com

Computational processing of the Portuguese language : 14th International Conference, PROPOR 2020, Evora, Portugal, March 2-4, 2020, Proceedings

PROPOR (Conference) (14th : 2020 : Evora, Portugal)
9783030415051 (electronic bk.)




com

Compression and chronic wound management

9783030011956 (electronic book)




com

Comprehensive biochemistry for dentistry : textbook for dental students

Gupta, Anil, author.
9789811310355 (electronic bk.)




com

Complexity and approximation : in memory of Ker-I Ko

9783030416720 (electronic bk.)




com

Complete denture prosthodontics : planning and decision-making

Tam protezler. English
9783319690322 (electronic bk.)




com

Complete denture prosthodontics : treatment and problem solving

9783319690179 (electronic bk.)




com

Communications and networking : 14th EAI International Conference, ChinaCom 2019, Shanghai, China, November 29 - December 1, 2019, proceedings.

ChinaCom (Conference) (14th : 2019 : Shanghai, China)
9783030411176




com

Common problems in the newborn nursery : an evidence and case-based guide

9783319956725 (electronic bk.)




com

Commercial status of plant breeding in India

Tiwari, Aparna, author.
9789811519062




com

Combustion emissions

Schofield, Keith.
9780128191279 (electronic bk.)




com

Berquist's musculoskeletal imaging companion

Peterson, Jeffrey J., author.
9781496314994




com

Anatomical chart company atlas of pathophysiology

Atlas of pathophysiology.
9781496370921




com

African edible insects as alternative source of food, oil, protein and bioactive components

9783030329525 (electronic bk.)




com

Advanced age geriatric care : a comprehensive guide

9783319969985 (electronic bk.)





com

Efficient estimation of linear functionals of principal components

Vladimir Koltchinskii, Matthias Löffler, Richard Nickl.

Source: The Annals of Statistics, Volume 48, Number 1, 464--490.

Abstract:
We study principal component analysis (PCA) for mean zero i.i.d. Gaussian observations $X_{1},dots,X_{n}$ in a separable Hilbert space $mathbb{H}$ with unknown covariance operator $Sigma $. The complexity of the problem is characterized by its effective rank $mathbf{r}(Sigma):=frac{operatorname{tr}(Sigma)}{|Sigma |}$, where $mathrm{tr}(Sigma)$ denotes the trace of $Sigma $ and $|Sigma|$ denotes its operator norm. We develop a method of bias reduction in the problem of estimation of linear functionals of eigenvectors of $Sigma $. Under the assumption that $mathbf{r}(Sigma)=o(n)$, we establish the asymptotic normality and asymptotic properties of the risk of the resulting estimators and prove matching minimax lower bounds, showing their semiparametric optimality.




com

Testing for principal component directions under weak identifiability

Davy Paindaveine, Julien Remy, Thomas Verdebout.

Source: The Annals of Statistics, Volume 48, Number 1, 324--345.

Abstract:
We consider the problem of testing, on the basis of a $p$-variate Gaussian random sample, the null hypothesis $mathcal{H}_{0}:oldsymbol{ heta}_{1}=oldsymbol{ heta}_{1}^{0}$ against the alternative $mathcal{H}_{1}:oldsymbol{ heta}_{1} eq oldsymbol{ heta}_{1}^{0}$, where $oldsymbol{ heta}_{1}$ is the “first” eigenvector of the underlying covariance matrix and $oldsymbol{ heta}_{1}^{0}$ is a fixed unit $p$-vector. In the classical setup where eigenvalues $lambda_{1}>lambda_{2}geq cdots geq lambda_{p}$ are fixed, the Anderson ( Ann. Math. Stat. 34 (1963) 122–148) likelihood ratio test (LRT) and the Hallin, Paindaveine and Verdebout ( Ann. Statist. 38 (2010) 3245–3299) Le Cam optimal test for this problem are asymptotically equivalent under the null hypothesis, hence also under sequences of contiguous alternatives. We show that this equivalence does not survive asymptotic scenarios where $lambda_{n1}/lambda_{n2}=1+O(r_{n})$ with $r_{n}=O(1/sqrt{n})$. For such scenarios, the Le Cam optimal test still asymptotically meets the nominal level constraint, whereas the LRT severely overrejects the null hypothesis. Consequently, the former test should be favored over the latter one whenever the two largest sample eigenvalues are close to each other. By relying on the Le Cam’s asymptotic theory of statistical experiments, we study the non-null and optimality properties of the Le Cam optimal test in the aforementioned asymptotic scenarios and show that the null robustness of this test is not obtained at the expense of power. Our asymptotic investigation is extensive in the sense that it allows $r_{n}$ to converge to zero at an arbitrary rate. While we restrict to single-spiked spectra of the form $lambda_{n1}>lambda_{n2}=cdots =lambda_{np}$ to make our results as striking as possible, we extend our results to the more general elliptical case. Finally, we present an illustrative real data example.




