ter

Characterization of the soft X-ray spectrometer PEAXIS at BESSY II

The performance of the recently commissioned spectrometer PEAXIS for resonant inelastic soft X-ray scattering (RIXS) and X-ray photoelectron spectroscopy and its hosting beamline U41-PEAXIS at the BESSY II synchrotron are characterized. The beamline provides linearly polarized light from 180 eV to 1600 eV allowing for RIXS measurements in the range 200–1200 eV. The monochromator optics can be operated in different configurations to provide either high flux with up to 1012 photons s−1 within the focal spot at the sample or high energy resolution with a full width at half maximum of <40 meV at an incident photon energy of ∼400 eV. The measured total energy resolution of the RIXS spectrometer is in very good agreement with theoretically predicted values obtained by ray-tracing simulations. PEAXIS features a 5 m-long RIXS spectrometer arm that can be continuously rotated about the sample position by 106° within the horizontal photon scattering plane, thus enabling the study of momentum-transfer-dependent excitations. Selected scientific examples are presented to demonstrate the instrument capabilities, including measurements of excitations in single-crystalline NiO and in liquid acetone employing a fluid cell sample manipulator. Planned upgrades of the beamline and the RIXS spectrometer to further increase the energy resolution to ∼100 meV at 1000 eV incident photon energy are discussed.




ter

White beam diagnostics using X-ray back-scattering from a CVD diamond vacuum window

Collecting back-scattered X-rays from vacuum windows using a pinhole X-ray camera provides an efficient and reliable method of measuring the beam shape and position of the white synchrotron beam. In this paper, measurements are presented that were conducted at ESRF beamline ID6 which uses an in-vacuum cryogenically cooled permanent-magnet undulator (CPMU18) and a traditional U32 undulator as its radiation sources, allowing tests to be performed at very high power density levels that were adjusted by changing the gap of the undulators. These measurements show that it is possible to record beam shape and beam position using a simple geometry without having to place any further items in the beam path. With this simple test setup it was possible to record the beam position with a root-mean-square noise figure of 150 nm.




ter

Picosecond pump–probe X-ray scattering at the Elettra SAXS beamline

A new setup for picosecond pump–probe X-ray scattering at the Austrian SAXS beamline at Elettra-Sincrotrone Trieste is presented. A high-power/high-repetion-rate laser has been installed on-site, delivering UV/VIS/IR femto­second-pulses in-sync with the storage ring. Data acquisition is achieved by gating a multi-panel detector, capable of discriminating the single X-ray pulse in the dark-gap of the Elettra hybrid filling mode. Specific aspects of laser- and detection-synchronization, on-line beam steering as well protocols for spatial and temporal overlap of laser and X-ray beam are also described. The capabilities of the setup are demonstrated by studying transient heat-transfer in an In/Al/GaAs superlattice structure and results are confirmed by theoretical calculations.




ter

A semi-analytical approach for the characterization of ordered 3D nanostructures using grazing-incidence X-ray fluorescence

Following the recent demonstration of grazing-incidence X-ray fluorescence (GIXRF)-based characterization of the 3D atomic distribution of different elements and dimensional parameters of periodic nanoscale structures, this work presents a new computational scheme for the simulation of the angular-dependent fluorescence intensities from such periodic 2D and 3D nanoscale structures. The computational scheme is based on the dynamical diffraction theory in many-beam approximation, which allows a semi-analytical solution to the Sherman equation to be derived in a linear-algebraic form. The computational scheme has been used to analyze recently published GIXRF data measured on 2D Si3N4 lamellar gratings, as well as on periodically structured 3D Cr nanopillars. Both the dimensional and structural parameters of these nanostructures have been reconstructed by fitting numerical simulations to the experimental GIXRF data. Obtained results show good agreement with nominal parameters used in the manufacturing of the structures, as well as with reconstructed parameters based on the previously published finite-element-method simulations, in the case of the Si3N4 grating.




ter

IRIXS: a resonant inelastic X-ray scattering instrument dedicated to X-rays in the intermediate energy range

