ter Crystal structure and Hirshfeld surface analysis of 2,5-dibromoterephthalic acid ethylene glycol monosolvate By scripts.iucr.org Published On :: 2019-07-23 The title compound, C8H4Br2O4·C2H6O2, crystallizes with one-half of a 2,5-dibromoterephthalic acid (H2Br2tp) molecule and one-half of an ethylene glycol (EG) molecule in the the asymmetric unit. The whole molecules are generated by application of inversion symmetry. The H2Br2tp molecule is not planar, with the dibromobenzene ring system inclined by a dihedral angle of 18.62 (3)° to the carboxylic group. In the crystal, the H2Br2tp and EG molecules are linked into sheets propagating parallel to (overline{1}01) through O—H⋯O hydrogen bonds, thereby forming R44 (12) and R44 (28) graph-set motifs. Br⋯O and weak π–π stacking interactions are also observed. Hirshfeld surface analysis was used to confirm the existence of these interactions. Full Article text
ter A molybdenum tris(dithiolene) complex coordinates to three bound cobalt centers in three different ways By scripts.iucr.org Published On :: 2019-07-26 The synthesis and structural characterization of the molecular compound (μ3-benzene-1,2-dithiolato)hexacarbonylbis(μ3-1,1,1,4,4,4-hexafluorobut-2-ene-2,3-dithiolato)tricobaltmolybdenum, [Co3Mo(C4F6S2)2(C6H4S2)(CO)6] or Mo(tfd)2(bdt)(Co(CO)2)3 (tfd is 1,1,1,4,4,4-hexafluorobut-2-ene-2,3-dithiolate and bdt is benzene-1,2-dithiolate), are reported. The structure of the molecule contains the molybdenum tris(dithiolene) complex Mo(tfd)2(bdt) coordinated as a multidentate ligand to three cobalt dicarbonyl units. Each of the three cobalt centers is relatively close to molybdenum, with Co⋯Mo distances of 2.7224 (7), 2.8058 (7), and 2.6320 (6) Å. Additionally, each of the cobalt centers is bound via main-group donor atoms, but each one in a different way: the first cobalt atom is coordinated by two sulfur atoms from different dithiolenes (bdt and tfd). The second cobalt atom is coordinated by one sulfur from one tfd and two olefinic carbons from another tfd. The third cobalt is coordinated by one sulfur from bdt and two sulfurs from tfd. This is, to the best of our knowledge, the first structurally characterized example of a molybdenum (tris)dithiolene complex that coordinates to cobalt. The F atoms of two of the –CF3 groups were refined as disordered over two sets of sites with ratios of refined occupancies of 0.703 (7):0.297 (7) and 0.72 (2):0.28 (2). Full Article text
ter Six 1-aroyl-4-(4-methoxyphenyl)piperazines: similar molecular structures but different patterns of supramolecular assembly By scripts.iucr.org Published On :: 2019-07-26 Six new 1-aroyl-4-(4-methoxyphenyl)piperazines have been prepared, using coupling reactions between benzoic acids and N-(4-methoxyphenyl)piperazine. There are no significant hydrogen bonds in the structure of 1-benzoyl-4-(4-methoxyphenyl)piperazine, C18H20N2O2, (I). The molecules of 1-(2-fluorobenzoyl)-4-(4-methoxyphenyl)piperazine, C18H19FN2O2, (II), are linked by two C—H⋯O hydrogen bonds to form chains of rings, which are linked into sheets by an aromatic π–π stacking interaction. 1-(2-Chlorobenzoyl)-4-(4-methoxyphenyl)piperazine, C18H19ClN2O2, (III), 1-(2-bromobenzoyl)-4-(4-methoxyphenyl)piperazine, C18H19BrN2O2, (IV), and 1-(2-iodobenzoyl)-4-(4-methoxyphenyl)piperazine, C18H19IN2O2, (V), are isomorphous, but in (III) the aroyl ring is disordered over two sets of atomic sites having occupancies of 0.942 (2) and 0.058 (2). In each of (III)–(V), a combination of two C—H⋯π(arene) hydrogen bonds links the molecules into sheets. A single O—H⋯O hydrogen bond links the molecules of 1-(2-hydroxybenzoyl)-4-(4-methoxyphenyl)piperazine, C18H20N2O3, (VI), into simple chains. Comparisons are made with the structures of some related compounds. Full Article text
ter Crystal structure, Hirshfeld surface analysis and interaction energy and DFT studies of 4-[(prop-2-en-1-yloxy)methyl]-3,6-bis(pyridin-2-yl)pyridazine By scripts.iucr.org Published On :: 2019-08-20 The title compound, C18H16N4O, consists of a 3,6-bis(pyridin-2-yl)pyridazine moiety linked to a 4-[(prop-2-en-1-yloxy)methyl] group. The pyridine-2-yl rings are oriented at a dihedral angle of 17.34 (4)° and are rotated slightly out of the plane of the pyridazine ring. In the crystal, C—HPyrd⋯NPyrdz (Pyrd = pyridine and Pyrdz = pyridazine) hydrogen bonds and C—HPrpoxy⋯π (Prpoxy = prop-2-en-1-yloxy) interactions link the molecules, forming deeply corrugated layers approximately parallel to the bc plane and stacked along the a-axis direction. Hirshfeld surface analysis indicates that the most important contributions for the crystal packing are from H⋯H (48.5%), H⋯C/C⋯H (26.0%) and H⋯N/N⋯H (17.1%) contacts, hydrogen bonding and van der Waals interactions being the dominant interactions in the crystal packing. Computational chemistry indicates that in the crystal, the C—HPyrd⋯NPyrdz hydrogen-bond energy is 64.3 kJ mol−1. Density functional theory (DFT) optimized structures at the B3LYP/6–311 G(d,p) level are compared with the experimentally determined molecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap. Full Article text
ter Crystal structure and Hirshfeld surface analysis of lapachol acetate 80 years after its first synthesis By scripts.iucr.org Published On :: 2019-08-19 Lapachol acetate [systematic name: 3-(3-methylbut-2-enyl)-1,4-dioxonaphthalen-2-yl acetate], C17H16O4, was prepared using a modified high-yield procedure and its crystal structure is reported for the first time 80 years after its first synthesis. The full spectroscopic characterization of the molecule is reported. The molecular conformation shows little difference with other lapachol derivatives and lapachol itself. The packing is directed by intermolecular π–π and C—H⋯O interactions, as described by Hirshfeld surface analysis. The former interactions make the largest contributions to the total packing energy in a ratio of 2:1 with respect to the latter. Full Article text
ter Synthesis, characterization, crystal structure and supramolecularity of ethyl (E)-2-cyano-3-(3-methylthiophen-2-yl)acrylate and a new polymorph of ethyl (E)-2-cyano-3-(thiophen-2-yl)acrylate By scripts.iucr.org Published On :: 2019-08-23 The synthesis, crystal structure and structural motif of two thiophene-based cyanoacrylate derivatives, namely, ethyl (E)-2-cyano-3-(3-methylthiophen-2-yl)acrylate (1), C11H11NO2S, and ethyl (E)-2-cyano-3-(thiophen-2-yl)acrylate (2), C10H9NO2S, are reported. Derivative 1 crystallized with two independent molecules in the asymmetric unit, and derivative 2 represents a new monoclinic (C2/m) polymorph. The molecular conformations of 1 and the two polymorphs of 2 are very similar, as all non-H atoms are planar except for the methyl of the ethyl groups. The intermolecular interactions and crystal packing of 1 and 2 are described and compared with that of the reported monoclinic (C2/m) polymorph of derivative 2 [Castro Agudelo et al. (2017). Acta Cryst. E73, 1287–1289]. Full Article text
ter Synthesis and crystal structure of tert-butyl 1-(2-iodobenzoyl)cyclopent-3-ene-1-carboxylate By scripts.iucr.org Published On :: 2019-08-30 1-(2-Iodobenzoyl)-cyclopent-3-ene-1-carboxylates are novel substrates to construct bicyclo[3.2.1]octanes with antibacterial and antithrombotic activities. In this context, tert-butyl 1-(2-iodobenzoyl)-cyclopent-3-ene-1-carboxylate, C17H19IO3, was synthesized and structurally characterized. The 2-iodobenzoyl group is attached to the tertiary C atom of the cyclopent-3-ene ring. The dihedral angle between the benzene ring and the mean plane of the envelope-type cyclopent-3-ene ring is 26.0 (3)°. In the crystal, pairs of C-H⋯O hydrogen bonds link the molecules to form inversion dimers. Full Article text
