiviral vector-induced re-expression of the β4 subunit into either the MHb or IPN restored a "stop" signal on nicotine self-administration. These results suggest that β4*nAChRs provide a promising novel drug target for smoking cessation. Full Article
w An Amygdalo-Parabrachial Pathway Regulates Pain Perception and Chronic Pain By www.jneurosci.org Published On :: 2020-04-22T09:29:41-07:00 The parabrachial (PB) complex mediates both ascending nociceptive signaling and descending pain modulatory information in the affective/emotional pain pathway. We have recently reported that chronic pain is associated with amplified activity of PB neurons in a rat model of neuropathic pain. Here we demonstrate that similar activity amplification occurs in mice, and that this is related to suppressed inhibition to lateral parabrachial (LPB) neurons from the CeA in animals of either sex. Animals with pain after chronic constriction injury of the infraorbital nerve (CCI-Pain) displayed higher spontaneous and evoked activity in PB neurons, and a dramatic increase in after-discharges, responses that far outlast the stimulus, compared with controls. LPB neurons in CCI-Pain animals showed a reduction in inhibitory, GABAergic inputs. We show that, in both rats and mice, LPB contains few GABAergic neurons, and that most of its GABAergic inputs arise from CeA. These CeA GABA neurons express dynorphin, somatostatin, and/or corticotropin releasing hormone. We find that the efficacy of this CeA-LPB pathway is suppressed in chronic pain. Further, optogenetically stimulating this pathway suppresses acute pain, and inhibiting it, in naive animals, evokes pain behaviors. These findings demonstrate that the CeA-LPB pathway is critically involved in pain regulation, and in the pathogenesis of chronic pain. SIGNIFICANCE STATEMENT We describe a novel pathway, consisting of inhibition by dynorphin, somatostatin, and corticotropin-releasing hormone-expressing neurons in the CeA that project to the parabrachial nucleus. We show that this pathway regulates the activity of pain-related neurons in parabrachial nucleus, and that, in chronic pain, this inhibitory pathway is suppressed, and that this suppression is causally related to pain perception. We propose that this amygdalo-parabrachial pathway is a key regulator of both chronic and acute pain, and a novel target for pain relief. Full Article
w Treatment with Mesenchymal-Derived Extracellular Vesicles Reduces Injury-Related Pathology in Pyramidal Neurons of Monkey Perilesional Ventral Premotor Cortex By www.jneurosci.org Published On :: 2020-04-22T09:29:41-07:00 Functional recovery after cortical injury, such as stroke, is associated with neural circuit reorganization, but the underlying mechanisms and efficacy of therapeutic interventions promoting neural plasticity in primates are not well understood. Bone marrow mesenchymal stem cell-derived extracellular vesicles (MSC-EVs), which mediate cell-to-cell inflammatory and trophic signaling, are thought be viable therapeutic targets. We recently showed, in aged female rhesus monkeys, that systemic administration of MSC-EVs enhances recovery of function after injury of the primary motor cortex, likely through enhancing plasticity in perilesional motor and premotor cortices. Here, using in vitro whole-cell patch-clamp recording and intracellular filling in acute slices of ventral premotor cortex (vPMC) from rhesus monkeys (Macaca mulatta) of either sex, we demonstrate that MSC-EVs reduce injury-related physiological and morphologic changes in perilesional layer 3 pyramidal neurons. At 14-16 weeks after injury, vPMC neurons from both vehicle- and EV-treated lesioned monkeys exhibited significant hyperexcitability and predominance of inhibitory synaptic currents, compared with neurons from nonlesioned control brains. However, compared with vehicle-treated monkeys, neurons from EV-treated monkeys showed lower firing rates, greater spike frequency adaptation, and excitatory:inhibitory ratio. Further, EV treatment was associated with greater apical dendritic branching complexity, spine density, and inhibition, indicative of enhanced dendritic plasticity and filtering of signals integrated at the soma. Importantly, the degree of EV-mediated reduction of injury-related pathology in vPMC was significantly correlated with measures of behavioral recovery. These data show that EV treatment dampens injury-related hyperexcitability and restores excitatory:inhibitory balance in vPMC, thereby normalizing activity within cortical networks for motor function. SIGNIFICANCE STATEMENT Neuronal plasticity can facilitate recovery of function after cortical injury, but the underlying mechanisms and efficacy of therapeutic interventions promoting this plasticity in primates are not well understood. Our recent work has shown that intravenous infusions of mesenchymal-derived extracellular vesicles (EVs) that are involved in cell-to-cell inflammatory and trophic signaling can enhance recovery of motor function after injury in monkey primary motor cortex. This study shows that this EV-mediated enhancement of recovery is associated with amelioration of injury-related hyperexcitability and restoration of excitatory-inhibitory balance in perilesional ventral premotor cortex. These findings demonstrate the efficacy of mesenchymal EVs as a therapeutic to reduce injury-related pathologic changes in the physiology and structure of premotor pyramidal neurons and support recovery of function. Full Article