A new resonant inelastic X-ray scattering (RIXS) instrument has been constructed at beamline P01 of the PETRA III synchrotron. This instrument has been named IRIXS (intermediate X-ray energy RIXS) and is dedicated to X-rays in the tender-energy regime (2.5–3.5 keV). The range covers the L2,3 absorption edges of many of the 4d elements (Mo, Tc, Ru, Rh, Pd and Ag), offering a unique opportunity to study their low-energy magnetic and charge excitations. The IRIXS instrument is currently operating at the Ru L3-edge (2840 eV) but can be extended to the other 4d elements using the existing concept. The incoming photons are monochromated with a four-bounce Si(111) monochromator, while the energy analysis of the outgoing photons is performed by a diced spherical crystal analyzer featuring (102) lattice planes of quartz (SiO2). A total resolution of 100 meV (full width at half-maximum) has been achieved at the Ru L3-edge, a number that is in excellent agreement with ray-tracing simulations.




ter

Beyond simple small-angle X-ray scattering: developments in online complementary techniques and sample environments

Possibilities in auxiliary technique combinations with small- and wide-angle X ray scattering are described, as well as more complicated sample environments used in X-ray and neutron scattering.




ter

Diffuse scattering and partial disorder in complex structures

This review discusses the state of the field of single-crystal diffuse scattering (SCDS), including detectors, data collection and the modelling techniques. High quality, three-dimensional volumes of SCDS data can now be collected at synchrotron light sources, allowing increasingly detailed and quantitative analyses to be undertaken.




ter

Nanocrystalline materials: recent advances in crystallographic characterization techniques

This feature article reviews the control and understanding of nanoparticle shape from their crystallography and growth. Particular emphasis is placed on systems relevant for plasmonics and catalysis.




ter

Investigating increasingly complex macromolecular systems with small-angle X-ray scattering

A review of recent and ongoing development and results within the field of biological solution small-angle X-ray scattering (BioSAXS), with a focus on the increasing complexity of biological samples, data collection and data evaluation strategies.




ter

Binding site asymmetry in human transthyretin: insights from a joint neutron and X-ray crystallographic analysis using perdeuterated protein

A neutron crystallographic study of perdeuterated transthyretin reveals important aspects of the structure relating to its stability and its propensity to form fibrils, as well as evidence of a single water molecule that affects the symmetry of the two binding pockets.
















ter

Crystal structure of gluconate 5-dehydrogenase from Lentibacter algarum

Gluconate 5-dehydrogenase (Ga5DH; EC 1.1.1.69) from Lentibacter algarum (LaGa5DH) was recombinantly expressed in Escherichia coli and purified to homogeneity. The protein was crystallized and the crystal structure was solved at 2.1 Å resolution. The crystal belonged to the monoclinic system, with space group P1 and unit-cell parameters a = 55.42, b = 55.48, c = 79.16 Å, α = 100.51, β = 105.66, γ = 97.99°. The structure revealed LaGaDH to be a tetramer, with each subunit consisting of six α-helices and three antiparallel β-hairpins. LaGa5DH has high structural similarity to other Ga5DH proteins, demonstrating that this enzyme is highly conserved.




ter

Characterization of the Pseudomonas aeruginosa T6SS PldB immunity proteins PA5086, PA5087 and PA5088 explains a novel stockpiling mechanism

The bacterial type VI secretion system (T6SS) secretes many toxic effectors to gain advantage in interbacterial competition and for eukaryotic host infection. The cognate immunity proteins of these effectors protect bacteria from their own effectors. PldB is a T6SS trans-kingdom effector in Pseudomonas aeruginosa that can infect both prokaryotic and eukaryotic cells. Three proteins, PA5086, PA5087 and PA5088, are employed to suppress the toxicity of PldB-family proteins. The structures of PA5087 and PA5088 have previously been reported, but the identification of further distinctions between these immunity proteins is needed. Here, the crystal structure of PA5086 is reported at 1.90 Å resolution. A structural comparison of the three PldB immunity proteins showed vast divergences in their electrostatic potential surfaces. This interesting phenomenon provides an explanation of the stockpiling mechanism of T6SS immunity proteins.




