no

Recursed is not Recursive: A Jarring Result. (arXiv:2002.05131v2 [cs.AI] UPDATED)

Recursed is a 2D puzzle platform video game featuring treasure chests that, when jumped into, instantiate a room that can later be exited (similar to function calls), optionally generating a jar that returns back to that room (similar to continuations). We prove that Recursed is RE-complete and thus undecidable (not recursive) by a reduction from the Post Correspondence Problem. Our reduction is "practical": the reduction from PCP results in fully playable levels that abide by all constraints governing levels (including the 15x20 room size) designed for the main game. Our reduction is also "efficient": a Turing machine can be simulated by a Recursed level whose size is linear in the encoding size of the Turing machine and whose solution length is polynomial in the running time of the Turing machine.




no

Safe non-smooth black-box optimization with application to policy search. (arXiv:1912.09466v3 [math.OC] UPDATED)

For safety-critical black-box optimization tasks, observations of the constraints and the objective are often noisy and available only for the feasible points. We propose an approach based on log barriers to find a local solution of a non-convex non-smooth black-box optimization problem $min f^0(x)$ subject to $f^i(x)leq 0,~ i = 1,ldots, m$, at the same time, guaranteeing constraint satisfaction while learning an optimal solution with high probability. Our proposed algorithm exploits noisy observations to iteratively improve on an initial safe point until convergence. We derive the convergence rate and prove safety of our algorithm. We demonstrate its performance in an application to an iterative control design problem.




no

Novel Deep Learning Framework for Wideband Spectrum Characterization at Sub-Nyquist Rate. (arXiv:1912.05255v2 [eess.SP] UPDATED)

Introduction of spectrum-sharing in 5G and subsequent generation networks demand base-station(s) with the capability to characterize the wideband spectrum spanned over licensed, shared and unlicensed non-contiguous frequency bands. Spectrum characterization involves the identification of vacant bands along with center frequency and parameters (energy, modulation, etc.) of occupied bands. Such characterization at Nyquist sampling is area and power-hungry due to the need for high-speed digitization. Though sub-Nyquist sampling (SNS) offers an excellent alternative when the spectrum is sparse, it suffers from poor performance at low signal to noise ratio (SNR) and demands careful design and integration of digital reconstruction, tunable channelizer and characterization algorithms. In this paper, we propose a novel deep-learning framework via a single unified pipeline to accomplish two tasks: 1)~Reconstruct the signal directly from sub-Nyquist samples, and 2)~Wideband spectrum characterization. The proposed approach eliminates the need for complex signal conditioning between reconstruction and characterization and does not need complex tunable channelizers. We extensively compare the performance of our framework for a wide range of modulation schemes, SNR and channel conditions. We show that the proposed framework outperforms existing SNS based approaches and characterization performance approaches to Nyquist sampling-based framework with an increase in SNR. Easy to design and integrate along with a single unified deep learning framework make the proposed architecture a good candidate for reconfigurable platforms.




no

Measuring Social Bias in Knowledge Graph Embeddings. (arXiv:1912.02761v2 [cs.CL] UPDATED)

It has recently been shown that word embeddings encode social biases, with a harmful impact on downstream tasks. However, to this point there has been no similar work done in the field of graph embeddings. We present the first study on social bias in knowledge graph embeddings, and propose a new metric suitable for measuring such bias. We conduct experiments on Wikidata and Freebase, and show that, as with word embeddings, harmful social biases related to professions are encoded in the embeddings with respect to gender, religion, ethnicity and nationality. For example, graph embeddings encode the information that men are more likely to be bankers, and women more likely to be homekeepers. As graph embeddings become increasingly utilized, we suggest that it is important the existence of such biases are understood and steps taken to mitigate their impact.




no

Digital Twin: Enabling Technologies, Challenges and Open Research. (arXiv:1911.01276v3 [cs.CY] UPDATED)

Digital Twin technology is an emerging concept that has become the centre of attention for industry and, in more recent years, academia. The advancements in industry 4.0 concepts have facilitated its growth, particularly in the manufacturing industry. The Digital Twin is defined extensively but is best described as the effortless integration of data between a physical and virtual machine in either direction. The challenges, applications, and enabling technologies for Artificial Intelligence, Internet of Things (IoT) and Digital Twins are presented. A review of publications relating to Digital Twins is performed, producing a categorical review of recent papers. The review has categorised them by research areas: manufacturing, healthcare and smart cities, discussing a range of papers that reflect these areas and the current state of research. The paper provides an assessment of the enabling technologies, challenges and open research for Digital Twins.




no

Biologic and Prognostic Feature Scores from Whole-Slide Histology Images Using Deep Learning. (arXiv:1910.09100v4 [q-bio.QM] UPDATED)

Histopathology is a reflection of the molecular changes and provides prognostic phenotypes representing the disease progression. In this study, we introduced feature scores generated from hematoxylin and eosin histology images based on deep learning (DL) models developed for prostate pathology. We demonstrated that these feature scores were significantly prognostic for time to event endpoints (biochemical recurrence and cancer-specific survival) and had simultaneously molecular biologic associations to relevant genomic alterations and molecular subtypes using already trained DL models that were not previously exposed to the datasets of the current study. Further, we discussed the potential of such feature scores to improve the current tumor grading system and the challenges that are associated with tumor heterogeneity and the development of prognostic models from histology images. Our findings uncover the potential of feature scores from histology images as digital biomarkers in precision medicine and as an expanding utility for digital pathology.




no

ZebraLancer: Decentralized Crowdsourcing of Human Knowledge atop Open Blockchain. (arXiv:1803.01256v5 [cs.HC] UPDATED)

We design and implement the first private and anonymous decentralized crowdsourcing system ZebraLancer, and overcome two fundamental challenges of decentralizing crowdsourcing, i.e., data leakage and identity breach.

