no

Our New Normal, Together

As the world works to mitigate the impact of the COVID-19 pandemic, our thoughts are foremost with those already ill from the virus and those on the frontlines, slowing its spread. The bravery and commitment of healthcare workers everywhere is an inspiration.

While Viget’s physical offices are effectively closed, we’re continuing to work with our clients on projects that evolve by the day. Viget has been working with distributed teams to varying degrees for most of our 20-year history, and while we’re comfortable with the tools and best practices that make doing so effective, we realize that some of our clients are learning as they go. We’re here to help.

These are unprecedented times, but our business playbook is clear: Take care of each other. We’re in this together.

Our People Team is meeting with everyone on our staff to confirm their work-from-home situation. Do they have family or roommates they can rely on in an emergency? How are they feeling physically and mentally? Do they have what they need to be productive? As a team, we’re working extra hard to communicate. Andy hosts and records video calls to answer questions anyone has about the crisis, and our weekly staff meeting schedule will continue. Recognizing that our daily informal group lunches are a vital social glue in our offices, Aubrey has organized a virtual lunch table Hangout, allowing our now fully-distributed team to catch up over video. It ensures we have some laughs and helps keep us feeling connected.

Our project teams are well-versed in remote collaboration, but we understand that not all client projects can proceed as planned. We’re doing our best to accommodate evolving schedules while keeping the momentum on as many projects as possible. For all of our clients, we’re making clear that we think long-term. We’re partners through this, and can adapt to help our clients not just weather the storm, but come through it stronger when possible. Some clients have been forced to pause work entirely, while others are busier than ever.

Viget has persevered through many downturns -- the dot com crash, 9/11, the 2008 financial crisis, and a few self-inflicted close-calls. In retrospect, it’s easy to reflect on how these situations made us stronger, but mid-crisis it can be hard to stay positive. The consistent lesson has been that taking care of each other -- co-workers, clients, partners, community peers -- is what gets us through. It motivates our hard work, it focuses our priorities and collaboration, and inspires us to do what needs to be done.

I don’t know for certain how this crisis will play out, but I know that all of us at Viget will be doing everything we can to support each other as we go through it together.



  • News & Culture

no

5 things to Note in a New Phoenix 1.5 App

Yesterday (Apr 22, 2020) Phoenix 1.5 was officially released ????

There’s a long list of changes and improvements, but the big feature is better integration with LiveView. I’ve previously written about why LiveView interests me, so I was quite excited to dive into this release. After watching this awesome Twitter clone in 15 minutes demo from Chris McCord, I had to try out some of the new features. I generated a new phoenix app with the —live flag, installed dependencies and started a server. Here are five new features I noticed.

1. Database actions in browser

Oops! Looks like I forgot to configure the database before starting the server. There’s now a helpful message and a button in the browser that can run the command for me. There’s a similar button when migrations are pending. This is a really smooth UX to fix a very common error while developing.

2. New Tagline!

Peace-of-mind from prototype to production

This phrase looked unfamiliar, so I went digging. Turns out that the old tagline was “A productive web framework that does not compromise speed or maintainability.” (I also noticed that it was previously “speed and maintainability” until this PR from 2019 was opened on a dare to clarify the language.)

Chris McCord updated the language while adding phx.new —live. I love this framing, particularly for LiveView. I am very excited about the progressive enhancement path for LiveView apps. A project can start out with regular, server rendered HTML templates. This is a very productive way to work, and a great way to start a prototype for just about any website. Updating those templates to work with LiveView is an easier lift than a full rebuild in React. And finally, when you’re in production you have the peace-of-mind that the reliable BEAM provides.

3. Live dependency search

There’s now a big search bar right in the middle of the page. You can search through the dependencies in your app and navigate to the hexdocs for them. This doesn’t seem terribly useful, but is a cool demo of LiveView. The implementation is a good illustration of how compact a feature like this can be using LiveView.

4. LiveDashboard

This is the really cool one. In the top right of that page you see a link to LiveDashboard. Clicking it will take you to a page that looks like this.

This page is built with LiveView, and gives you a ton of information about your running system. This landing page has version numbers, memory usage, and atom count.

Clicking over to metrics brings you to this page.

By default it will tell you how long average queries are taking, but the metrics are configurable so you can define your own custom telemetry options.

The other tabs include process info, so you can monitor specific processes in your system:

And ETS tables, the in memory storage that many apps use for caching:

The dashboard is a really nice thing to get out of the box and makes it free for application developers to monitor their running system. It’s also developing very quickly. I tried an earlier version a week ago which didn’t support ETS tables, ports or sockets. I made a note to look into adding them, but it's already done! I’m excited to follow along and see where this project goes.

5. New LiveView generators

1.5 introduces a new generator mix phx.gen.live.. Like other generators, it will create all the code you need for a basic resource in your app, including the LiveView modules. The interesting part here is that it introduces patterns for organizing LiveView code, which is something I have previously been unsure about. At first glance, the new organization makes sense and feels like a good approach. I look forward to seeing how this works on a real project.

