ter

Crystal structure and Hirshfeld surface analysis of 2,5-di­bromo­terephthalic acid ethyl­ene glycol monosolvate

The title compound, C8H4Br2O4·C2H6O2, crystallizes with one-half of a 2,5-di­bromo­terephthalic acid (H2Br2tp) mol­ecule and one-half of an ethyl­ene glycol (EG) mol­ecule in the the asymmetric unit. The whole mol­ecules are generated by application of inversion symmetry. The H2Br2tp mol­ecule is not planar, with the di­bromo­benzene ring system inclined by a dihedral angle of 18.62 (3)° to the carb­oxy­lic group. In the crystal, the H2Br2tp and EG mol­ecules are linked into sheets propagating parallel to (overline{1}01) through O—H⋯O hydrogen bonds, thereby forming R44 (12) and R44 (28) graph-set motifs. Br⋯O and weak π–π stacking inter­actions are also observed. Hirshfeld surface analysis was used to confirm the existence of these inter­actions.




ter

A molybdenum tris­(di­thiol­ene) complex coordinates to three bound cobalt centers in three different ways

The synthesis and structural characterization of the mol­ecular compound (μ3-benzene-1,2-di­thiol­ato)hexa­carbonyl­bis­(μ3-1,1,1,4,4,4-hexafluorobut-2-ene-2,3-dithiolato)tricobaltmolybdenum, [Co3Mo(C4F6S2)2(C6H4S2)(CO)6] or Mo(tfd)2(bdt)(Co(CO)2)3 (tfd is 1,1,1,4,4,4-hexafluorobut-2-ene-2,3-dithiolate and bdt is benzene-1,2-di­thiol­ate), are reported. The structure of the mol­ecule contains the molybdenum tris­(di­thiol­ene) complex Mo(tfd)2(bdt) coordinated as a multidentate ligand to three cobalt dicarbonyl units. Each of the three cobalt centers is relatively close to molybdenum, with Co⋯Mo distances of 2.7224 (7), 2.8058 (7), and 2.6320 (6) Å. Additionally, each of the cobalt centers is bound via main-group donor atoms, but each one in a different way: the first cobalt atom is coordinated by two sulfur atoms from different di­thiol­enes (bdt and tfd). The second cobalt atom is coordinated by one sulfur from one tfd and two olefinic carbons from another tfd. The third cobalt is coordinated by one sulfur from bdt and two sulfurs from tfd. This is, to the best of our knowledge, the first structurally characterized example of a molybdenum (tris­)di­thiol­ene complex that coordinates to cobalt. The F atoms of two of the –CF3 groups were refined as disordered over two sets of sites with ratios of refined occupancies of 0.703 (7):0.297 (7) and 0.72 (2):0.28 (2).




ter

Six 1-aroyl-4-(4-meth­oxy­phen­yl)piperazines: similar mol­ecular structures but different patterns of supra­molecular assembly

Six new 1-aroyl-4-(4-meth­oxy­phen­yl)piperazines have been prepared, using coupling reactions between benzoic acids and N-(4-meth­oxy­phen­yl)piperazine. There are no significant hydrogen bonds in the structure of 1-benzoyl-4-(4-meth­oxy­phen­yl)piperazine, C18H20N2O2, (I). The mol­ecules of 1-(2-fluoro­benzo­yl)-4-(4-meth­oxy­phen­yl)piperazine, C18H19FN2O2, (II), are linked by two C—H⋯O hydrogen bonds to form chains of rings, which are linked into sheets by an aromatic π–π stacking inter­action. 1-(2-Chloro­benzo­yl)-4-(4-meth­oxy­phen­yl)piperazine, C18H19ClN2O2, (III), 1-(2-bromo­benzo­yl)-4-(4-meth­oxy­phen­yl)piperazine, C18H19BrN2O2, (IV), and 1-(2-iodo­benzo­yl)-4-(4-meth­oxyphen­yl)piperazine, C18H19IN2O2, (V), are isomorphous, but in (III) the aroyl ring is disordered over two sets of atomic sites having occupancies of 0.942 (2) and 0.058 (2). In each of (III)–(V), a combination of two C—H⋯π(arene) hydrogen bonds links the mol­ecules into sheets. A single O—H⋯O hydrogen bond links the mol­ecules of 1-(2-hy­droxy­benzo­yl)-4-(4-meth­oxy­phen­yl)piperazine, C18H20N2O3, (VI), into simple chains. Comparisons are made with the structures of some related compounds.




ter

Crystal structure, Hirshfeld surface analysis and inter­action energy and DFT studies of 4-[(prop-2-en-1-yl­oxy)meth­yl]-3,6-bis­(pyridin-2-yl)pyridazine

The title compound, C18H16N4O, consists of a 3,6-bis­(pyridin-2-yl)pyridazine moiety linked to a 4-[(prop-2-en-1-yl­oxy)meth­yl] group. The pyridine-2-yl rings are oriented at a dihedral angle of 17.34 (4)° and are rotated slightly out of the plane of the pyridazine ring. In the crystal, C—HPyrd⋯NPyrdz (Pyrd = pyridine and Pyrdz = pyridazine) hydrogen bonds and C—HPrp­oxy⋯π (Prp­oxy = prop-2-en-1-yl­oxy) inter­actions link the mol­ecules, forming deeply corrugated layers approximately parallel to the bc plane and stacked along the a-axis direction. Hirshfeld surface analysis indicates that the most important contributions for the crystal packing are from H⋯H (48.5%), H⋯C/C⋯H (26.0%) and H⋯N/N⋯H (17.1%) contacts, hydrogen bonding and van der Waals inter­actions being the dominant inter­actions in the crystal packing. Computational chemistry indicates that in the crystal, the C—HPyrd⋯NPyrdz hydrogen-bond energy is 64.3 kJ mol−1. Density functional theory (DFT) optimized structures at the B3LYP/6–311 G(d,p) level are compared with the experimentally determined mol­ecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap.




ter

Crystal structure and Hirshfeld surface analysis of lapachol acetate 80 years after its first synthesis

Lapachol acetate [systematic name: 3-(3-methyl­but-2-en­yl)-1,4-dioxonaph­thalen-2-yl acetate], C17H16O4, was prepared using a modified high-yield procedure and its crystal structure is reported for the first time 80 years after its first synthesis. The full spectroscopic characterization of the mol­ecule is reported. The mol­ecular conformation shows little difference with other lapachol derivatives and lapachol itself. The packing is directed by inter­molecular π–π and C—H⋯O inter­actions, as described by Hirshfeld surface analysis. The former inter­actions make the largest contributions to the total packing energy in a ratio of 2:1 with respect to the latter.




ter

Synthesis, characterization, crystal structure and supra­molecularity of ethyl (E)-2-cyano-3-(3-methyl­thio­phen-2-yl)acrylate and a new polymorph of ethyl (E)-2-cyano-3-(thio­phen-2-yl)acrylate

The synthesis, crystal structure and structural motif of two thio­phene-based cyano­acrylate derivatives, namely, ethyl (E)-2-cyano-3-(3-methyl­thio­phen-2-yl)acrylate (1), C11H11NO2S, and ethyl (E)-2-cyano-3-(thio­phen-2-yl)acrylate (2), C10H9NO2S, are reported. Derivative 1 crystallized with two independent molecules in the asymmetric unit, and derivative 2 represents a new monoclinic (C2/m) polymorph. The mol­ecular conformations of 1 and the two polymorphs of 2 are very similar, as all non-H atoms are planar except for the methyl of the ethyl groups. The inter­molecular inter­actions and crystal packing of 1 and 2 are described and compared with that of the reported monoclinic (C2/m) polymorph of derivative 2 [Castro Agudelo et al. (2017). Acta Cryst. E73, 1287–1289].




ter

Synthesis and crystal structure of tert-butyl 1-(2-iodo­benzo­yl)cyclo­pent-3-ene-1-carboxyl­ate