ter Crystal structure of a binuclear mixed-valence ytterbium complex containing a 2-anthracene-substituted phenoxide ligand By scripts.iucr.org Published On :: 2019-08-23 Reaction of 2-(anthracen-9-yl)phenol (HOPhAn, 1) with divalent Yb[N(SiMe3)2]2·2THF in THF–toluene mixtures affords the mixed-valence YbII–YbIII dimer {[2-(anthracen-9-yl)phenolato-κO]bis(tetrahydrofuran)ytterbium(III)}-tris[μ-2-(anthracen-9-yl)phenolato]-κ4O:O;κO:1,2-η,κO-{[2-(anthracen-9-yl)phenolato-κO]ytterbium(II)} toluene trisolvate, [Yb2(C20H13O)5(C4H8O)2]·3C7H7 or [YbIII(THF)2(OPhAn)](μ-OPhAn)3[YbII(OPhAn)]·3C7H7 (2), as the major product. It crystallized as a toluene trisolvate. The Yb—O bond lengths in the crystal structure of this dimer clearly identify the YbII and YbIII centres. Interestingly, the formally four-coordinate YbII centre shows a close contact with one anthracene C—C bond of a bridging OPhAn ligand, bringing the formal coordination number to five. Full Article text
ter Synthesis and redetermination of the crystal structure of salicylaldehyde N(4)-morpholinothiosemicarbazone By scripts.iucr.org Published On :: 2019-08-30 The structure of the title compound (systematic name: N-{[(2-hydroxyphenyl)methylidene]amino}morpholine-4-carbothioamide), C12H15N3O2S, was previously determined (Koo et al., 1977) using multiple-film equi-inclination Weissenberg data, but has been redetermined with higher precision to explore its conformation and the hydrogen-bonding patterns and supramolecular interactions. The molecular structure shows intramolecular O—H⋯N and C—H⋯S interactions. The configuration of the C=N bond is E. The molecule is slightly twisted about the central N—N bond. The best planes through the phenyl ring and the morpholino ring make an angle of 43.44 (17)°. In the crystal, the molecules are connected into chains by N—H⋯O and C—H⋯O hydrogen bonds, which combine to generate sheets lying parallel to (002). The most prominent contribution to the surface contacts are H⋯H contacts (51.6%), as concluded from a Hirshfeld surface analysis. Full Article text
ter Crystal structure, Hirshfeld surface analysis and interaction energy and DFT studies of 2-chloroethyl 2-oxo-1-(prop-2-yn-1-yl)-1,2-dihydroquinoline-4-carboxylate By scripts.iucr.org Published On :: 2019-09-06 The title compound, C15H12ClNO3, consists of a 1,2-dihydroquinoline-4-carboxylate unit with 2-chloroethyl and propynyl substituents, where the quinoline moiety is almost planar and the propynyl substituent is nearly perpendicular to its mean plane. In the crystal, the molecules form zigzag stacks along the a-axis direction through slightly offset π-stacking interactions between inversion-related quinoline moieties which are tied together by intermolecular C—HPrpnyl⋯OCarbx and C—HChlethy⋯OCarbx (Prpnyl = propynyl, Carbx = carboxylate and Chlethy = chloroethyl) hydrogen bonds. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (29.9%), H⋯O/O⋯H (21.4%), H⋯C/C⋯ H (19.4%), H⋯Cl/Cl⋯H (16.3%) and C⋯C (8.6%) interactions. Hydrogen bonding and van der Waals interactions are the dominant interactions in the crystal packing. Computational chemistry indicates that in the crystal, the C—HPrpnyl⋯OCarbx and C—HChlethy⋯OCarbx hydrogen bond energies are 67.1 and 61.7 kJ mol−1, respectively. Density functional theory (DFT) optimized structures at the B3LYP/ 6–311 G(d,p) level are compared with the experimentally determined molecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap. Full Article text
ter Crystal structure of 4-bromo-N-[(3,6-di-tert-butyl-9H-carbazol-1-yl)methylidene]aniline By scripts.iucr.org Published On :: 2019-09-10 In the title compound, C27H29BrN2, the carbazole ring system is essentially planar, with an r.m.s. deviation of 0.0781 (16) Å. An intramolecular N—H⋯N hydrogen bond forms an S(6) ring motif. One of the tert-butyl substituents shows rotational disorder over two sites with occupancies of 0.592 (3) and 0.408 (3). In the crystal, two molecules are associated into an inversion dimer through a pair of C—H⋯π interactions. The dimers are further linked by another pair of C—H⋯π interactions, forming a ribbon along the c-axis direction. A C—H⋯π interaction involving the minor disordered component and the carbazole ring system links the ribbons, generating a network sheet parallel to (100). Full Article text
ter Crystal structure and Hirshfeld surface analysis of 5-(3,5-di-tert-butyl-4-hydroxyphenyl)-3-phenyl-4,5-dihydro-1H-pyrazole-1-carboxamide By scripts.iucr.org Published On :: 2019-09-12 In the title compound, C24H31N3O2, the mean plane of the central pyrazole ring [r.m.s. deviation = 0.095 Å] makes dihedral angles of 11.93 (9) and 84.53 (8)°, respectively, with the phenyl and benzene rings. There is a short intramolecular N—H⋯N contact, which generates an S(5) ring motif. In the crystal, pairs of N—H⋯O hydrogen bonds link inversion-related molecules into dimers, generating an R22(8) ring motif. The Hirshfeld surface analysis indicates that the most significant contribution involves H⋯H contacts of 68.6% Full Article text
ter The crystal structure of the zwitterionic co-crystal of 2,4-dichloro-6-{[(3-hydroxypropyl)azaniumyl]methyl}phenolate and 2,4-dichlorophenol By scripts.iucr.org Published On :: 2019-09-10 The title compound, C10H13Cl2NO2·C6H4Cl2O, was formed from the incomplete Mannich condensation reaction of 3-aminopropan-1-ol, formaldehyde and 2,4-dichlorophenol in methanol. This resulted in the formation of a co-crystal of the zwitterionic Mannich base, 2,4-dichloro-6-{[(3-hydroxypropyl)azaniumyl]methyl}phenolate and the unreacted 2,4-dichlorophenol. The compound crystallizes in the monoclinic crystal system (in space group Cc) and the asymmetric unit contains a molecule each of the 2,4-dichlorophenol and 2,4-dichloro-6-{[(3-hydroxypropyl)azaniumyl]methyl}phenolate. Examination of the crystal structure shows that the two components are clearly linked together by hydrogen bonds. The packing patterns are most interesting along the b and the c axes, where the co-crystal in the unit cell packs in a manner that shows alternating aromatic dichlorophenol fragments and polar hydrogen-bonded channels. The 2,4-dichlorophenol rings stack on top of one another, and these are held together by π–π interactions. The crystal studied was refined as an inversion twin. Full Article text
ter Crystal structure and Hirshfeld surface analysis of 2,2''',6,6'''-tetramethoxy-3,2':5',3'':6'',3'''-quaterpyridine By scripts.iucr.org Published On :: 2019-09-20 In the title compound, C24H22N4O4, the four pyridine rings are tilted slightly with respect to each other. The dihedral angles between the inner and outer pyridine rings are 12.51 (8) and 9.67 (9)°, while that between inner pyridine rings is 20.10 (7)°. Within the molecule, intramolecular C—H⋯O and C—H⋯N contacts are observed. In the crystal, adjacent molecules are linked by π–π stacking interactions between pyridine rings and weak C—H⋯π interactions between a methyl H atom and the centroid of a pyridine ring, forming a two-dimensional layer structure extending parallel to the ac plane. Hirshfeld surface analysis and two-dimensional fingerprint plots indicate that the most important contributions to the crystal packing are from H⋯H (52.9%) and H⋯C/C⋯H (17.3%) contacts. Full Article text