ter

Structure-based screening of binding affinities via small-angle X-ray scattering

Protein–protein and protein–ligand interactions often involve conformational changes or structural rearrangements that can be quantified by solution small-angle X-ray scattering (SAXS). These scattering intensity measurements reveal structural details of the bound complex, the number of species involved and, additionally, the strength of interactions if carried out as a titration. Although a core part of structural biology workflows, SAXS-based titrations are not commonly used in drug discovery contexts. This is because prior knowledge of expected sample requirements, throughput and prediction accuracy is needed to develop reliable ligand screens. This study presents the use of the histidine-binding protein (26 kDa) and other periplasmic binding proteins to benchmark ligand screen performance. Sample concentrations and exposure times were varied across multiple screening trials at four beamlines to investigate the accuracy and precision of affinity prediction. The volatility ratio between titrated scattering curves and a common apo reference is found to most reliably capture the extent of structural and population changes. This obviates the need to explicitly model scattering intensities of bound complexes, which can be strongly ligand-dependent. Where the dissociation constant is within 102 of the protein concentration and the total exposure times exceed 20 s, the titration protocol presented at 0.5 mg ml−1 yields affinities comparable to isothermal titration calorimetry measurements. Estimated throughput ranges between 20 and 100 ligand titrations per day at current synchrotron beamlines, with the limiting step imposed by sample handling and cleaning procedures.




ter

Structure of P46, an immunodominant surface protein from Mycoplasma hyopneumoniae: interaction with a monoclonal antibody

Structures of the immunodominant protein P46 from M. hyopneumoniae has been determined by X-ray crystallography and it is shown that P46 can bind a diversity of oligosaccharides, particularly xylose, which exhibits a very high affinity for this protein. Structures of a monoclonal antibody, both alone and in complex with P46, that was raised against M. hyopnemoniae cells and specifically recognizes P46 are also reported.




ter

Structural and thermodynamic analysis of interactions between death-associated protein kinase 1 and anthraquinones

Death-associated protein kinase 1 (DAPK1) was found to form a complex with purpurin and the crystal structure of the complex was determined. Purpurin may be a good lead compound for for the discovery of inhibitors of DAPK1.




ter

Structure of ClpC1-NTD in complex with the anti-TB natural product ecumicin reveals unique binding interactions

Comparison of the structures of ClpC1-Ecumicin and ClpC1-Rufomycin reveals unique interaction relevant to the mode of action.




ter

Redetermination of the crystal structure of BaTeO3(H2O), including the localization of the hydrogen atoms

The redetermination of the crystal structure of barium oxidotellurate(IV) monohydrate allowed the localization of the hydrogen atoms that were not determined in the previous study [Nielsen, Hazell & Rasmussen (1971). Acta Chem. Scand. 25, 3037–3042], thus making an unambiguous assignment of the hydrogen-bonding scheme possible. The crystal structure shows a layered arrangement parallel to (001), consisting of edge-sharing [BaO6(H2O)] polyhedra and flanked by isolated [TeO3] trigonal pyramids on the top and bottom. O—H⋯O hydrogen bonds of medium strength link adjacent layers along [001].




ter

6-Methyl­uracil: a redetermination of polymorph (II)

6-Methyluracil, C5H6N2O2, exists in two crystalline phases: form (I), monoclinic, space group P21/c [Reck et al. (1988). Acta Cryst. A44, 417–421] and form (II), monoclinic, space group C2/c [Leonidov et al. (1993). Russ. J. Phys. Chem. 67, 2220–2223]. The structure of polymorph (II) has been redetermined providing a significant increase in the precision of the derived geometric parameters. In the crystal, mol­ecules form ribbons approximately running parallel to the c-axis direction through N—H⋯O hydrogen bonds. The radical differences observed between the crystal packing of the two polymorphs may be responsible in form (II) for an increase in the contribution of the polar canonical forms C—(O−)=N—H+ relative to the neutral canonical form C(=O)—N—H induced by hydrogen-bonding inter­actions.




ter

(Pyridine-2,6-di­carboxyl­ato-κ3O,N,O')(2,2':6',2''- terpyridine-κ3N,N',N'')nickel(II) di­methyl­formamide monosolvate monohydrate

In the title complex, [Ni(C7H3NO4)(C15H11N3)]·C3H7NO·H2O, the NiII ion is six-coordinated within an octa­hedral geometry defined by three N atoms of the 2,2':6',2''-terpyridine ligand, and two O atoms and the N atom of the pyridine-2,6-di­carboxyl­ate di-anion. In the crystal, the complex mol­ecules are stacked in columns parallel to the a axis being connected by π–π stacking [closest inter-centroid separation between pyridyl rings = 3.669 (3) Å]. The connections between columns and solvent mol­ecules to sustain a three-dimensional architecture are of the type water-O—H⋯O(carbon­yl) and pyridyl-, methyl-C—H⋯O(carbon­yl).