First, our outsource-then-prove methodology resolves the tension between the blockchain transparency and the data confidentiality to guarantee the basic utilities/fairness requirements of data crowdsourcing, thus ensuring: (i) a requester will not pay more than what data deserve, according to a policy announced when her task is published via the blockchain; (ii) each worker indeed gets a payment based on the policy, if he submits data to the blockchain; (iii) the above properties are realized not only without a central arbiter, but also without leaking the data to the open blockchain. Second, the transparency of blockchain allows one to infer private information about workers and requesters through their participation history. Simply enabling anonymity is seemingly attempting but will allow malicious workers to submit multiple times to reap rewards. ZebraLancer also overcomes this problem by allowing anonymous requests/submissions without sacrificing accountability. The idea behind is a subtle linkability: if a worker submits twice to a task, anyone can link the submissions, or else he stays anonymous and unlinkable across tasks. To realize this delicate linkability, we put forward a novel cryptographic concept, i.e., the common-prefix-linkable anonymous authentication. We remark the new anonymous authentication scheme might be of independent interest. Finally, we implement our protocol for a common image annotation task and deploy it in a test net of Ethereum. The experiment results show the applicability of our protocol atop the existing real-world blockchain.




no

Seismic Shot Gather Noise Localization Using a Multi-Scale Feature-Fusion-Based Neural Network. (arXiv:2005.03626v1 [cs.CV])

Deep learning-based models, such as convolutional neural networks, have advanced various segments of computer vision. However, this technology is rarely applied to seismic shot gather noise localization problem. This letter presents an investigation on the effectiveness of a multi-scale feature-fusion-based network for seismic shot-gather noise localization. Herein, we describe the following: (1) the construction of a real-world dataset of seismic noise localization based on 6,500 seismograms; (2) a multi-scale feature-fusion-based detector that uses the MobileNet combined with the Feature Pyramid Net as the backbone; and (3) the Single Shot multi-box detector for box classification/regression. Additionally, we propose the use of the Focal Loss function that improves the detector's prediction accuracy. The proposed detector achieves an AP@0.5 of 78.67\% in our empirical evaluation.




no

NH-HAZE: An Image Dehazing Benchmark with Non-Homogeneous Hazy and Haze-Free Images. (arXiv:2005.03560v1 [cs.CV])

Image dehazing is an ill-posed problem that has been extensively studied in the recent years. The objective performance evaluation of the dehazing methods is one of the major obstacles due to the lacking of a reference dataset. While the synthetic datasets have shown important limitations, the few realistic datasets introduced recently assume homogeneous haze over the entire scene. Since in many real cases haze is not uniformly distributed we introduce NH-HAZE, a non-homogeneous realistic dataset with pairs of real hazy and corresponding haze-free images. This is the first non-homogeneous image dehazing dataset and contains 55 outdoor scenes. The non-homogeneous haze has been introduced in the scene using a professional haze generator that imitates the real conditions of hazy scenes. Additionally, this work presents an objective assessment of several state-of-the-art single image dehazing methods that were evaluated using NH-HAZE dataset.




no

Collaborative Deanonymization. (arXiv:2005.03535v1 [cs.CR])

We propose protocols to resolve the tension between anonymity and accountability in a peer-to-peer manner. Law enforcement can adopt this approach to solve crimes involving cryptocurrency and anonymization techniques. We illustrate how the protocols could apply to Monero rings and CoinJoin transactions in Bitcoin.




no

p for political: Participation Without Agency Is Not Enough. (arXiv:2005.03534v1 [cs.HC])

Participatory Design's vision of democratic participation assumes participants' feelings of agency in envisioning a collective future. But this assumption may be leaky when dealing with vulnerable populations. We reflect on the results of a series of activities aimed at supporting agentic-future-envisionment with a group of sex-trafficking survivors in Nepal. We observed a growing sense among the survivors that they could play a role in bringing about change in their families. They also became aware of how they could interact with available institutional resources. Reflecting on the observations, we argue that building participant agency on the small and personal interactions is necessary before demanding larger Political participation. In particular, a value of PD, especially for vulnerable populations, can lie in the process itself if it helps participants position themselves as actors in the larger world.




no

CounQER: A System for Discovering and Linking Count Information in Knowledge Bases. (arXiv:2005.03529v1 [cs.IR])