com

Spectral and matrix factorization methods for consistent community detection in multi-layer networks

Subhadeep Paul, Yuguo Chen.

Source: The Annals of Statistics, Volume 48, Number 1, 230--250.

Abstract:
We consider the problem of estimating a consensus community structure by combining information from multiple layers of a multi-layer network using methods based on the spectral clustering or a low-rank matrix factorization. As a general theme, these “intermediate fusion” methods involve obtaining a low column rank matrix by optimizing an objective function and then using the columns of the matrix for clustering. However, the theoretical properties of these methods remain largely unexplored. In the absence of statistical guarantees on the objective functions, it is difficult to determine if the algorithms optimizing the objectives will return good community structures. We investigate the consistency properties of the global optimizer of some of these objective functions under the multi-layer stochastic blockmodel. For this purpose, we derive several new asymptotic results showing consistency of the intermediate fusion techniques along with the spectral clustering of mean adjacency matrix under a high dimensional setup, where the number of nodes, the number of layers and the number of communities of the multi-layer graph grow. Our numerical study shows that the intermediate fusion techniques outperform late fusion methods, namely spectral clustering on aggregate spectral kernel and module allegiance matrix in sparse networks, while they outperform the spectral clustering of mean adjacency matrix in multi-layer networks that contain layers with both homophilic and heterophilic communities.




com

Optimal rates for community estimation in the weighted stochastic block model

Min Xu, Varun Jog, Po-Ling Loh.

Source: The Annals of Statistics, Volume 48, Number 1, 183--204.

Abstract:
Community identification in a network is an important problem in fields such as social science, neuroscience and genetics. Over the past decade, stochastic block models (SBMs) have emerged as a popular statistical framework for this problem. However, SBMs have an important limitation in that they are suited only for networks with unweighted edges; in various scientific applications, disregarding the edge weights may result in a loss of valuable information. We study a weighted generalization of the SBM, in which observations are collected in the form of a weighted adjacency matrix and the weight of each edge is generated independently from an unknown probability density determined by the community membership of its endpoints. We characterize the optimal rate of misclustering error of the weighted SBM in terms of the Renyi divergence of order 1/2 between the weight distributions of within-community and between-community edges, substantially generalizing existing results for unweighted SBMs. Furthermore, we present a computationally tractable algorithm based on discretization that achieves the optimal error rate. Our method is adaptive in the sense that the algorithm, without assuming knowledge of the weight densities, performs as well as the best algorithm that knows the weight densities.




com

Randomized incomplete $U$-statistics in high dimensions

Xiaohui Chen, Kengo Kato.

Source: The Annals of Statistics, Volume 47, Number 6, 3127--3156.

Abstract:
This paper studies inference for the mean vector of a high-dimensional $U$-statistic. In the era of big data, the dimension $d$ of the $U$-statistic and the sample size $n$ of the observations tend to be both large, and the computation of the $U$-statistic is prohibitively demanding. Data-dependent inferential procedures such as the empirical bootstrap for $U$-statistics is even more computationally expensive. To overcome such a computational bottleneck, incomplete $U$-statistics obtained by sampling fewer terms of the $U$-statistic are attractive alternatives. In this paper, we introduce randomized incomplete $U$-statistics with sparse weights whose computational cost can be made independent of the order of the $U$-statistic. We derive nonasymptotic Gaussian approximation error bounds for the randomized incomplete $U$-statistics in high dimensions, namely in cases where the dimension $d$ is possibly much larger than the sample size $n$, for both nondegenerate and degenerate kernels. In addition, we propose generic bootstrap methods for the incomplete $U$-statistics that are computationally much less demanding than existing bootstrap methods, and establish finite sample validity of the proposed bootstrap methods. Our methods are illustrated on the application to nonparametric testing for the pairwise independence of a high-dimensional random vector under weaker assumptions than those appearing in the literature.




com

Active ranking from pairwise comparisons and when parametric assumptions do not help

Reinhard Heckel, Nihar B. Shah, Kannan Ramchandran, Martin J. Wainwright.