ter Crystal structure and Hirshfeld surface analysis of N-(tert-butyl)-2-(phenylethynyl)imidazo[1,2-a]pyridin-3-amine By scripts.iucr.org Published On :: 2019-09-27 The bicyclic imidazo[1,2-a]pyridine core of the title compound, C19H19N3, is relatively planar with an r.m.s. deviation of 0.040 Å. The phenyl ring is inclined to the mean plane of the imidazo[1,2-a]pyridine unit by 18.2 (1)°. In the crystal, molecules are linked by N—H⋯H hydrogen bonds, forming chains along the c-axis direction. The chains are linked by C—H⋯π interactions, forming slabs parallel to the ac plane. The Hirshfeld surface analysis and fingerprint plots reveal that the crystal structure is dominated by H⋯H (54%) and C⋯H/H⋯C (35.6%) contacts. The crystal studied was refined as an inversion twin Full Article text
ter Crystal structure, Hirshfeld surface analysis and physicochemical characterization of bis[4-(dimethylamino)pyridinium] di-μ-chlorido-bis[dichloridomercurate(II)] By scripts.iucr.org Published On :: 2019-10-03 The title molecular salt, (C7H11N2)2[Hg2Cl6], crystallizes with two 4-(dimethylamino)pyridinium cations (A and B) and two half hexachloridodimercurate(II) anions in the asymmetric unit. The organic cations exhibit essentially the same features with an almost planar pyridyl ring (r.m.s. deviations of 0.0028 and 0.0109 Å), which forms an inclined dihedral angle with the dimethyamino group [3.06 (1) and 1.61 (1)°, respectively]. The dimethylamino groups in the two cations are planar, and the C—N bond lengths are shorter than that in 4-(dimethylamino)pyridine. In the crystal, mixed cation–anion layers lying parallel to the (010) plane are formed through N—H⋯Cl hydrogen bonds and adjacent layers are linked by C—H⋯Cl hydrogen bonds, forming a three-dimensional network. The analyses of the calculated Hirshfeld surfaces confirm the relevance of the above intermolecular interactions, but also serve to further differentiate the weaker intermolecular interactions formed by the organic cations and inorganic anions, such as π–π and Cl⋯Cl interactions. The powder XRD data confirms the phase purity of the crystalline sample. Furthermore, the vibrational absorption bands were identified by IR spectroscopy and the optical properties were studied by using optical UV–visible absorption spectroscopy. Full Article text
ter Crystal structure, Hirshfeld surface analysis and interaction energy and DFT studies of (2Z)-4-benzyl-2-(2,4-dichlorobenzylidene)-2H-1,4-benzothiazin-3(4H)-one By scripts.iucr.org Published On :: 2019-10-22 The title compound, C22H15Cl2NOS, contains 1,4-benzothiazine and 2,4-dichlorobenzylidene units, where the dihydrothiazine ring adopts a screw-boat conformation. In the crystal, intermolecular C—HBnz⋯OThz (Bnz = benzene and Thz = thiazine) hydrogen bonds form corrugated chains extending along the b-axis direction which are connected into layers parallel to the bc plane by intermolecular C—HMethy⋯SThz (Methy = methylene) hydrogen bonds, enclosing R44(22) ring motifs. Offset π-stacking interactions between 2,4-dichlorophenyl rings [centroid–centroid = 3.7701 (8) Å] and π-interactions which are associated by C—HBnz⋯π(ring) and C—HDchlphy⋯π(ring) (Dchlphy = 2,4-dichlorophenyl) interactions may be effective in the stabilization of the crystal structure. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (29.1%), H⋯C/C⋯H (27.5%), H⋯Cl/Cl⋯H (20.6%) and O⋯H/H⋯O (7.0%) interactions. Hydrogen-bonding and van der Waals interactions are the dominant interactions in the crystal packing. Computational chemistry indicates that in the crystal, the C—HBnz⋯OThz and C—HMethy⋯SThz hydrogen-bond energies are 55.0 and 27.1 kJ mol−1, respectively. Density functional theory (DFT) optimized structures at the B3LYP/6-311G(d,p) level are compared with the experimentally determined molecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap. Full Article text
ter Crystal structure, Hirshfeld surface analysis and interaction energy and DFT studies of methyl 4-[3,6-bis(pyridin-2-yl)pyridazin-4-yl]benzoate By scripts.iucr.org Published On :: 2019-10-22 The title compound, C22H16N4O2, contains two pyridine rings and one methoxycarbonylphenyl group attached to a pyridazine ring which deviates very slightly from planarity. In the crystal, ribbons consisting of inversion-related chains of molecules extending along the a-axis direction are formed by C—HMthy⋯OCarbx (Mthy = methyl and Carbx = carboxylate) hydrogen bonds. The ribbons are connected into layers parallel to the bc plane by C—HBnz⋯π(ring) (Bnz = benzene) interactions. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (39.7%), H⋯C/C⋯H (27.5%), H⋯N/N⋯H (15.5%) and O⋯H/H⋯O (11.1%) interactions. Hydrogen-bonding and van der Waals interactions are the dominant interactions in the crystal packing. Computational chemistry indicates that in the crystal, C—HMthy⋯OCarbx hydrogen-bond energies are 62.0 and 34.3 kJ mol−1, respectively. Density functional theory (DFT) optimized structures at the B3LYP/6-311G(d,p) level are compared with the experimentally determined molecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap. Full Article text
ter The first structural characterization of the protonated azacyclam ligand in catena-poly[[[(perchlorato)copper(II)]-μ-3-(3-carboxypropyl)-1,5,8,12-tetraaza-3-azoniacyclotetradecane] bis(per& By scripts.iucr.org Published On :: 2019-10-22 The asymmetric unit of the title compound, catena-poly[[[(perchlorato-κO)copper(II)]-μ-3-(3-carboxypropyl)-1,5,8,12-tetraaza-3-azoniacyclotetradecane-κ4N1,N5,N8,N12] bis(perchlorate)], {[Cu(C13H30N5O2)(ClO4)](ClO4)2}n, (I), consists of a macrocyclic cation, one coordinated perchlorate anion and two perchlorate ions as counter-anions. The metal ion is coordinated in a tetragonally distorted octahedral geometry by the four secondary N atoms of the macrocyclic ligand, the mutually trans O atoms of the perchlorate anion and the carbonyl O atom of the protonated carboxylic acid group of a neighbouring cation. The average equatorial Cu—N bond lengths [2.01 (6) Å] are significantly shorter than the axial Cu—O bond lengths [2.379 (8) Å for carboxylate and average 2.62 (7) Å for disordered perchlorate]. The coordinated macrocyclic ligand in (I) adopts the most energetically favourable trans-III conformation with an equatorial orientation of the substituent at the protonated distal 3-position N atom in a six-membered chelate ring. The coordination of the carboxylic acid group of the cation to a neighbouring complex unit results in the formation of infinite chains running along the b-axis direction, which are crosslinked by N—H⋯O hydrogen bonds between the secondary amine groups of the macrocycle and O atoms of the perchlorate counter-anions to form sheets lying parallel to the (001) plane. Additionally, the extended structure of (I) is consolidated by numerous intra- and interchain C—H⋯O contacts. Full Article text