1-(2-Iodo­benzo­yl)-cyclo­pent-3-ene-1-carboxyl­ates are novel substrates to construct bi­cyclo­[3.2.1]octa­nes with anti­bacterial and anti­thrombotic activities. In this context, tert-butyl 1-(2-iodo­benzo­yl)-cyclo­pent-3-ene-1-carboxyl­ate, C17H19IO3, was synthesized and structurally characterized. The 2-iodo­benzoyl group is attached to the tertiary C atom of the cyclo­pent-3-ene ring. The dihedral angle between the benzene ring and the mean plane of the envelope-type cyclo­pent-3-ene ring is 26.0 (3)°. In the crystal, pairs of C-H⋯O hydrogen bonds link the mol­ecules to form inversion dimers.




ter

Crystal structure of a binuclear mixed-valence ytterbium complex containing a 2-anthracene-substituted phenoxide ligand

Reaction of 2-(anthracen-9-yl)phenol (HOPhAn, 1) with divalent Yb[N(SiMe3)2]2·2THF in THF–toluene mixtures affords the mixed-valence YbII–YbIII dimer {[2-(anthracen-9-yl)phenolato-κO]bis­(tetra­hydro­furan)­ytterbium(III)}-tris­[μ-2-(anthracen-9-yl)phenolato]-κ4O:O;κO:1,2-η,κO-{[2-(anthracen-9-yl)phenolato-κO]ytterbium(II)} toluene tris­olvate, [Yb2(C20H13O)5(C4H8O)2]·3C7H7 or [YbIII(THF)2(OPhAn)](μ-OPhAn)3[YbII(OPhAn)]·3C7H7 (2), as the major product. It crystallized as a toluene tris­olvate. The Yb—O bond lengths in the crystal structure of this dimer clearly identify the YbII and YbIII centres. Inter­estingly, the formally four-coordinate YbII centre shows a close contact with one anthracene C—C bond of a bridging OPhAn ligand, bringing the formal coordination number to five.




ter

Synthesis and redetermination of the crystal structure of salicyl­aldehyde N(4)-morpholino­thio­semi­carbazone

The structure of the title compound (systematic name: N-{[(2-hy­droxy­phen­yl)methyl­idene]amino}­morpholine-4-carbo­thio­amide), C12H15N3O2S, was prev­iously determined (Koo et al., 1977) using multiple-film equi-inclination Weissenberg data, but has been redetermined with higher precision to explore its conformation and the hydrogen-bonding patterns and supra­molecular inter­actions. The mol­ecular structure shows intra­molecular O—H⋯N and C—H⋯S inter­actions. The configuration of the C=N bond is E. The mol­ecule is slightly twisted about the central N—N bond. The best planes through the phenyl ring and the morpholino ring make an angle of 43.44 (17)°. In the crystal, the mol­ecules are connected into chains by N—H⋯O and C—H⋯O hydrogen bonds, which combine to generate sheets lying parallel to (002). The most prominent contribution to the surface contacts are H⋯H contacts (51.6%), as concluded from a Hirshfeld surface analysis.




ter

Crystal structure, Hirshfeld surface analysis and inter­action energy and DFT studies of 2-chloro­ethyl 2-oxo-1-(prop-2-yn-1-yl)-1,2-di­hydro­quinoline-4-carboxyl­ate

The title compound, C15H12ClNO3, consists of a 1,2-di­hydro­quinoline-4-carb­oxyl­ate unit with 2-chloro­ethyl and propynyl substituents, where the quinoline moiety is almost planar and the propynyl substituent is nearly perpendicular to its mean plane. In the crystal, the mol­ecules form zigzag stacks along the a-axis direction through slightly offset π-stacking inter­actions between inversion-related quinoline moieties which are tied together by inter­molecular C—HPrpn­yl⋯OCarbx and C—HChlethy⋯OCarbx (Prpnyl = propynyl, Carbx = carboxyl­ate and Chlethy = chloro­eth­yl) hydrogen bonds. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (29.9%), H⋯O/O⋯H (21.4%), H⋯C/C⋯ H (19.4%), H⋯Cl/Cl⋯H (16.3%) and C⋯C (8.6%) inter­actions. Hydrogen bonding and van der Waals inter­actions are the dominant inter­actions in the crystal packing. Computational chemistry indicates that in the crystal, the C—HPrpn­yl⋯OCarbx and C—HChlethy⋯OCarbx hydrogen bond energies are 67.1 and 61.7 kJ mol−1, respectively. Density functional theory (DFT) optimized structures at the B3LYP/ 6–311 G(d,p) level are compared with the experimentally determined mol­ecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap.




ter

Crystal structure of 4-bromo-N-[(3,6-di-tert-butyl-9H-carbazol-1-yl)methyl­idene]aniline

In the title compound, C27H29BrN2, the carbazole ring system is essentially planar, with an r.m.s. deviation of 0.0781 (16) Å. An intra­molecular N—H⋯N hydrogen bond forms an S(6) ring motif. One of the tert-butyl substituents shows rotational disorder over two sites with occupancies of 0.592 (3) and 0.408 (3). In the crystal, two mol­ecules are associated into an inversion dimer through a pair of C—H⋯π inter­actions. The dimers are further linked by another pair of C—H⋯π inter­actions, forming a ribbon along the c-axis direction. A C—H⋯π inter­action involving the minor disordered component and the carbazole ring system links the ribbons, generating a network sheet parallel to (100).




ter

Crystal structure and Hirshfeld surface analysis of 5-(3,5-di-tert-butyl-4-hy­droxy­phen­yl)-3-phenyl-4,5-di­hydro-1H-pyrazole-1-carboxamide

In the title compound, C24H31N3O2, the mean plane of the central pyrazole ring [r.m.s. deviation = 0.095 Å] makes dihedral angles of 11.93 (9) and 84.53 (8)°, respectively, with the phenyl and benzene rings. There is a short intra­molecular N—H⋯N contact, which generates an S(5) ring motif. In the crystal, pairs of N—H⋯O hydrogen bonds link inversion-related mol­ecules into dimers, generating an R22(8) ring motif. The Hirshfeld surface analysis indicates that the most significant contribution involves H⋯H contacts of 68.6%




ter

The crystal structure of the zwitterionic co-crystal of 2,4-di­chloro-6-{[(3-hy­droxy­prop­yl)azaniumyl]­meth­yl}phenolate and 2,4-di­chloro­phenol

The title compound, C10H13Cl2NO2·C6H4Cl2O, was formed from the incomplete Mannich condensation reaction of 3-amino­propan-1-ol, formaldehyde and 2,4-di­chloro­phenol in methanol. This resulted in the formation of a co-crystal of the zwitterionic Mannich base, 2,4-di­chloro-6-{[(3-hy­droxy­prop­yl)azaniumyl]­meth­yl}phenolate and the unreacted 2,4-di­chloro­phenol. The compound crystallizes in the monoclinic crystal system (in space group Cc) and the asymmetric unit contains a mol­ecule each of the 2,4-di­chloro­phenol and 2,4-di­chloro-6-{[(3-hy­droxy­prop­yl)azaniumyl]­meth­yl}phenolate. Examination of the crystal structure shows that the two components are clearly linked together by hydrogen bonds. The packing patterns are most inter­esting along the b and the c axes, where the co-crystal in the unit cell packs in a manner that shows alternating aromatic di­chloro­phenol fragments and polar hydrogen-bonded channels. The 2,4-di­chloro­phenol rings stack on top of one another, and these are held together by π–π inter­actions. The crystal studied was refined as an inversion twin.




ter

Crystal structure and Hirshfeld surface analysis of 2,2''',6,6'''-tetra­meth­oxy-3,2':5',3'':6'',3'''-quaterpyridine