Source: The Annals of Statistics, Volume 47, Number 6, 3099--3126.

Abstract:
We consider sequential or active ranking of a set of $n$ items based on noisy pairwise comparisons. Items are ranked according to the probability that a given item beats a randomly chosen item, and ranking refers to partitioning the items into sets of prespecified sizes according to their scores. This notion of ranking includes as special cases the identification of the top-$k$ items and the total ordering of the items. We first analyze a sequential ranking algorithm that counts the number of comparisons won, and uses these counts to decide whether to stop, or to compare another pair of items, chosen based on confidence intervals specified by the data collected up to that point. We prove that this algorithm succeeds in recovering the ranking using a number of comparisons that is optimal up to logarithmic factors. This guarantee does depend on whether or not the underlying pairwise probability matrix, satisfies a particular structural property, unlike a significant body of past work on pairwise ranking based on parametric models such as the Thurstone or Bradley–Terry–Luce models. It has been a long-standing open question as to whether or not imposing these parametric assumptions allows for improved ranking algorithms. For stochastic comparison models, in which the pairwise probabilities are bounded away from zero, our second contribution is to resolve this issue by proving a lower bound for parametric models. This shows, perhaps surprisingly, that these popular parametric modeling choices offer at most logarithmic gains for stochastic comparisons.




com

Eigenvalue distributions of variance components estimators in high-dimensional random effects models

Zhou Fan, Iain M. Johnstone.

Source: The Annals of Statistics, Volume 47, Number 5, 2855--2886.

Abstract:
We study the spectra of MANOVA estimators for variance component covariance matrices in multivariate random effects models. When the dimensionality of the observations is large and comparable to the number of realizations of each random effect, we show that the empirical spectra of such estimators are well approximated by deterministic laws. The Stieltjes transforms of these laws are characterized by systems of fixed-point equations, which are numerically solvable by a simple iterative procedure. Our proof uses operator-valued free probability theory, and we establish a general asymptotic freeness result for families of rectangular orthogonally invariant random matrices, which is of independent interest. Our work is motivated in part by the estimation of components of covariance between multiple phenotypic traits in quantitative genetics, and we specialize our results to common experimental designs that arise in this application.




com

Convergence complexity analysis of Albert and Chib’s algorithm for Bayesian probit regression

Qian Qin, James P. Hobert.

Source: The Annals of Statistics, Volume 47, Number 4, 2320--2347.

Abstract:
The use of MCMC algorithms in high dimensional Bayesian problems has become routine. This has spurred so-called convergence complexity analysis, the goal of which is to ascertain how the convergence rate of a Monte Carlo Markov chain scales with sample size, $n$, and/or number of covariates, $p$. This article provides a thorough convergence complexity analysis of Albert and Chib’s [ J. Amer. Statist. Assoc. 88 (1993) 669–679] data augmentation algorithm for the Bayesian probit regression model. The main tools used in this analysis are drift and minorization conditions. The usual pitfalls associated with this type of analysis are avoided by utilizing centered drift functions, which are minimized in high posterior probability regions, and by using a new technique to suppress high-dimensionality in the construction of minorization conditions. The main result is that the geometric convergence rate of the underlying Markov chain is bounded below 1 both as $n ightarrowinfty$ (with $p$ fixed), and as $p ightarrowinfty$ (with $n$ fixed). Furthermore, the first computable bounds on the total variation distance to stationarity are byproducts of the asymptotic analysis.




com

grid computing

Pooled computer resources. Grid computing, or simply grid, is the generic term given to techniques and technologies designed to make pools of distributed computer resources available on-demand. Grid computing was originally conceived by research scientists as a way of combining computers across a network to form a distributed supercomputer to tackle complex computations. In the commercial world, grid aims to maximize the utilization of an organization's computing resources by making them shareable across applications (sometimes called virtualization) and, potentially, provide computing on demand to third parties as a utility service. When used with specifications such as WSRF and WS-Notification, grid resources can appear as web services within a service-oriented architecture.