Conclusion

The 1.5 release brings more changes under the hood of course, but these are the first five differences you’ll notice after generating a new Phoenix 1.5 app with LiveView. Congratulations to the entire Phoenix team, but particularly José Valim and Chris McCord for getting this work released.



  • Code
  • Back-end Engineering

no

Global Gitignore Files Are Cool and So Are You

Setting it up

First, here's the config setup you need to even allow for such a radical concept.

  1. Define the global gitignore file as a global Git configuration:

    git config --global core.excludesfile ~/.gitignore
    

    If you're on OSX, this command will add the following config lines in your ~/.gitconfig file.

    [core]
      excludesfile = /Users/triplegirldad/.gitignore
    
  2. Load that ~/.gitignore file up with whatever you want. It probably doesn't exist as a file yet so you might have to create it first.

Harnessing its incredible power

There are only two lines in my global gitignore file and they are both fairly useful pretty much all the time.

$ cat ~/.gitignore
TODO.md
playground

This 2 line file means that no matter where I am, what project I'm working on, where in the project I'm doing so, I have an easy space to stash notes, thoughts, in progress ideas, spikes, etc.

TODO.md

More often than not, I'm fiddling around with a TODO.md file. Something about writing markdown in your familiar text editor speaks to my soul. It's quick, it's easy, you have all the text editing tricks available to you, and it never does anything you wouldn't expect (looking at you auto-markdown-formatting editors). I use one or two # for headings, I use nested lists, and I ask for nothing more. Nothing more than more TODO.md files that is!

In practice I tend to just have one TODO.md file per project, right at the top, ready to pull up in a few keystrokes. Which I do often. I pull this doc up if:

  • I'm in a meeting and I just said "oh yeah that's a small thing, I'll knock it out this afternoon".
  • I'm halfway through some feature development and realize I want to make a sweeping refactor elsewhere. Toss some thoughts in the doc, and then get back to the task at hand.
  • It's the end of the day and I have to switch my brain into "feed small children" mode, thus obliterating everything work-related from my short term memory. When I open things up the next day and know exactly what the next thing to dive into was.
  • I'm preparing for a big enough refactor and I can't hold it all in my brain at once. What I'd give to have an interactive 3D playground for brain thoughts, but in the meantime a 2D text file isn't a terrible way to plan out dev work.

playground

Sometimes you need more than some human words in a markdown file to move an idea along. This is where my playground directory comes in. I can load this directory up with code that's related to a given project and keep it out of the git history. Because who doesn't like a place to play around.

I find that this directory is more useful for long running maintenance projects over fast moving greenfield ones. On the maintenance projects, I tend to find myself assembling a pile of scripts and experiments for various situations:

  • The client requests a one-time obscure data export. Whip up some CSV generation code and save that code in the playground directory.
  • The client requests a different obscure data export. Pull up the last time you did something vaguely similar and save yourself the startup time.
  • A batch of data needs to be imported just once. Might as well stash that in the chance that "just once" is actually "just a few times".
  • Kicking the tires on an integration with a third party service.

Some of these playground files end up being useful more times than I can count (eg: the ever-changing user_export.rb script). Some items get promoted into application code, which is always fun. But most files here serve their purpose and then wither away. And that's fine. It's a playground, anything goes.

Wrapping up

Having a personal space for project-specific notes and code has been helpful to me over the years as a developer on multiple projects. If you have your own organizational trick, or just want to brag about how you memorize everything without any markdown files, let me know in the comments below!




no

First impressions of the Fuji X-Pro2 (and the Fujinon 100-400mm lens)

Fuji released their new flagship camera this month, the X-Pro2. It is the first X-series camera to feature a 24MP sensor (compared to 16MP before) and it has a very interesting hybrid optical & electronic view finder. When I first […]




no

Exploring Node.js Internals

Since the introduction of Node.js by Ryan Dahl at the European JSConf on 8 November 2009, it has seen wide usage across the tech industry. Companies such as Netflix, Uber, and LinkedIn give credibility to the claim that Node.js can withstand a high amount of traffic and concurrency. Armed with basic knowledge, beginner and intermediate developers of Node.js struggle with many things: “It’s just a runtime!” “It has event loops!




no

Readability Algorithms Should Be Tools, Not Targets

The web is awash with words. They’re everywhere. On websites, in emails, advertisements, tweets, pop-ups, you name it. More people are publishing more copy than at any point in history. That means a lot of information, and a lot of competition. In recent years a slew of ‘readability’ programs have appeared to help us tidy up the things we write. (Grammarly, Readable, and Yoast are just a handful that come to mind.




no

The Canon EOS R5 release gets closer as it passes Bluetooth certification

We’re a big step closer to a Canon EOS R5 release announcement now, as Nokishita Tweets that it has passed its Bluetooth certification. The belief is that the EOS R5 was originally scheduled to ship in July, and Canon Rumors reports that they’ve been told that’ll still happen. With lockdowns still in effect in much […]

The post The Canon EOS R5 release gets closer as it passes Bluetooth certification appeared first on DIY Photography.