w Emotional Stress Induces Structural Plasticity in Bergmann Glial Cells via an AC5-CPEB3-GluA1 Pathway By www.jneurosci.org Published On :: 2020-04-22T09:29:41-07:00 Stress alters brain function by modifying the structure and function of neurons and astrocytes. The fine processes of astrocytes are critical for the clearance of neurotransmitters during synaptic transmission. Thus, experience-dependent remodeling of glial processes is anticipated to alter the output of neural circuits. However, the molecular mechanisms that underlie glial structural plasticity are not known. Here we show that a single exposure of male and female mice to an acute stress produced a long-lasting retraction of the lateral processes of cerebellar Bergmann glial cells. These cells express the GluA1 subunit of AMPA-type glutamate receptors, and GluA1 knockdown is known to shorten the length of glial processes. We found that stress reduced the level of GluA1 protein and AMPA receptor-mediated currents in Bergmann glial cells, and these effects were absent in mice devoid of CPEB3, a protein that binds to GluA1 mRNA and regulates GluA1 protein synthesis. Administration of a β-adrenergic receptor blocker attenuated the reduction in GluA1, and deletion of adenylate cyclase 5 prevented GluA1 suppression. Therefore, stress suppresses GluA1 protein synthesis via an adrenergic/adenylyl cyclase/CPEB3 pathway, and reduces the length of astrocyte lateral processes. Our results identify a novel mechanism for GluA1 subunit plasticity in non-neuronal cells and suggest a previously unappreciated role for AMPA receptors in stress-induced astrocytic remodeling. SIGNIFICANCE STATEMENT Astrocytes play important roles in synaptic transmission by extending fine processes around synapses. In this study, we showed that a single exposure to an acute stress triggered a retraction of lateral/fine processes in mouse cerebellar astrocytes. These astrocytes express GluA1, a glutamate receptor subunit known to lengthen astrocyte processes. We showed that astrocytic structural changes are associated with a reduction of GluA1 protein levels. This requires activation of β-adrenergic receptors and is triggered by noradrenaline released during stress. We identified adenylyl cyclase 5, an enzyme that elevates cAMP levels, as a downstream effector and found that lowering GluA1 levels depends on CPEB3 proteins that bind to GluA1 mRNA. Therefore, stress regulates GluA1 protein synthesis via an adrenergic/adenylyl cyclase/CPEB3 pathway in astrocytes and remodels their fine processes. Full Article
w Basigin Associates with Integrin in Order to Regulate Perineurial Glia and Drosophila Nervous System Morphology By www.jneurosci.org Published On :: 2020-04-22T09:29:41-07:00 The Drosophila nervous system is ensheathed by a layer of outer glial cells, the perineurial glia, and a specialized extracellular matrix, the neural lamella. The function of perineurial glial cells and how they interact with the extracellular matrix are just beginning to be elucidated. Integrin-based focal adhesion complexes link the glial membrane to the extracellular matrix, but little is known about integrin's regulators in the glia. The transmembrane Ig domain protein Basigin/CD147/EMMPRIN is highly expressed in the perineurial glia surrounding the Drosophila larval nervous system. Here we show that Basigin associates with integrin at the focal adhesions to uphold the structure of the glia-extracellular matrix sheath. Knockdown of Basigin in perineurial glia using RNAi results in significant shortening of the ventral nerve cord, compression of the glia and extracellular matrix in the peripheral nerves, and reduction in larval locomotion. We determined that Basigin is expressed in close proximity to integrin at the glial membrane, and that expression of the extracellular integrin-binding domain of Basigin is sufficient to rescue peripheral glial compression. We also found that a reduction in expression of integrin at the membrane rescues the ventral nerve cord shortening, peripheral glial compression, and locomotor phenotypes, and that reduction in the integrin-binding protein Talin can partially rescue glial compression. These results identify Basigin as a potential negative regulator of integrin in the glia, supporting proper glial and extracellular matrix ensheathment of the nervous system. SIGNIFICANCE STATEMENT The glial cells and extracellular matrix play important roles in supporting and protecting the nervous system, but the interactions between these components have not been well characterized. Our study identified expression of a conserved Ig superfamily protein, Basigin, at the glial membrane of Drosophila where it associates with the integrin-based focal adhesion complexes to ensure proper ensheathment of the CNS and PNS. Loss of Basigin in the glia results in an overall compression of the nervous system due to integrin dysregulation, which causes locomotor defects in the animals. This underlies the importance of glia-matrix communication for structural and functional support of the nervous system. Full Article