com

componentization

Breaking down into interchangeable pieces. For many years, software innovators have been trying to make software more like computer hardware, which is assembled from cheap, mass-produced components that connect together using standard interfaces. Component-based development (CBD) uses this approach to assemble software from reusable components within frameworks such as CORBA, Sun's Enterprise Java Beans (EJBs) and Microsoft COM. Today's service oriented architectures, based on web services, go a step further by encapsulating components in a standards-based service interface, which allows components to be reused outside their native framework. Componentization is not limited to software; through the use of subcontracting and outsourcing, it can also apply to business organizations and processes.




com

Bayesian mixed effects models for zero-inflated compositions in microbiome data analysis

Boyu Ren, Sergio Bacallado, Stefano Favaro, Tommi Vatanen, Curtis Huttenhower, Lorenzo Trippa.

Source: The Annals of Applied Statistics, Volume 14, Number 1, 494--517.

Abstract:
Detecting associations between microbial compositions and sample characteristics is one of the most important tasks in microbiome studies. Most of the existing methods apply univariate models to single microbial species separately, with adjustments for multiple hypothesis testing. We propose a Bayesian analysis for a generalized mixed effects linear model tailored to this application. The marginal prior on each microbial composition is a Dirichlet process, and dependence across compositions is induced through a linear combination of individual covariates, such as disease biomarkers or the subject’s age, and latent factors. The latent factors capture residual variability and their dimensionality is learned from the data in a fully Bayesian procedure. The proposed model is tested in data analyses and simulation studies with zero-inflated compositions. In these settings and within each sample, a large proportion of counts per microbial species are equal to zero. In our Bayesian model a priori the probability of compositions with absent microbial species is strictly positive. We propose an efficient algorithm to sample from the posterior and visualizations of model parameters which reveal associations between covariates and microbial compositions. We evaluate the proposed method in simulation studies, and then analyze a microbiome dataset for infants with type 1 diabetes which contains a large proportion of zeros in the sample-specific microbial compositions.




com

A comparison of principal component methods between multiple phenotype regression and multiple SNP regression in genetic association studies

Zhonghua Liu, Ian Barnett, Xihong Lin.

Source: The Annals of Applied Statistics, Volume 14, Number 1, 433--451.

Abstract:
Principal component analysis (PCA) is a popular method for dimension reduction in unsupervised multivariate analysis. However, existing ad hoc uses of PCA in both multivariate regression (multiple outcomes) and multiple regression (multiple predictors) lack theoretical justification. The differences in the statistical properties of PCAs in these two regression settings are not well understood. In this paper we provide theoretical results on the power of PCA in genetic association testings in both multiple phenotype and SNP-set settings. The multiple phenotype setting refers to the case when one is interested in studying the association between a single SNP and multiple phenotypes as outcomes. The SNP-set setting refers to the case when one is interested in studying the association between multiple SNPs in a SNP set and a single phenotype as the outcome. We demonstrate analytically that the properties of the PC-based analysis in these two regression settings are substantially different. We show that the lower order PCs, that is, PCs with large eigenvalues, are generally preferred and lead to a higher power in the SNP-set setting, while the higher-order PCs, that is, PCs with small eigenvalues, are generally preferred in the multiple phenotype setting. We also investigate the power of three other popular statistical methods, the Wald test, the variance component test and the minimum $p$-value test, in both multiple phenotype and SNP-set settings. We use theoretical power, simulation studies, and two real data analyses to validate our findings.




com

Regression for copula-linked compound distributions with applications in modeling aggregate insurance claims

Peng Shi, Zifeng Zhao.

Source: The Annals of Applied Statistics, Volume 14, Number 1, 357--380.

Abstract:
In actuarial research a task of particular interest and importance is to predict the loss cost for individual risks so that informative decisions are made in various insurance operations such as underwriting, ratemaking and capital management. The loss cost is typically viewed to follow a compound distribution where the summation of the severity variables is stopped by the frequency variable. A challenging issue in modeling such outcomes is to accommodate the potential dependence between the number of claims and the size of each individual claim. In this article we introduce a novel regression framework for compound distributions that uses a copula to accommodate the association between the frequency and the severity variables and, thus, allows for arbitrary dependence between the two components. We further show that the new model is very flexible and is easily modified to account for incomplete data due to censoring or truncation. The flexibility of the proposed model is illustrated using both simulated and real data sets. In the analysis of granular claims data from property insurance, we find substantive negative relationship between the number and the size of insurance claims. In addition, we demonstrate that ignoring the frequency-severity association could lead to biased decision-making in insurance operations.




com

TFisher: A powerful truncation and weighting procedure for combining $p$-values

Hong Zhang, Tiejun Tong, John Landers, Zheyang Wu.