no

Aputure announces new LS-60D daylight and LX-60X bicolour LED lights

Aputure’s been coming pretty thick and fast on the announcements lately, and now they’ve announced their new Light Storm 60D daylight and 60X bi-colour adjustable focusing LED lights. As the name suggests, these are 60 Watt LEDs, and everything is built inside the head, meaning there’s no external control unit to have to deal with. […]

The post Aputure announces new LS-60D daylight and LX-60X bicolour LED lights appeared first on DIY Photography.




no

Google Lens now copies handwritten text and pastes it straight to your computer

Are there still folks among you who, like me, prefer handwriting to typing? If you’re in this group, you’ll love this new feature on Google Lens. The app now lets you scan your handwritten notes, copy them, and paste them straight to your computer. I gave it a spin, and I bring you my impressions […]

The post Google Lens now copies handwritten text and pastes it straight to your computer appeared first on DIY Photography.






no

Non-associative Frobenius algebras for simply laced Chevalley groups. (arXiv:2005.02625v1 [math.RA] CROSS LISTED)

We provide an explicit construction for a class of commutative, non-associative algebras for each of the simple Chevalley groups of simply laced type. Moreover, we equip these algebras with an associating bilinear form, which turns them into Frobenius algebras. This class includes a 3876-dimensional algebra on which the Chevalley group of type E8 acts by automorphisms. We also prove that these algebras admit the structure of (axial) decomposition algebras.




no

Solutions for nonlinear Fokker-Planck equations with measures as initial data and McKean-Vlasov equations. (arXiv:2005.02311v2 [math.AP] UPDATED)

One proves the existence and uniqueness of a generalized (mild) solution for the nonlinear Fokker--Planck equation (FPE) egin{align*} &u_t-Delta (eta(u))+{mathrm{ div}}(D(x)b(u)u)=0, quad tgeq0, xinmathbb{R}^d, d e2, \ &u(0,cdot)=u_0,mbox{in }mathbb{R}^d, end{align*} where $u_0in L^1(mathbb{R}^d)$, $etain C^2(mathbb{R})$ is a nondecreasing function, $bin C^1$, bounded, $bgeq 0$, $Din(L^2cap L^infty)(mathbb{R}^d;mathbb{R}^d)$ with ${ m div}, Din L^infty(mathbb{R}^d)$, and ${ m div},Dgeq0$, $eta$ strictly increasing, if $b$ is not constant. Moreover, $t o u(t,u_0)$ is a semigroup of contractions in $L^1(mathbb{R}^d)$, which leaves invariant the set of probability density functions in $mathbb{R}^d$. If ${ m div},Dgeq0$, $eta'(r)geq a|r|^{alpha-1}$, and $|eta(r)|leq C r^alpha$, $alphageq1,$ $alpha>frac{d-2}d$, $dgeq3$, then $|u(t)|_{L^infty}le Ct^{-frac d{d+(alpha-1)d}} |u_0|^{frac2{2+(m-1)d}},$ $t>0$, and the existence extends to initial data $u_0$ in the space $mathcal{M}_b$ of bounded measures in $mathbb{R}^d$. The solution map $mumapsto S(t)mu$, $tgeq0$, is a Lipschitz contractions on $mathcal{M}_b$ and weakly continuous in $tin[0,infty)$. As a consequence for arbitrary initial laws, we obtain weak solutions to a class of McKean-Vlasov SDEs with coefficients which have singular dependence on the time marginal laws.




no

Nonlinear singular problems with indefinite potential term. (arXiv:2005.01789v3 [math.AP] UPDATED)

We consider a nonlinear Dirichlet problem driven by a nonhomogeneous differential operator plus an indefinite potential. In the reaction we have the competing effects of a singular term and of concave and convex nonlinearities. In this paper the concave term is parametric. We prove a bifurcation-type theorem describing the changes in the set of positive solutions as the positive parameter $lambda$ varies. This work continues our research published in arXiv:2004.12583, where $xi equiv 0 $ and in the reaction the parametric term is the singular one.




no

On the exterior Dirichlet problem for a class of fully nonlinear elliptic equations. (arXiv:2004.12660v3 [math.AP] UPDATED)

In this paper, we mainly establish the existence and uniqueness theorem for solutions of the exterior Dirichlet problem for a class of fully nonlinear second-order elliptic equations related to the eigenvalues of the Hessian, with prescribed generalized symmetric asymptotic behavior at infinity. Moreover, we give some new results for the Hessian equations, Hessian quotient equations and the special Lagrangian equations, which have been studied previously.




no

Convergent normal forms for five dimensional totally nondegenerate CR manifolds in C^4. (arXiv:2004.11251v2 [math.CV] UPDATED)

Applying the equivariant moving frames method, we construct convergent normal forms for real-analytic 5-dimensional totally nondegenerate CR submanifolds of C^4. These CR manifolds are divided into several biholomorphically inequivalent subclasses, each of which has its own complete normal form. Moreover it is shown that, biholomorphically, Beloshapka's cubic model is the unique member of this class with the maximum possible dimension seven of the corresponding algebra of infinitesimal CR automorphisms. Our results are also useful in the study of biholomorphic equivalence problem between CR manifolds, in question.