Predicate constraints of general-purpose knowledge bases (KBs) like Wikidata, DBpedia and Freebase are often limited to subproperty, domain and range constraints. In this demo we showcase CounQER, a system that illustrates the alignment of counting predicates, like staffSize, and enumerating predicates, like workInstitution^{-1} . In the demonstration session, attendees can inspect these alignments, and will learn about the importance of these alignments for KB question answering and curation. CounQER is available at https://counqer.mpi-inf.mpg.de/spo.




no

An asynchronous distributed and scalable generalized Nash equilibrium seeking algorithm for strongly monotone games. (arXiv:2005.03507v1 [cs.GT])

In this paper, we present three distributed algorithms to solve a class of generalized Nash equilibrium (GNE) seeking problems in strongly monotone games. The first one (SD-GENO) is based on synchronous updates of the agents, while the second and the third (AD-GEED and AD-GENO) represent asynchronous solutions that are robust to communication delays. AD-GENO can be seen as a refinement of AD-GEED, since it only requires node auxiliary variables, enhancing the scalability of the algorithm. Our main contribution is to prove converge to a variational GNE of the game via an operator-theoretic approach. Finally, we apply the algorithms to network Cournot games and show how different activation sequences and delays affect convergence. We also compare the proposed algorithms to the only other in the literature (ADAGNES), and observe that AD-GENO outperforms the alternative.




no

Subquadratic-Time Algorithms for Normal Bases. (arXiv:2005.03497v1 [cs.SC])

For any finite Galois field extension $mathsf{K}/mathsf{F}$, with Galois group $G = mathrm{Gal}(mathsf{K}/mathsf{F})$, there exists an element $alpha in mathsf{K}$ whose orbit $Gcdotalpha$ forms an $mathsf{F}$-basis of $mathsf{K}$. Such an $alpha$ is called a normal element and $Gcdotalpha$ is a normal basis. We introduce a probabilistic algorithm for testing whether a given $alpha in mathsf{K}$ is normal, when $G$ is either a finite abelian or a metacyclic group. The algorithm is based on the fact that deciding whether $alpha$ is normal can be reduced to deciding whether $sum_{g in G} g(alpha)g in mathsf{K}[G]$ is invertible; it requires a slightly subquadratic number of operations. Once we know that $alpha$ is normal, we show how to perform conversions between the working basis of $mathsf{K}/mathsf{F}$ and the normal basis with the same asymptotic cost.




no

Anonymized GCN: A Novel Robust Graph Embedding Method via Hiding Node Position in Noise. (arXiv:2005.03482v1 [cs.LG])

Graph convolution network (GCN) have achieved state-of-the-art performance in the task of node prediction in the graph structure. However, with the gradual various of graph attack methods, there are lack of research on the robustness of GCN. At this paper, we will design a robust GCN method for node prediction tasks. Considering the graph structure contains two types of information: node information and connection information, and attackers usually modify the connection information to complete the interference with the prediction results of the node, we first proposed a method to hide the connection information in the generator, named Anonymized GCN (AN-GCN). By hiding the connection information in the graph structure in the generator through adversarial training, the accurate node prediction can be completed only by the node number rather than its specific position in the graph. Specifically, we first demonstrated the key to determine the embedding of a specific node: the row corresponding to the node of the eigenmatrix of the Laplace matrix, by target it as the output of the generator, we designed a method to hide the node number in the noise. Take the corresponding noise as input, we will obtain the connection structure of the node instead of directly obtaining. Then the encoder and decoder are spliced both in discriminator, so that after adversarial training, the generator and discriminator can cooperate to complete the encoding and decoding of the graph, then complete the node prediction. Finally, All node positions can generated by noise at the same time, that is to say, the generator will hides all the connection information of the graph structure. The evaluation shows that we only need to obtain the initial features and node numbers of the nodes to complete the node prediction, and the accuracy did not decrease, but increased by 0.0293.




no

NTIRE 2020 Challenge on NonHomogeneous Dehazing. (arXiv:2005.03457v1 [cs.CV])

This paper reviews the NTIRE 2020 Challenge on NonHomogeneous Dehazing of images (restoration of rich details in hazy image). We focus on the proposed solutions and their results evaluated on NH-Haze, a novel dataset consisting of 55 pairs of real haze free and nonhomogeneous hazy images recorded outdoor. NH-Haze is the first realistic nonhomogeneous haze dataset that provides ground truth images. The nonhomogeneous haze has been produced using a professional haze generator that imitates the real conditions of haze scenes. 168 participants registered in the challenge and 27 teams competed in the final testing phase. The proposed solutions gauge the state-of-the-art in image dehazing.




no

Detection and Feeder Identification of the High Impedance Fault at Distribution Networks Based on Synchronous Waveform Distortions. (arXiv:2005.03411v1 [eess.SY])