Source: The Annals of Applied Statistics, Volume 14, Number 1, 178--201.

Abstract:
The $p$-value combination approach is an important statistical strategy for testing global hypotheses with broad applications in signal detection, meta-analysis, data integration, etc. In this paper we extend the classic Fisher’s combination method to a unified family of statistics, called TFisher, which allows a general truncation-and-weighting scheme of input $p$-values. TFisher can significantly improve statistical power over the Fisher and related truncation-only methods for detecting both rare and dense “signals.” To address wide applications, analytical calculations for TFisher’s size and power are deduced under any two continuous distributions in the null and the alternative hypotheses. The corresponding omnibus test (oTFisher) and its size calculation are also provided for data-adaptive analysis. We study the asymptotic optimal parameters of truncation and weighting based on Bahadur efficiency (BE). A new asymptotic measure, called the asymptotic power efficiency (APE), is also proposed for better reflecting the statistics’ performance in real data analysis. Interestingly, under the Gaussian mixture model in the signal detection problem, both BE and APE indicate that the soft-thresholding scheme is the best, the truncation and weighting parameters should be equal. By simulations of various signal patterns, we systematically compare the power of statistics within TFisher family as well as some rare-signal-optimal tests. We illustrate the use of TFisher in an exome-sequencing analysis for detecting novel genes of amyotrophic lateral sclerosis. Relevant computation has been implemented into an R package TFisher published on the Comprehensive R Archive Network to cater for applications.




com

SHOPPER: A probabilistic model of consumer choice with substitutes and complements

Francisco J. R. Ruiz, Susan Athey, David M. Blei.

Source: The Annals of Applied Statistics, Volume 14, Number 1, 1--27.

Abstract:
We develop SHOPPER, a sequential probabilistic model of shopping data. SHOPPER uses interpretable components to model the forces that drive how a customer chooses products; in particular, we designed SHOPPER to capture how items interact with other items. We develop an efficient posterior inference algorithm to estimate these forces from large-scale data, and we analyze a large dataset from a major chain grocery store. We are interested in answering counterfactual queries about changes in prices. We found that SHOPPER provides accurate predictions even under price interventions, and that it helps identify complementary and substitutable pairs of products.




com

Hierarchical infinite factor models for improving the prediction of surgical complications for geriatric patients

Elizabeth Lorenzi, Ricardo Henao, Katherine Heller.

Source: The Annals of Applied Statistics, Volume 13, Number 4, 2637--2661.

Abstract:
Nearly a third of all surgeries performed in the United States occur for patients over the age of 65; these older adults experience a higher rate of postoperative morbidity and mortality. To improve the care for these patients, we aim to identify and characterize high risk geriatric patients to send to a specialized perioperative clinic while leveraging the overall surgical population to improve learning. To this end, we develop a hierarchical infinite latent factor model (HIFM) to appropriately account for the covariance structure across subpopulations in data. We propose a novel Hierarchical Dirichlet Process shrinkage prior on the loadings matrix that flexibly captures the underlying structure of our data while sharing information across subpopulations to improve inference and prediction. The stick-breaking construction of the prior assumes an infinite number of factors and allows for each subpopulation to utilize different subsets of the factor space and select the number of factors needed to best explain the variation. We develop the model into a latent factor regression method that excels at prediction and inference of regression coefficients. Simulations validate this strong performance compared to baseline methods. We apply this work to the problem of predicting surgical complications using electronic health record data for geriatric patients and all surgical patients at Duke University Health System (DUHS). The motivating application demonstrates the improved predictive performance when using HIFM in both area under the ROC curve and area under the PR Curve while providing interpretable coefficients that may lead to actionable interventions.




com

On Bayesian new edge prediction and anomaly detection in computer networks

Silvia Metelli, Nicholas Heard.

Source: The Annals of Applied Statistics, Volume 13, Number 4, 2586--2610.