no

The $kappa$-Newtonian and $kappa$-Carrollian algebras and their noncommutative spacetimes. (arXiv:2003.03921v2 [hep-th] UPDATED)

We derive the non-relativistic $c oinfty$ and ultra-relativistic $c o 0$ limits of the $kappa$-deformed symmetries and corresponding spacetime in (3+1) dimensions, with and without a cosmological constant. We apply the theory of Lie bialgebra contractions to the Poisson version of the $kappa$-(A)dS quantum algebra, and quantize the resulting contracted Poisson-Hopf algebras, thus giving rise to the $kappa$-deformation of the Newtonian (Newton-Hooke and Galilei) and Carrollian (Para-Poincar'e, Para-Euclidean and Carroll) quantum symmetries, including their deformed quadratic Casimir operators. The corresponding $kappa$-Newtonian and $kappa$-Carrollian noncommutative spacetimes are also obtained as the non-relativistic and ultra-relativistic limits of the $kappa$-(A)dS noncommutative spacetime. These constructions allow us to analyze the non-trivial interplay between the quantum deformation parameter $kappa$, the curvature parameter $eta$ and the speed of light parameter $c$.




no

Linear Convergence of First- and Zeroth-Order Primal-Dual Algorithms for Distributed Nonconvex Optimization. (arXiv:1912.12110v2 [math.OC] UPDATED)

This paper considers the distributed nonconvex optimization problem of minimizing a global cost function formed by a sum of local cost functions by using local information exchange. We first propose a distributed first-order primal-dual algorithm. We show that it converges sublinearly to the stationary point if each local cost function is smooth and linearly to the global optimum under an additional condition that the global cost function satisfies the Polyak-{L}ojasiewicz condition. This condition is weaker than strong convexity, which is a standard condition for proving the linear convergence of distributed optimization algorithms, and the global minimizer is not necessarily unique or finite. Motivated by the situations where the gradients are unavailable, we then propose a distributed zeroth-order algorithm, derived from the proposed distributed first-order algorithm by using a deterministic gradient estimator, and show that it has the same convergence properties as the proposed first-order algorithm under the same conditions. The theoretical results are illustrated by numerical simulations.




no

Regularized vortex approximation for 2D Euler equations with transport noise. (arXiv:1912.07233v2 [math.PR] UPDATED)

We study a mean field approximation for the 2D Euler vorticity equation driven by a transport noise. We prove that the Euler equations can be approximated by interacting point vortices driven by a regularized Biot-Savart kernel and the same common noise. The approximation happens by sending the number of particles $N$ to infinity and the regularization $epsilon$ in the Biot-Savart kernel to $0$, as a suitable function of $N$.




no

Locally equivalent Floer complexes and unoriented link cobordisms. (arXiv:1911.03659v4 [math.GT] UPDATED)

We show that the local equivalence class of the collapsed link Floer complex $cCFL^infty(L)$, together with many $Upsilon$-type invariants extracted from this group, is a concordance invariant of links. In particular, we define a version of the invariants $Upsilon_L(t)$ and $ u^+(L)$ when $L$ is a link and we prove that they give a lower bound for the slice genus $g_4(L)$. Furthermore, in the last section of the paper we study the homology group $HFL'(L)$ and its behaviour under unoriented cobordisms. We obtain that a normalized version of the $upsilon$-set, introduced by Ozsv'ath, Stipsicz and Szab'o, produces a lower bound for the 4-dimensional smooth crosscap number $gamma_4(L)$.




no

Monochromatic Equilateral Triangles in the Unit Distance Graph. (arXiv:1909.09856v2 [math.CO] UPDATED)

Let $chi_{Delta}(mathbb{R}^{n})$ denote the minimum number of colors needed to color $mathbb{R}^{n}$ so that there will not be a monochromatic equilateral triangle with side length $1$. Using the slice rank method, we reprove a result of Frankl and Rodl, and show that $chi_{Delta}left(mathbb{R}^{n} ight)$ grows exponentially with $n$. This technique substantially improves upon the best known quantitative lower bounds for $chi_{Delta}left(mathbb{R}^{n} ight)$, and we obtain [ chi_{Delta}left(mathbb{R}^{n} ight)>(1.01446+o(1))^{n}. ]




no

Multitype branching process with nonhomogeneous Poisson and generalized Polya immigration. (arXiv:1909.03684v2 [math.PR] UPDATED)

In a multitype branching process, it is assumed that immigrants arrive according to a nonhomogeneous Poisson or a generalized Polya process (both processes are formulated as a nonhomogeneous birth process with an appropriate choice of transition intensities). We show that the renormalized numbers of objects of the various types alive at time $t$ for supercritical, critical, and subcritical cases jointly converge in distribution under those two different arrival processes. Furthermore, some transient moment analysis when there are only two types of particles is provided. AMS 2000 subject classifications: Primary 60J80, 60J85; secondary 60K10, 60K25, 90B15.




no

Nonlinear stability of explicit self-similar solutions for the timelike extremal hypersurfaces in R^{1+3}. (arXiv:1907.01126v2 [math.AP] UPDATED)