Diagnosis of high impedance fault (HIF) is a challenge for nowadays distribution network protections. The fault current of a HIF is much lower than that of a normal load, and fault feature is significantly affected by fault scenarios. A detection and feeder identification algorithm for HIFs is proposed in this paper, based on the high-resolution and synchronous waveform data. In the algorithm, an interval slope is defined to describe the waveform distortions, which guarantees a uniform feature description under various HIF nonlinearities and noise interferences. For three typical types of network neutrals, i.e.,isolated neutral, resonant neutral, and low-resistor-earthed neutral, differences of the distorted components between the zero-sequence currents of healthy and faulty feeders are mathematically deduced, respectively. As a result, the proposed criterion, which is based on the distortion relationships between zero-sequence currents of feeders and the zero-sequence voltage at the substation, is theoretically supported. 28 HIFs grounded to various materials are tested in a 10kV distribution networkwith three neutral types, and are utilized to verify the effectiveness of the proposed algorithm.




no

Self-Supervised Human Depth Estimation from Monocular Videos. (arXiv:2005.03358v1 [cs.CV])

Previous methods on estimating detailed human depth often require supervised training with `ground truth' depth data. This paper presents a self-supervised method that can be trained on YouTube videos without known depth, which makes training data collection simple and improves the generalization of the learned network. The self-supervised learning is achieved by minimizing a photo-consistency loss, which is evaluated between a video frame and its neighboring frames warped according to the estimated depth and the 3D non-rigid motion of the human body. To solve this non-rigid motion, we first estimate a rough SMPL model at each video frame and compute the non-rigid body motion accordingly, which enables self-supervised learning on estimating the shape details. Experiments demonstrate that our method enjoys better generalization and performs much better on data in the wild.




no

Pricing under a multinomial logit model with non linear network effects. (arXiv:2005.03352v1 [cs.GT])

We study the problem of pricing under a Multinomial Logit model where we incorporate network effects over the consumer's decisions. We analyse both cases, when sellers compete or collaborate. In particular, we pay special attention to the overall expected revenue and how the behaviour of the no purchase option is affected under variations of a network effect parameter. Where for example we prove that the market share for the no purchase option, is decreasing in terms of the value of the network effect, meaning that stronger communication among costumers increases the expected amount of sales. We also analyse how the customer's utility is altered when network effects are incorporated into the market, comparing the cases where both competitive and monopolistic prices are displayed. We use tools from stochastic approximation algorithms to prove that the probability of purchasing the available products converges to a unique stationary distribution. We model that the sellers can use this stationary distribution to establish their strategies. Finding that under those settings, a pure Nash Equilibrium represents the pricing strategies in the case of competition, and an optimal (that maximises the total revenue) fixed price characterise the case of collaboration.




no

Wavelet Integrated CNNs for Noise-Robust Image Classification. (arXiv:2005.03337v1 [cs.CV])

Convolutional Neural Networks (CNNs) are generally prone to noise interruptions, i.e., small image noise can cause drastic changes in the output. To suppress the noise effect to the final predication, we enhance CNNs by replacing max-pooling, strided-convolution, and average-pooling with Discrete Wavelet Transform (DWT). We present general DWT and Inverse DWT (IDWT) layers applicable to various wavelets like Haar, Daubechies, and Cohen, etc., and design wavelet integrated CNNs (WaveCNets) using these layers for image classification. In WaveCNets, feature maps are decomposed into the low-frequency and high-frequency components during the down-sampling. The low-frequency component stores main information including the basic object structures, which is transmitted into the subsequent layers to extract robust high-level features. The high-frequency components, containing most of the data noise, are dropped during inference to improve the noise-robustness of the WaveCNets. Our experimental results on ImageNet and ImageNet-C (the noisy version of ImageNet) show that WaveCNets, the wavelet integrated versions of VGG, ResNets, and DenseNet, achieve higher accuracy and better noise-robustness than their vanilla versions.




no

Interval type-2 fuzzy logic system based similarity evaluation for image steganography. (arXiv:2005.03310v1 [cs.MM])

Similarity measure, also called information measure, is a concept used to distinguish different objects. It has been studied from different contexts by employing mathematical, psychological, and fuzzy approaches. Image steganography is the art of hiding secret data into an image in such a way that it cannot be detected by an intruder. In image steganography, hiding secret data in the plain or non-edge regions of the image is significant due to the high similarity and redundancy of the pixels in their neighborhood. However, the similarity measure of the neighboring pixels, i.e., their proximity in color space, is perceptual rather than mathematical. This paper proposes an interval type 2 fuzzy logic system (IT2 FLS) to determine the similarity between the neighboring pixels by involving an instinctive human perception through a rule-based approach. The pixels of the image having high similarity values, calculated using the proposed IT2 FLS similarity measure, are selected for embedding via the least significant bit (LSB) method. We term the proposed procedure of steganography as IT2 FLS LSB method. Moreover, we have developed two more methods, namely, type 1 fuzzy logic system based least significant bits (T1FLS LSB) and Euclidean distance based similarity measures for least significant bit (SM LSB) steganographic methods. Experimental simulations were conducted for a collection of images and quality index metrics, such as PSNR, UQI, and SSIM are used. All the three steganographic methods are applied on datasets and the quality metrics are calculated. The obtained stego images and results are shown and thoroughly compared to determine the efficacy of the IT2 FLS LSB method. Finally, we have done a comparative analysis of the proposed approach with the existing well-known steganographic methods to show the effectiveness of our proposed steganographic method.