Abstract:
Monitoring computer network traffic for anomalous behaviour presents an important security challenge. Arrivals of new edges in a network graph represent connections between a client and server pair not previously observed, and in rare cases these might suggest the presence of intruders or malicious implants. We propose a Bayesian model and anomaly detection method for simultaneously characterising existing network structure and modelling likely new edge formation. The method is demonstrated on real computer network authentication data and successfully identifies some machines which are known to be compromised.




com

Predicting paleoclimate from compositional data using multivariate Gaussian process inverse prediction

John R. Tipton, Mevin B. Hooten, Connor Nolan, Robert K. Booth, Jason McLachlan.

Source: The Annals of Applied Statistics, Volume 13, Number 4, 2363--2388.

Abstract:
Multivariate compositional count data arise in many applications including ecology, microbiology, genetics and paleoclimate. A frequent question in the analysis of multivariate compositional count data is what underlying values of a covariate(s) give rise to the observed composition. Learning the relationship between covariates and the compositional count allows for inverse prediction of unobserved covariates given compositional count observations. Gaussian processes provide a flexible framework for modeling functional responses with respect to a covariate without assuming a functional form. Many scientific disciplines use Gaussian process approximations to improve prediction and make inference on latent processes and parameters. When prediction is desired on unobserved covariates given realizations of the response variable, this is called inverse prediction. Because inverse prediction is often mathematically and computationally challenging, predicting unobserved covariates often requires fitting models that are different from the hypothesized generative model. We present a novel computational framework that allows for efficient inverse prediction using a Gaussian process approximation to generative models. Our framework enables scientific learning about how the latent processes co-vary with respect to covariates while simultaneously providing predictions of missing covariates. The proposed framework is capable of efficiently exploring the high dimensional, multi-modal latent spaces that arise in the inverse problem. To demonstrate flexibility, we apply our method in a generalized linear model framework to predict latent climate states given multivariate count data. Based on cross-validation, our model has predictive skill competitive with current methods while simultaneously providing formal, statistical inference on the underlying community dynamics of the biological system previously not available.




com

A latent discrete Markov random field approach to identifying and classifying historical forest communities based on spatial multivariate tree species counts

Stephen Berg, Jun Zhu, Murray K. Clayton, Monika E. Shea, David J. Mladenoff.

Source: The Annals of Applied Statistics, Volume 13, Number 4, 2312--2340.

Abstract:
The Wisconsin Public Land Survey database describes historical forest composition at high spatial resolution and is of interest in ecological studies of forest composition in Wisconsin just prior to significant Euro-American settlement. For such studies it is useful to identify recurring subpopulations of tree species known as communities, but standard clustering approaches for subpopulation identification do not account for dependence between spatially nearby observations. Here, we develop and fit a latent discrete Markov random field model for the purpose of identifying and classifying historical forest communities based on spatially referenced multivariate tree species counts across Wisconsin. We show empirically for the actual dataset and through simulation that our latent Markov random field modeling approach improves prediction and parameter estimation performance. For model fitting we introduce a new stochastic approximation algorithm which enables computationally efficient estimation and classification of large amounts of spatial multivariate count data.




com

Microsimulation model calibration using incremental mixture approximate Bayesian computation

Carolyn M. Rutter, Jonathan Ozik, Maria DeYoreo, Nicholson Collier.

Source: The Annals of Applied Statistics, Volume 13, Number 4, 2189--2212.

Abstract:
Microsimulation models (MSMs) are used to inform policy by predicting population-level outcomes under different scenarios. MSMs simulate individual-level event histories that mark the disease process (such as the development of cancer) and the effect of policy actions (such as screening) on these events. MSMs often have many unknown parameters; calibration is the process of searching the parameter space to select parameters that result in accurate MSM prediction of a wide range of targets. We develop Incremental Mixture Approximate Bayesian Computation (IMABC) for MSM calibration which results in a simulated sample from the posterior distribution of model parameters given calibration targets. IMABC begins with a rejection-based ABC step, drawing a sample of points from the prior distribution of model parameters and accepting points that result in simulated targets that are near observed targets. Next, the sample is iteratively updated by drawing additional points from a mixture of multivariate normal distributions and accepting points that result in accurate predictions. Posterior estimates are obtained by weighting the final set of accepted points to account for the adaptive sampling scheme. We demonstrate IMABC by calibrating CRC-SPIN 2.0, an updated version of a MSM for colorectal cancer (CRC) that has been used to inform national CRC screening guidelines.




com

Sequential decision model for inference and prediction on nonuniform hypergraphs with application to knot matching from computational forestry

Seong-Hwan Jun, Samuel W. K. Wong, James V. Zidek, Alexandre Bouchard-Côté.