In the title compound, C24H22N4O4, the four pyridine rings are tilted slightly with respect to each other. The dihedral angles between the inner and outer pyridine rings are 12.51 (8) and 9.67 (9)°, while that between inner pyridine rings is 20.10 (7)°. Within the mol­ecule, intra­molecular C—H⋯O and C—H⋯N contacts are observed. In the crystal, adjacent mol­ecules are linked by π–π stacking inter­actions between pyridine rings and weak C—H⋯π inter­actions between a methyl H atom and the centroid of a pyridine ring, forming a two-dimensional layer structure extending parallel to the ac plane. Hirshfeld surface analysis and two-dimensional fingerprint plots indicate that the most important contributions to the crystal packing are from H⋯H (52.9%) and H⋯C/C⋯H (17.3%) contacts.




ter

Crystal structure and Hirshfeld surface analysis of N-(tert-but­yl)-2-(phenyl­ethyn­yl)imidazo[1,2-a]pyridin-3-amine

The bicyclic imidazo[1,2-a]pyridine core of the title compound, C19H19N3, is relatively planar with an r.m.s. deviation of 0.040 Å. The phenyl ring is inclined to the mean plane of the imidazo[1,2-a]pyridine unit by 18.2 (1)°. In the crystal, mol­ecules are linked by N—H⋯H hydrogen bonds, forming chains along the c-axis direction. The chains are linked by C—H⋯π inter­actions, forming slabs parallel to the ac plane. The Hirshfeld surface analysis and fingerprint plots reveal that the crystal structure is dominated by H⋯H (54%) and C⋯H/H⋯C (35.6%) contacts. The crystal studied was refined as an inversion twin




ter

Crystal structure, Hirshfeld surface analysis and physicochemical characterization of bis­[4-(di­methyl­amino)­pyridinium] di-μ-chlorido-bis[di­chlorido­mercurate(II)]

The title mol­ecular salt, (C7H11N2)2[Hg2Cl6], crystallizes with two 4-(di­methyl­amino)­pyridinium cations (A and B) and two half hexa­chlorido­dimercurate(II) anions in the asymmetric unit. The organic cations exhibit essentially the same features with an almost planar pyridyl ring (r.m.s. deviations of 0.0028 and 0.0109 Å), which forms an inclined dihedral angle with the dimethyamino group [3.06 (1) and 1.61 (1)°, respectively]. The di­methyl­amino groups in the two cations are planar, and the C—N bond lengths are shorter than that in 4-(di­methyl­amino)­pyridine. In the crystal, mixed cation–anion layers lying parallel to the (010) plane are formed through N—H⋯Cl hydrogen bonds and adjacent layers are linked by C—H⋯Cl hydrogen bonds, forming a three-dimensional network. The analyses of the calculated Hirshfeld surfaces confirm the relevance of the above inter­molecular inter­actions, but also serve to further differentiate the weaker inter­molecular inter­actions formed by the organic cations and inorganic anions, such as π–π and Cl⋯Cl inter­actions. The powder XRD data confirms the phase purity of the crystalline sample. Furthermore, the vibrational absorption bands were identified by IR spectroscopy and the optical properties were studied by using optical UV–visible absorption spectroscopy.




ter

Crystal structure, Hirshfeld surface analysis and inter­action energy and DFT studies of (2Z)-4-benzyl-2-(2,4-di­chloro­benzyl­idene)-2H-1,4-benzo­thia­zin-3(4H)-one

The title compound, C22H15Cl2NOS, contains 1,4-benzo­thia­zine and 2,4-di­­chloro­benzyl­idene units, where the di­hydro­thia­zine ring adopts a screw-boat conformation. In the crystal, inter­molecular C—HBnz⋯OThz (Bnz = benzene and Thz = thia­zine) hydrogen bonds form corrugated chains extending along the b-axis direction which are connected into layers parallel to the bc plane by inter­molecular C—HMethy⋯SThz (Methy = methyl­ene) hydrogen bonds, en­closing R44(22) ring motifs. Offset π-stacking inter­actions between 2,4-di­­chloro­phenyl rings [centroid–centroid = 3.7701 (8) Å] and π-inter­actions which are associated by C—HBnz⋯π(ring) and C—HDchlphy⋯π(ring) (Dchlphy = 2,4-di­chloro­phen­yl) inter­actions may be effective in the stabilization of the crystal structure. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (29.1%), H⋯C/C⋯H (27.5%), H⋯Cl/Cl⋯H (20.6%) and O⋯H/H⋯O (7.0%) inter­actions. Hydrogen-bonding and van der Waals inter­actions are the dominant inter­actions in the crystal packing. Computational chemistry indicates that in the crystal, the C—HBnz⋯OThz and C—HMethy⋯SThz hydrogen-bond energies are 55.0 and 27.1 kJ mol−1, respectively. Density functional theory (DFT) optimized structures at the B3LYP/6-311G(d,p) level are compared with the experimentally determined mol­ecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap.




ter

Crystal structure, Hirshfeld surface analysis and inter­action energy and DFT studies of methyl 4-[3,6-bis­(pyridin-2-yl)pyridazin-4-yl]benzoate

The title com­pound, C22H16N4O2, contains two pyridine rings and one meth­oxy­carbonyl­phenyl group attached to a pyridazine ring which deviates very slightly from planarity. In the crystal, ribbons consisting of inversion-related chains of mol­ecules extending along the a-axis direction are formed by C—HMthy⋯OCarbx (Mthy = methyl and Carbx = carboxyl­ate) hydrogen bonds. The ribbons are connected into layers parallel to the bc plane by C—HBnz⋯π(ring) (Bnz = benzene) inter­actions. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (39.7%), H⋯C/C⋯H (27.5%), H⋯N/N⋯H (15.5%) and O⋯H/H⋯O (11.1%) inter­actions. Hydrogen-bonding and van der Waals inter­actions are the dominant inter­actions in the crystal packing. Computational chemistry indicates that in the crystal, C—HMthy⋯OCarbx hydrogen-bond energies are 62.0 and 34.3 kJ mol−1, respectively. Density functional theory (DFT) optimized structures at the B3LYP/6-311G(d,p) level are com­pared with the experimentally determined mol­ecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap.




ter

The first structural characterization of the proton­ated aza­cyclam ligand in catena-poly[[[(perchlorato)copper(II)]-μ-3-(3-carb­oxy­prop­yl)-1,5,8,12-tetra­aza-3-azonia­cyclo­tetra­deca­ne] bis­(per&

The asymmetric unit of the title com­pound, catena-poly[[[(perchlorato-κO)copper(II)]-μ-3-(3-carb­oxy­prop­yl)-1,5,8,12-tetra­aza-3-azonia­cyclo­tetra­decane-κ4N1,N5,N8,N12] bis­(per­chlorate)], {[Cu(C13H30N5O2)(ClO4)](ClO4)2}n, (I), consists of a macrocyclic cation, one coordinated per­chlorate anion and two per­chlorate ions as counter-anions. The metal ion is coordinated in a tetra­gonally distorted octa­hedral geometry by the four secondary N atoms of the macrocyclic ligand, the mutually trans O atoms of the per­chlorate anion and the carbonyl O atom of the protonated carb­oxy­lic acid group of a neighbouring cation. The average equatorial Cu—N bond lengths [2.01 (6) Å] are significantly shorter than the axial Cu—O bond lengths [2.379 (8) Å for carboxyl­ate and average 2.62 (7) Å for disordered per­chlorate]. The coordinated macrocyclic ligand in (I) adopts the most energetically favourable trans-III conformation with an equatorial orientation of the substituent at the protonated distal 3-position N atom in a six-membered chelate ring. The coordination of the carb­oxy­lic acid group of the cation to a neighbouring com­plex unit results in the formation of infinite chains running along the b-axis direction, which are cross­linked by N—H⋯O hydrogen bonds between the secondary amine groups of the macrocycle and O atoms of the per­chlorate counter-anions to form sheets lying parallel to the (001) plane. Additionally, the extended structure of (I) is consolidated by numerous intra- and interchain C—H⋯O contacts.




ter

Crystal structures and hydrogen-bonding analysis of a series of solvated ammonium salts of molybdenum(II) chloride clusters