no

Knowledge Enhanced Neural Fashion Trend Forecasting. (arXiv:2005.03297v1 [cs.IR])

Fashion trend forecasting is a crucial task for both academia and industry. Although some efforts have been devoted to tackling this challenging task, they only studied limited fashion elements with highly seasonal or simple patterns, which could hardly reveal the real fashion trends. Towards insightful fashion trend forecasting, this work focuses on investigating fine-grained fashion element trends for specific user groups. We first contribute a large-scale fashion trend dataset (FIT) collected from Instagram with extracted time series fashion element records and user information. Further-more, to effectively model the time series data of fashion elements with rather complex patterns, we propose a Knowledge EnhancedRecurrent Network model (KERN) which takes advantage of the capability of deep recurrent neural networks in modeling time-series data. Moreover, it leverages internal and external knowledge in fashion domain that affects the time-series patterns of fashion element trends. Such incorporation of domain knowledge further enhances the deep learning model in capturing the patterns of specific fashion elements and predicting the future trends. Extensive experiments demonstrate that the proposed KERN model can effectively capture the complicated patterns of objective fashion elements, therefore making preferable fashion trend forecast.




no

Mortar-based entropy-stable discontinuous Galerkin methods on non-conforming quadrilateral and hexahedral meshes. (arXiv:2005.03237v1 [math.NA])

High-order entropy-stable discontinuous Galerkin (DG) methods for nonlinear conservation laws reproduce a discrete entropy inequality by combining entropy conservative finite volume fluxes with summation-by-parts (SBP) discretization matrices. In the DG context, on tensor product (quadrilateral and hexahedral) elements, SBP matrices are typically constructed by collocating at Lobatto quadrature points. Recent work has extended the construction of entropy-stable DG schemes to collocation at more accurate Gauss quadrature points.

In this work, we extend entropy-stable Gauss collocation schemes to non-conforming meshes. Entropy-stable DG schemes require computing entropy conservative numerical fluxes between volume and surface quadrature nodes. On conforming tensor product meshes where volume and surface nodes are aligned, flux evaluations are required only between "lines" of nodes. However, on non-conforming meshes, volume and surface nodes are no longer aligned, resulting in a larger number of flux evaluations. We reduce this expense by introducing an entropy-stable mortar-based treatment of non-conforming interfaces via a face-local correction term, and provide necessary conditions for high-order accuracy. Numerical experiments in both two and three dimensions confirm the stability and accuracy of this approach.




no

Diagnosis of Coronavirus Disease 2019 (COVID-19) with Structured Latent Multi-View Representation Learning. (arXiv:2005.03227v1 [eess.IV])

Recently, the outbreak of Coronavirus Disease 2019 (COVID-19) has spread rapidly across the world. Due to the large number of affected patients and heavy labor for doctors, computer-aided diagnosis with machine learning algorithm is urgently needed, and could largely reduce the efforts of clinicians and accelerate the diagnosis process. Chest computed tomography (CT) has been recognized as an informative tool for diagnosis of the disease. In this study, we propose to conduct the diagnosis of COVID-19 with a series of features extracted from CT images. To fully explore multiple features describing CT images from different views, a unified latent representation is learned which can completely encode information from different aspects of features and is endowed with promising class structure for separability. Specifically, the completeness is guaranteed with a group of backward neural networks (each for one type of features), while by using class labels the representation is enforced to be compact within COVID-19/community-acquired pneumonia (CAP) and also a large margin is guaranteed between different types of pneumonia. In this way, our model can well avoid overfitting compared to the case of directly projecting highdimensional features into classes. Extensive experimental results show that the proposed method outperforms all comparison methods, and rather stable performances are observed when varying the numbers of training data.




no

OTFS-NOMA based on SCMA. (arXiv:2005.03216v1 [cs.IT])

Orthogonal Time Frequency Space (OTFS) is a $ ext{2-D}$ modulation technique that has the potential to overcome the challenges faced by orthogonal frequency division multiplexing (OFDM) in high Doppler environments. The performance of OTFS in a multi-user scenario with orthogonal multiple access (OMA) techniques has been impressive. Due to the requirement of massive connectivity in 5G and beyond, it is immensely essential to devise and examine the OTFS system with the existing Non-orthogonal Multiple Access (NOMA) techniques.