Source: The Annals of Applied Statistics, Volume 13, Number 3, 1678--1707.

Abstract:
In this paper, we consider the knot-matching problem arising in computational forestry. The knot-matching problem is an important problem that needs to be solved to advance the state of the art in automatic strength prediction of lumber. We show that this problem can be formulated as a quadripartite matching problem and develop a sequential decision model that admits efficient parameter estimation along with a sequential Monte Carlo sampler on graph matching that can be utilized for rapid sampling of graph matching. We demonstrate the effectiveness of our methods on 30 manually annotated boards and present findings from various simulation studies to provide further evidence supporting the efficacy of our methods.




com

Distributional regression forests for probabilistic precipitation forecasting in complex terrain

Lisa Schlosser, Torsten Hothorn, Reto Stauffer, Achim Zeileis.

Source: The Annals of Applied Statistics, Volume 13, Number 3, 1564--1589.

Abstract:
To obtain a probabilistic model for a dependent variable based on some set of explanatory variables, a distributional approach is often adopted where the parameters of the distribution are linked to regressors. In many classical models this only captures the location of the distribution but over the last decade there has been increasing interest in distributional regression approaches modeling all parameters including location, scale and shape. Notably, so-called nonhomogeneous Gaussian regression (NGR) models both mean and variance of a Gaussian response and is particularly popular in weather forecasting. Moreover, generalized additive models for location, scale and shape (GAMLSS) provide a framework where each distribution parameter is modeled separately capturing smooth linear or nonlinear effects. However, when variable selection is required and/or there are nonsmooth dependencies or interactions (especially unknown or of high-order), it is challenging to establish a good GAMLSS. A natural alternative in these situations would be the application of regression trees or random forests but, so far, no general distributional framework is available for these. Therefore, a framework for distributional regression trees and forests is proposed that blends regression trees and random forests with classical distributions from the GAMLSS framework as well as their censored or truncated counterparts. To illustrate these novel approaches in practice, they are employed to obtain probabilistic precipitation forecasts at numerous sites in a mountainous region (Tyrol, Austria) based on a large number of numerical weather prediction quantities. It is shown that the novel distributional regression forests automatically select variables and interactions, performing on par or often even better than GAMLSS specified either through prior meteorological knowledge or a computationally more demanding boosting approach.




com

Frequency domain theory for functional time series: Variance decomposition and an invariance principle

Piotr Kokoszka, Neda Mohammadi Jouzdani.

Source: Bernoulli, Volume 26, Number 3, 2383--2399.

Abstract:
This paper is concerned with frequency domain theory for functional time series, which are temporally dependent sequences of functions in a Hilbert space. We consider a variance decomposition, which is more suitable for such a data structure than the variance decomposition based on the Karhunen–Loéve expansion. The decomposition we study uses eigenvalues of spectral density operators, which are functional analogs of the spectral density of a stationary scalar time series. We propose estimators of the variance components and derive convergence rates for their mean square error as well as their asymptotic normality. The latter is derived from a frequency domain invariance principle for the estimators of the spectral density operators. This principle is established for a broad class of linear time series models. It is a main contribution of the paper.




com

Noncommutative Lebesgue decomposition and contiguity with applications in quantum statistics

Akio Fujiwara, Koichi Yamagata.

Source: Bernoulli, Volume 26, Number 3, 2105--2142.

Abstract:
We herein develop a theory of contiguity in the quantum domain based upon a novel quantum analogue of the Lebesgue decomposition. The theory thus formulated is pertinent to the weak quantum local asymptotic normality introduced in the previous paper [Yamagata, Fujiwara, and Gill, Ann. Statist. 41 (2013) 2197–2217], yielding substantial enlargement of the scope of quantum statistics.




com

Estimating the number of connected components in a graph via subgraph sampling

Jason M. Klusowski, Yihong Wu.

Source: Bernoulli, Volume 26, Number 3, 1635--1664.