w Reward-Based Improvements in Motor Control Are Driven by Multiple Error-Reducing Mechanisms By www.jneurosci.org Published On :: 2020-04-29T09:30:19-07:00 Reward has a remarkable ability to invigorate motor behavior, enabling individuals to select and execute actions with greater precision and speed. However, if reward is to be exploited in applied settings, such as rehabilitation, a thorough understanding of its underlying mechanisms is required. In a series of experiments, we first demonstrate that reward simultaneously improves the selection and execution components of a reaching movement. Specifically, reward promoted the selection of the correct action in the presence of distractors, while also improving execution through increased speed and maintenance of accuracy. These results led to a shift in the speed-accuracy functions for both selection and execution. In addition, punishment had a similar impact on action selection and execution, although it enhanced execution performance across all trials within a block, that is, its impact was noncontingent to trial value. Although the reward-driven enhancement of movement execution has been proposed to occur through enhanced feedback control, an untested possibility is that it is also driven by increased arm stiffness, an energy-consuming process that enhances limb stability. Computational analysis revealed that reward led to both an increase in feedback correction in the middle of the movement and a reduction in motor noise near the target. In line with our hypothesis, we provide novel evidence that this noise reduction is driven by a reward-dependent increase in arm stiffness. Therefore, reward drives multiple error-reduction mechanisms which enable individuals to invigorate motor performance without compromising accuracy. SIGNIFICANCE STATEMENT While reward is well-known for enhancing motor performance, how the nervous system generates these improvements is unclear. Despite recent work indicating that reward leads to enhanced feedback control, an untested possibility is that it also increases arm stiffness. We demonstrate that reward simultaneously improves the selection and execution components of a reaching movement. Furthermore, we show that punishment has a similar positive impact on performance. Importantly, by combining computational and biomechanical approaches, we show that reward leads to both improved feedback correction and an increase in stiffness. Therefore, reward drives multiple error-reduction mechanisms which enable individuals to invigorate performance without compromising accuracy. This work suggests that stiffness control plays a vital, and underappreciated, role in the reward-based imporvemenets in motor control. Full Article
w Cognitive Effort Modulates Connectivity between Dorsal Anterior Cingulate Cortex and Task-Relevant Cortical Areas By www.jneurosci.org Published On :: 2020-05-06T09:30:22-07:00 Investment of cognitive effort is required in everyday life and has received ample attention in recent neurocognitive frameworks. The neural mechanism of effort investment is thought to be structured hierarchically, with dorsal anterior cingulate cortex (dACC) at the highest level, recruiting task-specific upstream areas. In the current fMRI study, we tested whether dACC is generally active when effort demand is high across tasks with different stimuli, and whether connectivity between dACC and task-specific areas is increased depending on the task requirements and effort level at hand. For that purpose, a perceptual detection task was administered that required male and female human participants to detect either a face or a house in a noisy image. Effort demand was manipulated by adding little (low effort) or much (high effort) noise to the images. Results showed a network of dACC, anterior insula (AI), and intraparietal sulcus (IPS) to be more active when effort demand was high, independent of the performed task (face or house detection). Importantly, effort demand modulated functional connectivity between dACC and face-responsive or house-responsive perceptual areas, depending on the task at hand. This shows that dACC, AI, and IPS constitute a general effort-responsive network and suggests that the neural implementation of cognitive effort involves dACC-initiated sensitization of task-relevant