Charge-assisted hydrogen bonding plays a significant role in the crystal structures of solvates of ionic com­pounds, especially when the cation or cations are primary ammonium salts. We report the crystal structures of four ammonium salts of molybdenum halide cluster solvates where we observe significant hydrogen bonding between the solvent molecules and cations. The crystal structures of bis­(anilinium) octa-μ3-chlorido-hexa­chlorido-octa­hedro-hexa­molybdate N,N-di­­methyl­formamide tetra­solvate, (C6H8N)2[Mo6Cl8Cl6]·4C3H7NO, (I), p-phenyl­enedi­ammonium octa-μ3-chlorido-hexa­chlorido-octa­hedro-hexa­mol­yb­date N,N-di­methyl­formamide hexa­solvate, (C6H10N2)[Mo6Cl8Cl6]·6C3H7NO, (II), N,N'-(1,4-phenyl­ene)bis­(propan-2-iminium) octa-μ3-chlorido-hexa­chlo­rido-octa­hedro-hexa­molybdate acetone tris­olvate, (C12H18N2)[Mo6Cl8Cl6]·3C3H6O, (III), and 1,1'-dimethyl-4,4'-bipyridinium octa-μ3-chlo­rido-hexa­chlorido-octa­hedro-hexa­molybdate N,N-di­methyl­formamide tetra­solvate, (C12H14N2)[Mo6Cl8Cl6]·4C3H7NO, (IV), are reported and described. In (I), the anilinium cations and N,N-di­methyl­formamide (DMF) solvent mol­ecules form a cyclic R42(8) hydrogen-bonded motif centered on a crystallographic inversion center with an additional DMF mol­ecule forming a D(2) inter­action. The p-phenyl­enedi­ammonium cation in (II) forms three D(2) inter­actions between the three N—H bonds and three independent N,N-di­methyl­formamide mol­ecules. The dication in (III) is a protonated Schiff base solvated by acetone mol­ecules. Compound (IV) contains a methyl viologen dication with N,N-di­methyl­formamide mol­ecules forming close contacts with both aromatic and methyl H atoms.




ter

Different packing motifs mediated by weak inter­actions and polymorphism in the crystal structures of five 2-(benzyl­idene)benzosuberone derivatives

The syntheses and crystal structures of five 2-benzyl­idene-1-benzosuberone [1-benzosuberone is 6,7,8,9-tetra­hydro-5H-benzo[7]annulen-5-one] derivatives, viz. 2-(4-meth­oxy­benzyl­idene)-1-benzosuberone, C19H18O2, (I), 2-(4-eth­oxy­benzyl­idene)-1-benzosuberone, C20H20O2, (II), 2-(4-benzyl­benzyl­idene)-1-benzosuberone, C25H22O2, (III), 2-(4-chloro­benzyl­idene)-1-benzosuberone, C18H15ClO, (IV) and 2-(4-cyano­benzyl­idene)-1-benzosuberone, C19H15NO, (V), are described. The conformations of the benzosuberone fused six- plus seven-membered ring fragments are very similar in each case, but the dihedral angles between the fused benzene ring and the pendant benzene ring differ somewhat, with values of 23.79 (3) for (I), 24.60 (4) for (II), 33.72 (4) for (III), 29.93 (8) for (IV) and 21.81 (7)° for (V). Key features of the packing include pairwise C—H⋯O hydrogen bonds for (II) and (IV), and pairwise C—H⋯N hydrogen bonds for (V), which generate inversion dimers in each case. The packing for (I) and (III) feature C—H⋯O hydrogen bonds, which lead to [010] and [100] chains, respectively. Weak C—H⋯π inter­actions consolidate the structures and weak aromatic π–π stacking is seen in (II) [centroid–centroid separation = 3.8414 (7) Å] and (III) [3.9475 (7) Å]. A polymorph of (I) crystallized from a different solvent has been reported previously [Dimmock et al. (1999) J. Med. Chem. 42, 1358–1366] in the same space group but with a packing motif based on inversion dimers resembling that seen in (IV) in the present study. The Hirshfeld surfaces and fingerprint plots for (I) and its polymorph are com­pared and structural features of the 2-benzyl­idene-1-benzosuberone family of phases are surveyed.




ter

(μ-Di-tert-butyl­silanediolato)bis­[bis­(η5-cyclo­penta­dien­yl)methyl­zirconium]

The reaction of t-Bu2Si(OH)2 with two equivalents of Cp2Zr(CH3)2 produces the title t-Bu2SiO2-siloxide bridged dimer, [Zr2(CH3)2(C5H5)4(C8H18O2Si)] or [Cp2Zr(CH3)]2[μ-t-Bu2SiO2] (1), where one methyl group is retained per zirconium atom. The same product is obtained at room temperature even when equimolar ratios of the silanediol and Cp2Zr(CH3)2 are used. Attempts to thermally eliminate methane and produce a bridging methyl­ene complex resulted in decomposition. The crystal structure of 1 displays typical Zr—CH3 and Zr—O distances but the Si—O distance [1.628 (2) Å] and O—Si—O angle [110.86 (15)°] are among the largest observed in this family of compounds suggesting steric crowding between the t-Bu substituents of the silicon atom and the cyclo­penta­dienyl groups. The silicon atom lies on a crystallographic twofold axis and both Cp rings are disordered over two orientations of equal occupancy.




ter

Synthesis, crystal structure and characterizations of di-μ-cyanido-1:2κ2N:C;2:3κ2C:N-bis­(4,7,13,16,21,24-hexa­oxa-1,10-di­aza­bicyclo­[8.8.8]hexacosa­ne)-1κ8N1,N10,O4,O7,O13,O16,O21,O24;3κ8N1,N10,O4,O7,O13,O16,O21,O24-[5,10,

The title compound, [Fe(C44H24N8Cl4)(CN)2][K2(C18H36N2O6)2]·2C4H8O was synthesized and characterized by single-crystal X-ray diffraction as well as FTIR and UV–vis spectroscopy. The central FeII ion is coordinated by four pyrrole N atoms of the porphyrin core and two C atoms of the cyano groups in a slightly distorted octa­hedral coordination environment. The complex mol­ecule crystallizes with two tetra­hydro­furan solvent mol­ecules, one of which was refined as disordered over two sets of sites with refined occupancies of 0.619 (5) and 0.381 (5). It has a distorted porphyrin core with mean absolute core-atom displacements Ca, Cb, Cm and Cav of 0.32 (3), 0.22 (3), 0.56 (2) and 0.37 (14) Å, respectively. The axial Fe—Ccyano bond lengths are 1.991 (2) and 1.988 (2) Å. The average Fe—Np (Np is a porphyrin N atom) bond length is 1.964 (10) Å. One of the O atoms and several C atoms of the 222 moiety [222 = 4,7,13,16,21,24-hexa­oxa-1,10-di­aza­bicyclo­[8.8.8]hexa­cosa­ne] were refined as disordered over two sets of sites with occupancy ratios of 0.739 (6):0.261 (6) and 0.832 (4):0.168 (4). Additional solvent mol­ecules were found to be highly disordered and their contribution to the scattering was removed using the SQUEEZE procedure in PLATON [Spek (2015). Acta Cryst. C71, 9–18], which indicated a solvent cavity of volume 372 Å3 containing approximately 83 electrons. These solvent mol­ecules are not considered in the given chemical formula and other crystal data.




ter

Structure refinement of (NH4)3Al2(PO4)3 prepared by ionothermal synthesis in phospho­nium based ionic liquids – a redetermination

After crystallization during ionothermal syntheses in phospho­nium-containing ionic liquids, the structure of (NH4)3Al2(PO4)3 [tri­ammonium dialuminum tris­(phosphate)] was refined on the basis of powder X-ray diffraction data from a synchrotron source. (NH4)3Al2(PO4)3 is a member of the structural family with formula A3Al2(PO4)3, where A is a group 1 element, and of which the NH4, K, and Rb forms were previously known. The NH4 form is isostructural with the K form, and was previously solved from single-crystal X-ray data when the material (SIZ-2) crystallized from a choline-containing eutectic mixture [Cooper et al. (2004). Nature, 430, 1012–1017]. Our independent refinement incorporates NH4 groups and shows that these NH4 groups are hydrogen bonded to framework O atoms present in rings containing 12 T sites in a channel along the c-axis direction. We describe structural details of (NH4)3Al2(PO4)3 and discuss differences with respect to isostructural forms.