This paper is devoted to the study of the singularity phenomenon of timelike extremal hypersurfaces in Minkowski spacetime $mathbb{R}^{1+3}$. We find that there are two explicit lightlike self-similar solutions to a graph representation of timelike extremal hypersurfaces in Minkowski spacetime $mathbb{R}^{1+3}$, the geometry of them are two spheres. The linear mode unstable of those lightlike self-similar solutions for the radially symmetric membranes equation is given. After that, we show those self-similar solutions of the radially symmetric membranes equation are nonlinearly stable inside a strictly proper subset of the backward lightcone. This means that the dynamical behavior of those two spheres is as attractors. Meanwhile, we overcome the double roots case (the theorem of Poincar'{e} can't be used) in solving the difference equation by construction of a Newton's polygon when we carry out the analysis of spectrum for the linear operator.




no

Mirror Symmetry for Non-Abelian Landau-Ginzburg Models. (arXiv:1812.06200v3 [math.AG] UPDATED)

We consider Landau-Ginzburg models stemming from groups comprised of non-diagonal symmetries, and we describe a rule for the mirror LG model. In particular, we present the non-abelian dual group, which serves as the appropriate choice of group for the mirror LG model. We also describe an explicit mirror map between the A-model and the B-model state spaces for two examples. Further, we prove that this mirror map is an isomorphism between the untwisted broad sectors and the narrow diagonal sectors for Fermat type polynomials.




no

Bernoulli decomposition and arithmetical independence between sequences. (arXiv:1811.11545v2 [math.NT] UPDATED)

In this paper we study the following set[A={p(n)+2^nd mod 1: ngeq 1}subset [0.1],] where $p$ is a polynomial with at least one irrational coefficient on non constant terms, $d$ is any real number and for $ain [0,infty)$, $a mod 1$ is the fractional part of $a$. By a Bernoulli decomposition method, we show that the closure of $A$ must have full Hausdorff dimension.




no

A Forward-Backward Splitting Method for Monotone Inclusions Without Cocoercivity. (arXiv:1808.04162v4 [math.OC] UPDATED)

In this work, we propose a simple modification of the forward-backward splitting method for finding a zero in the sum of two monotone operators. Our method converges under the same assumptions as Tseng's forward-backward-forward method, namely, it does not require cocoercivity of the single-valued operator. Moreover, each iteration only requires one forward evaluation rather than two as is the case for Tseng's method. Variants of the method incorporating a linesearch, relaxation and inertia, or a structured three operator inclusion are also discussed.




no

Expansion of Iterated Stratonovich Stochastic Integrals of Arbitrary Multiplicity Based on Generalized Iterated Fourier Series Converging Pointwise. (arXiv:1801.00784v9 [math.PR] UPDATED)

The article is devoted to the expansion of iterated Stratonovich stochastic integrals of arbitrary multiplicity $k$ $(kinmathbb{N})$ based on the generalized iterated Fourier series. The case of Fourier-Legendre series as well as the case of trigonotemric Fourier series are considered in details. The obtained expansion provides a possibility to represent the iterated Stratonovich stochastic integral in the form of iterated series of products of standard Gaussian random variables. Convergence in the mean of degree $2n$ $(nin mathbb{N})$ of the expansion is proved. Some modifications of the mentioned expansion were derived for the case $k=2$. One of them is based of multiple trigonomentric Fourier series converging almost everywhere in the square $[t, T]^2$. The results of the article can be applied to the numerical solution of Ito stochastic differential equations.




no

A Class of Functional Inequalities and their Applications to Fourth-Order Nonlinear Parabolic Equations. (arXiv:1612.03508v3 [math.AP] UPDATED)

We study a class of fourth order nonlinear parabolic equations which include the thin-film equation and the quantum drift-diffusion model as special cases. We investigate these equations by first developing functional inequalities of the type $ int_Omega u^{2gamma-alpha-eta}Delta u^alphaDelta u^eta dx geq cint_Omega|Delta u^gamma |^2dx $, which seem to be of interest on their own right.




no

A Hamilton-Jacobi Formulation for Time-Optimal Paths of Rectangular Nonholonomic Vehicles. (arXiv:2005.03623v1 [math.OC])

We address the problem of optimal path planning for a simple nonholonomic vehicle in the presence of obstacles. Most current approaches are either split hierarchically into global path planning and local collision avoidance, or neglect some of the ambient geometry by assuming the car is a point mass. We present a Hamilton-Jacobi formulation of the problem that resolves time-optimal paths and considers the geometry of the vehicle.




no

Positive Geometries and Differential Forms with Non-Logarithmic Singularities I. (arXiv:2005.03612v1 [hep-th])