ter

N-(tert-But­yl)-2-(2-nitro­phen­yl)imidazo[1,2-a]pyridin-3-amine

In the title compound, C17H18N4O2, the dihedral angle between the pyridine and benzene rings is 55.68 (11)°. In the crystal, N—H⋯N hydrogen bonds link the mol­ecules into [010] chains.




ter

Rubidium tetra­fluorido­bromate(III): redetermination of the crystal structure from single-crystal X-ray diffraction data

Single crystals of rubidium tetra­fluorido­bromate(III), RbBrF4, were grown by melting and recrystallizing RbBrF4 from its melt. This is the first determination of the crystal structure of RbBrF4 using single-crystal X-ray diffraction data. We confirmed that the structure contains square-planar [BrF4]− anions and rubidium cations that are coordinated by F atoms in a square-anti­prismatic manner. The compound crystallizes in the KBrF4 structure type. Atomic coordinates and bond lengths and angles were determined with higher precision than in a previous report based on powder X-ray diffraction data [Ivlev et al. (2015). Z. Anorg. Allg. Chem. 641, 2593–2598].




ter

6,6'-[(3,3'-Di-tert-butyl-5,5'-dimeth­oxy-1,1'-biphenyl-2,2'-di­yl)bis(oxy)]bis­(dibenzo[d,f][1,3,2]dioxaphosphepine) benzene monosolvate

The crystal structure of the benzene monosolvate of the well known organic diphosphite ligand BIPHEPHOS, C46H44O8P2·C6H6, is reported for the first time. Single crystals of BIPHEPHOS were obtained from a benzene solution after layering with n-heptane at room temperature. One specific property of this type of diphosphite structure is the twisting of the biphenyl units. In the crystal, C—H⋯π contacts and π–π stacking inter­actions [centroid-to-centroid distance = 3.8941 (15) Å] are observed.




ter

2-[4,5-Bis(4-bromo­phen­yl)-1-(4-tert-but­ylphen­yl)-1H-imidazol-2-yl]-4,6-di­chloro­phenol

In the title compound, C31H24Br2Cl2N2O, the dihedral angles subtended by the tert-butyl-phenyl, 4,6-di­chloro­phenol and 4-bromo­phenyl (×2) rings are 70.7 (3), 8.1 (3), 28.1 (3) and 84.2 (3)°, respectively. The orientations of the pendant rings may be related to intra­molecular O—H⋯N and C—H⋯π inter­actions. One of the tert-butyl methyl groups is disordered over two sets of sites in a 0.54 (3):0.46 (3) ratio. In the crystal, a weak C—H⋯π inter­action generates inversion dimers.




ter

Redetermination of the crystal structure of caesium tetra­fluorido­bromate(III) from single-crystal X-ray diffraction data

Caesium tetra­fluorido­bromate(III), CsBrF4, was crystallized in form of small blocks by melting and recrystallization. The crystal structure of CsBrF4 was redetermined from single-crystal X-ray diffraction data. In comparison with a previous study based on powder X-ray diffraction data [Ivlev et al. (2013). Z. Anorg. Allg. Chem. 639, 2846–2850], bond lengths and angles were determined with higher precision, and all atoms were refined with anisotropic displacement parameters. It was confirmed that the structure of CsBrF4 contains two square-planar [BrF4]− anions each with point group symmetry mmm, and a caesium cation (site symmetry mm2) that is coordinated by twelve fluorine atoms, forming an anti­cubocta­hedron. CsBrF4 is isotypic with CsAuF4.




ter

6-[(tert-Butyl­dimethyl­sil­yl)­oxy]-3-ethenyl-7-meth­oxy-4-[(tri­methyl­sil­yl)ethyn­yl]naphtho­[2,3-c]furan-1(3H)-one