ter Crystal structures and hydrogen-bonding analysis of a series of solvated ammonium salts of molybdenum(II) chloride clusters By scripts.iucr.org Published On :: 2019-10-22 Charge-assisted hydrogen bonding plays a significant role in the crystal structures of solvates of ionic compounds, especially when the cation or cations are primary ammonium salts. We report the crystal structures of four ammonium salts of molybdenum halide cluster solvates where we observe significant hydrogen bonding between the solvent molecules and cations. The crystal structures of bis(anilinium) octa-μ3-chlorido-hexachlorido-octahedro-hexamolybdate N,N-dimethylformamide tetrasolvate, (C6H8N)2[Mo6Cl8Cl6]·4C3H7NO, (I), p-phenylenediammonium octa-μ3-chlorido-hexachlorido-octahedro-hexamolybdate N,N-dimethylformamide hexasolvate, (C6H10N2)[Mo6Cl8Cl6]·6C3H7NO, (II), N,N'-(1,4-phenylene)bis(propan-2-iminium) octa-μ3-chlorido-hexachlorido-octahedro-hexamolybdate acetone trisolvate, (C12H18N2)[Mo6Cl8Cl6]·3C3H6O, (III), and 1,1'-dimethyl-4,4'-bipyridinium octa-μ3-chlorido-hexachlorido-octahedro-hexamolybdate N,N-dimethylformamide tetrasolvate, (C12H14N2)[Mo6Cl8Cl6]·4C3H7NO, (IV), are reported and described. In (I), the anilinium cations and N,N-dimethylformamide (DMF) solvent molecules form a cyclic R42(8) hydrogen-bonded motif centered on a crystallographic inversion center with an additional DMF molecule forming a D(2) interaction. The p-phenylenediammonium cation in (II) forms three D(2) interactions between the three N—H bonds and three independent N,N-dimethylformamide molecules. The dication in (III) is a protonated Schiff base solvated by acetone molecules. Compound (IV) contains a methyl viologen dication with N,N-dimethylformamide molecules forming close contacts with both aromatic and methyl H atoms. Full Article text
ter Different packing motifs mediated by weak interactions and polymorphism in the crystal structures of five 2-(benzylidene)benzosuberone derivatives By scripts.iucr.org Published On :: 2019-10-29 The syntheses and crystal structures of five 2-benzylidene-1-benzosuberone [1-benzosuberone is 6,7,8,9-tetrahydro-5H-benzo[7]annulen-5-one] derivatives, viz. 2-(4-methoxybenzylidene)-1-benzosuberone, C19H18O2, (I), 2-(4-ethoxybenzylidene)-1-benzosuberone, C20H20O2, (II), 2-(4-benzylbenzylidene)-1-benzosuberone, C25H22O2, (III), 2-(4-chlorobenzylidene)-1-benzosuberone, C18H15ClO, (IV) and 2-(4-cyanobenzylidene)-1-benzosuberone, C19H15NO, (V), are described. The conformations of the benzosuberone fused six- plus seven-membered ring fragments are very similar in each case, but the dihedral angles between the fused benzene ring and the pendant benzene ring differ somewhat, with values of 23.79 (3) for (I), 24.60 (4) for (II), 33.72 (4) for (III), 29.93 (8) for (IV) and 21.81 (7)° for (V). Key features of the packing include pairwise C—H⋯O hydrogen bonds for (II) and (IV), and pairwise C—H⋯N hydrogen bonds for (V), which generate inversion dimers in each case. The packing for (I) and (III) feature C—H⋯O hydrogen bonds, which lead to [010] and [100] chains, respectively. Weak C—H⋯π interactions consolidate the structures and weak aromatic π–π stacking is seen in (II) [centroid–centroid separation = 3.8414 (7) Å] and (III) [3.9475 (7) Å]. A polymorph of (I) crystallized from a different solvent has been reported previously [Dimmock et al. (1999) J. Med. Chem. 42, 1358–1366] in the same space group but with a packing motif based on inversion dimers resembling that seen in (IV) in the present study. The Hirshfeld surfaces and fingerprint plots for (I) and its polymorph are compared and structural features of the 2-benzylidene-1-benzosuberone family of phases are surveyed. Full Article text
ter (μ-Di-tert-butylsilanediolato)bis[bis(η5-cyclopentadienyl)methylzirconium] By scripts.iucr.org Published On :: 2019-11-08 The reaction of t-Bu2Si(OH)2 with two equivalents of Cp2Zr(CH3)2 produces the title t-Bu2SiO2-siloxide bridged dimer, [Zr2(CH3)2(C5H5)4(C8H18O2Si)] or [Cp2Zr(CH3)]2[μ-t-Bu2SiO2] (1), where one methyl group is retained per zirconium atom. The same product is obtained at room temperature even when equimolar ratios of the silanediol and Cp2Zr(CH3)2 are used. Attempts to thermally eliminate methane and produce a bridging methylene complex resulted in decomposition. The crystal structure of 1 displays typical Zr—CH3 and Zr—O distances but the Si—O distance [1.628 (2) Å] and O—Si—O angle [110.86 (15)°] are among the largest observed in this family of compounds suggesting steric crowding between the t-Bu substituents of the silicon atom and the cyclopentadienyl groups. The silicon atom lies on a crystallographic twofold axis and both Cp rings are disordered over two orientations of equal occupancy. Full Article text
ter Synthesis, crystal structure and characterizations of di-μ-cyanido-1:2κ2N:C;2:3κ2C:N-bis(4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane)-1κ8N1,N10,O4,O7,O13,O16,O21,O24;3κ8N1,N10,O4,O7,O13,O16,O21,O24-[5,10, By scripts.iucr.org Published On :: 2019-11-26 The title compound, [Fe(C44H24N8Cl4)(CN)2][K2(C18H36N2O6)2]·2C4H8O was synthesized and characterized by single-crystal X-ray diffraction as well as FTIR and UV–vis spectroscopy. The central FeII ion is coordinated by four pyrrole N atoms of the porphyrin core and two C atoms of the cyano groups in a slightly distorted octahedral coordination environment. The complex molecule crystallizes with two tetrahydrofuran solvent molecules, one of which was refined as disordered over two sets of sites with refined occupancies of 0.619 (5) and 0.381 (5). It has a distorted porphyrin core with mean absolute core-atom displacements Ca, Cb, Cm and Cav of 0.32 (3), 0.22 (3), 0.56 (2) and 0.37 (14) Å, respectively. The axial Fe—Ccyano bond lengths are 1.991 (2) and 1.988 (2) Å. The average Fe—Np (Np is a porphyrin N atom) bond length is 1.964 (10) Å. One of the O atoms and several C atoms of the 222 moiety [222 = 4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane] were refined as disordered over two sets of sites with occupancy ratios of 0.739 (6):0.261 (6) and 0.832 (4):0.168 (4). Additional solvent molecules were found to be highly disordered and their contribution to the scattering was removed using the SQUEEZE procedure in PLATON [Spek (2015). Acta Cryst. C71, 9–18], which indicated a solvent cavity of volume 372 Å3 containing approximately 83 electrons. These solvent molecules are not considered in the given chemical formula and other crystal data. Full Article text
ter Structure refinement of (NH4)3Al2(PO4)3 prepared by ionothermal synthesis in phosphonium based ionic liquids – a redetermination By scripts.iucr.org Published On :: 2019-11-19 After crystallization during ionothermal syntheses in phosphonium-containing ionic liquids, the structure of (NH4)3Al2(PO4)3 [triammonium dialuminum tris(phosphate)] was refined on the basis of powder X-ray diffraction data from a synchrotron source. (NH4)3Al2(PO4)3 is a member of the structural family with formula A3Al2(PO4)3, where A is a group 1 element, and of which the NH4, K, and Rb forms were previously known. The NH4 form is isostructural with the K form, and was previously solved from single-crystal X-ray data when the material (SIZ-2) crystallized from a choline-containing eutectic mixture [Cooper et al. (2004). Nature, 430, 1012–1017]. Our independent refinement incorporates NH4 groups and shows that these NH4 groups are hydrogen bonded to framework O atoms present in rings containing 12 T sites in a channel along the c-axis direction. We describe structural details of (NH4)3Al2(PO4)3 and discuss differences with respect to isostructural forms. Full Article text