areas. SIGNIFICANCE STATEMENT Although cognitive effort is generally perceived as aversive, its investment is inevitable when navigating an increasingly complex society. In this study, we demonstrate how the human brain tailors the implementation of effort to the requirements of the task at hand. We show increased effort-related activity in a network of brain areas consisting of dorsal anterior cingulate cortex (dACC), anterior insula, and intraparietal sulcus, independent of task specifics. Crucially, we also show that effort-induced functional connectivity between dACC and task-relevant areas tracks specific task demands. These results demonstrate how brain regions specialized to solve a task may be energized by dACC when effort demand is high. Full Article
w MECP2 Duplication Causes Aberrant GABA Pathways, Circuits and Behaviors in Transgenic Monkeys: Neural Mappings to Patients with Autism By www.jneurosci.org Published On :: 2020-05-06T09:30:22-07:00 MECP2 gain-of-function and loss-of-function in genetically engineered monkeys recapitulates typical phenotypes in patients with autism, yet where MECP2 mutation affects the monkey brain and whether/how it relates to autism pathology remain unknown. Here we report a combination of gene–circuit–behavior analyses including MECP2 coexpression network, locomotive and cognitive behaviors, and EEG and fMRI findings in 5 MECP2 overexpressed monkeys (Macaca fascicularis; 3 females) and 20 wild-type monkeys (Macaca fascicularis; 11 females). Whole-genome expression analysis revealed MECP2 coexpressed genes significantly enriched in GABA-related signaling pathways, whereby reduced β-synchronization within fronto-parieto-occipital networks was associated with abnormal locomotive behaviors. Meanwhile, MECP2-induced hyperconnectivity in prefrontal and cingulate networks accounted for regressive deficits in reversal learning tasks. Furthermore, we stratified a cohort of 49 patients with autism and 72 healthy controls of 1112 subjects using functional connectivity patterns, and identified dysconnectivity profiles similar to those in monkeys. By establishing a circuit-based construct link between genetically defined models and stratified patients, these results pave new avenues to deconstruct clinical heterogeneity and advance accurate diagnosis in psychiatric disorders. SIGNIFICANCE STATEMENT Autism spectrum disorder (ASD) is a complex disorder with co-occurring symptoms caused by multiple genetic variations and brain circuit abnormalities. To dissect the gene–circuit–behavior causal chain underlying ASD, animal models are established by manipulating causative genes such as MECP2. However, it is unknown whether such models have captured any circuit-level pathology in ASD patients, as demonstrated by human brain imaging studies. Here, we use transgenic macaques to examine the causal effect of MECP2 overexpression on gene coexpression, brain circuits, and behaviors. For the first time, we demonstrate that the circuit abnormalities linked to MECP2 and autism-like traits in the monkeys can be mapped to a homogeneous ASD subgroup, thereby offering a new strategy to deconstruct clinical heterogeneity in ASD. Full Article
w The Correlation of Neuronal Signals with Behavior at Different Levels of Visual Cortex and Their Relative Reliability for Behavioral Decisions By www.jneurosci.org Published On :: 2020-05-06T09:30:22-07:00 Behavior can be guided by neuronal activity in visual, auditory, or somatosensory cerebral cortex, depending on task requirements. In contrast to this flexible access of cortical signals, several observations suggest that behaviors depend more on neurons in later areas of visual cortex than those in earlier areas, although neurons in earlier areas would provide more reliable signals for many tasks. We recorded from neurons in different levels of visual cortex of 2 male rhesus monkeys while the animals did a visual discrimination task and examined trial-to-trial correlations between neuronal and behavioral responses. These correlations became stronger in primary visual cortex as neuronal signals in that area became more reliable relative to the other areas. The results suggest that the mechanisms that read signals from cortex might access any cortical area depending on the relative value of those signals for the task at hand. SIGNIFICANCE STATEMENT Information is encoded by the action potentials of neurons in various cortical areas in a hierarchical manner such that increasingly complex stimulus features are encoded in successive stages. The brain must extract information from the response of appropriate neurons to drive optimal behavior. A widely held view of this decoding process is that the brain relies on the output of later cortical areas to make decisions, although neurons in earlier areas can provide more reliable signals. We examined correlations between perceptual decisions and the responses of neurons in different levels of monkey visual cortex. The results suggest that the brain may access signals in any cortical area depending on the relative value of those signals for the task at hand. Full Article