The tricyclic core in the title compound, C26H34O4Si2, shows disorder of the furan ring and deviates slightly from planarity, with the largest displacement from the least-squares plane [0.166 (2) Å] for the major disordered part of the methine C atom. To this C atom the likewise disordered vinyl group is attached, lying nearly perpendicular to the tricyclic core. In the crystal, mutual C—H⋯π inter­actions between the methine group of the furan ring and the central ring of the tricyclic core of an adjacent mol­ecule lead to inversion-related dimers.




ter

Crystal structure of the Al8Cr5-type inter­metallic Al7.85Cr5.16

An aluminium-deficient Al8Cr5-type inter­metallic with formula Al7.85Cr5.16 (octa­aluminium penta­chromium) was uncovered when high-pressure sinter­ing of a mixture with composition Al11Cr4 was carried out. Structure analysis reveals that there are three co-occupied positions with refined occupancy factors for Al atoms being 0.958, 0.772 and 1/2. The present phase is confirmed to be isotypic with the previously reported rhombohedral Al8Cr5 ordered phase [Bradley & Lu (1937). Z. Kristallogr. 96, 20–37] and structurally closely related to the disordered phases of rhombohedral Al16Cr9.5 and cubic Al8Cr5.




ter

Tris­(4,4'-di-tert-butyl-2,2'-bi­pyridine)(trans-4-tert-butyl­cyclo­hexa­nolato)­deca-μ-oxido-hepta­oxido­hepta­vanadium aceto­nitrile monosolvate including another unknown solvent mol­ecule

The title hepta­nuclear alkoxido(oxido)vanadium(V) oxide cluster complex, [V7(C10H19O)O17(C18H24N2)3]·CH3CN, was obtained by the reaction of [V8O20(C18H24N2)4] with 4-tert-butyl­cyclo­hexa­nol (mixture of cis and trans) in a mixed CHCl3/CH3CN solvent. The complex has a V7O18N6 core with approximately Cs symmetry, which is composed of two VO4 tetra­hedra, two VO6 octa­hedra and three VO4N2 octa­hedra. In the crystal, these complexes are linked together by weak inter­molecular C—H⋯O hydrogen bonds between the 4,4'-di-tert-butyl-2,2'-bi­pyridine ligand and the V7O18N6 core, forming a one-dimensional network along the c-axis direction. Besides the complex, the asymmetric unit contains one CH3CN solvent mol­ecule. The contribution of other disordered solvent mol­ecules to the scattering was removed using the SQUEEZE option in PLATON [Spek (2015). Acta Cryst. C71, 9–18]. The unknown solvent mol­ecules are not considered in the chemical formula and other crystal data.




ter

Redetermination of di­ammonium trivanadate, (NH4)2V3O8

The crystal structure of (NH4)2V3O8 has been reported twice using single-crystal X-ray data [Theobald et al. (1984). J. Phys. Chem. Solids, 45, 581–587; Range et al. (1988). Z. Naturforsch. Teil B, 43, 309–317]. In both cases, the orientation of the ammonium cation in the asymmetric unit was poorly defined: in Theobald's study, the shape and dimensions were constrained for NH4+, while in Range's study, H atoms were not included. In the present study, we collected a highly redundant data set for this ternary oxide, at 0.61 Å resolution, using Ag Kα radiation. These accurate data reveal that the NH4+ cation is disordered by rotation around a non-crystallographic axis. The rotation axis coincides with one N—H bond lying in the mirror m symmetry element of space-group type P4bm, and the remaining H sites were modelled over two disordered positions, with equal occupancy. It therefore follows that the NH4+ cations filling the space available in the (001) layered structure formed by (V3O8)2– ions do not form strong N—H⋯O hydrogen bonds with the mixed-valent oxidovanadate(IV,V) anions. This feature could have consequences for the Li-ion inter­calation properties of this material, which is used as a cathode for supercapacitors.




ter

Crystal structure of zymonic acid and a redetermination of its precursor, pyruvic acid