Positive geometries encode the physics of scattering amplitudes in flat space-time and the wavefunction of the universe in cosmology for a large class of models. Their unique canonical forms, providing such quantum mechanical observables, are characterised by having only logarithmic singularities along all the boundaries of the positive geometry. However, physical observables have logarithmic singularities just for a subset of theories. Thus, it becomes crucial to understand whether a similar paradigm can underlie their structure in more general cases. In this paper we start a systematic investigation of a geometric-combinatorial characterisation of differential forms with non-logarithmic singularities, focusing on projective polytopes and related meromorphic forms with multiple poles. We introduce the notions of covariant forms and covariant pairings. Covariant forms have poles only along the boundaries of the given polytope; moreover, their leading Laurent coefficients along any of the boundaries are still covariant forms on the specific boundary. Whereas meromorphic forms in covariant pairing with a polytope are associated to a specific (signed) triangulation, in which poles on spurious boundaries do not cancel completely, but their order is lowered. These meromorphic forms can be fully characterised if the polytope they are associated to is viewed as the restriction of a higher dimensional one onto a hyperplane. The canonical form of the latter can be mapped into a covariant form or a form in covariant pairing via a covariant restriction. We show how the geometry of the higher dimensional polytope determines the structure of these differential forms. Finally, we discuss how these notions are related to Jeffrey-Kirwan residues and cosmological polytopes.




no

On products of groups and indices not divisible by a given prime. (arXiv:2005.03608v1 [math.GR])

Let the group $G = AB$ be the product of subgroups $A$ and $B$, and let $p$ be a prime. We prove that $p$ does not divide the conjugacy class size (index) of each $p$-regular element of prime power order $xin Acup B$ if and only if $G$ is $p$-decomposable, i.e. $G=O_p(G) imes O_{p'}(G)$.




no

Special subvarieties of non-arithmetic ball quotients and Hodge Theory. (arXiv:2005.03524v1 [math.AG])

Let $Gamma subset operatorname{PU}(1,n)$ be a lattice, and $S_Gamma$ the associated ball quotient. We prove that, if $S_Gamma$ contains infinitely many maximal totally geodesic subvarieties, then $Gamma$ is arithmetic. We also prove an Ax-Schanuel Conjecture for $S_Gamma$, similar to the one recently proven by Mok, Pila and Tsimerman. One of the main ingredients in the proofs is to realise $S_Gamma$ inside a period domain for polarised integral variations of Hodge structures and interpret totally geodesic subvarieties as unlikely intersections.




no

Asymptotic behavior of Wronskian polynomials that are factorized via $p$-cores and $p$-quotients. (arXiv:2005.03516v1 [math.CA])

In this paper we consider Wronskian polynomials labeled by partitions that can be factorized via the combinatorial concepts of $p$-cores and $p$-quotients. We obtain the asymptotic behavior for these polynomials when the $p$-quotient is fixed while the size of the $p$-core grows to infinity. For this purpose, we associate the $p$-core with its characteristic vector and let all entries of this vector simultaneously tend to infinity. This result generalizes the Wronskian Hermite setting which is recovered when $p=2$.




no

On completion of unimodular rows over polynomial extension of finitely generated rings over $mathbb{Z}$. (arXiv:2005.03485v1 [math.AC])

In this article, we prove that if $R$ is a finitely generated ring over $mathbb{Z}$ of dimension $d, dgeq2, frac{1}{d!}in R$, then any unimodular row over $R[X]$ of length $d+1$ can be mapped to a factorial row by elementary transformations.




no

Derivatives of normal Jacobi operator on real hypersurfaces in the complex quadric. (arXiv:2005.03483v1 [math.DG])

In cite{S 2017}, Suh gave a non-existence theorem for Hopf real hypersurfaces in the complex quadric with parallel normal Jacobi operator. Motivated by this result, in this paper, we introduce some generalized conditions named $mathcal C$-parallel or Reeb parallel normal Jacobi operators. By using such weaker parallelisms of normal Jacobi operator, first we can assert a non-existence theorem of Hopf real hypersurfaces with $mathcal C$-parallel normal Jacobi operator in the complex quadric $Q^{m}$, $m geq 3$. Next, we prove that a Hopf real hypersurface has Reeb parallel normal Jacobi operator if and only if it has an $mathfrak A$-isotropic singular normal vector field.




no

A note on Penner's cocycle on the fatgraph complex. (arXiv:2005.03414v1 [math.GT])

We study a 1-cocycle on the fatgraph complex of a punctured surface introduced by Penner. We present an explicit cobounding cochain for this cocycle, whose formula involves a summation over trivalent vertices of a trivalent fatgraph spine. In a similar fashion, we express the symplectic form of the underlying surface of a given fatgraph spine.




no

A closer look at the non-Hopfianness of $BS(2,3)$. (arXiv:2005.03396v1 [math.GR])

The Baumslag Solitar group $BS(2,3)$, is a so-called non-Hopfian group, meaning that it has an epimorphism $phi$ onto itself, that is not injective. In particular this is equivalent to saying that $BS(2,3)$ has a quotient that is isomorphic to itself. As a consequence the Cayley graph of $BS(2,3)$ has a quotient that is isomorphic to itself up to change of generators. We describe this quotient on the graph-level and take a closer look at the most common epimorphism $phi$. We show its kernel is a free group of infinite rank with an explicit set of generators.




no

Semiglobal non-oscillatory big bang singular spacetimes for the Einstein-scalar field system. (arXiv:2005.03395v1 [math-ph])