ter

Crystal and mol­ecular structure of jatrophane diterpenoid (2R,3R,4S,5R,7S,8S,9S,13S,14S,15R)-2,3,8,9-tetra­acet­oxy-5,14-bis­(benzo­yloxy)-15-hydroxy-7-(iso­butano­yloxy)jatropha-6(17),11(E)-diene

The structure of the jatrophane diterpenoid (ES2), C46H56O15, has ortho­rhom­bic (P212121) symmetry. The absolute configuration in the crystal has been determined as 2R,3R,4S,5R,7S,8S,9S,13S,14S,15R [the Flack parameter is −0.06 (11)]. The mol­ecular structure features intra­molecular O—H⋯O and C—H⋯O hydrogen bonding. In the crystal, C—H⋯O hydrogen bonds link the mol­ecules into supra­molecular columns parallel to the a axis. One of the acet­oxy substituents is disordered over two orientations in a 0.826 (8):0.174 (8) ratio.




ter

Crystal structure, Hirshfeld surface analysis and inter­action energy and DFT studies of 1-methyl-3-(prop-2-yn-1-yl)-2,3-di­hydro-1H-1,3-benzo­diazol-2-one

In the title mol­ecule, C11H10N2O, the di­hydro­benzimidazol-2-one moiety is essentially planar, with the prop-2-yn-1-yl substituent rotated well out of this plane. In the crystal, C—HMthy⋯π(ring) inter­actions and C—HProp⋯ODhyr (Mthy = methyl, Prop = prop-2-yn-1-yl and Dhyr = di­hydro) hydrogen bonds form corrugated layers parallel to (10overline{1}), which are associated through additional C—HBnz⋯ODhyr (Bnz = benzene) hydrogen bonds and head-to-tail, slipped, π-stacking [centroid-to-centroid distance = 3.7712 (7) Å] inter­actions between di­hydro­benzimidazol-2-one moieties. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions to the crystal packing are from H⋯H (44.1%), H⋯C/C⋯H (33.5%) and O⋯H/H⋯O (13.4%) inter­actions. Hydrogen-bonding and van der Waals inter­actions are the dominant inter­actions in the crystal packing. Computational chemistry calculations indicate that in the crystal, C—H⋯O hydrogen-bond energies are 46.8 and 32.5 (for C—HProp⋯ODhyr) and 20.2 (for C—HBnz⋯ODhyr) kJ mol−1. Density functional theory (DFT) optimized structures at the B3LYP/6–311 G(d,p) level are compared with the experimentally determined mol­ecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap.




ter

The crystal structure of the triclinic polymorph of 1,4-bis­([2,2':6',2''-terpyridin]-4'-yl)benzene

The title triclinic polymorph (Form I) of 1,4-bis­([2,2':6',2''-terpyridin]-4'-yl)benzene, C36H24N6, was formed in the presence of the Lewis acid yttrium trichloride in an attempt to obtain a coordination compound. The crystal structure of the ortho­rhom­bic polymorph (Form II), has been described previously [Fernandes et al. (2010). Acta Cryst. E66, o3241–o3242]. The asymmetric unit of Form I consists of half a mol­ecule, the whole mol­ecule being generated by inversion symmetry with the central benzene ring being located about a crystallographic centre of symmetry. The side pyridine rings of the 2,2':6',2''-terpyridine (terpy) unit are rotated slightly with respect to the central pyridine ring, with dihedral angles of 8.91 (8) and 10.41 (8)°. Opposite central pyridine rings are coplanar by symmetry, and the angle between them and the central benzene ring is 49.98 (8)°. The N atoms of the pyridine rings inside the terpy entities, N⋯N⋯N, lie in trans–trans positions. In the crystal, mol­ecules are linked by C—H⋯π and offset π–π inter­actions [inter­centroid distances are 3.6421 (16) and 3.7813 (16) Å], forming a three-dimensional structure.




ter

Synthesis and crystal structure of catena-poly[[bis[(2,2';6',2''-terpyridine)­manganese(II)]-μ4-penta­thio­dianti­monato] tetra­hydrate] showing a 1D MnSbS network

The asymmetric unit of the title compound, {[Mn2Sb2S5(C15H11N3)2]·4H2O}n, consists of two crystallographically independent MnII ions, two unique terpyridine ligands, one [Sb2S5]4− anion and four solvent water mol­ecules, all of which are located in general positions. The [Sb2S5]4− anion consists of two SbS3 units that share common corners. Each of the MnII ions is fivefold coordinated by two symmetry-related S atoms of [Sb2S5]4− anions and three N atoms of a terpyridine ligand within an irregular coordination. Each two anions are linked by two [Mn(terpyridine)]2+ cations into chains along the c-axis direction that consist of eight-membered Mn2Sb2S4 rings. These chains are further connected into a three-dimensional network by inter­molecular O—H⋯O and O—H⋯S hydrogen bonds. The crystal investigated was twinned and therefore, a twin refinement using data in HKLF-5 [Sheldrick (2015). Acta Cryst. C71, 3–8] format was performed.




ter

An unusually short inter­molecular N—H⋯N hydrogen bond in crystals of the hemi-hydro­chloride salt of 1-exo-acetamido­pyrrolizidine

The title compound [systematic name: (1R*, 8S)-2-acetamidoocta­hydro­pyrrol­izin-4-ium chloride–N-[(1R, 8S)-hexa­hydro-1H-pyrrolizin-2-yl)acetamide (1/1)], 2(C9H16N2O)·HCl or C9H17N2O+·Cl−·C9H16N2O, arose as an unexpected product when 1-exo-acetamido­pyrrolizidine (AcAP; C9H16N2O) was dissolved in CHCl3. Within the AcAP pyrrolizidine group, the unsubstituted five-membered ring is disordered over two orientations in a 0.897 (5):0.103 (5) ratio. Two AcAP mol­ecules related by a crystallographic twofold axis link to H+ and Cl− ions lying on the rotation axis, thereby forming N—H⋯N and N—H⋯Cl⋯H—N hydrogen bonds. The first of these has an unusually short N⋯N separation of 2.616 (2) Å: refinement of different models against the present data set could not distinguish between a symmetrical hydrogen bond (H atom lying on the twofold axis and equidistant from the N atoms) or static or dynamic disorder models (i.e. N—H⋯N + N⋯H—N). Computational studies suggest that the disorder model is slightly more stable, but the energy difference is very small.




ter

Crystal structure, spectroscopic characterization and Hirshfeld surface analysis of aqua­dichlorido­{N-[(pyridin-2-yl)methyl­idene]aniline}copper(II) monohydrate

The reaction of N-phenyl-1-(pyridin-2-yl)methanimine with copper chloride dihydrate produced the title neutral complex, [CuCl2(C12H10N2)(H2O)]·H2O. The CuII ion is five-coordinated in a distorted square-pyramidal geometry, in which the two N atoms of the bidentate Schiff base, as well as one chloro and a water mol­ecule, form the irregular base of the pyramidal structure. Meanwhile, the apical chloride ligand inter­acts through a strong hydrogen bond with a water mol­ecule of crystallization. In the crystal, mol­ecules are arranged in pairs, forming a stacking of symmetrical cyclic dimers that inter­act in turn through strong hydrogen bonds between the chloride ligands and both the coordinated and the crystallization water mol­ecules. The mol­ecular and electronic structures of the complex were also studied in detail using EPR (continuous and pulsed), FT–IR and Raman spectroscopy, as well as magnetization measurements. Likewise, Hirshfeld surface analysis was used to investigate the inter­molecular inter­actions in the crystal packing.




ter

Crystal structure of the deuterated hepta­hydrate of potassium phosphate, K3PO4·7D2O