w Nestin Selectively Facilitates the Phosphorylation of the Lissencephaly-Linked Protein Doublecortin (DCX) by cdk5/p35 to Regulate Growth Cone Morphology and Sema3a Sensitivity in Developing Neurons By www.jneurosci.org Published On :: 2020-05-06T09:30:22-07:00 Nestin, an intermediate filament protein widely used as a marker of neural progenitors, was recently found to be expressed transiently in developing cortical neurons in culture and in developing mouse cortex. In young cortical cultures, nestin regulates axonal growth cone morphology. In addition, nestin, which is known to bind the neuronal cdk5/p35 kinase, affects responses to axon guidance cues upstream of cdk5, specifically, to Sema3a. Changes in growth cone morphology require rearrangements of cytoskeletal networks, and changes in microtubules and actin filaments are well studied. In contrast, the roles of intermediate filament proteins in this process are poorly understood, even in cultured neurons. Here, we investigate the molecular mechanism by which nestin affects growth cone morphology and Sema3a sensitivity. We find that nestin selectively facilitates the phosphorylation of the lissencephaly-linked protein doublecortin (DCX) by cdk5/p35, but the phosphorylation of other cdk5 substrates is not affected by nestin. We uncover that this substrate selectivity is based on the ability of nestin to interact with DCX, but not with other cdk5 substrates. Nestin thus creates a selective scaffold for DCX with activated cdk5/p35. Last, we use cortical cultures derived from Dcx KO mice to show that the effects of nestin on growth cone morphology and on Sema3a sensitivity are DCX-dependent, thus suggesting a functional role for the DCX-nestin complex in neurons. We propose that nestin changes growth cone behavior by regulating the intracellular kinase signaling environment in developing neurons. The sex of animal subjects is unknown. SIGNIFICANCE STATEMENT Nestin, an intermediate filament protein highly expressed in neural progenitors, was recently identified in developing neurons where it regulates growth cone morphology and responsiveness to the guidance cue Sema3a. Changes in growth cone morphology require rearrangements of cytoskeletal networks, but the roles of intermediate filaments in this process are poorly understood. We now report that nestin selectively facilitates phosphorylation of the lissencephaly-linked doublecortin (DCX) by cdk5/p35, but the phosphorylation of other cdk5 substrates is not affected. This substrate selectivity is based on preferential scaffolding of DCX, cdk5, and p35 by nestin. Additionally, we demonstrate a functional role for the DCX-nestin complex in neurons. We propose that nestin changes growth cone behavior by regulating intracellular kinase signaling in developing neurons. Full Article
w Waste less food – and help end hunger By www.fao.org Published On :: Mon, 03 Jun 2013 00:00:00 GMT Wednesday 5 June marks World Environment Day and an opportunity for everyone to take action on the critical issue of food waste and losses. “Think. Eat. Save” is the theme, echoing the name of the campaign launched recently by FAO and UNEP, which encourages people to reduce their “foodprint” by making more informed choices. Every year 1.3 billion tonnes of food [...] Full Article
w Field tests under way for new hunger-measuring tool By www.fao.org Published On :: Tue, 20 Aug 2013 01:00:00 GMT FAO has begun field tests for a new approach to measuring hunger and food insecurity – part of a collaboration with polling specialists Gallup, Inc. The project – known as Voices of the Hungry – is based on a “food insecurity experience scale,” with annual data collected using eight interview questions about people’s experiences of food insecurity over the preceding [...] Full Article
w Zero Hunger is possible ‘within our lifetimes' By www.fao.org Published On :: Tue, 24 Sep 2013 00:00:00 GMT FAO Director-General José Graziano da Silva underlined his firm belief that a hunger-free world is possible "within our lifetimes," during high-level talks in New York. "The Zero Hunger Challenge calls for something new – something bold, but long overdue," he said. It was a "decisive global commitment to end hunger, eliminate childhood stunting, make all food systems sustainable, eradicate rural poverty, [...] Full Article
w World Food Day 2013 to promote healthy food systems By www.fao.org Published On :: Fri, 27 Sep 2013 00:00:00 GMT FAO will use World Food Day this year to promote one of the five pillars of Zero Hunger Challenge. The theme of the campaign will be “Sustainable Food Systems for Food Security and Nutrition.” Events in more than 120 countries – supported by videos, an issues paper, posters, media interviews and more – will communicate the message that our food systems [...] Full Article