The structure of zymonic acid (systematic name: 4-hy­droxy-2-methyl-5-oxo-2,5-di­hydro­furan-2-carb­oxy­lic acid), C6H6O5, which had previously eluded crystallographic determination, is presented here for the first time. It forms by intra­molecular condensation of parapyruvic acid, which is the product of aldol condensation of pyruvic acid. A redetermination of the crystal structure of pyruvic acid (systematic name: 2-oxo­propanoic acid), C3H4O3, at low temperature (90 K) and with increased precision, is also presented [for the previous structure, see: Harata et al. (1977). Acta Cryst. B33, 210–212]. In zymonic acid, the hy­droxy­lactone ring is close to planar (r.m.s. deviation = 0.0108 Å) and the dihedral angle between the ring and the plane formed by the bonds of the methyl and carb­oxy­lic acid carbon atoms to the ring is 88.68 (7)°. The torsion angle of the carb­oxy­lic acid group relative to the ring is 12.04 (16)°. The pyruvic acid mol­ecule is almost planar, having a dihedral angle between the carb­oxy­lic acid and methyl-ketone groups of 3.95 (6)°. Inter­molecular inter­actions in both crystal structures are dominated by hydrogen bonding. The common R22(8) hydrogen-bonding motif links carb­oxy­lic acid groups on adjacent mol­ecules in both structures. In zymonic acid, this results in dimers about a crystallographic twofold of space group C2/c, which forces the carb­oxy­lic acid group to be disordered exactly 50:50, which scrambles the carbonyl and hydroxyl groups and gives an apparent equalization of the C—O bond lengths [1.2568 (16) and 1.2602 (16) Å]. The other hydrogen bonds in zymonic acid (O—H⋯O and weak C—H⋯O), link mol­ecules across a 21-screw axis, and generate an R22(9) motif. These hydrogen-bonding inter­actions propagate to form extended pleated sheets in the ab plane. Stacking of these zigzag sheets along c involves only van der Waals contacts. In pyruvic acid, inversion-related mol­ecules are linked into R22(8) dimers, with van der Waals inter­actions between dimers as the only other inter­molecular contacts.




ter

Bis(4-acet­oxy-N,N-di­methyl­tryptammonium) fumarate: a new crystalline form of psilacetin, an alternative to psilocybin as a psilocin prodrug

The title compound (systematic name: bis­{2-[4-(acet­yloxy)-1H-indol-3-yl]ethan-1-aminium} but-2-enedioate), 2C14H19N2O2+·C4H2O42−, has a single protonated psilacetin cation and one half of a fumarate dianion in the asymmetric unit. There are N—H⋯O hydrogen bonds between the ammonium H atoms and the fumarate O atoms, as well as N—H⋯O hydrogen bonds between the indole H atoms and the fumarate O atoms. The hydrogen bonds hold the ions together in infinite one-dimensional chains along [111].




ter

Crystal structure of 5-(4-tert-but­oxy­phen­yl)-3-(4-n-octyloxyphen­yl)-4,5-di­hydro­isoxazole

The mol­ecule of the title compound, C27H37NO3, was prepared by [3 + 2] 1,3-dipolar cyclo­addition of 4-n-octyl­phenyl­nitrile oxide and 4-tert-but­oxy­styrene, the latter compound being a very useful inter­mediate to the synthesis of liquid-crystalline materials. In the mol­ecule, the benzene rings of the n-octyloxyphenyl and tert-but­oxy­phenyl groups form dihedral angles of 2.83 (7) and 85.49 (3)°, respectively, with the mean plane of the isoxazoline ring. In the crystal, mol­ecules are linked by weak C—H⋯O hydrogen inter­actions into chains running parallel to the b axis.




ter

Zn and Ni complexes of pyridine-2,6-di­carboxyl­ates: crystal field stabilization matters!