ter Crystal and molecular structure of jatrophane diterpenoid (2R,3R,4S,5R,7S,8S,9S,13S,14S,15R)-2,3,8,9-tetraacetoxy-5,14-bis(benzoyloxy)-15-hydroxy-7-(isobutanoyloxy)jatropha-6(17),11(E)-diene By scripts.iucr.org Published On :: 2019-11-19 The structure of the jatrophane diterpenoid (ES2), C46H56O15, has orthorhombic (P212121) symmetry. The absolute configuration in the crystal has been determined as 2R,3R,4S,5R,7S,8S,9S,13S,14S,15R [the Flack parameter is −0.06 (11)]. The molecular structure features intramolecular O—H⋯O and C—H⋯O hydrogen bonding. In the crystal, C—H⋯O hydrogen bonds link the molecules into supramolecular columns parallel to the a axis. One of the acetoxy substituents is disordered over two orientations in a 0.826 (8):0.174 (8) ratio. Full Article text
ter Crystal structure, Hirshfeld surface analysis and interaction energy and DFT studies of 1-methyl-3-(prop-2-yn-1-yl)-2,3-dihydro-1H-1,3-benzodiazol-2-one By scripts.iucr.org Published On :: 2019-11-29 In the title molecule, C11H10N2O, the dihydrobenzimidazol-2-one moiety is essentially planar, with the prop-2-yn-1-yl substituent rotated well out of this plane. In the crystal, C—HMthy⋯π(ring) interactions and C—HProp⋯ODhyr (Mthy = methyl, Prop = prop-2-yn-1-yl and Dhyr = dihydro) hydrogen bonds form corrugated layers parallel to (10overline{1}), which are associated through additional C—HBnz⋯ODhyr (Bnz = benzene) hydrogen bonds and head-to-tail, slipped, π-stacking [centroid-to-centroid distance = 3.7712 (7) Å] interactions between dihydrobenzimidazol-2-one moieties. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions to the crystal packing are from H⋯H (44.1%), H⋯C/C⋯H (33.5%) and O⋯H/H⋯O (13.4%) interactions. Hydrogen-bonding and van der Waals interactions are the dominant interactions in the crystal packing. Computational chemistry calculations indicate that in the crystal, C—H⋯O hydrogen-bond energies are 46.8 and 32.5 (for C—HProp⋯ODhyr) and 20.2 (for C—HBnz⋯ODhyr) kJ mol−1. Density functional theory (DFT) optimized structures at the B3LYP/6–311 G(d,p) level are compared with the experimentally determined molecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap. Full Article text
ter The crystal structure of the triclinic polymorph of 1,4-bis([2,2':6',2''-terpyridin]-4'-yl)benzene By scripts.iucr.org Published On :: 2019-11-29 The title triclinic polymorph (Form I) of 1,4-bis([2,2':6',2''-terpyridin]-4'-yl)benzene, C36H24N6, was formed in the presence of the Lewis acid yttrium trichloride in an attempt to obtain a coordination compound. The crystal structure of the orthorhombic polymorph (Form II), has been described previously [Fernandes et al. (2010). Acta Cryst. E66, o3241–o3242]. The asymmetric unit of Form I consists of half a molecule, the whole molecule being generated by inversion symmetry with the central benzene ring being located about a crystallographic centre of symmetry. The side pyridine rings of the 2,2':6',2''-terpyridine (terpy) unit are rotated slightly with respect to the central pyridine ring, with dihedral angles of 8.91 (8) and 10.41 (8)°. Opposite central pyridine rings are coplanar by symmetry, and the angle between them and the central benzene ring is 49.98 (8)°. The N atoms of the pyridine rings inside the terpy entities, N⋯N⋯N, lie in trans–trans positions. In the crystal, molecules are linked by C—H⋯π and offset π–π interactions [intercentroid distances are 3.6421 (16) and 3.7813 (16) Å], forming a three-dimensional structure. Full Article text
ter Synthesis and crystal structure of catena-poly[[bis[(2,2';6',2''-terpyridine)manganese(II)]-μ4-pentathiodiantimonato] tetrahydrate] showing a 1D MnSbS network By scripts.iucr.org Published On :: 2020-01-01 The asymmetric unit of the title compound, {[Mn2Sb2S5(C15H11N3)2]·4H2O}n, consists of two crystallographically independent MnII ions, two unique terpyridine ligands, one [Sb2S5]4− anion and four solvent water molecules, all of which are located in general positions. The [Sb2S5]4− anion consists of two SbS3 units that share common corners. Each of the MnII ions is fivefold coordinated by two symmetry-related S atoms of [Sb2S5]4− anions and three N atoms of a terpyridine ligand within an irregular coordination. Each two anions are linked by two [Mn(terpyridine)]2+ cations into chains along the c-axis direction that consist of eight-membered Mn2Sb2S4 rings. These chains are further connected into a three-dimensional network by intermolecular O—H⋯O and O—H⋯S hydrogen bonds. The crystal investigated was twinned and therefore, a twin refinement using data in HKLF-5 [Sheldrick (2015). Acta Cryst. C71, 3–8] format was performed. Full Article text
ter An unusually short intermolecular N—H⋯N hydrogen bond in crystals of the hemi-hydrochloride salt of 1-exo-acetamidopyrrolizidine By scripts.iucr.org Published On :: 2020-01-01 The title compound [systematic name: (1R*, 8S)-2-acetamidooctahydropyrrolizin-4-ium chloride–N-[(1R, 8S)-hexahydro-1H-pyrrolizin-2-yl)acetamide (1/1)], 2(C9H16N2O)·HCl or C9H17N2O+·Cl−·C9H16N2O, arose as an unexpected product when 1-exo-acetamidopyrrolizidine (AcAP; C9H16N2O) was dissolved in CHCl3. Within the AcAP pyrrolizidine group, the unsubstituted five-membered ring is disordered over two orientations in a 0.897 (5):0.103 (5) ratio. Two AcAP molecules related by a crystallographic twofold axis link to H+ and Cl− ions lying on the rotation axis, thereby forming N—H⋯N and N—H⋯Cl⋯H—N hydrogen bonds. The first of these has an unusually short N⋯N separation of 2.616 (2) Å: refinement of different models against the present data set could not distinguish between a symmetrical hydrogen bond (H atom lying on the twofold axis and equidistant from the N atoms) or static or dynamic disorder models (i.e. N—H⋯N + N⋯H—N). Computational studies suggest that the disorder model is slightly more stable, but the energy difference is very small. Full Article text
ter Crystal structure, spectroscopic characterization and Hirshfeld surface analysis of aquadichlorido{N-[(pyridin-2-yl)methylidene]aniline}copper(II) monohydrate By scripts.iucr.org Published On :: 2020-01-07 The reaction of N-phenyl-1-(pyridin-2-yl)methanimine with copper chloride dihydrate produced the title neutral complex, [CuCl2(C12H10N2)(H2O)]·H2O. The CuII ion is five-coordinated in a distorted square-pyramidal geometry, in which the two N atoms of the bidentate Schiff base, as well as one chloro and a water molecule, form the irregular base of the pyramidal structure. Meanwhile, the apical chloride ligand interacts through a strong hydrogen bond with a water molecule of crystallization. In the crystal, molecules are arranged in pairs, forming a stacking of symmetrical cyclic dimers that interact in turn through strong hydrogen bonds between the chloride ligands and both the coordinated and the crystallization water molecules. The molecular and electronic structures of the complex were also studied in detail using EPR (continuous and pulsed), FT–IR and Raman spectroscopy, as well as magnetization measurements. Likewise, Hirshfeld surface analysis was used to investigate the intermolecular interactions in the crystal packing. Full Article text
ter Crystal structure of the deuterated heptahydrate of potassium phosphate, K3PO4·7D2O By scripts.iucr.org Published On :: 2020-01-10 Deuterated potassium orthophosphate heptahydrate, K3PO4·7D2O, crystallizes in the Sohnke space group P21, and its absolute structure was determined from 2017 Friedel pairs [Flack parameter 0.004 (16)]. Each of the three crystallographically unique K+ cations is surrounded by six water molecules and one oxygen atom from the orthophosphate group, using a threshold for K—O bonds of 3.10 Å. The highly irregular coordination polyhedra are linked by corner- and edge-sharing into a three-dimensional network that is consolidated by an intricate network of O—D⋯O hydrogen bonds of medium strength. Full Article text