Deuterated potassium orthophosphate hepta­hydrate, K3PO4·7D2O, crystallizes in the Sohnke space group P21, and its absolute structure was determined from 2017 Friedel pairs [Flack parameter 0.004 (16)]. Each of the three crystallographically unique K+ cations is surrounded by six water mol­ecules and one oxygen atom from the orthophosphate group, using a threshold for K—O bonds of 3.10 Å. The highly irregular coordination polyhedra are linked by corner- and edge-sharing into a three-dimensional network that is consolidated by an intricate network of O—D⋯O hydrogen bonds of medium strength.




ter

Structural characterization and Hirshfeld surface analysis of 2-iodo-4-(penta­fluoro-λ6-sulfan­yl)benzo­nitrile

The title compound, C7H3F5INS, a penta­fluoro­sulfanyl (SF5) containing arene, was synthesized from 4-(penta­fluoro­sulfan­yl)benzo­nitrile and lithium tetra­methyl­piperidide following a variation to the standard approach, which features simple and mild conditions that allow direct access to tri-substituted SF5 inter­mediates that have not been demonstrated using previous methods. The mol­ecule displays a planar geometry with the benzene ring in the same plane as its three substituents. It lies on a mirror plane perpendicular to [010] with the iodo, cyano, and the sulfur and axial fluorine atoms of the penta­fluoro­sulfanyl substituent in the plane of the mol­ecule. The equatorial F atoms have symmetry-related counterparts generated by the mirror plane. The penta­fluoro­sulfanyl group exhibits a staggered fashion relative to the ring and the two hydrogen atoms ortho to the substituent. S—F bond lengths of the penta­fluoro­sulfanyl group are unequal: the equatorial bond facing the iodo moiety has a longer distance [1.572 (3) Å] and wider angle compared to that facing the side of the mol­ecules with two hydrogen atoms [1.561 (4) Å]. As expected, the axial S—F bond is the longest [1.582 (5) Å]. In the crystal, in-plane C—H⋯F and N⋯I inter­actions as well as out-of-plane F⋯C inter­actions are observed. According to the Hirshfeld analysis, the principal inter­molecular contacts for the title compound are F⋯H (29.4%), F⋯I (15.8%), F⋯N (11.4%), F⋯F (6.0%), N⋯I (5.6%) and F⋯C (4.5%).




ter

An indenide-tethered N-heterocyclic stannylene

The structure of (μ-1κN:2(η2),κ2N,N'-(2-{[2,6-bis(propan-2-yl)phen­yl]aza­nid­yl}eth­yl)[2-(1H-inden-1-yl)eth­yl]aza­nido)(1,4,7,10,13,16-hexa­oxa­cyclo­octa­dec­ane-1κ6O)lithiumtin, [LiSn(C8H16O4)(C25H31N2)], at 100 K has monoclinic (P21/n) symmetry. Analysis of the coordination of the Sn to the indenyl ring shows that the Sn inter­acts in an η2 fashion. A database survey showed that whilst this coordination mode is unusual for Ge and Pb compounds, Sn displays a wider range of coordination modes to cyclo­penta­dienyl ligands and their derivatives.




ter

Crystal structure, Hirshfeld surface analysis, inter­action energy and DFT studies of (2Z)-2-(2,4-di­chloro­benzyl­idene)-4-nonyl-3,4-di­hydro-2H-1,4-benzo­thia­zin-3-one

The title compound, C24H27Cl2NOS, contains 1,4-benzo­thia­zine and 2,4-di­chloro­phenyl­methyl­idene units in which the di­hydro­thia­zine ring adopts a screw-boat conformation. In the crystal, inter­molecular C—HBnz⋯OThz (Bnz = benzene and Thz = thia­zine) hydrogen bonds form chains of mol­ecules extending along the a-axis direction, which are connected to their inversion-related counterparts by C—HBnz⋯ClDchlphy (Dchlphy = 2,4-di­chloro­phen­yl) hydrogen bonds and C—HDchlphy⋯π (ring) inter­actions. These double chains are further linked by C—HDchlphy⋯OThz hydrogen bonds, forming stepped layers approximately parallel to (012). The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (44.7%), C⋯H/H⋯C (23.7%), Cl⋯H/H⋯Cl (18.9%), O⋯H/H⋯O (5.0%) and S⋯H/H⋯S (4.8%) inter­actions. Hydrogen-bonding and van der Waals inter­actions are the dominant inter­actions in the crystal packing. Computational chemistry indicates that in the crystal, C—HDchlphy⋯OThz, C—HBnz⋯OThz and C—HBnz⋯ClDchlphy hydrogen-bond energies are 134.3, 71.2 and 34.4 kJ mol−1, respectively. Density functional theory (DFT) optimized structures at the B3LYP/6–311 G(d,p) level are compared with the experimentally determined mol­ecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap. The two carbon atoms at the end of the nonyl chain are disordered in a 0.562 (4)/0.438 (4) ratio.




ter

Crystal structure and Hirshfeld surface analysis of the methanol solvate of sclareol, a labdane-type diterpenoid

The title compound, C20H36O2·CH3OH [systematic name: (3S)-4-[(S)-3-hy­droxy-3-methyl­pent-4-en-1-yl]-3,4a,8,8-tetra­methyl­deca­hydro­naphthalen-3-ol methanol monosolvate], is a methanol solvate of sclareol, a diterpene oil isolated from the medicinally important medicinal herb Salvia sclarea, commonly known as clary sage. It crystallizes in space group P1 (No. 1) with Z' = 2. The sclareol mol­ecule comprises two trans-fused cyclo­hexane rings, each having an equatorially oriented hydroxyl group, and a 3-methyl­pent-1-en-3-ol side chain. In the crystal, Os—H⋯Os, Os—H⋯Om, Om—H⋯Os and Om—H⋯Om (s = sclareol, m = methanol) hydrogen bonds connect neighboring mol­ecules into infinite [010] chains. The title compound exhibits weak anti-leishmanial activity (IC50 = 66.4 ± 1.0 µM ml−1) against standard miltefosine (IC50 = 25.8 ± 0.2 µM ml−1).




ter

Crystal structure, Hirshfeld surface analysis and inter­action energy and DFT studies of 1-(1,3-benzo­thia­zol-2-yl)-3-(2-hy­droxy­eth­yl)imidazolidin-2-one

In the title mol­ecule, C12H13N3O2S, the benzo­thia­zine moiety is slightly non-planar, with the imidazolidine portion twisted only a few degrees out of the mean plane of the former. In the crystal, a layer structure parallel to the bc plane is formed by a combination of O—HHydethy⋯NThz hydrogen bonds and weak C—HImdz⋯OImdz and C—HBnz⋯OImdz (Hydethy = hy­droxy­ethyl, Thz = thia­zole, Imdz = imidazolidine and Bnz = benzene) inter­actions, together with C—HImdz⋯π(ring) and head-to-tail slipped π-stacking [centroid-to-centroid distances = 3.6507 (7) and 3.6866 (7) Å] inter­actions between thia­zole rings. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (47.0%), H⋯O/O⋯H (16.9%), H⋯C/C⋯H (8.0%) and H⋯S/S⋯H (7.6%) inter­actions. Hydrogen bonding and van der Waals inter­actions are the dominant inter­actions in the crystal packing. Computational chemistry indicates that in the crystal, C—H⋯N and C—H⋯O hydrogen-bond energies are 68.5 (for O—HHydethy⋯NThz), 60.1 (for C—HBnz⋯OImdz) and 41.8 kJ mol−1 (for C—HImdz⋯OImdz). Density functional theory (DFT) optimized structures at the B3LYP/6–311 G(d,p) level are compared with the experimentally determined mol­ecular structure in the solid state.




ter

Crystal structure, characterization and Hirshfeld analysis of bis­{(E)-1-[(2,4,6-tri­bromo­phen­yl)diazen­yl]naphthalen-2-olato}copper(II) dimethyl sulfoxide monosolvate