Six reaction products of ZnII and NiII with pyridine-2,6-di­carb­oxy­lic acid (H2Lig1), 4-chloro­pyridine-2,6-di­carb­oxy­lic acid (H2Lig2) and 4-hy­droxy­pyridine-2,6-di­carb­oxy­lic acid (H2Lig3) are used to pinpoint the structural consequences of crystal field stabilization by an incomplete d shell. The pseudo-octa­hedral ZnII coordination sphere in bis­(6-carb­oxy­picolinato)zinc(II) trihydrate, [Zn(C7H4NO4)2]·3H2O or [Zn(HLig1)2]·3H2O, (1), is significantly less regular than that about NiII in the isostructural compound bis­(6-carb­oxy­picolinato)nickel(II) trihydrate, [Ni(C7H4NO4)2]·3H2O or [Ni(HLig1)2]·3H2O, (2). The ZnII complexes poly[(4-chloro­pyridine-2,6-di­carboxyl­ato)zinc(II)], [Zn(C7H2ClNO4)]n or [Zn(Lig2)]n, (3), and poly[[(4-hy­droxy­pyridine-2,6-di­carboxyl­ato)zinc(II)] monohydrate], {[Zn(C7H3NO5)]·H2O}n or {[Zn(Lig3)]·H2O}n, (4), represent two-dimensional coordination polymers with chelating and bridging pyridine-2,6-di­carboxyl­ate ligands in which the coordination polyhedra about the central cations cannot be associated with any regular shape; their coordination environments range between trigonal–bipyramidal and square-pyramidal geometries. In contrast, the corresponding adducts of the diprotonated ligands to NiII, namely tri­aqua­(4-chloro­pyridine-2,6-di­carboxyl­ato)nickel(II), [Ni(C7H2ClNO4)(H2O)3] or [NiLig2(OH2)3)], (5), and tri­aqua­(4-hy­droxy­pyridine-2,6-di­carboxyl­ato)nickel(II) 1.7-hydrate, [Ni(C7H3NO5)(H2O)3]·1.7H2O or [NiLig3(OH2)3)]·1.7H2O, (6), feature rather regular octa­hedral coordination spheres about the transition-metal cations, thus precluding the formation of analogous extended structures.




ter

Crystal structure, Hirshfeld surface analysis and inter­action energy and DFT studies of 5,5-diphenyl-1,3-bis­(prop-2-yn-1-yl)imidazolidine-2,4-dione

The title compound, C21H16N2O2, consists of an imidazolidine unit linked to two phenyl rings and two prop-2-yn-1-yl moieties. The imidazolidine ring is oriented at dihedral angles of 79.10 (5) and 82.61 (5)° with respect to the phenyl rings, while the dihedral angle between the two phenyl rings is 62.06 (5)°. In the crystal, inter­molecular C—HProp⋯OImdzln (Prop = prop-2-yn-1-yl and Imdzln = imidazolidine) hydrogen bonds link the mol­ecules into infinite chains along the b-axis direction. Two weak C—HPhen⋯π inter­actions are also observed. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (43.3%), H⋯C/C⋯H (37.8%) and H⋯O/O⋯H (18.0%) inter­actions. Hydrogen bonding and van der Waals inter­actions are the dominant inter­actions in the crystal packing. Computational chemistry indicates that the C—HProp⋯OImdzln hydrogen-bond energy in the crystal is −40.7 kJ mol−1. Density functional theory (DFT) optimized structures at the B3LYP/6–311G(d,p) level are compared with the experimentally determined mol­ecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap.




ter

Synthesis, characterization, and crystal structure of aqua­bis­(4,4'-dimeth­oxy-2,2'-bi­pyridine)[μ-(2R,3R)-tartrato(4−)]dicopper(II) octa­hydrate

Typical electroless copper baths (ECBs), which are used to chemically deposit copper on printed circuit boards, consist of an aqueous alkali hydroxide solution, a copper(II) salt, formaldehyde as reducing agent, an l-(+)-tartrate as complexing agent, and a 2,2'-bi­pyridine derivative as stabilizer. Actual speciation and reactivity are, however, largely unknown. Herein, we report on the synthesis and crystal structure of aqua-1κO-bis­(4,4'-dimeth­oxy-2,2'-bi­pyri­dine)-1κ2N,N';2κ2N,N'-[μ-(2R,3R)-2,3-dioxidosuccinato-1κ2O1,O2:2κ2O3,O4]dicopper(II) octa­hydrate, [Cu2(C12H12N2O2)2(C4H2O6)(H2O)]·8H2O, from an ECB mock-up. The title compound crystallizes in the Sohncke group P21 with one chiral dinuclear complex and eight mol­ecules of hydrate water in the asymmetric unit. The expected retention of the tartrato ligand's absolute configuration was confirmed via determination of the absolute structure. The complex mol­ecules exhibit an ansa-like structure with two planar, nearly parallel bi­pyridine ligands, each bound to a copper atom that is connected to the other by a bridging tartrato `handle'. The complex and water mol­ecules give rise to a layered supra­molecular structure dominated by alternating π stacks and hydrogen bonds. The understanding of structures ex situ is a first step on the way to prolonged stability and improved coating behavior of ECBs.