ter Structural characterization and Hirshfeld surface analysis of 2-iodo-4-(pentafluoro-λ6-sulfanyl)benzonitrile By scripts.iucr.org Published On :: 2020-01-17 The title compound, C7H3F5INS, a pentafluorosulfanyl (SF5) containing arene, was synthesized from 4-(pentafluorosulfanyl)benzonitrile and lithium tetramethylpiperidide following a variation to the standard approach, which features simple and mild conditions that allow direct access to tri-substituted SF5 intermediates that have not been demonstrated using previous methods. The molecule displays a planar geometry with the benzene ring in the same plane as its three substituents. It lies on a mirror plane perpendicular to [010] with the iodo, cyano, and the sulfur and axial fluorine atoms of the pentafluorosulfanyl substituent in the plane of the molecule. The equatorial F atoms have symmetry-related counterparts generated by the mirror plane. The pentafluorosulfanyl group exhibits a staggered fashion relative to the ring and the two hydrogen atoms ortho to the substituent. S—F bond lengths of the pentafluorosulfanyl group are unequal: the equatorial bond facing the iodo moiety has a longer distance [1.572 (3) Å] and wider angle compared to that facing the side of the molecules with two hydrogen atoms [1.561 (4) Å]. As expected, the axial S—F bond is the longest [1.582 (5) Å]. In the crystal, in-plane C—H⋯F and N⋯I interactions as well as out-of-plane F⋯C interactions are observed. According to the Hirshfeld analysis, the principal intermolecular contacts for the title compound are F⋯H (29.4%), F⋯I (15.8%), F⋯N (11.4%), F⋯F (6.0%), N⋯I (5.6%) and F⋯C (4.5%). Full Article text
ter An indenide-tethered N-heterocyclic stannylene By scripts.iucr.org Published On :: 2020-01-21 The structure of (μ-1κN:2(η2),κ2N,N'-(2-{[2,6-bis(propan-2-yl)phenyl]azanidyl}ethyl)[2-(1H-inden-1-yl)ethyl]azanido)(1,4,7,10,13,16-hexaoxacyclooctadecane-1κ6O)lithiumtin, [LiSn(C8H16O4)(C25H31N2)], at 100 K has monoclinic (P21/n) symmetry. Analysis of the coordination of the Sn to the indenyl ring shows that the Sn interacts in an η2 fashion. A database survey showed that whilst this coordination mode is unusual for Ge and Pb compounds, Sn displays a wider range of coordination modes to cyclopentadienyl ligands and their derivatives. Full Article text
ter Crystal structure, Hirshfeld surface analysis, interaction energy and DFT studies of (2Z)-2-(2,4-dichlorobenzylidene)-4-nonyl-3,4-dihydro-2H-1,4-benzothiazin-3-one By scripts.iucr.org Published On :: 2020-01-31 The title compound, C24H27Cl2NOS, contains 1,4-benzothiazine and 2,4-dichlorophenylmethylidene units in which the dihydrothiazine ring adopts a screw-boat conformation. In the crystal, intermolecular C—HBnz⋯OThz (Bnz = benzene and Thz = thiazine) hydrogen bonds form chains of molecules extending along the a-axis direction, which are connected to their inversion-related counterparts by C—HBnz⋯ClDchlphy (Dchlphy = 2,4-dichlorophenyl) hydrogen bonds and C—HDchlphy⋯π (ring) interactions. These double chains are further linked by C—HDchlphy⋯OThz hydrogen bonds, forming stepped layers approximately parallel to (012). The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (44.7%), C⋯H/H⋯C (23.7%), Cl⋯H/H⋯Cl (18.9%), O⋯H/H⋯O (5.0%) and S⋯H/H⋯S (4.8%) interactions. Hydrogen-bonding and van der Waals interactions are the dominant interactions in the crystal packing. Computational chemistry indicates that in the crystal, C—HDchlphy⋯OThz, C—HBnz⋯OThz and C—HBnz⋯ClDchlphy hydrogen-bond energies are 134.3, 71.2 and 34.4 kJ mol−1, respectively. Density functional theory (DFT) optimized structures at the B3LYP/6–311 G(d,p) level are compared with the experimentally determined molecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap. The two carbon atoms at the end of the nonyl chain are disordered in a 0.562 (4)/0.438 (4) ratio. Full Article text
ter Crystal structure and Hirshfeld surface analysis of the methanol solvate of sclareol, a labdane-type diterpenoid By scripts.iucr.org Published On :: 2020-02-06 The title compound, C20H36O2·CH3OH [systematic name: (3S)-4-[(S)-3-hydroxy-3-methylpent-4-en-1-yl]-3,4a,8,8-tetramethyldecahydronaphthalen-3-ol methanol monosolvate], is a methanol solvate of sclareol, a diterpene oil isolated from the medicinally important medicinal herb Salvia sclarea, commonly known as clary sage. It crystallizes in space group P1 (No. 1) with Z' = 2. The sclareol molecule comprises two trans-fused cyclohexane rings, each having an equatorially oriented hydroxyl group, and a 3-methylpent-1-en-3-ol side chain. In the crystal, Os—H⋯Os, Os—H⋯Om, Om—H⋯Os and Om—H⋯Om (s = sclareol, m = methanol) hydrogen bonds connect neighboring molecules into infinite [010] chains. The title compound exhibits weak anti-leishmanial activity (IC50 = 66.4 ± 1.0 µM ml−1) against standard miltefosine (IC50 = 25.8 ± 0.2 µM ml−1). Full Article text
ter Crystal structure, Hirshfeld surface analysis and interaction energy and DFT studies of 1-(1,3-benzothiazol-2-yl)-3-(2-hydroxyethyl)imidazolidin-2-one By scripts.iucr.org Published On :: 2020-02-14 In the title molecule, C12H13N3O2S, the benzothiazine moiety is slightly non-planar, with the imidazolidine portion twisted only a few degrees out of the mean plane of the former. In the crystal, a layer structure parallel to the bc plane is formed by a combination of O—HHydethy⋯NThz hydrogen bonds and weak C—HImdz⋯OImdz and C—HBnz⋯OImdz (Hydethy = hydroxyethyl, Thz = thiazole, Imdz = imidazolidine and Bnz = benzene) interactions, together with C—HImdz⋯π(ring) and head-to-tail slipped π-stacking [centroid-to-centroid distances = 3.6507 (7) and 3.6866 (7) Å] interactions between thiazole rings. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (47.0%), H⋯O/O⋯H (16.9%), H⋯C/C⋯H (8.0%) and H⋯S/S⋯H (7.6%) interactions. Hydrogen bonding and van der Waals interactions are the dominant interactions in the crystal packing. Computational chemistry indicates that in the crystal, C—H⋯N and C—H⋯O hydrogen-bond energies are 68.5 (for O—HHydethy⋯NThz), 60.1 (for C—HBnz⋯OImdz) and 41.8 kJ mol−1 (for C—HImdz⋯OImdz). Density functional theory (DFT) optimized structures at the B3LYP/6–311 G(d,p) level are compared with the experimentally determined molecular structure in the solid state. Full Article text
ter Crystal structure, characterization and Hirshfeld analysis of bis{(E)-1-[(2,4,6-tribromophenyl)diazenyl]naphthalen-2-olato}copper(II) dimethyl sulfoxide monosolvate By scripts.iucr.org Published On :: 2020-02-18 In the title compound, [Cu(C16H8Br3N2O)2]·C2H6OS, the CuII atom is tetracoordinated in a square-planar coordination, being surrounded by two N atoms and two O atoms from two N,O-bidentate (E)-1-[(2,4,6-tribromophenyl)diazenyl]naphthalen-2-olate ligands. The two N atoms and two O atoms around the metal center are trans to each other, with an O—Cu—O bond angle of 177.90 (16)° and a N—Cu—N bond angle of 177.8 (2)°. The average distances between the CuII atom and the coordinated O and N atoms are 1.892 (4) and 1.976 (4) Å, respectively. In the crystal, complexes are linked by C—H⋯O hydrogen bonds and by π–π interactions involving adjacent naphthalene ring systems [centroid–centroid distance = 3.679 (4) Å]. The disordered DMSO molecules interact weakly with the complex molecules, being positioned in the voids left by the packing arrangement of the square-planar complexes. The DMSO solvent molecule is disordered over two positions with occupancies of 0.70 and 0.30. Full Article text