We construct semiglobal singular spacetimes for the Einstein equations coupled to a massless scalar field. Consistent with the heuristic analysis of Belinskii, Khalatnikov, Lifshitz or BKL for this system, there are no oscillations due to the scalar field. (This is much simpler than the oscillatory BKL heuristics for the Einstein vacuum equations.) Prior results are due to Andersson and Rendall in the real analytic case, and Rodnianski and Speck in the smooth near-spatially-flat-FLRW case. Similar to Andersson and Rendall we give asymptotic data at the singularity, which we refer to as final data, but our construction is not limited to real analytic solutions. This paper is a test application of tools (a graded Lie algebra formulation of the Einstein equations and a filtration) intended for the more subtle vacuum case. We use homological algebra tools to construct a formal series solution, then symmetric hyperbolic energy estimates to construct a true solution well-approximated by truncations of the formal one. We conjecture that the image of the map from final data to initial data is an open set of anisotropic initial data.




no

Strong maximum principle and boundary estimates for nonhomogeneous elliptic equations. (arXiv:2005.03338v1 [math.AP])

We give a simple proof of the strong maximum principle for viscosity subsolutions of fully nonlinear elliptic PDEs on the form $$ F(x,u,Du,D^2u) = 0 $$ under suitable structure conditions on the equation allowing for non-Lipschitz growth in the gradient terms. In case of smooth boundaries, we also prove the Hopf lemma, the boundary Harnack inequality and that positive viscosity solutions vanishing on a portion of the boundary are comparable with the distance function near the boundary. Our results apply to weak solutions of an eigenvalue problem for the variable exponent $p$-Laplacian.




no

Smooth non-projective equivariant completions of affine spaces. (arXiv:2005.03277v1 [math.AG])

In this paper we construct an equivariant embedding of the affine space $mathbb{A}^n$ with the translation group action into a complete non-projective algebraic variety $X$ for all $n geq 3$. The theory of toric varieties is used as the main tool for this construction. In the case of $n = 3$ we describe the orbit structure on the variety $X$.




no

A Note on Cores and Quasi Relative Interiors in Partially Finite Convex Programming. (arXiv:2005.03265v1 [math.FA])

The problem of minimizing an entropy functional subject to linear constraints is a useful example of partially finite convex programming. In the 1990s, Borwein and Lewis provided broad and easy-to-verify conditions that guarantee strong duality for such problems. Their approach is to construct a function in the quasi-relative interior of the relevant infinite-dimensional set, which assures the existence of a point in the core of the relevant finite-dimensional set. We revisit this problem, and provide an alternative proof by directly appealing to the definition of the core, rather than by relying on any properties of the quasi-relative interior. Our approach admits a minor relaxation of the linear independence requirements in Borwein and Lewis' framework, which allows us to work with certain piecewise-defined moment functions precluded by their conditions. We provide such a computed example that illustrates how this relaxation may be used to tame observed Gibbs phenomenon when the underlying data is discontinuous. The relaxation illustrates the understanding we may gain by tackling partially-finite problems from both the finite-dimensional and infinite-dimensional sides. The comparison of these two approaches is informative, as both proofs are constructive.




no

Non-relativity of K"ahler manifold and complex space forms. (arXiv:2005.03208v1 [math.CV])

We study the non-relativity for two real analytic K"ahler manifolds and complex space forms of three types. The first one is a K"ahler manifold whose polarization of local K"ahler potential is a Nash function in a local coordinate. The second one is the Hartogs domain equpped with two canonical metrics whose polarizations of the K"ahler potentials are the diastatic functions.




no

On planar graphs of uniform polynomial growth. (arXiv:2005.03139v1 [math.PR])

Consider an infinite planar graph with uniform polynomial growth of degree d > 2. Many examples of such graphs exhibit similar geometric and spectral properties, and it has been conjectured that this is necessary. We present a family of counterexamples. In particular, we show that for every rational d > 2, there is a planar graph with uniform polynomial growth of degree d on which the random walk is transient, disproving a conjecture of Benjamini (2011).

By a well-known theorem of Benjamini and Schramm, such a graph cannot be a unimodular random graph. We also give examples of unimodular random planar graphs of uniform polynomial growth with unexpected properties. For instance, graphs of (almost sure) uniform polynomial growth of every rational degree d > 2 for which the speed exponent of the walk is larger than 1/d, and in which the complements of all balls are connected. This resolves negatively two questions of Benjamini and Papasoglou (2011).




no

On the notion of weak isometry for finite metric spaces. (arXiv:2005.03109v1 [math.MG])

Finite metric spaces are the object of study in many data analysis problems. We examine the concept of weak isometry between finite metric spaces, in order to analyse properties of the spaces that are invariant under strictly increasing rescaling of the distance functions. In this paper, we analyse some of the possible complete and incomplete invariants for weak isometry and we introduce a dissimilarity measure that asses how far two spaces are from being weakly isometric. Furthermore, we compare these ideas with the theory of persistent homology, to study how the two are related.