w ‘We must be voices of the hungry' By www.fao.org Published On :: Mon, 14 Oct 2013 00:00:00 GMT We will only achieve zero hunger if we speak on behalf of those unable to represent themselves. That was a key message during an event titled “Zero Hunger: are we ready?” at FAO headquarters in Rome, Italy, on Friday, 11 October. “Hungry people have no voice, they are different from all others,” said FAO Director-General José Graziano da Silva (pictured, left). “We [...] Full Article
w Help families in the Philippines rebuild their lives – Donate Now!!! By www.fao.org Published On :: Tue, 17 Dec 2013 00:00:00 GMT FAO is working to help typhoon-affected farmers to ensure the next harvests in 2014 – You can help as well. Philippine farmers need urgent assistance to avoid a double tragedy befalling rural survivors of Typhoon Haiyan. The typhoon hit just as farmers were beginning a new planting season, and FAO estimates that over one million farmers have been affected and hundreds of [...] Full Article
w Reduce your food waste and save money and our natural resources By www.fao.org Published On :: Wed, 18 Dec 2013 00:00:00 GMT Total food losses have been estimated at 1.3 billion tons per year, which represents roughly one-third of the world food production for human consumption. The economic value of food losses and waste amounts to $680 billion in industrialized countries and $310 billion in developing countries. In total, food loss and waste amount to one trillion dollars globally. Lost and wasted food [...] Full Article
w Download the free “Quinoa in the kitchen” book and try out new recipes! By www.fao.org Published On :: Wed, 08 Jan 2014 00:00:00 GMT Once known as “the gold of the Incas,” quinoa has been one of the world’s neglected crops but is currently becoming more and more popular. For centuries, quinoa remained a hidden treasure grown almost exclusively by indigenous communities in the Andean heights. Lately, quinoa has been growing in popularity with foodies and health-conscious consumers around the world. It was even [...] Full Article
w Learn how cash transfer programmes improve lives in sub-Saharan Africa and share the infographics By www.fao.org Published On :: Wed, 22 Jan 2014 00:00:00 GMT Did you know that cash transfer (CT) programmes in countries of the sub-Saharan Africa actually have a significant impact? In Malawi, these programmes helped families invest in agricultural equipment and livestock to produce their own food and reduce levels of negative coping strategies, like begging and school drop-outs. In Kenya, secondary school attendance rose by 9 percent and access to [...] Full Article
w Learn how good food can improve your health By www.fao.org Published On :: Fri, 21 Feb 2014 00:00:00 GMT Have you ever wondered if you are getting adequate nutrients from the food you eat? It is a common misconception that malnutrition means not getting enough food. This is, however, incorrect! People who take in insufficient food can be malnourished, but also those who consume too much face the same risks. Malnutrition is defined as “An abnormal physiological condition caused by [...] Full Article
w Empowerment is key to eradicating hunger By www.fao.org Published On :: Wed, 05 Mar 2014 00:00:00 GMT Global food security largely depends on smallholder family farms where in many regions of the world women play a crucial role as both producers and providers of food. Studies show that when women and other rural poor have better access to resources, the benefits are far-reaching. Families are healthier, more children attend school, agricultural productivity improves, incomes increase, and rural communities [...] Full Article
w Jackie Chan set to defeat the world's worst enemy - Hunger By www.fao.org Published On :: Tue, 25 Mar 2014 00:00:00 GMT International Kungfu superstar and renowned Hollywood film actor Jackie Chan has joined FAO in the fight against hunger. In a recent visit to Ethiopia, Chan met with beneficiaries of the ‘Purchase from Africans for Africa’ (PAA) project as well as a South-South Cooperation Programme where he discussed with Chinese experts how they exchange technical knowledge with Ethiopian farmers to help them [...] Full Article
w 5 critical things we learned from the latest IPCC report on climate change By www.fao.org Published On :: Wed, 02 Apr 2014 00:00:00 GMT Today leading international experts on climate change, the IPCC, presented their latest report on the impacts of climate change on humanity, and what we can do about it. It’s a lengthy report, so we’ve shrunk it down to Oxfam's five key takeaways on climate change and hunger. 1. Climate change: the impacts on crops are worse than we thought Climate change has [...] Full Article