ter Crystal structure, Hirshfeld surface analysis and interaction energy and DFT studies of (S)-10-propargylpyrrolo[2,1-c][1,4]benzodiazepine-5,11-dione By scripts.iucr.org Published On :: 2020-03-03 The title compound, C15H14N2O2, consists of pyrrole and benzodiazepine units linked to a propargyl moiety, where the pyrrole and diazepine rings adopt half-chair and boat conformations, respectively. The absolute configuration was assigned on the the basis of l-proline, which was used in the synthesis of benzodiazepine. In the crystal, weak C—HBnz⋯ODiazp and C—HProprg⋯ODiazp (Bnz = benzene, Diazp = diazepine and Proprg = propargyl) hydrogen bonds link the molecules into two-dimensional networks parallel to the bc plane, enclosing R44(28) ring motifs, with the networks forming oblique stacks along the a-axis direction. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (49.8%), H⋯C/C⋯H (25.7%) and H⋯O/O⋯H (20.1%) interactions. Hydrogen bonding and van der Waals interactions are the dominant interactions in the crystal packing. Computational chemistry indicates that in the crystal, C—H⋯O hydrogen-bond energies are 38.8 (for C—HBnz⋯ODiazp) and 27.1 (for C—HProprg⋯ODiazp) kJ mol−1. Density functional theory (DFT) optimized structures at the B3LYP/6–311 G(d,p) level are compared with the experimentally determined molecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap. Full Article text
ter Redetermination of the crystal structure of R5Si4 (R = Pr, Nd) from single-crystal X-ray diffraction data By scripts.iucr.org Published On :: 2020-03-10 The crystal structures of praseodymium silicide (5/4), Pr5Si4, and neodymium silicide (5/4), Nd5Si4, were redetermined using high-quality single-crystal X-ray diffraction data. The previous structure reports of Pr5Si4 were only based on powder X-ray diffraction data [Smith et al. (1967). Acta Cryst. 22 940–943; Yang et al. (2002b). J. Alloys Compd. 339, 189–194; Yang et al., (2003). J. Alloys Compd. 263, 146–153]. On the other hand, the structure of Nd5Si4 has been determined from powder data [neutron; Cadogan et al., (2002). J. Phys. Condens. Matter, 14, 7191–7200] and X-ray [Smith et al. (1967). Acta Cryst. 22 940–943; Yang et al. (2002b). J. Alloys Compd. 339, 189–194; Yang et al., (2003). J. Alloys Compd. 263, 146–153] and single-crystal data with isotropic atomic displacement parameters [Roger et al., (2006). J. Alloys Compd. 415, 73–84]. In addition, the anisotropic atomic displacement parameters for all atomic sites have been determined for the first time. These compounds are confirmed to have the tetragonal Zr5Si4-type structure (space group: P41212), as reported previously (Smith et al., 1967). The structure is built up by distorted body-centered cubes consisting of Pr(Nd) atoms, which are linked to each other by edge-sharing to form a three-dimensional framework. This framework delimits zigzag channels in which the silicon dimers are situated. Full Article text
ter Crystal structure and photoluminescent properties of bis(4'-chloro-2,2':6',2''-terpyridyl)cobalt(II) dichloride tetrahydrate By scripts.iucr.org Published On :: 2020-03-05 In the title hydrated complex, [Co(C15H10ClN3)2]Cl2·4H2O, the complete dication is generated by overline{4} symmetry. The CoN6 moiety shows distortion from regular octahedral geometry with the trans bond angles of two N—Co—N units being 160.62 (9)°. In the crystal, O—H⋯Cl and C—H⋯O interactions link the components into (001) sheets. The title compound exhibits blue-light emission, as indicated by photoluminescence data, and a HOMO–LUMO energy separation of 2.23 eV was obtained from its diffuse reflectance spectrum. Full Article text
ter A redetermination of the crystal structure of the mannitol complex NH4[Mo2O5(C6H11O6)]·H2O: hydrogen-bonding scheme and Hirshfeld surface analysis By scripts.iucr.org Published On :: 2020-03-10 The redetermined structure [for the previous study, see: Godfrey & Waters (1975). Cryst. Struct. Commun. 4, 5–8] of ammonium μ-oxido-μ-[1,5,6-trihydroxyhexane-2,3,4-tris(olato)]bis[dioxidomolybdenum(V)] monohydrate, NH4[Mo2(C6H11O6)O5]·H2O, was obtained from an attempt to prepare a glutamic acid complex from the [Co2Mo10H4O38]6− anion. Subsequent study indicated the complex arose from a substantial impurity of mannitol in the glutamic acid sample used. All hydrogen atoms have been located in the present study and the packing displays N—H⋯O, O—H⋯O and C—H⋯O hydrogen bonds. A Hirshfeld surface analysis was also performed. Full Article text
ter Intramolecular 1,5-S⋯N σ-hole interaction in (E)-N'-(pyridin-4-ylmethylidene)thiophene-2-carbohydrazide By scripts.iucr.org Published On :: 2020-03-17 The title compound, C11H9N3OS, (I), crystallizes in the monoclinic space group P21/n. The molecular conformation is nearly planar and features an intramolecular chalcogen bond between the thiophene S and the imine N atoms. Within the crystal, the strongest interactions between molecules are the N—H⋯O hydrogen bonds, which organize them into inversion dimers. The dimers are linked through short C—H⋯N contacts and are stacked into layers propagating in the (001) plane. The crystal structure features π–π stacking between the pyridine aromatic ring and the azomethine double bond. The calculated energies of pairwise intermolecular interactions within the stacks are considerably larger than those found for the interactions between the layers. Full Article text
ter Structural investigation of methyl 3-(4-fluorobenzoyl)-7-methyl-2-phenylindolizine-1-carboxylate, an inhibitory drug towards Mycobacterium tuberculosis By scripts.iucr.org Published On :: 2020-03-20 The title compound, C24H18FNO3, crystallizes in the monoclinic centrosymmetric space group P21/n and its molecular conformation is stabilized via C—H⋯O intramolecular interactions. The supramolecular network mainly comprises C—H⋯O, C—H⋯F and C—H⋯π interactions, which contribute towards the formation of the crystal structure. The different intermolecular interactions have been further analysed via Hirshfeld surface analysis and fingerprint plots. Full Article text
ter Crystal structure, Hirshfeld surface analysis and interaction energy, DFT and antibacterial activity studies of ethyl 2-[(2Z)-2-(2-chlorobenzylidene)-3-oxo-3,4-dihydro-2H-1,4-benzothiazin-4-yl]acetate By scripts.iucr.org Published On :: 2020-04-07 The title compound, C19H16ClNO3S, consists of chlorophenyl methylidene and dihydrobenzothiazine units linked to an acetate moiety, where the thiazine ring adopts a screw-boat conformation. In the crystal, two sets of weak C—HPh⋯ODbt (Ph = phenyl and Dbt = dihydrobenzothiazine) hydrogen bonds form layers of molecules parallel to the bc plane. The layers stack along the a-axis direction with intercalation of the ester chains. The crystal studied was a two component twin with a refined BASF of 0.34961 (5). The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions to the crystal packing are from H⋯H (37.5%), H⋯C/C⋯H (24.6%) and H⋯O/O⋯H (16.7%) interactions. Hydrogen-bonding and van der Waals interactions are the dominant interactions in the crystal packing. Computational chemistry indicates that in the crystal, C—HPh⋯ODbt hydrogen bond energies are 38.3 and 30.3 kJ mol−1. Density functional theory (DFT) optimized structures at the B3LYP/ 6–311 G(d,p) level are compared with the experimentally determined molecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap. Moreover, the antibacterial activity of the title compound has been evaluated against gram-positive and gram-negative bacteria. Full Article text