no

A note on Tonelli Lagrangian systems on $mathbb{T}^2$ with positive topological entropy on high energy level. (arXiv:2005.03108v1 [math.DS])

In this work we study the dynamical behavior Tonelli Lagrangian systems defined on the tangent bundle of the torus $mathbb{T}^2=mathbb{R}^2 / mathbb{Z}^2$. We prove that the Lagrangian flow restricted to a high energy level $ E_L^{-1}(c)$ (i.e $ c> c_0(L)$) has positive topological entropy if the flow satisfies the Kupka-Smale propriety in $ E_L^{-1}(c)$ (i.e, all closed orbit with energy $c$ are hyperbolic or elliptic and all heteroclinic intersections are transverse on $E_L^{-1}(c)$). The proof requires the use of well-known results in Aubry-Mather's Theory.




no

A Note on Approximations of Fixed Points for Nonexpansive Mappings in Norm-attainable Classes. (arXiv:2005.03069v1 [math.FA])

Let $H$ be an infinite dimensional, reflexive, separable Hilbert space and $NA(H)$ the class of all norm-attainble operators on $H.$ In this note, we study an implicit scheme for a canonical representation of nonexpansive contractions in norm-attainable classes.




no

A Quantum Algorithm To Locate Unknown Hashes For Known N-Grams Within A Large Malware Corpus. (arXiv:2005.02911v2 [quant-ph] UPDATED)

Quantum computing has evolved quickly in recent years and is showing significant benefits in a variety of fields. Malware analysis is one of those fields that could also take advantage of quantum computing. The combination of software used to locate the most frequent hashes and $n$-grams between benign and malicious software (KiloGram) and a quantum search algorithm could be beneficial, by loading the table of hashes and $n$-grams into a quantum computer, and thereby speeding up the process of mapping $n$-grams to their hashes. The first phase will be to use KiloGram to find the top-$k$ hashes and $n$-grams for a large malware corpus. From here, the resulting hash table is then loaded into a quantum machine. A quantum search algorithm is then used search among every permutation of the entangled key and value pairs to find the desired hash value. This prevents one from having to re-compute hashes for a set of $n$-grams, which can take on average $O(MN)$ time, whereas the quantum algorithm could take $O(sqrt{N})$ in the number of table lookups to find the desired hash values.




no

Modeling nanoconfinement effects using active learning. (arXiv:2005.02587v2 [physics.app-ph] UPDATED)

Predicting the spatial configuration of gas molecules in nanopores of shale formations is crucial for fluid flow forecasting and hydrocarbon reserves estimation. The key challenge in these tight formations is that the majority of the pore sizes are less than 50 nm. At this scale, the fluid properties are affected by nanoconfinement effects due to the increased fluid-solid interactions. For instance, gas adsorption to the pore walls could account for up to 85% of the total hydrocarbon volume in a tight reservoir. Although there are analytical solutions that describe this phenomenon for simple geometries, they are not suitable for describing realistic pores, where surface roughness and geometric anisotropy play important roles. To describe these, molecular dynamics (MD) simulations are used since they consider fluid-solid and fluid-fluid interactions at the molecular level. However, MD simulations are computationally expensive, and are not able to simulate scales larger than a few connected nanopores. We present a method for building and training physics-based deep learning surrogate models to carry out fast and accurate predictions of molecular configurations of gas inside nanopores. Since training deep learning models requires extensive databases that are computationally expensive to create, we employ active learning (AL). AL reduces the overhead of creating comprehensive sets of high-fidelity data by determining where the model uncertainty is greatest, and running simulations on the fly to minimize it. The proposed workflow enables nanoconfinement effects to be rigorously considered at the mesoscale where complex connected sets of nanopores control key applications such as hydrocarbon recovery and CO2 sequestration.




no

The Sensitivity of Language Models and Humans to Winograd Schema Perturbations. (arXiv:2005.01348v2 [cs.CL] UPDATED)

Large-scale pretrained language models are the major driving force behind recent improvements in performance on the Winograd Schema Challenge, a widely employed test of common sense reasoning ability. We show, however, with a new diagnostic dataset, that these models are sensitive to linguistic perturbations of the Winograd examples that minimally affect human understanding. Our results highlight interesting differences between humans and language models: language models are more sensitive to number or gender alternations and synonym replacements than humans, and humans are more stable and consistent in their predictions, maintain a much higher absolute performance, and perform better on non-associative instances than associative ones. Overall, humans are correct more often than out-of-the-box models, and the models are sometimes right for the wrong reasons. Finally, we show that fine-tuning on a large, task-specific dataset can offer a solution to these issues.




no

Personal Health Knowledge Graphs for Patients. (arXiv:2004.00071v2 [cs.AI] UPDATED)

Existing patient data analytics platforms fail to incorporate information that has context, is personal, and topical to patients. For a recommendation system to give a suitable response to a query or to derive meaningful insights from patient data, it should consider personal information about the patient's health history, including but not limited to their preferences, locations, and life choices that are currently applicable to them. In this review paper, we critique existing literature in this space and also discuss the various research challenges that come with designing, building, and operationalizing a personal health knowledge graph (PHKG) for patients.