w 7 things you should know about FAO and the Post-2015 development agenda By www.fao.org Published On :: Thu, 03 Apr 2014 00:00:00 GMT As FAO launches dedicated webpages on post-2015, here are seven things to know about the process and how FAO is playing its part. 7 - Post-2015 development agenda - The name refers to the process through which Member States agree on a new global development framework to succeed the Millennium Development Goals (MDGs), eight goals that followed the UN Millennium Declaration [...] Full Article
w Water – the most basic resource but also the most essential By www.fao.org Published On :: Wed, 07 May 2014 00:00:00 GMT Basic facts The world contains an estimated 1 400 million cubic km of water. Only 0.003% of this vast amount, about 45 000 cubic km, are what is called “fresh water resources” - water that theoretically can be used for drinking, hygiene, agriculture and industry. But not all of this water is accessible. For example, seasonal flooding makes water extremely difficult [...] Full Article
w Plant a seed, grow a garden, change a life! By www.fao.org Published On :: Wed, 21 May 2014 00:00:00 GMT ‘‘—the first 1000 days are a critical window in a child’s development, but let’s not forget this child on day 1,001.’’ School nutrition programmes help to address the +1,001 day gap. Today, perceptions of school gardens are changing in response to increasingly urgent needs for greater food security, environmental protection, more secure livelihoods and better nutrition. School gardens have new multiple [...] Full Article
w The growing role of fish in feeding the world By www.fao.org Published On :: Mon, 09 Jun 2014 00:00:00 GMT People have never consumed so much fish or depended so greatly on the sector for their well-being as they do today. Did you know? Fish is one of the most-traded food commodities worldwide, worth almost US$130 billion in 2012 – a figure that will probably continue to increase. World per capita apparent fish consumption increased from an average of 9.9 kg in the [...] Full Article
w Blue growth - unlocking the potential of seas and oceans By www.fao.org Published On :: Wed, 02 Jul 2014 00:00:00 GMT Today’s fisheries sector hosts a multibillion dollar industry that is a vital source of food and nutrition, employment, trade, economic wellbeing and recreation. What is blue growth? The concept of a "blue economy" came out of the 2012 Rio+20 Conference and emphasizes conservation and sustainable management, based on the premise that healthy ocean ecosystems are more productive and a must for sustainable [...] Full Article
w Top 5 need-to-knows about Conservation Agriculture By www.fao.org Published On :: Wed, 30 Jul 2014 00:00:00 GMT In the face of changing weather driven by climate change and the increasing demand for food, Conservation Agriculture (CA) aims to achieve sustainable and profitable agriculture and improve farmers’ livelihoods. Here are five things you need to know. 1. CA observes three main principles that you should remember Direct seeding involves growing crops without mechanical seedbed preparation and with minimal soil disturbance [...] Full Article
w How much do you know about Farmer Field Schools By www.fao.org Published On :: Wed, 03 Sep 2014 00:00:00 GMT Farmer field schools (FFS) are essentially schools without walls that introduce new technological innovations while building on indigenous knowledge. In FFS, farmers are the experts. Key features and principles of the FFS approach – TRUE or FALSE? The FFS approach allows farmers to learn through testing changes in a controlled, group-based environment TRUE: Discovery-based learning is an essential part of the FFS as [...] Full Article
w If we had to pay the bill to nature, what would food waste cost us? By www.fao.org Published On :: Wed, 17 Sep 2014 00:00:00 GMT Each year, 30 percent of global food production is lost after harvest or wasted in shops, households and catering services. This represents 750 billion USD in terms of producer or farmgate prices, going up to almost a trillion US dollars of trade value of food every year – half the GDP of Italy!If nature asked us to pay the total [...] Full Article
w The Zero Hunger Challenge: Can we create a world where no one is hungry? By www.fao.org Published On :: Wed, 01 Oct 2014 00:00:00 GMT At the Rio+20 Conference on Sustainable Development in June 2012, UN Secretary-General Ban Ki-moon announced a new global challenge for world leaders and individuals from all sectors: create a world where no one is hungry. He emphasized that there is enough food in the world to feed our population, so the challenge comes from making sure that everyone has access [...] Full Article
w Genetic diversity is our hidden jewel, we should treasure every bit of it By www.fao.org Published On :: Wed, 29 Oct 2014 00:00:00 GMT Biodiversity for food and agriculture is among the earth’s most important resources. Biodiversity is indispensable: be it the insects that pollinate plants, the microscopic bacteria used for making cheese, the diverse livestock breeds used to make a living in harsh environments, the thousands species of fish, and other aquatic species in our lakes, rivers and oceans, or the thousands of [...] Full Article