ter

Inter­molecular hydrogen bonding in isostructural pincer complexes [OH-(t-BuPOCOPt-Bu)MCl] (M = Pd and Pt)

In the crystal structure of the isostructural title compounds, namely {2,6-bis­[(di-tert-butyl­phosphan­yl)­oxy]-4-hy­droxy­phen­yl}chlorido­palladium(II), [Pd(C22H39O3P2)Cl], 1, and {2,6-bis­[(di-tert-butyl­phosphan­yl)­oxy]-4-hy­droxy­phen­yl}chlorido­platinum(II), [Pt(C22H39O3P2)Cl], 2, the metal centres are coordinated in a distorted square-planar fashion by the POCOP pincer fragment and the chloride ligand. Both complexes form strong hydrogen-bonded chain structures through an inter­action of the OH group in the 4-position of the aromatic POCOP backbone with the halide ligand.




ter

Synthesis and crystal structure of a new hybrid organic–inorganic material containing neutral mol­ecules, cations and hepta­molybdate anions

The title compound, hexa­kis­(2-methyl-1H-imidazol-3-ium) hepta­molybdate 2-methyl-1H-imidazole disolvate dihydrate, (C4H7N2)6[Mo7O24]·2C4H6N2·2H2O, was prepared from 2-methyl­imidazole and ammonium hepta­molybdate tetra­hydrate in acid solution. The [Mo7O24]6− hepta­molybdate cluster anion is accompanied by six protonated (C4H7N2)+ 2-methyl­imidazolium cations, two neutral C4H6N2 2-methyl­imidazole mol­ecules and two water mol­ecules of crystallization. The cluster consists of seven distorted MoO6 octa­hedra sharing edges or vertices. In the crystal, the components are linked by N—H⋯N, N—H⋯O, O—H⋯O, N—H⋯(O,O) and O—H⋯(O,O) hydrogen bonds, generating a three-dimensional network. Weak C—H⋯O inter­actions consolidate the packing.




ter

Crystal structure, spectroscopic characterization and Hirshfeld surface analysis of trans-di­aqua­[2,5-bis­(pyridin-4-yl)-1,3,4-oxa­diazole]di­thio­cyanato­nickel(II)

The reaction of 2,5-bis­(pyridin-4-yl)-1,3,4-oxa­diazole (4-pox) and thio­cyanate ions, used as co-ligand with nickel salt NiCl2·6H2O, produced the title complex, [Ni(NCS)2(C12H8N4O)2(H2O)2]. The NiII atom is located on an inversion centre and is octa­hedrally coordinated by four N atoms from two ligands and two pseudohalide ions, forming the equatorial plane. The axial positions are occupied by two O atoms of coordinated water mol­ecules. In the crystal, the mol­ecules are linked into a three-dimensional network through strong O—H⋯N hydrogen bonds. Hirshfeld surface analysis was used to investigate the inter­molecular inter­actions in the crystal packing.




ter

Multicentered hydrogen bonding in 1-[(1-de­oxy-β-d-fructo­pyranos-1-yl)aza­nium­yl]cyclo­pentane­carboxyl­ate (`d-fructose-cyclo­leucine')

The title compound, C12H21NO7, (I), is conformationally unstable; the predominant form present in its solution is the β-pyran­ose form (74.3%), followed by the β- and α-furan­oses (12.1 and 10.2%, respectively), α-pyran­ose (3.4%), and traces of the acyclic carbohydrate tautomer. In the crystalline state, the carbohydrate part of (I) adopts the 2C5 β-pyran­ose conformation, and the amino acid portion exists as a zwitterion, with the side chain cyclo­pentane ring assuming the E9 envelope conformation. All heteroatoms are involved in hydrogen bonding that forms a system of anti­parallel infinite chains of fused R33(6) and R33(8) rings. The mol­ecule features extensive intra­molecular hydrogen bonding, which is uniquely multicentered and involves the carboxyl­ate, ammonium and carbohydrate hy­droxy groups. In contrast, the contribution of inter­molecular O⋯H/H⋯O contacts to the Hirshfeld surface is relatively low (38.4%), as compared to structures of other d-fructose-amino acids. The 1H NMR data suggest a slow rotation around the C1—C2 bond in (I), indicating that the intra­molecular heteroatom contacts survive in aqueous solution of the mol­ecule as well.