In this paper, we propose a multi-user OTFS system based on a code-domain NOMA technique called Sparse Code Multiple Access (SCMA). This system is referred to as the OTFS-SCMA model. The framework for OTFS-SCMA is designed for both downlink and uplink. First, the sparse SCMA codewords are strategically placed on the delay-Doppler plane such that the overall overloading factor of the OTFS-SCMA system is equal to that of the underlying basic SCMA system. The receiver in downlink performs the detection in two sequential phases: first, the conventional OTFS detection using the method of linear minimum mean square error (LMMSE), and then the conventional SCMA detection. For uplink, we propose a single-phase detector based on message-passing algorithm (MPA) to detect the multiple users' symbols. The performance of the proposed OTFS-SCMA system is validated through extensive simulations both in downlink and uplink. We consider delay-Doppler planes of different parameters and various SCMA systems of overloading factor up to 200$\%$. The performance of OTFS-SCMA is compared with those of existing OTFS-OMA techniques. The comprehensive investigation demonstrates the usefulness of OTFS-SCMA in future wireless communication standards.




no

Shared Autonomy with Learned Latent Actions. (arXiv:2005.03210v1 [cs.RO])

Assistive robots enable people with disabilities to conduct everyday tasks on their own. However, these tasks can be complex, containing both coarse reaching motions and fine-grained manipulation. For example, when eating, not only does one need to move to the correct food item, but they must also precisely manipulate the food in different ways (e.g., cutting, stabbing, scooping). Shared autonomy methods make robot teleoperation safer and more precise by arbitrating user inputs with robot controls. However, these works have focused mainly on the high-level task of reaching a goal from a discrete set, while largely ignoring manipulation of objects at that goal. Meanwhile, dimensionality reduction techniques for teleoperation map useful high-dimensional robot actions into an intuitive low-dimensional controller, but it is unclear if these methods can achieve the requisite precision for tasks like eating. Our insight is that---by combining intuitive embeddings from learned latent actions with robotic assistance from shared autonomy---we can enable precise assistive manipulation. In this work, we adopt learned latent actions for shared autonomy by proposing a new model structure that changes the meaning of the human's input based on the robot's confidence of the goal. We show convergence bounds on the robot's distance to the most likely goal, and develop a training procedure to learn a controller that is able to move between goals even in the presence of shared autonomy. We evaluate our method in simulations and an eating user study.




no

Nonlinear model reduction: a comparison between POD-Galerkin and POD-DEIM methods. (arXiv:2005.03173v1 [physics.comp-ph])

Several nonlinear model reduction techniques are compared for the three cases of the non-parallel version of the Kuramoto-Sivashinsky equation, the transient regime of flow past a cylinder at $Re=100$ and fully developed flow past a cylinder at the same Reynolds number. The linear terms of the governing equations are reduced by Galerkin projection onto a POD basis of the flow state, while the reduced nonlinear convection terms are obtained either by a Galerkin projection onto the same state basis, by a Galerkin projection onto a POD basis representing the nonlinearities or by applying the Discrete Empirical Interpolation Method (DEIM) to a POD basis of the nonlinearities. The quality of the reduced order models is assessed as to their stability, accuracy and robustness, and appropriate quantitative measures are introduced and compared. In particular, the properties of the reduced linear terms are compared to those of the full-scale terms, and the structure of the nonlinear quadratic terms is analyzed as to the conservation of kinetic energy. It is shown that all three reduction techniques provide excellent and similar results for the cases of the Kuramoto-Sivashinsky equation and the limit-cycle cylinder flow. For the case of the transient regime of flow past a cylinder, only the pure Galerkin techniques are successful, while the DEIM technique produces reduced-order models that diverge in finite time.




no

Avoiding 5/4-powers on the alphabet of nonnegative integers. (arXiv:2005.03158v1 [math.CO])

We identify the structure of the lexicographically least word avoiding 5/4-powers on the alphabet of nonnegative integers. Specifically, we show that this word has the form $p au(varphi(z) varphi^2(z) cdots)$ where $p, z$ are finite words, $varphi$ is a 6-uniform morphism, and $ au$ is a coding. This description yields a recurrence for the $i$th letter, which we use to prove that the sequence of letters is 6-regular with rank 188. More generally, we prove $k$-regularity for a sequence satisfying a recurrence of the same type.




no

An augmented Lagrangian preconditioner for implicitly-constituted non-Newtonian incompressible flow. (arXiv:2005.03150v1 [math.NA])

We propose an augmented Lagrangian preconditioner for a three-field stress-velocity-pressure discretization of stationary non-Newtonian incompressible flow with an implicit constitutive relation of power-law type. The discretization employed makes use of the divergence-free Scott-Vogelius pair for the velocity and pressure. The preconditioner builds on the work [P. E. Farrell, L. Mitchell, and F. Wechsung, SIAM J. Sci. Comput., 41 (2019), pp. A3073-A3096], where a Reynolds-robust preconditioner for the three-dimensional Newtonian system was introduced. The preconditioner employs a specialized multigrid method for the stress-velocity block that involves a divergence-capturing space decomposition and a custom prolongation operator. The solver exhibits excellent robustness with respect to the parameters arising in the constitutive relation, allowing for the simulation of a wide range of materials.




no

Diagnosing the Environment Bias in Vision-and-Language Navigation. (arXiv:2005.03086v1 [cs.CL])