In the title compound, [Cu(C16H8Br3N2O)2]·C2H6OS, the CuII atom is tetra­coordinated in a square-planar coordination, being surrounded by two N atoms and two O atoms from two N,O-bidentate (E)-1-[(2,4,6-tri­bromo­phen­yl)diazen­yl]naphthalen-2-olate ligands. The two N atoms and two O atoms around the metal center are trans to each other, with an O—Cu—O bond angle of 177.90 (16)° and a N—Cu—N bond angle of 177.8 (2)°. The average distances between the CuII atom and the coordinated O and N atoms are 1.892 (4) and 1.976 (4) Å, respectively. In the crystal, complexes are linked by C—H⋯O hydrogen bonds and by π–π inter­actions involving adjacent naphthalene ring systems [centroid–centroid distance = 3.679 (4) Å]. The disordered DMSO mol­ecules inter­act weakly with the complex mol­ecules, being positioned in the voids left by the packing arrangement of the square-planar complexes. The DMSO solvent mol­ecule is disordered over two positions with occupancies of 0.70 and 0.30.




ter

Crystal structure, Hirshfeld surface analysis and inter­action energy and DFT studies of (S)-10-propargyl­pyrrolo­[2,1-c][1,4]benzodiazepine-5,11-dione

The title compound, C15H14N2O2, consists of pyrrole and benzodiazepine units linked to a propargyl moiety, where the pyrrole and diazepine rings adopt half-chair and boat conformations, respectively. The absolute configuration was assigned on the the basis of l-proline, which was used in the synthesis of benzodiazepine. In the crystal, weak C—HBnz⋯ODiazp and C—HProprg⋯ODiazp (Bnz = benzene, Diazp = diazepine and Proprg = proparg­yl) hydrogen bonds link the mol­ecules into two-dimensional networks parallel to the bc plane, enclosing R44(28) ring motifs, with the networks forming oblique stacks along the a-axis direction. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (49.8%), H⋯C/C⋯H (25.7%) and H⋯O/O⋯H (20.1%) inter­actions. Hydrogen bonding and van der Waals inter­actions are the dominant inter­actions in the crystal packing. Computational chemistry indicates that in the crystal, C—H⋯O hydrogen-bond energies are 38.8 (for C—HBnz⋯ODiazp) and 27.1 (for C—HProprg⋯ODiazp) kJ mol−1. Density functional theory (DFT) optimized structures at the B3LYP/6–311 G(d,p) level are compared with the experimentally determined mol­ecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap.




ter

Redetermination of the crystal structure of R5Si4 (R = Pr, Nd) from single-crystal X-ray diffraction data

The crystal structures of praseodymium silicide (5/4), Pr5Si4, and neodymium silicide (5/4), Nd5Si4, were redetermined using high-quality single-crystal X-ray diffraction data. The previous structure reports of Pr5Si4 were only based on powder X-ray diffraction data [Smith et al. (1967). Acta Cryst. 22 940–943; Yang et al. (2002b). J. Alloys Compd. 339, 189–194; Yang et al., (2003). J. Alloys Compd. 263, 146–153]. On the other hand, the structure of Nd5Si4 has been determined from powder data [neutron; Cadogan et al., (2002). J. Phys. Condens. Matter, 14, 7191–7200] and X-ray [Smith et al. (1967). Acta Cryst. 22 940–943; Yang et al. (2002b). J. Alloys Compd. 339, 189–194; Yang et al., (2003). J. Alloys Compd. 263, 146–153] and single-crystal data with isotropic atomic displacement parameters [Roger et al., (2006). J. Alloys Compd. 415, 73–84]. In addition, the anisotropic atomic displacement parameters for all atomic sites have been determined for the first time. These compounds are confirmed to have the tetra­gonal Zr5Si4-type structure (space group: P41212), as reported previously (Smith et al., 1967). The structure is built up by distorted body-centered cubes consisting of Pr(Nd) atoms, which are linked to each other by edge-sharing to form a three-dimensional framework. This framework delimits zigzag channels in which the silicon dimers are situated.




ter

Crystal structure and photoluminescent properties of bis­(4'-chloro-2,2':6',2''-terpyrid­yl)cobalt(II) dichloride tetra­hydrate

In the title hydrated complex, [Co(C15H10ClN3)2]Cl2·4H2O, the complete dication is generated by overline{4} symmetry. The CoN6 moiety shows distortion from regular octa­hedral geometry with the trans bond angles of two N—Co—N units being 160.62 (9)°. In the crystal, O—H⋯Cl and C—H⋯O inter­actions link the components into (001) sheets. The title compound exhibits blue-light emission, as indicated by photoluminescence data, and a HOMO–LUMO energy separation of 2.23 eV was obtained from its diffuse reflectance spectrum.




ter

A redetermination of the crystal structure of the mannitol complex NH4[Mo2O5(C6H11O6)]·H2O: hydrogen-bonding scheme and Hirshfeld surface analysis

The redetermined structure [for the previous study, see: Godfrey & Waters (1975). Cryst. Struct. Commun. 4, 5–8] of ammonium μ-oxido-μ-[1,5,6-tri­hydroxy­hexane-2,3,4-tris­(olato)]bis­[dioxidomolybdenum(V)] monohydrate, NH4[Mo2(C6H11O6)O5]·H2O, was obtained from an attempt to prepare a glutamic acid complex from the [Co2Mo10H4O38]6− anion. Subsequent study indicated the complex arose from a substantial impurity of mannitol in the glutamic acid sample used. All hydrogen atoms have been located in the present study and the packing displays N—H⋯O, O—H⋯O and C—H⋯O hydrogen bonds. A Hirshfeld surface analysis was also performed.




ter

Intra­molecular 1,5-S⋯N σ-hole inter­action in (E)-N'-(pyridin-4-yl­methyl­idene)thio­phene-2-carbohydrazide

The title compound, C11H9N3OS, (I), crystallizes in the monoclinic space group P21/n. The mol­ecular conformation is nearly planar and features an intra­molecular chalcogen bond between the thio­phene S and the imine N atoms. Within the crystal, the strongest inter­actions between mol­ecules are the N—H⋯O hydrogen bonds, which organize them into inversion dimers. The dimers are linked through short C—H⋯N contacts and are stacked into layers propagating in the (001) plane. The crystal structure features π–π stacking between the pyridine aromatic ring and the azomethine double bond. The calculated energies of pairwise inter­molecular inter­actions within the stacks are considerably larger than those found for the inter­actions between the layers.




ter

Structural investigation of methyl 3-(4-fluoro­benzo­yl)-7-methyl-2-phenyl­indolizine-1-carboxyl­ate, an inhibitory drug towards Mycobacterium tuberculosis

The title compound, C24H18FNO3, crystallizes in the monoclinic centrosymmetric space group P21/n and its mol­ecular conformation is stabilized via C—H⋯O intra­molecular inter­actions. The supra­molecular network mainly comprises C—H⋯O, C—H⋯F and C—H⋯π inter­actions, which contribute towards the formation of the crystal structure. The different inter­molecular inter­actions have been further analysed via Hirshfeld surface analysis and fingerprint plots.




ter

Crystal structure, Hirshfeld surface analysis and inter­action energy, DFT and anti­bacterial activity studies of ethyl 2-[(2Z)-2-(2-chloro­benzyl­idene)-3-oxo-3,4-di­hydro-2H-1,4-benzo­thia­zin-4-yl]acetate

The title compound, C19H16ClNO3S, consists of chloro­phenyl methyl­idene and di­hydro­benzo­thia­zine units linked to an acetate moiety, where the thia­zine ring adopts a screw-boat conformation. In the crystal, two sets of weak C—HPh⋯ODbt (Ph = phenyl and Dbt = di­hydro­benzo­thia­zine) hydrogen bonds form layers of mol­ecules parallel to the bc plane. The layers stack along the a-axis direction with inter­calation of the ester chains. The crystal studied was a two component twin with a refined BASF of 0.34961 (5). The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions to the crystal packing are from H⋯H (37.5%), H⋯C/C⋯H (24.6%) and H⋯O/O⋯H (16.7%) inter­actions. Hydrogen-bonding and van der Waals inter­actions are the dominant inter­actions in the crystal packing. Computational chemistry indicates that in the crystal, C—HPh⋯ODbt hydrogen bond energies are 38.3 and 30.3 kJ mol−1. Density functional theory (DFT) optimized structures at the B3LYP/ 6–311 G(d,p) level are compared with the experimentally determined mol­ecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap. Moreover, the anti­bacterial activity of the title compound has been evaluated against gram-positive and gram-negative bacteria.