w We can't live without forests By www.fao.org Published On :: Wed, 10 Dec 2014 00:00:00 GMT Forests are one of the Earth’s greatest natural resources. There is a reason why we often figuratively speak of ‘the tree of life’; forests are key to supporting life on Earth. Eight thousand years ago, half of the Earth’s land surface was covered by forests or wooded areas. Today, these areas represent less than one third. Forests are home to 80% [...] Full Article
w It's about time we talk about soil! By www.fao.org Published On :: Thu, 08 Jan 2015 00:00:00 GMT There can be no life without it, it feeds us and we are responsible for it! Soil is formed from rocks that are decomposed slowly by sun, the wind and the rain, by animals and plants. But it is in danger because of expanding cities, deforestation, unsustainable land use and management practices, pollution, overgrazing and climate change. The current rate [...] Full Article
w Have you ever wondered how #hunger is measured? By www.fao.org Published On :: Wed, 18 Feb 2015 00:00:00 GMT In the year 2000, the UN Member States set the eight Millennium Development Goals. One of the most ambitious was to eradicate extreme poverty and hunger. As part of this goal, the United Nations General Assembly set a target to halve the proportion of people who suffer from hunger by 2015. But have you ever wondered how hunger is measured in [...] Full Article
w Quiz: how well do you know your fruits? By www.fao.org Published On :: Wed, 04 Mar 2015 00:00:00 GMT They are delicious, they are nutritious and they make your mouth water. If you know your apples from your oranges, then pit your wits against our fruit quiz. You will need to guess where different fruits come from, where they are most popular and how good they are for you. Let’s get started. 1. Which country is the biggest producer of dates? A. [...] Full Article
w How much do you know about the awesomeness of forests? By www.fao.org Published On :: Wed, 18 Mar 2015 00:00:00 GMT // Full Article
w Digging deep in the year of soil – ten Twitter accounts to follow By www.fao.org Published On :: Wed, 29 Apr 2015 00:00:00 GMT We took a look around and put together a list of Twitter accounts to keep you informed about what is happening in the world of soils. Here are, in alphabetical order, ten voices on twitter you should follow for the latest on soils: @agriculturesnet The AgriCultures Network shares knowledge on small-scale family farming and agroecology. With agroecology we can build soils for life! http://t.co/pN62odtLt9 [...] Full Article
w Food waste & loss – the blind spot in the fight against hunger By www.fao.org Published On :: Wed, 13 May 2015 00:00:00 GMT Whether we categorize uneaten food as “lost” or “wasted” depends on where it goes out of the food supply chain. Imagine how everything we eat travels across a food supply chain, a complex journey that stretches from farm to table. Studies show that an astounding 1/3 of all the food we produce for human consumption never actually reaches our plates. Most [...] Full Article
w Whittling down instances of child labour in agriculture By www.fao.org Published On :: Wed, 10 Jun 2015 00:00:00 GMT “Children subjected to child labour need our support and action so they can enjoy their right to education and health and become productive farmers and workers as adults to escape poverty and hunger.” - José Graziano da Silva, FAO Director- General Child labour is not unique to a particular country, ethnicity, culture, or ideology. Today, there are about 100 million boys [...] Full Article
w Why social protection holds the key to fighting hunger By www.fao.org Published On :: Wed, 08 Jul 2015 00:00:00 GMT What happens when money is given directly to people living in dire conditions? Will children be better nourished? Will families be more productive or will they become dependent? Will economies grow stronger? Today, some 70 percent of the world population, most of which live in rural areas, have no access to adequate social protection measures. For this reason, FAO has [...] Full Article
w How berry knowledgeable are you? By www.fao.org Published On :: Wed, 22 Jul 2015 00:00:00 GMT Ripe, juicy, and practically begging to be eaten, berries are a spring and summer treat that make your mouth water. To celebrate the pinnacle of berry season, we gathered some facts and figures and are challenging you to see how far your berry knowledge really goes. Full Article
w 7 rules-of-thumb to follow in aquaponics By www.fao.org Published On :: Wed, 19 Aug 2015 00:00:00 GMT From a media bed unit start-up in Bangkok to a fully developed 120 households deep water culture (DWC) unit in Ethiopia, aquaponics is showcasing its true potential to produce sustainable food anytime, anywhere. A marriage between aquaculture (raising aquatic animals such as fish, snails or prawns in tanks) and hydroponics (cultivating plants in water), aquaponics is a ‘clean and green’ [...] Full Article