Vision-and-Language Navigation (VLN) requires an agent to follow natural-language instructions, explore the given environments, and reach the desired target locations. These step-by-step navigational instructions are crucial when the agent is navigating new environments about which it has no prior knowledge. Most recent works that study VLN observe a significant performance drop when tested on unseen environments (i.e., environments not used in training), indicating that the neural agent models are highly biased towards training environments. Although this issue is considered as one of the major challenges in VLN research, it is still under-studied and needs a clearer explanation. In this work, we design novel diagnosis experiments via environment re-splitting and feature replacement, looking into possible reasons for this environment bias. We observe that neither the language nor the underlying navigational graph, but the low-level visual appearance conveyed by ResNet features directly affects the agent model and contributes to this environment bias in results. According to this observation, we explore several kinds of semantic representations that contain less low-level visual information, hence the agent learned with these features could be better generalized to unseen testing environments. Without modifying the baseline agent model and its training method, our explored semantic features significantly decrease the performance gaps between seen and unseen on multiple datasets (i.e. R2R, R4R, and CVDN) and achieve competitive unseen results to previous state-of-the-art models. Our code and features are available at: https://github.com/zhangybzbo/EnvBiasVLN




no

Beware the Normative Fallacy. (arXiv:2005.03084v1 [cs.SE])

Behavioral research can provide important insights for SE practices. But in performing it, many studies of SE are committing a normative fallacy - they misappropriate normative and prescriptive theories for descriptive purposes. The evidence from reviews of empirical studies of decision making in SE suggests that the normative fallacy may is common. This article draws on cognitive psychology and behavioral economics to explains this fallacy. Because data collection is framed by narrow and empirically invalid theories, flawed assumptions baked into those theories lead to misleading interpretations of observed behaviors and ultimately, to invalid conclusions and flawed recommendations. Researchers should be careful not to rely solely on engineering methods to explain what people do when they do engineering. Instead, insist that descriptive research be based on validated descriptive theories, listen carefully to skilled practitioners, and only rely on validated findings to prescribe what they should do.




no

Line Artefact Quantification in Lung Ultrasound Images of COVID-19 Patients via Non-Convex Regularisation. (arXiv:2005.03080v1 [eess.IV])

In this paper, we present a novel method for line artefacts quantification in lung ultrasound (LUS) images of COVID-19 patients. We formulate this as a non-convex regularisation problem involving a sparsity-enforcing, Cauchy-based penalty function, and the inverse Radon transform. We employ a simple local maxima detection technique in the Radon transform domain, associated with known clinical definitions of line artefacts. Despite being non-convex, the proposed method has guaranteed convergence via a proximal splitting algorithm and accurately identifies both horizontal and vertical line artefacts in LUS images. In order to reduce the number of false and missed detection, our method includes a two-stage validation mechanism, which is performed in both Radon and image domains. We evaluate the performance of the proposed method in comparison to the current state-of-the-art B-line identification method and show a considerable performance gain with 87% correctly detected B-lines in LUS images of nine COVID-19 patients. In addition, owing to its fast convergence, which takes around 12 seconds for a given frame, our proposed method is readily applicable for processing LUS image sequences.




no

Guided Policy Search Model-based Reinforcement Learning for Urban Autonomous Driving. (arXiv:2005.03076v1 [cs.RO])

In this paper, we continue our prior work on using imitation learning (IL) and model free reinforcement learning (RL) to learn driving policies for autonomous driving in urban scenarios, by introducing a model based RL method to drive the autonomous vehicle in the Carla urban driving simulator. Although IL and model free RL methods have been proved to be capable of solving lots of challenging tasks, including playing video games, robots, and, in our prior work, urban driving, the low sample efficiency of such methods greatly limits their applications on actual autonomous driving. In this work, we developed a model based RL algorithm of guided policy search (GPS) for urban driving tasks. The algorithm iteratively learns a parameterized dynamic model to approximate the complex and interactive driving task, and optimizes the driving policy under the nonlinear approximate dynamic model. As a model based RL approach, when applied in urban autonomous driving, the GPS has the advantages of higher sample efficiency, better interpretability, and greater stability. We provide extensive experiments validating the effectiveness of the proposed method to learn robust driving policy for urban driving in Carla. We also compare the proposed method with other policy search and model free RL baselines, showing 100x better sample efficiency of the GPS based RL method, and also that the GPS based method can learn policies for harder tasks that the baseline methods can hardly learn.




no

Learning, transferring, and recommending performance knowledge with Monte Carlo tree search and neural networks. (arXiv:2005.03063v1 [cs.LG])

Making changes to a program to optimize its performance is an unscalable task that relies entirely upon human intuition and experience. In addition, companies operating at large scale are at a stage where no single individual understands the code controlling its systems, and for this reason, making changes to improve performance can become intractably difficult. In this paper, a learning system is introduced that provides AI assistance for finding recommended changes to a program. Specifically, it is shown how the evaluative feedback, delayed-reward performance programming domain can be effectively formulated via the Monte Carlo tree search (MCTS) framework. It is then shown that established methods from computational games for using learning to expedite tree-search computation can be adapted to speed up computing recommended program alterations. Estimates of expected utility from MCTS trees built for previous problems are used to learn a sampling policy that remains effective across new problems, thus demonstrating transferability of optimization knowledge. This formulation is applied to the Apache Spark distributed computing environment, and a preliminary result is observed that the time required to build a search tree for finding recommendations is reduced by up to a factor of 10x.