ter Crystal structure, Hirshfeld surface analysis and interaction energy and DFT studies of 2-(2,3-dihydro-1H-perimidin-2-yl)-6-methoxyphenol By scripts.iucr.org Published On :: 2020-04-03 The title compound, C18H16N2O2, consists of perimidine and methoxyphenol units, where the tricyclic perimidine unit contains a naphthalene ring system and a non-planar C4N2 ring adopting an envelope conformation with the NCN group hinged by 47.44 (7)° with respect to the best plane of the other five atoms. In the crystal, O—HPhnl⋯NPrmdn and N—HPrmdn⋯OPhnl (Phnl = phenol and Prmdn = perimidine) hydrogen bonds link the molecules into infinite chains along the b-axis direction. Weak C—H⋯π interactions may further stabilize the crystal structure. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (49.0%), H⋯C/C⋯H (35.8%) and H⋯O/O⋯H (12.0%) interactions. Hydrogen bonding and van der Waals interactions are the dominant interactions in the crystal packing. Computational chemistry indicates that in the crystal, the O—HPhnl⋯NPrmdn and N—HPrmdn⋯OPhnl hydrogen-bond energies are 58.4 and 38.0 kJ mol−1, respectively. Density functional theory (DFT) optimized structures at the B3LYP/ 6–311 G(d,p) level are compared with the experimentally determined molecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap. Full Article text
ter Dehydration synthesis and crystal structure of terbium oxychloride, TbOCl By scripts.iucr.org Published On :: 2020-04-03 Terbium oxychloride, TbOCl, was synthesized via the simple heat-treatment of TbCl3·6H2O and its structure was determined by refinement against X-ray powder diffraction data. TbOCl crystallizes with the matlockite (PbFCl) structure in the tetragonal space group P4/nmm and is composed of alternating (001) layers of (TbO)n and n Cl−. The unit-cell parameters, unit-cell volume, and density were compared to the literature data of other isostructural rare-earth oxychlorides in the same space group and showed good agreement when compared to the calculated trendlines. Full Article text
ter Synthesis and crystal structures of tetrameric [2-(4,4-dimethyl-2-oxazolin-2-yl)anilido]sodium and tris[2-(4,4-dimethyl-2-oxazolin-2-yl)anilido]ytterbium(III) By scripts.iucr.org Published On :: 2020-04-21 Reaction of 2-(4,4-dimethyl-2-oxazolin-2-yl)aniline (H2-L1) with one equivalent of Na[N(SiMe3)2] in toluene afforded pale-yellow crystals of tetrameric poly[bis[μ3-2-(4,4-dimethyl-2-oxazolin-2-yl)anilinido][μ2-2-(4,4-dimethyl-2-oxazolin-2-yl)aniline]tetrasodium(I)], [Na4(C11H13N2O)4]n or [Na4(H-L1)4]n (2), in excellent yield. Subsequent reaction of [Na4(H-L1)4]n (2) with 1.33 equivalents of anhydrous YbCl3 in a 50:50 mixture of toluene–THF afforded yellow crystals of tris[2-(4,4-dimethyl-2-oxazolin-2-yl)anilinido]ytterbium(III), [Yb(C11H13N2O)3] or Yb(H-L1)3 (3) in moderate yield. Direct reaction of three equivalents of 2-(4',4'-dimethyl-2'-oxazolinyl)aniline (H2-L1) with Yb[N(SiMe3)2]3 in toluene resulted in elimination of hexamethyldisilazane, HN(SiMe3)2, and produced Yb(H-L1)3 (3) in excellent yield. The structure of 2 consists of tetrameric Na4(H-L1)4 subunits in which each Na+ cation is bound to two H-L1 bridging bidentate ligands and these subunits are connected into a polymeric chain by two of the four oxazoline O atoms bridging to Na+ cations in the adjacent tetramer. This results in two 4-coordinate and two 5-coordinate Na+ cations within each tetrameric unit. The structure of 3 consists of a distorted octahedron where the bite angle of ligand L1 ranges between 74.72 (11) and 77.79 (11) degrees. The oxazoline (and anilide) N atoms occupy meridional sites such that for one ligand an anilide nitrogen is trans to an oxazoline nitrogen while for the other two oxazoline N atoms are trans to each other. This results in a significantly longer Yb—N(oxazoline) distance [2.468 (3) Å] for the bond trans to the anilide compared to those for the oxazoline N atoms trans to one another [2.376 (3), 2.390 (3) Å]. Full Article text
ter Structure of a push–pull olefin prepared by ynamine hydroboration with a borandiol ester By scripts.iucr.org Published On :: 2020-04-21 N-[(Z)-2-(2H-1,3,2-Benzodioxaborol-2-yl)-2-phenylethenyl]-N-(propan-2-yl)aniline, C23H22BNO2, contains a C=C bond that is conjugated with a donor and an acceptor group. An analysis that included similar push–pull olefins revealed that bond lengths in their B—C=C—N core units correlate with the perceived acceptor and donor strength of the groups. The two phenyl groups in the molecule are rotated with respect to the plane that contains the BCCN atoms, and are close enough for significant π-stacking. Definite characterization of the title compound demonstrates, for the first time in a reliable way, that hydroboration of ynamines with borandiol esters is feasible. Compared to olefin hydroboration with borane, the ynamine substrate is activated enough to undergo reaction with the less active hydroboration reagent catecholborane. Full Article text
ter Crystal structure and DFT computational studies of (E)-2,4-di-tert-butyl-6-{[3-(trifluoromethyl)benzyl]iminomethyl}phenol By scripts.iucr.org Published On :: 2020-04-24 The title compound, C23H28F3NO, is an ortho-hydroxy Schiff base compound, which adopts the enol–imine tautomeric form in the solid state. The molecular structure is not planar and the dihedral angle between the planes of the aromatic rings is 85.52 (10)°. The trifluoromethyl group shows rotational disorder over two sites, with occupancies of 0.798 (6) and 0.202 (6). An intramolecular O—H⋯N hydrogen bonding generates an S(6) ring motif. The crystal structure is consolidated by C—H⋯π interactions. The molecular structure was optimized via density functional theory (DFT) methods with the B3LYP functional and LanL2DZ basis set. The theoretical structure is in good agreement with the experimental data. The frontier orbitals and molecular electrostatic potential map were also examined by DFT computations. Full Article text
ter Hydrogen-bonding patterns in 2,2-bis(4-methylphenyl)hexafluoropropane pyridinium and ethylenediammonium salt crystals By scripts.iucr.org Published On :: 2020-04-24 The crystal structures of two salt crystals of 2,2-bis(4-methylphenyl)hexafluoropropane (Bmphfp) with amines, namely, dipyridinium 4,4'-(1,1,1,3,3,3-hexafluoropropane-2,2-diyl)dibenzoate 4,4'-(1,1,1,3,3,3-hexafluoropropane-2,2-diyl)dibenzoic acid, 2C5H6N+·C17H8F6O42−·C17H10F6O4, (1), and a monohydrated ethylenediammonium salt ethane-1,2-diaminium 4,4'-(1,1,1,3,3,3-hexafluoropropane-2,2-diyl)dibenzoate monohydrate, C2H10N22+·C17H8F6O42−·H2O, (2), are reported. Compounds 1 and 2 crystallize, respectively, in space group P21/c with Z' = 2 and in space group Pbca with Z' = 1. The crystals of compound 1 contain neutral and anionic Bmphfp molecules, and form a one-dimensional hydrogen-bonded chain motif. The crystals of compound 2 contain anionic Bmphfp molecules, which form a complex three-dimensional hydrogen-bonded network with the ethylenediamine and water molecules. Full Article text