ter

Crystal structure, Hirshfeld surface analysis and inter­action energy and DFT studies of 2-(2,3-di­hydro-1H-perimidin-2-yl)-6-meth­oxy­phenol

The title compound, C18H16N2O2, consists of perimidine and meth­oxy­phenol units, where the tricyclic perimidine unit contains a naphthalene ring system and a non-planar C4N2 ring adopting an envelope conformation with the NCN group hinged by 47.44 (7)° with respect to the best plane of the other five atoms. In the crystal, O—HPhnl⋯NPrmdn and N—HPrmdn⋯OPhnl (Phnl = phenol and Prmdn = perimidine) hydrogen bonds link the mol­ecules into infinite chains along the b-axis direction. Weak C—H⋯π inter­actions may further stabilize the crystal structure. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (49.0%), H⋯C/C⋯H (35.8%) and H⋯O/O⋯H (12.0%) inter­actions. Hydrogen bonding and van der Waals inter­actions are the dominant inter­actions in the crystal packing. Computational chemistry indicates that in the crystal, the O—HPhnl⋯NPrmdn and N—HPrmdn⋯OPhnl hydrogen-bond energies are 58.4 and 38.0 kJ mol−1, respectively. Density functional theory (DFT) optimized structures at the B3LYP/ 6–311 G(d,p) level are compared with the experimentally determined mol­ecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap.




ter

Dehydration synthesis and crystal structure of terbium oxychloride, TbOCl

Terbium oxychloride, TbOCl, was synthesized via the simple heat-treatment of TbCl3·6H2O and its structure was determined by refinement against X-ray powder diffraction data. TbOCl crystallizes with the matlockite (PbFCl) structure in the tetra­gonal space group P4/nmm and is composed of alternating (001) layers of (TbO)n and n Cl−. The unit-cell parameters, unit-cell volume, and density were compared to the literature data of other isostructural rare-earth oxychlorides in the same space group and showed good agreement when compared to the calculated trendlines.




ter

Synthesis and crystal structures of tetra­meric [2-(4,4-dimethyl-2-oxazolin-2-yl)anilido]sodium and tris­[2-(4,4-dimethyl-2-oxazolin-2-yl)anilido]ytterbium(III)

Reaction of 2-(4,4-dimethyl-2-oxazolin-2-yl)aniline (H2-L1) with one equivalent of Na[N(SiMe3)2] in toluene afforded pale-yellow crystals of tetra­meric poly[bis­[μ3-2-(4,4-dimethyl-2-oxazolin-2-yl)anilinido][μ2-2-(4,4-dimethyl-2-oxa­zolin-2-yl)aniline]tetra­sodium(I)], [Na4(C11H13N2O)4]n or [Na4(H-L1)4]n (2), in excellent yield. Subsequent reaction of [Na4(H-L1)4]n (2) with 1.33 equivalents of anhydrous YbCl3 in a 50:50 mixture of toluene–THF afforded yellow crystals of tris­[2-(4,4-dimethyl-2-oxazolin-2-yl)anilinido]ytterbium(III), [Yb(C11H13N2O)3] or Yb(H-L1)3 (3) in moderate yield. Direct reaction of three equivalents of 2-(4',4'-dimethyl-2'-oxazolin­yl)aniline (H2-L1) with Yb[N(SiMe3)2]3 in toluene resulted in elimination of hexa­methyl­disilazane, HN(SiMe3)2, and produced Yb(H-L1)3 (3) in excellent yield. The structure of 2 consists of tetra­meric Na4(H-L1)4 subunits in which each Na+ cation is bound to two H-L1 bridging bidentate ligands and these subunits are connected into a polymeric chain by two of the four oxazoline O atoms bridging to Na+ cations in the adjacent tetra­mer. This results in two 4-coordinate and two 5-coordinate Na+ cations within each tetra­meric unit. The structure of 3 consists of a distorted octa­hedron where the bite angle of ligand L1 ranges between 74.72 (11) and 77.79 (11) degrees. The oxazoline (and anilide) N atoms occupy meridional sites such that for one ligand an anilide nitro­gen is trans to an oxazoline nitro­gen while for the other two oxazoline N atoms are trans to each other. This results in a significantly longer Yb—N(oxazoline) distance [2.468 (3) Å] for the bond trans to the anilide compared to those for the oxazoline N atoms trans to one another [2.376 (3), 2.390 (3) Å].




ter

Structure of a push–pull olefin prepared by ynamine hydro­boration with a borandiol ester

N-[(Z)-2-(2H-1,3,2-Benzodioxaborol-2-yl)-2-phenyl­ethen­yl]-N-(propan-2-yl)aniline, C23H22BNO2, contains a C=C bond that is conjugated with a donor and an acceptor group. An analysis that included similar push–pull olefins revealed that bond lengths in their B—C=C—N core units correlate with the perceived acceptor and donor strength of the groups. The two phenyl groups in the mol­ecule are rotated with respect to the plane that contains the BCCN atoms, and are close enough for significant π-stacking. Definite characterization of the title compound demonstrates, for the first time in a reliable way, that hydro­boration of ynamines with borandiol esters is feasible. Compared to olefin hydro­boration with borane, the ynamine substrate is activated enough to undergo reaction with the less active hydro­boration reagent catecholborane.




ter

Crystal structure and DFT computational studies of (E)-2,4-di-tert-butyl-6-{[3-(tri­fluoro­meth­yl)benz­yl]imino­meth­yl}phenol

The title compound, C23H28F3NO, is an ortho-hy­droxy Schiff base compound, which adopts the enol–imine tautomeric form in the solid state. The mol­ecular structure is not planar and the dihedral angle between the planes of the aromatic rings is 85.52 (10)°. The tri­fluoro­methyl group shows rotational disorder over two sites, with occupancies of 0.798 (6) and 0.202 (6). An intra­molecular O—H⋯N hydrogen bonding generates an S(6) ring motif. The crystal structure is consolidated by C—H⋯π inter­actions. The mol­ecular structure was optimized via density functional theory (DFT) methods with the B3LYP functional and LanL2DZ basis set. The theoretical structure is in good agreement with the experimental data. The frontier orbitals and mol­ecular electrostatic potential map were also examined by DFT computations.




ter

Hydrogen-bonding patterns in 2,2-bis­(4-methyl­phen­yl)hexa­fluoro­propane pyridinium and ethyl­enedi­ammonium salt crystals

The crystal structures of two salt crystals of 2,2-bis­(4-methyl­phen­yl)hexa­fluoro­propane (Bmphfp) with amines, namely, dipyridinium 4,4'-(1,1,1,3,3,3-hexa­fluoro­propane-2,2-di­yl)dibenzoate 4,4'-(1,1,1,3,3,3-hexa­fluoro­propane-2,2-di­yl)di­benzoic acid, 2C5H6N+·C17H8F6O42−·C17H10F6O4, (1), and a monohydrated ethyl­enedi­ammonium salt ethane-1,2-diaminium 4,4'-(1,1,1,3,3,3-hexa­fluoro­propane-2,2-di­yl)dibenzoate monohydrate, C2H10N22+·C17H8F6O42−·H2O, (2), are reported. Compounds 1 and 2 crystallize, respectively, in space group P21/c with Z' = 2 and in space group Pbca with Z' = 1. The crystals of compound 1 contain neutral and anionic Bmphfp mol­ecules, and form a one-dimensional hydrogen-bonded chain motif. The crystals of compound 2 contain anionic Bmphfp mol­ecules, which form a complex three-dimensional hydrogen-bonded network with the ethyl­enedi­amine and water mol­ecules.