no

Football High: Helmets Do Not Prevent Concussions

Despite the improvements in helmet technology, helmets may prevent skull fractures, but they do not prevent concussions.




no

24 Must-Know Graphic Design Terms

Graphic design is everywhere — it’s used in traditional marketing efforts like billboards and fliers, and more importantly, it’s used in nearly every single digital marketing initiative from web design to social media marketing. If you’re a business that’s working with a digital marketing agency for any number of marketing campaigns (especially web design), it’s […]

The post 24 Must-Know Graphic Design Terms appeared first on WebFX Blog.




no

Website Statistics for 2020: 10 Critical Stats to Know for Web Design

Are you looking to start 2020 with a fresh web design for your business? If so, you must know what you need to do in 2020 to have a website that drives success for your business. With website statistics for 2020, you can see what to do and what to avoid, which will help you […]

The post Website Statistics for 2020: 10 Critical Stats to Know for Web Design appeared first on WebFX Blog.




no

Future Bioeconomy Supported by More Than One Billion Tons of Biomass Potential

By The Office of Energy Efficiency & Renewable Energy Within 25 years, the United States could produce enough biomass to support a bioeconomy, including renewable aquatic and terrestrial biomass resources that could be used for energy and to develop products … Continue reading




no

What’s New With Node? Interview With Bethany Griggs, Node.js Technical Steering Committee

Node.js 14 is available now. We wanted to get more context and details about the state of Node, and why developers should care about Node.js 14. We talked with Bethany Griggs, Node.js Technical Steering Committee member and Open-source Engineer at IBM, to find out more. 

Bethany has been a Node Core Collaborator for over two years. She contributes to the open-source Node.js runtime and is a member of the Node.js Release Working Group where she is involved with auditing commits for the long-term support (LTS) release lines and the creation of releases. 




no

(Probably) No NaNoWriMo This Year

I’ve been getting the itch again. For the better part of this year, I’ve been looking forward to tackling National Novel Writing Month (NaNoWriMo) once again this November. I’ve been running over plot scenarios in my head…




no

North Idaho Rep. Heather Scott reaps the glory — and the consequences — of being one of Matt Shea's biggest allies

At these gatherings in northeast Washington, the jackboot of tyranny is always said to be descending, the hand of the federal government always inches away from stealing your guns, your land, your freedom to speak or to pray.…



  • News/Local News

no

The Innovia Foundation's former president has finally won his three-year battle to stop the organization from donating to a racist website

There's one thing the Innovia Foundation can never say: That it hadn't been told.…



  • News/Local News

no

UPDATED: Spokane Veterans Home isolated residents back in February due to respiratory illness — with no way to test

UPDATE: The Department of Veterans Affairs announced after this article was first published that Spokane Veterans Home residents with COVID-19 would be moved to the Mann-Grandstaff VA Medical Center.…



  • News/Local News

no

Noah Baumbach's great Marriage Story finds comedy and empathy in the details of a painful divorce

[IMAGE-1] Noah Baumbach's Marriage Story begins as its central marriage is coming to an end. Our two protagonists are fiercely independent, articulate, opinionated creative types: Charlie (Adam Driver) is the director of an avant-garde theater troupe in New York City; Nicole (Scarlett Johansson) is an actress and one of his primary collaborators.…



  • Film/Film News

no

You might feel anxious watching Uncut Gems, or you might simply be annoyed by one man's bad decisions

Uncut Gems is one of those "his own worst enemy" capers. You know, the kind of movie where you sit there for two hours watching some doofus constantly trip over his own laces — usually figuratively, sometimes literally — on the way to a personal epiphany about how all his bad choices and lack of useful self-awareness have led him to whatever unpleasant place they lead him to.…



  • Film/Film News

no

In reimagining a beloved novel, Emma understands what made Jane Austen so special in the first place

[IMAGE-1] Before smartphones and Instagram, there were influencers, and they could be as shallow, overconfident and pejorative as they are today. This new adaptation of Jane Austen's Emma — the feature debuts of photographer and music-video director Autumn de Wilde and Man Booker Prize-winning novelist turned screenwriter Eleanor Catton — brings that sort of modern frisson to its retelling of the tale of a very rich young woman who amuses herself by interfering in the romantic lives of those around her.…



  • Film/Film News

no

It's no Pixar classic, but Onward continues the studio's penchant for intelligent, original animated entertainment

What am I supposed to say here?…



  • Film/Film News

no

Doom's new and improved storyline, Pearl Jams new album and more you need to know

PROPHET OF DOOM…



  • Culture/Arts & Culture

no

CONCERT ANNOUNCEMENT: Wilco and Sleater-Kinney's co-headlining tour hits Spokane Aug. 6

Earlier this morning, Sleater-Kinney announced on Twitter that they're hitting the road on a co-headlining tour with Wilco this summer. Great news!…




no

Coronavirus concerns have put our live music scene on hold. What do we do now?

On any other week, you can rely on the Inlander for information on live shows happening in Spokane and North Idaho, and to read about the artists and music festivals that we think are worth your time.…