Abstract:
Learning properties of large graphs from samples has been an important problem in statistical network analysis since the early work of Goodman ( Ann. Math. Stat. 20 (1949) 572–579) and Frank ( Scand. J. Stat. 5 (1978) 177–188). We revisit a problem formulated by Frank ( Scand. J. Stat. 5 (1978) 177–188) of estimating the number of connected components in a large graph based on the subgraph sampling model, in which we randomly sample a subset of the vertices and observe the induced subgraph. The key question is whether accurate estimation is achievable in the sublinear regime where only a vanishing fraction of the vertices are sampled. We show that it is impossible if the parent graph is allowed to contain high-degree vertices or long induced cycles. For the class of chordal graphs, where induced cycles of length four or above are forbidden, we characterize the optimal sample complexity within constant factors and construct linear-time estimators that provably achieve these bounds. This significantly expands the scope of previous results which have focused on unbiased estimators and special classes of graphs such as forests or cliques. Both the construction and the analysis of the proposed methodology rely on combinatorial properties of chordal graphs and identities of induced subgraph counts. They, in turn, also play a key role in proving minimax lower bounds based on construction of random instances of graphs with matching structures of small subgraphs.




com

Strictly weak consensus in the uniform compass model on $mathbb{Z}$

Nina Gantert, Markus Heydenreich, Timo Hirscher.

Source: Bernoulli, Volume 26, Number 2, 1269--1293.

Abstract:
We investigate a model for opinion dynamics, where individuals (modeled by vertices of a graph) hold certain abstract opinions. As time progresses, neighboring individuals interact with each other, and this interaction results in a realignment of opinions closer towards each other. This mechanism triggers formation of consensus among the individuals. Our main focus is on strong consensus (i.e., global agreement of all individuals) versus weak consensus (i.e., local agreement among neighbors). By extending a known model to a more general opinion space, which lacks a “central” opinion acting as a contraction point, we provide an example of an opinion formation process on the one-dimensional lattice $mathbb{Z}$ with weak consensus but no strong consensus.




com

A new method for obtaining sharp compound Poisson approximation error estimates for sums of locally dependent random variables

Michael V. Boutsikas, Eutichia Vaggelatou

Source: Bernoulli, Volume 16, Number 2, 301--330.

Abstract:
Let X 1 , X 2 , …, X n be a sequence of independent or locally dependent random variables taking values in ℤ + . In this paper, we derive sharp bounds, via a new probabilistic method, for the total variation distance between the distribution of the sum ∑ i =1 n X i and an appropriate Poisson or compound Poisson distribution. These bounds include a factor which depends on the smoothness of the approximating Poisson or compound Poisson distribution. This “smoothness factor” is of order O( σ −2 ), according to a heuristic argument, where σ 2 denotes the variance of the approximating distribution. In this way, we offer sharp error estimates for a large range of values of the parameters. Finally, specific examples concerning appearances of rare runs in sequences of Bernoulli trials are presented by way of illustration.




com

The Thomson family : fisherman in Buckhaven, retailers in Kapunda / compiled by Elizabeth Anne Howell.

Thomson (Family)




com

The Kuerschner story : 1848 - 1999 / compiled by Gerald Kuerschner.

Kuerschner (Family)




com

From Wends we came : the story of Johann and Maria Huppatz & their descendants / compiled by Frank Huppatz and Rone McDonnell.

Huppatz (Family).




com

How States, Assessment Companies Can Work Together Amid Coronavirus Testing Cancellations

Scott Marion, who consults states on testing, talks about why it's important for vendors and public officials to work cooperatively in renegotiating contracts amid assessment cancellations caused by COVID-19.

The post How States, Assessment Companies Can Work Together Amid Coronavirus Testing Cancellations appeared first on Market Brief.




com

Pearson K12 Spinoff Rebranded as ‘Savvas Learning Company’

Savvas Learning Company will continue to provide its K-12 products and services, and is working to support districts with their remote learning needs during school closures.

The post Pearson K12 Spinoff Rebranded as ‘Savvas Learning Company’ appeared first on Market Brief.




com

Item 07: A Journal of ye [the] Proceedings of his Majesty's Sloop Swallow, Captain Phillip [Philip] Carteret Commander, Commencing ye [the] 23 of July 1766 and ended [4 July 1767]




com

Item 08: A Logg [Log] Book of the proceedings on Board His Majesty's Ship Swallow, Captain Philip Carteret Commander Commencing from the 20th August 1766 and Ending [21st May 1768]




com

Item 13: Swallow 1767, A journal of the proceedings on Board His Majesty's Sloop Swallow, commencing the 1st of March 1767 and Ended the 7th of July 1767